
Temporal difference learning with kernels for
pricing American-Style option

Kengy Barty1, Jean-Sébastien Roy2, Cyrille Strugarek3

May 12, 2005

Abstract

We propose in this paper to study the problem of estimating the cost-to-go

function for an infinite-horizon discounted Markov chain with possibly con-

tinuous state space. For implementation purposes, the state space is typically

discretized. As soon as the dimension of the state space becomes large, the

computation is no more practicable, a phenomenon referred to as the curse

of dimensionality. The approximation of dynamic programming problems is
therefore of major importance.

A powerful method for dynamic programming, often referred to as neuro-

dynamic programming, consists in representing the Bellman function as a

linear combination of a priori defined functions, called neurons. The choice

of the neurons represents a delicate operation since it requires to have an

idea of the optimal solution. Furthermore, in a classical learning algorithm

once the choice of these neurons is made it is no longer modified although the

amount of the available information concerