
Computational study of a cutting plane algorithm for

University Course Timetabling ∗

Pasquale Avella † Igor Vasil’ev ‡

July 11, 2003

Abstract

In this paper we describe a successful case-study where a Branch-and-Cut al-
gorithm yields the “optimal” solution of a real-world timetabling problem for uni-
versity courses (University Course Timetabling problem). The polyhedral struc-
ture of the problem is studied in conection with a polytope of the Set Packing
problem. Several families of cutting planes are introduced, these being crutial to
find an optimal solution for the problem presented.

1 Introduction

Given a set of courses, a set of teachers, a set of classes (i.e. a group of students attending
exactly the same courses), a set of rooms, a set of time periods and a planning time
horizon (usually it is one week), a School Timetabling problem consists of assigning
courses to rooms and to time periods, satisfying additional constraints that originate
from the organization of an educational system.

In order to meet the special requirements arising from different organizational set-
tings of schools, timetabling problems may appear in several forms, thus making it
hard to identify a standard formulation. Generally, School Timetabling problems can
be classified under three main types:

a) High School Timetabling problem. A set of teachers and set of classes have
to be scheduled in such a way that no one teacher (and, respectively, no one class)
is involved in more than one lecture at a time. Additional constraints enforce a
balancing of workloadfor for both teachers and classes.

∗Technical Report 20-03, DIS – Universita di Roma “La Sapienza” (2003)
†RCOST - Research Center on Software Technology, Universitá del Sannio, C.so Garibaldi 107,

82100 Benevento, Italy.
‡Centro di Ricerca in Matematica Pura e Applicata, Università di Salerno, Via Ponte Don Melillo,

84084 Fisciano (SA), Italy. Institute of System Dynamics and Control Theory, Siberian Branch of
Russian Academy of Sciences, Lermontov Srt., 134, 664033 Irkutsk, Russia.

1

b) University Course Timetabling problem. This problem is very similar to
that of the High School Timetabling problem above, but in this case, some
classes may be joined to enable attendance of some courses. The goal here is
to avoid/minimize lecture overlaps with the same students.

c) Examination Timetabling problem. The aim of this problem is to reduce
student exam overlaps. Where fiasible, exams should be spread out over the
whole exam period.

Due to their practical importance, School Timetabling problems have been widely
addressed in the literature. We refer the reader to the surveys by Burke and Petrovic [8],
Carter [10], Schaerf [20], de Werra [23], and the proceedings of the PATAT conferences
[5, 6, 9].

Asratian and de Werra [2], Gotlieb [14] analyzed the basic class-teacher model and
several its extensions. This model is the core of most real timetabling problems and
is defined as follows: given a set of p periods, the problem is to assign each course
to some period in such a way that no one teacher (and, respectively, no one class) is
involved in more than one lecture at a time. The class-teacher model is formulated as
an edge-coloring problem on a bipartite multigraph [23]. It is polynomially solvable,
but the addition of some real-life constraints makes the problem NP-complete [24].

School Timetabling is a feasibility problem if it aims to find a timetable that meets
all the requirements. But often it is transformed into an optimization problem by
partitioning the constraints into two classes: hard constraints and soft constraints. The
goal is to find a timetable that satisfies all the hard constraints and minimizes violation
of the soft constraints.

School Timetabling problems are, computationally, very challenging problems and
several solution approaches have been investigated. Local search algorithms have been
proposed by Abramson [1], Colorni et al. [11], Corne et al. [12] and Schaerf & Gaspero
[19]. Burke et al. [7] have studied genetic algorithms. An extensive overview of other
recent heuristic approaches is reported in [5, 6, 8, 9, 20]. A mathematical programming
formulation of the School Timetabling problem has been introduced in Tripathy [21].
Birbas et al. [3] presented the formulation of a timetabling problem for Greek High
Schools.

In this paper we study the polyhedral structure of the University Course Timetabling
problem to provide effective classes of cutting planes. We describe a Branch-and-Cut
algorithm to solve a real-world instance for a Faculty with 69 courses, 59 teachers and
15 rooms.

The problem is formulated as a Set Packing problem with side constraints. To
tighten the initial formulation we introduce well-known families of valid inequalities of
the Set Packing problem polytope, namely, Clique and Lifted Odd-Hole inequalities.
Further we introduce new families of valid inequalities, which do not derive themselves
from the analysis of a Set Packing polytope.

2

The remainder of the paper is organized as follows. In section 2 we define the
problem. In section 3 we present the Integer Programming formulation. In section
4 we show the relation to the Set Packing problem and we also describe separation
algorithms for Clique and Odd-Hole inequalities. In section 5, new families of valid
inequalities and their related separation algorithms are presented. Finally, in section 6,
we show the effectiveness of the algorithm by reporting on computational experience in
a real-world case-study.

2 Problem statement

In this section, we introduce some notations and definitions. We will then describe the
problem requirements.

• Let C = {1, . . . , c̄} be a set of courses. For any c ∈ C, let nc be the number
of hours to be scheduled per week and let nc

min and nc
max be, respectively, the

minimum and maximum daily number of teaching hours (no less than nc
min and

no more than nc
max hours have to be assigned to the day d, if the course c is

scheduled in d).

• Let R = {1, . . . , r̄} be a set of rooms.

• Let T = {1, . . . , t̄} be a set of time periods (of the same length, one hour).

• Let D = {1, . . . , d̄} be the days of the week when teaching is allowed. For any
d ∈ D, let τd and ιd be, respectively, the first time slots of the morning and
afternoon session in day d.

• Let G = {1, . . . , ḡ} be a set of classes (classes are groups of students attending
exactly the same courses). For any class g ∈ G, let Cg ⊂ C denote courses that
the class g should attend. In the contrast of the School Timetabling problem, it
can happen that Cg1

∩ Cg2
6= ∅, i.e. some classes can attend the same courses.

• Let S = {1, . . . , s̄} be a set of teachers and, for any s ∈ S, let Cs ⊂ C be a subset
of courses taught by teacher s. Let ks denote the maximum weekly number of
teaching days for the teacher s.

• Let lmax be the maximum daily number of teaching hours for any class g ∈ G.

• Let pct be a penalty occurring if the course c is scheduled at the time t. Usually
pct measures the “undesirability” of the corresponding teacher s (c ∈ Cs) to teach
the course c at time t.

A timetable is an assignment of courses C to rooms R and to time periods T . A
timetable should satisfy the following standard requirements, requirements common to
most of the educational systems.

3

i) For each course c ∈ C: nc hours a week must be scheduled.

ii) For each class g ∈ G: class g cannot attend more than one course at time t ∈ T .

iii) For each teacher s ∈ S: teacher s cannot teach more than one course at time
t ∈ T .

iv) For each room r ∈ R: room r cannot host more than one course at time t ∈ T .

In addition to the basic requirements, the timetable should meet the following “lo-
cal” requirements, charaterizing the real-world case study we have considered:

v) If a course c ∈ C is scheduled in day d ∈ D, it should take between nc
min and nc

max

hours.

vi) For each course c ∈ C, the timetable should be “compact”. If two hours of the
same course c are scheduled in day d, they have to be assigned to adjacent time
periods. In other words, let t1 and t3 (t1 < t3) be time periods belonging to the
same day. If course c is assigned to the time periods t1 and t3, the same course
should be scheduled at every time period between t1 and t3 as well, to guarantee
the adjacency.

vii) All the hours of a course c ∈ C scheduled in a d ∈ D should be located in the
same room r ∈ R.

viii) No class can attend more than lmax teaching hours a day.

ix) We distinguish two sessions (morning and afternoon). Courses of a class can be
taught only either in the morning or in the afternoon session.

x) For each class g ∈ G, the timetable should be “compact”: for each class, empty
periods between two of its courses are not allowed.

xi) A teacher s ∈ S cannot work for more than ks days a week.

xii) Due to the availability of equipments and capacity of the room, course c ∈ C can
be assigned to a subset of rooms Rc ⊆ R.

xiii) A room r ∈ R is available in a subset of time slots Tr ⊆ T .

xiv) A teacher s ∈ S is available in a subset of time slots Ts ⊆ T .

xv) The sum of the penalties should be minimized.

4

3 Integer Linear Programming formulation

To define an Integer Programming formulation for the University Course Timetabling
problem, we must introduce three sets of binary variables:

– xcrt is 1 if course c ∈ C is scheduled in room r ∈ R at time t ∈ T , xcrt = 0
otherwise;

– ucd is 1 if course c ∈ C is assigned to the day d ∈ D, 0 otherwise;

– ψsd is 1 if d ∈ D is a teaching day for teacher s ∈ S, 0 otherwise.

With these variables, a formulation that meets both basic and local requirements
is:

min
∑

c∈C

∑

t∈T

pct

∑

r∈R

xcrt (1)

∑

r∈R

∑

t∈T

xcrt = nc, c ∈ C (2)

∑

c∈Cg

∑

r∈R

xcrt ≤ 1, g ∈ G, t ∈ T (3)

∑

c∈Cs

∑

r∈R

xcrt ≤ 1, s ∈ S, t ∈ T (4)

∑

c∈C

xcrt ≤ 1, r ∈ R, t ∈ T (5)

∑

r∈R

∑

τd≤t<τd+1

xcrt ≥ nc
minucd, c ∈ C, d ∈ D (6)

∑

r∈R

∑

τd≤t<τd+1

xcrt ≤ nc
maxucd, c ∈ C, d ∈ D (7)

∑

r∈R

(xcrt1 − xcrt2 + xcrt3) ≤ 1,
c ∈ C, d ∈ D,

τd ≤ t1 < t2 < t3 < τd+1

(8)

xcr1t1 + xcr2t2 ≤ 1,
c ∈ C, 1 ≤ r1 < r2 ≤ r̄,

d ∈ D, τd ≤ t1 < t2 < τd+1

(9)

∑

c∈Cg

∑

r∈R

∑

τd≤t<τd+1

xcrt ≤ lmax, g ∈ G, d ∈ D (10)

∑

r∈R

xc1rt1 +
∑

r∈R

xc2rt2 ≤ 1,
g ∈ G, c1, c2 ∈ Cg, c1 6= c2, d ∈ D,

τd ≤ t1 < ιd ≤ t2 < τd+1

(11)

5

∑

c∈Cg

∑

r∈R

(xcrt1 − xcrt2 + xcrt3) ≤ 1,
g ∈ G, d ∈ D,

τd ≤ t1 < t2 < t3 < τd+1

(12)

∑

r∈R

xcrt ≤ ψsd, c ∈ Cs, s ∈ S, d ∈ D, τd ≤ t < τd+1 (13)

∑

d∈D

ψsd ≤ ks, s ∈ S (14)

xcrt ∈ {0, 1}, c ∈ C, r ∈ R, t ∈ T

ucd ∈ {0, 1}, c ∈ C, d ∈ D

ψsd ∈ {0, 1}, s ∈ S, d ∈ D

Objective function (1) attempts to minimize the sum of penalties (requirement xv).
Constraints (2) enforce that nc is the number of weekly hours for each course c

(requirement i)). Constraints (3) impose that a class g cannot attend more than one
course at time t (requirement ii)). Requirement iii) – a teacher cannot teach more than
one course at time t – is enforced by constraints (4). Requirement iv) – a room r cannot
host more than one course at time t – is enforced by constraints (5).

Constraints (6) and (7) impose that, if course c is scheduled in day d, i.e. if ucd = 1,
the number of daily hours of course c is between nc

min and nc
max (requirement v)).

Constraints (8) guarantee compactness for course c, the time periods assigned to day d
should be adjacent (requirement vi)). Constraints (9) impose that all hours of course c
scheduled in the same day d, be assigned to the same room r (requirement vii)).

Constraints (10) impose an upper bound lmax of the number of daily teaching hours
that a class has to attend (requirement viii)). Constraints (11) do not allow a class to
attend courses both in the morning and afternoon sessions of the same day (requirement
ix)). For example, if class g attends course c1 in the morning session of day d (xc1rt = 1
for some t such that τd ≤ t < ιd), class g cannot attend other courses in the afternoon
session (xc2rt = 0 for all c2 ∈ Cg and ιd ≤ t < τd+1). Constraints (12) guarantee that
the timetable for a class g is compact (requirement x)).

Finally, constraints (13), (14) limit the number of working days for each teacher
(requirement xi)).

For clarity, we do not consider requirements concerning capability/availability of
rooms and teachers (requirements xii)-xiv)). Such requirements can be easily expressed
by fixing corresponding variables xcrt = 0 and removing them from the formulation, i.e

xcrt = 0, c ∈ C, r ∈ R \Rc, t ∈ T (15)

xcrt = 0, c ∈ C, r ∈ R, t ∈ T \ Tr (16)

xcrt = 0, s ∈ S, c ∈ Cs, r ∈ R, t ∈ T \ Ts (17)

We denote by PUCTP the University Course Timetabling polytope, i.e. the convex
hull of integer solutions of formulation (1)-(17).

6

4 A Set Packing relaxation

Here we investigate the relation of the University Course Timetabling problem to the
Set Packing problem. This relation will be used to derive valid inequalities for PUCTP

from previously known results for the Stable Set polytope [4, 22].
Let G(V,E) be a graph with node weights w. The Set Packing or Stable Set prob-

lem (SSP) is to find a set of pairwise non-adjacent nodes of maximum weights, or,
equivalently, solve the integer linear problem

max cTy, Ay ≤ 1, y ∈ IB|V |

where binary variables yi, i ∈ V , correspond to each node. The matrix A is an edge-
node (or, more strictly, clique-node) incidence matrix, or, vice-versa, the graph is a
conflict or column intersection graph of matrix A.

The following subset of constraints (3)-(5), (9), (11) of the formulation, define a Set
Packing relaxation of the University Course Timetabling problem:

∑

c∈Cg

∑

r∈R

xcrt ≤ 1, g ∈ G, t ∈ T

∑

c∈Cs

∑

r∈R

xcrt ≤ 1, s ∈ S, t ∈ T
∑

c∈C

xcrt ≤ 1, r ∈ R, t ∈ T

xcr1t1 + xcr2t2 ≤ 1,
c ∈ C, 1 ≤ r1 < r2 ≤ r̄,

d ∈ D, τd ≤ t1 < t2 < τd+1

∑

r∈R

xc1rt1 +
∑

r∈R

xc2rt2 ≤ 1,
g ∈ G, c1, c2 ∈ Cg, c1 6= c2, d ∈ D,

τd ≤ t1 < ιd ≤ t2 < τd+1

After complementing variables ūcd = 1 − ucd, c ∈ C, d ∈ D, and ψ̄sd = 1 − ψsd,

s ∈ S, d ∈ D, we can strengthen the Set Packing formulation by adding the following
inequalities, which can easily be proved to be valid for PUCTP :

∑

c∈Cs

∑

r∈R

xcrt + ψ̄cd ≤ 1, s ∈ S, d ∈ D, τd ≤ t < τd+1 (18)

xcr1t1 + xcr2t2 + ūcd ≤ 1,
c ∈ C, 1 ≤ r1 < r2 ≤ r̄,

d ∈ D, τd ≤ t1 < t2 < τd+1

(19)

We observe that inequalities (18) dominate inequalities (4), (13), and that inequal-
ities (19) dominate inequalities (9).

The following family of inequalities arises by combining inequalities (10) with class
compactness inequalities (12).

Proposition 4.1 Inequalites

∑

c∈Cg

∑

r∈R

(xcrt1 + xcrt2) ≤ 1,
g ∈ G, d ∈ D,

τd ≤ t1 + lmax ≤ t2 < τd+1

(20)

are valid for PUCTP and imply inequalities (10).

7

Proof. Let g ∈ G and let c1, c2 ∈ Cg. Let d ∈ D, t1 and t2 such that τd ≤ t1 + lmax ≤
t2 < τd+1. Suppose that xc1rt1 = 1 and xc2rt2 = 1 for some r1, r2 ∈ R, so that inequality
(20) is violated. By compactness constraints (12), it follows that

∑

c∈Cg

∑

r∈R

xcrt3 = 1, for

each t3 such that t1 < t3 < t2. But then we have more that lmax teaching hours for class
g in day d, so violating constraints (10), a contradiction. �

The following inequalities arise by combining constraints (7), (8) and (11).

Proposition 4.2 Let

Tcdt1 = {t = t1 + knc
max : k ∈ IN ∪ {0}, τd ≤ t < ιd}

Tcdt2 = {t = t1 + knc
max : k ∈ IN ∪ {0}, ιd ≤ t < τd+1}

Periodic conflict inequalities

∑

r∈R

∑

t∈Tc1dt1

xc1rt +
∑

r∈R

∑

t∈Tc2dt2

xc2rt ≤ 1,
c1, c2 ∈ C, d ∈ D,

τd ≤ t1 < τd + nc1
max,

ιd ≤ t2 < ιd + nc2
max,

(21)

are valid for PUCTP and dominate inequalities (11) and imply (7).

Proof. First, we prove that
∑

r∈R

∑

t∈Tc1dt1

xc1rt ≤ 1, d ∈ D, τd ≤ t1 < τd + nc1
max

Let t2, t3 ∈ Tc1dt1 and suppose that xc1rt2 = 1 and xc1rt3 = 1 for room r (we are
considering one room due to constraint (9)), so the inequality is violated. According to
compactness inequalities (8), xc1rt = 1 for all t2 < t < t3, as soon as |t2 − t3| ≥ nc1

max by
definition, it contradicts that the number of hours a day cannot be more than nc1

max.
Analogously, we can prove that

∑

r∈R

∑

t∈Tc2dt2

xc2rt ≤ 1, d ∈ D, ιd ≤ t2 < ιd + nc2
max

By constraints (11), we have that xc1rt1 + xc2rt2 ≤ 1, for each c1, c2 form Cg and t1,
t2 of the different sessions and the proof is complete. �

As a final result, we find that the strengthened Set Packing relaxation of the
timetabling problem is defined by constraints (3), (5), (18)–(21). We can build the
intersection graph associated with this problem, by assigning a node to each variable
and an edge for two variables (nodes), which share the same constraints.

We use Set Packing relaxation as a logical framework to derive two well-known
families of cutting planes, namely Clique and Lifted Odd-Hole inequalities [15], that
turn out to be very effective at tightening of formulation.

8

For separation of Clique inequalities we adopt an “exact” version of Maximum
Clique identification procedure by Hoffman and Padberg [15] (we refer to apendix A
for further details on this procedure).

Violated Odd-hole inequalities can be identified in polynomial time [17]. Here,
because of the large size of instances, we apply the fast heuristic proposed by Hoffman
and Padberg [15] (we refer to appendix B for further details). Odd-hole inequalities
can be strengthened by sequential lifting. We compute the lifting coefficients by the fast
Mannino and Sassano algorithm for Maximum Cardinality Stable Set problem [18].

5 Cutting planes

In this section we introduce five families of valid inequalities for PUCTP .

Proposition 5.1 Let Ĉ = {c ∈ C : nc
min ≥ 2}. Adjacency inequalities

−xcrt−1 + xcrt − xcrt+1 ≤ 0,
c ∈ Ĉ, r ∈ R, d ∈ D,

t ∈ [τd + 1, ιd − 2] ∪ [ιd + 1, τd+1 − 2],
(22)

xcrt − xcrt+1 ≤ 0, c ∈ Ĉ, r ∈ R, d ∈ D, t = τd, ιd, (23)

−xcrt−1 + xcrt ≤ 0, c ∈ Ĉ, r ∈ R, d ∈ D, t = ιd − 1, τd+1 − 1 (24)

are valid for PUCTP .

Proof. If xcrt = 0, inequalities (22)-(24) are trivially valid.

• Let c ∈ Ĉ and let t ∈ [τd +1, ιd−2]∪ [ιd +1, τd+1−2]. If xcrt = 1, by compactness
constraints (8), we have that course c must be assigned at least to one of two
adjacent time periods (t− 1) or (t+ 1), so that xcrt−1 + xcrt+1 ≥ 1 and inequality
(22) is valid.

• Let t = τd or ιd. If xcrt = 1, by compactness constraints (8), we have that course c
must be assigned to adjacent time period (t+1), so that xcrt+1 = 1 and inequality
(23) is valid.

• Let t = ιd − 1 or τd − 1. If xcrt = 1, by compactness constraints (8), we have that
course c must be assigned to adjacent time period (t− 1), so that xcrt−1 = 1 and
inequality (24) is valid.

�
We are given the minimum and maximum daily number of hours allowed for a course

c, so we can compute, respectively, the minimum and maximum number of days when
the course can take place.

9

Proposition 5.2 Min (Max) Busy Days inequalities

∑

d∈D

ucd ≤
⌊

nc

nc
min

⌋

, c ∈ C

∑

d∈D

ucd ≥
⌈

nc

nc
max

⌉

, c ∈ C
(25)

are valid for PUCTP .

Proof. According to (2), (6) and (7), we have

nc
min

∑

d∈D

ucd ≤ nc, c ∈ C

nc
max

∑

d∈D

ucd ≥ nc, c ∈ C

Then we divide both sides by nc
min (respectively, nc

max) and round down (respectively,
round up) the right hand side. �

Proposition 5.3 Let

Ĉ = {c ∈ C : nc
min = nc

max}

Tcdt1 = {t = t1 + knc
max : k ∈ IN ∪ {0}, τd ≤ t < ιd}

Tcdt1 = {t = t1 + knc
max : k ∈ IN ∪ {0}, ιd ≤ t < τd+1}

Equalities

∑

r∈R

∑

t∈Tcdt1

xcrt +
∑

r∈R

∑

t∈Tcdt2

xcrt = ucd,

c ∈ C, d ∈ D,

τd ≤ t1 < τd + nc
max,

ιd ≤ t2 < ιd + nc
max,

(26)

are valid for PUCTP .

Proof.
∑

r∈R

∑

t∈Tcdt1

xcrt +
∑

r∈R

∑

t∈Tcdt2

xcrt ≤ ucd

follows from (7) and (21) when c = c1 = c2. To prove the opposite inequality, let us
consider two cases. When ucd = 0, is obvious. When ucd = 1, it means that course c
takes place in day d at least once during the consequent nc

min hours in the morning or
evening session. It means that

∑

r∈R

∑

t∈Tcdt1

xcrt +
∑

r∈R

∑

t∈Tcdt2

xcrt ≥ 1

�
The two following families of inequalities are derived from compactness inequalities

(8) and (12) by sequential lifing.

10

Proposition 5.4 Given intersection graph G(V,E), let Hc1t1t3 be a complete subgraph
of G with property that every xcrt ∈ Hc1t1t3 is adjacent in G to nodes xc1rt1 and xc1rt3

for all r ∈ R. Lifted Course Compactness inequalities
∑

r∈R
(xc1rt1 − xc1rt2 + xc1rt3) +

∑

xcrt∈Hc1t1t3

xcrt ≤ 1,

c1 ∈ C, d ∈ D, τd ≤ t1 < t2 < t3 < τd+1

(27)

are valid for PUCTP .

Proposition 5.5 Given intersection graph G(V,E), let Hgt1t3 be a complete subgraph
of G with property that every xcrt ∈ Hgt1t3 is adjacent in G to nodes xc1rt1 and xc1rt3

for all c1 ∈ Cg, r ∈ R. Lifted Class Compactness inequalities

∑

c1∈Cg

∑

r∈R

(xc1rt1 − xc1rt2 + xc1rt3) +
∑

xcrt∈Hgt1t3

xcrt ≤ 1,

g ∈ G, d ∈ D, τd ≤ t1 < t2 < t3 < τd+1

(28)

are valid for PUCTP .

5.1 Separation algorithms

Inequalities (22)–(25) can be easily checked by enumeration. Separation of inequalities
(27) is implemented in the following maner.

Let x̄ be the current fractional solution. For every class c1 and day d we find t1, t2,
t3 by a greedy way in order to maximize

∑

r∈R

(xcrt1 − xcrt2 + xcrt3)

We find a set variables, which are adjacent to all xc1rt1 and xc2rt3 for all r ∈ R. Then,
among of them, a clique with maximal weight (i.e. Hc1t1t3) is found by MIP solver. The
corresponding cut is added in case of violation.

A similar separation procedure is used for cuts (28).

6 Computational results

In this section we report on a computational experience with real-world instances utiliz-
ing a sourse more than 1000 students attending courses (kindly provided by the Facoltá
di Ingegneria of Universitá del Sannio, Benevento, Italy). The test-bed consists of four
instances: academic years 2001-2002 and 2002-2003, I and II semesters.

Below, we describe main features of the didatical organization. The week consists
of five working days (from Monday to Friday). Each day is organized in two sessions,
namely a morning session (9am-2pm) and an afternoon session (2pm-7pm). More details
are reported in table 1, where Name is name of the instance , c̄ is number of courses, h̄
is total number of hours to be scheduled, i.e. h̄ =

∑

c∈C

nc, r̄ is number of available rooms,

11

Name c̄ h̄ r̄ ḡ s̄]Nodes]Arcs

Prob1 64 233 12 14 48 4815 115025
Prob2 69 229 15 13 59 7595 332831
Prob3 57 212 9 11 43 4205 83745
Prob4 61 207 12 11 41 6670 223816

Table 1: Instance details

ḡ is number of classes, s̄ is number of teachers.]Nodes and]Arcs are, respectively,
number of nodes and arcs in Set Packing relaxation.

In our tests, objective function penalty pct has been set to 1 if time period t has
been undesirable for teacher of course c, 0 otherwise. With these penalties, optimal
objective value returns minimum number of “undesired” time periods.

Computational experiments have been carried out on a Compaq EVO W4000 Per-
sonal Computer with Pentium IV-1.8 Ghz processor and 1 Gb RAM. We have used
MIP solver ILOG Cplex 8.0 callable library [16] as Branch-and-Cut framework.

For the sake of clarity, we recall that, based on the propositions of sections 4 and 5,
tightened formulation is defined by inequalities (2), (3), (5)–(8), (10), (12), (13)–(28).

We classify these inequalities into three groups according to the separation strategies
we adopted:

1. Initial formulation contains constraints (2), (3), (5)–(7), (10), (14), (18), (25).

2. Because of their huge number, constraints (8), (12), (19)–(24), (26) are added
dynamically, i.e. they are stored into a cut pool and added to the current problem
as soon as they become violated during optimization. The pool is checked at every
node of B&C tree.

3. Separation algorithms for the Clique, Lifted Odd-hole inequalities and inequalities
(27), (28) are launched only at root node of B&C tree.

Computational results are reported in table 2. Column Name shows the instance
name, LBLP is the lower bound of the LP-relaxation of the basic formulation (2)-(14),
LBCut is the lower bound yielded after addition of cutting planes at root node of the
B&C tree, BLB is best lower bound produced by the B&C algorithm, BUB is best
upper bound produced by Branch-and-Cut algorithm (“—” means that no feasible so-
lutions were found), Guar is the optimality guarantee, computed as BLB

BUB
· 100% (“opt”

means that optimal solution was found).]NodesB&C and T ime are, respectively, num-
ber of Branch-and-Cut nodes and total computation time (CPU seconds). Computation
time was limited to 2 hours. To demonstraite effectiveness of cutting planes introduced,
we ran Branch-and-Cut algorithm with three different cut generation strategies:

Strategy 1. We use only constraints of the basic formulation (2)-(14). In this case, we
cannot even find any feasible solution in two hours of computation time. Some-

12

Name LBLP LBCut BLB UB Guar]NodesB&C T ime (sec)
Strategy 1

Prob1 9.40 11.60 21.40 — — 4972 7200
Prob2 6.00 6.00 18.00 — — 8628 7200
Prob3 11.00 13.00 22.00 — — 27972 7200
Prob4 25.00 25.00 32.00 — — 4206 7200

Strategy 2
Prob1 9.40 24.50 33.00 33.00 opt 999 7038
Prob2 6.00 27.50 27.50 33.00 83.33% 410 7200
Prob3 11.00 22.99 28.00 28.00 opt 4844 4940
Prob4 25.00 41.47 43.00 44.00 97.73% 347 7200

Strategy 3
Prob1 9.40 31.00 33.00 33.00 opt 32 348
Prob2 6.00 32.33 33.00 33.00 opt 13 681
Prob3 11.00 24.83 28.00 28.00 opt 591 893
Prob4 25.00 43.33 44.00 44.00 opt 5 512

Table 2: Computational results

times, values of LBLP and LB are different, because of embedded cutting planes
of MIP solver.

Strategy 2. We use cutting planes (18)-(24). With this strategy, Prob1 is solved to
optimality in time very close to the limit of 2 hours. For Prob2 the upper bound
coincides with optimal, but it is proved is proved only with 83.33% optimaly
guarantee, Prob3 is solved to optimality in one hour and 25 minutes. For Prob4,
a solution is found with 97.73% optimality guarantee.

Strategy 3. We use all the cutting planes families introduced in this paper. Clique
inequalities, Odd-Hole inequalities and Lifted Compactness inequalities (27), (28)
are identified only at the root node. This strategy yields optimal solution of all
test instances in less than 15 minutes of CPU Time.

Acknowledgments

The authors wish to thank Antonio Sassano for the helpful comments.

References

[1] Abramson D., A very high speed architecture for simulated annealing, IEEE Com-
puter 25 (1992) 27-36.

13

[2] Asratian A.S., de Werra D. A generalized class-teacher model for some timetabling
problems, European journal of operational research 143 (2002) 531-542.

[3] Birbas T., Daskalaki S., Housos E. Timetabling for Greek High School, Journal of
the Operational Research Society 48 (1997) 1191-1200.

[4] Borndorfer R., Weismantel R. Set Packing Relaxations of Some Integer Programs,
Mathematical Programming 88 (2000) 425-450.

[5] Burke E., Carter M. (editors), The Practice and Theory of Automated Timetabling
II: Selected Papers from the 2nd International Conference on the Practice and
Theory of Automated Timetabling, University of Toronto, August 20th-22nd 1997,
Springer Lecture Notes in Computer Science Series 1998, Volum 1408.

[6] Burke E., Erben W. (editors) The Practice and Theory of Automated Timetabling
III: Selected Papers the 3rd International Conference on the Practice and Theory
of Automated Timetabling, Konstanz, Germany, August 16th-18th 2000, Springer
Lecture Notes in Computer Science Series 2001, Volume 2079.

[7] Burke E.K., Newall J.P., Weare R.F. A memetic algorithm for university exam
timetabling, The Practice and Theory of Automated Timetabling 1153, E.K. Burke
and P. Ross editors (1996) 241–250.

[8] Burke E.K., Petrovic S. Recent Research Trends in Automated Timetabling, Eu-
ropean Journal of Operational Research 140(2) (2002) 266-280.

[9] Burke E., Ross P. (editors), The Practice and Theory of Automated Timetabling:
Selected Papers from the 1st International Conference on the Practice and Theory
of Automated Timetabling, Edinburgh August/September 1995, Lecture Notes in
Computer Science 1996, Volulem 1153.

[10] Carter M.W. A survey of practical applications of examination timetabling algo-
rithm, Operations Research 34(2) (1986) 193-202.

[11] Colorni A., Dorigo M., Maniezzo V. Mateheuristics for high school timetabling,
Computational Optimization and Application 9 (1998) 275-298.

[12] Corne D., Ross P., Fang H.-L. Evolutionary timetabling: practice, prospects and
work in progress, In UK planning and Scheduling SIG Workshop (1994)

[13] Ferland J.A., Roy S. Timetabling problem for university as assignment of activity
to resources, Computers and Operational Research 12(2) (1985) 207-218.

[14] Gotlieb C.C. The construction of class-teacher timetables, in Proceeding of IFIP
Congress (1962) 73-77.

14

[15] Hoffman K.L., Padberg M. Solving airline crew scheduling problems by branch-
and-cut, Management Science 39(6) (1993) 657-682.

[16] ILOG CPLEX Reference manual, ILOG (2002).

[17] Grotschel M., Lovasz L., Schrijver A. Geometric algorithms and combinatorial
optimization, Springer-Verlag (1993).

[18] Mannino C., Sassano A. An exact algorithm for the maximum stable set problem,
Computational Optimization and Applications 3(4) (1994) 243-258.

[19] Schaerf A., Di Gaspero L. Local Search Techniques for Educational Timetabling
Problems, in Proceeding of the 6th International Symposium on Operational Re-
search in Slovenia (SOR-’01), Preddvor, Slovenia (2001) 13-23

[20] Schaerf A. A survey of automated timetabling, Artificial Intelligence Review 13
(1999) 87-127.

[21] Tripathy A. School timetabling – a case in large binary integer linear programming,
Management Sciense 30(12) (1984) 1473-1489.

[22] Waterer H., Johnson E.L., Nobili P., Savelsbergh M.W.P. The relation of time
indexed formulations of single machine scheduling problems to the node packing
problem, Mathematical Programming 93 (2002) 477-494.

[23] de Werra D. An introducing to timetabling, European Journal of Operational Re-
search 19 (1985) 151-162.

[24] de Werra D., Asratian A.S., Durand S. Complexity of some types of timetabling
problems, Journal of Scheduling 5 (2002) 171-183.

15

A Clique separation

Let G(V,E) is a simple graph. Let us consider a polytope of the Set Packing problem

PSSP =
{

y ∈ IB|V | : yi + yj ≤ 1, ∀ij ∈ E
}

.

It is well-known that the inequality
∑

i∈K

yk ≤ 1 (29)

defines a facet of PSST if and only if K ⊂ V is a Maximum Clique. The separation
problem consists of finding maximum cliques for graph G(V,E) for which corresponding
inequalities (29) are violated with respect to given fractional solution ȳ. Our separation
is very similar to procedure proposed by Hoffman and Padberg [15], but it is exact, i.e.
we identify violated Clique inequalities if they exist. This separation is based on the
fact that small problems can be solved quickly.

In the first stage of separation, we identify the most violated Clique inequalities on
subgraph Ḡ(V̄ , E(V̄)). Here we denote with E(W) = {ij ∈ E : i ∈W, j ∈W}, where
node set corresponds to fractional values of ȳ, i.e. V̄ = {i ∈ V : 0 < ȳi < 1}. We
choose a node i from V̄ with minimum degree. Let star(i) = {j : ij ∈ E} (a subset
of neighbors of i). Every clique, containing i, belongs to star(i) ∪ {i}. Therefore, the
most violated Clique inequality can be found by solving the Maximum Weighted Stable
Set problem on the complement graph with nodes star(i)∪ {i}. If |star(i)∪ {i}| ≤ 16,
the problem is solved by enumeration, otherwise by MIP solver. If the problem value
is more than 1, violated Clique inequality is found and can be enlarged with nodes of
entire graph G(V,E) in the second stage of separation. The first stage is repeated after
deleting i from V̄ until V̄ is exhausted.

In the second stage of separation, violated Clique inequalities are enlarged to be
facets, i.e. corresponding cliques are enlarged to be maximum cliques. Suppose, we
have clique K, our purpose is to find the maximal clique containing K. It is done by
the similar method as used in the first stage. We form the node set M = {j ∈ V : ij ∈
E ∀i ∈ K} and solve the Maximal Clique problem over the nodes K ∪M with fixed
nodes from K in the solution. Computational experiments show that this problem can
be solved faster through the Stable Set problem on the complement graph, because of
sparsity of the complement graph. Again, this problem is solved either by enumeration,
if the number of nodes is less or equal 16, or by MIP solver.

B Odd-Hole separation

An odd-hole in G(V,E) is a set of nodes W = {w1, w2, ..., w2k+1} for k ≥ 2 such that
node ui−1 is joined by an edge to node wi for i = 1, ..., 2k + 1, where w0 = w2k+1 and
no other pair of nodes of W is joined by an edge. The inequality

∑

w∈W

yw ≤
|W | − 1

2
(30)

16

is called an odd-hole inequality. It is valid for PSSP [15].
Odd-Hole inequalities can be separated in polynomial time [17]. Here, because of

the large size of the instances, we apply the fast heuristic proposed by Hoffman and
Padberg [15].

Let us consider graph Ḡ(V̄ , E(V̄)). Choose a node w ∈ V̄ and build a “layered”
graph rooted in it. On the first layer, there are all neighbors of w, on the second layer,
there are remaining neighbors of the first layer nodes and so on. So, the shortest path
from level k to root w contains exactly k edges. Assign edgeweights of 1 − ȳi − ȳj for
all edges ij ∈ E those are in the layered graph. Pick two adjacent nodes i and j on
some layer k, find the shortest path from the root to i and set the edgeweights of this
path to a big value L, say. Then, find the shortest path from the root to node j. If the
length of the second path is less than L, we have an odd-hole formed by the two paths
and can check if it is violated or not.

17

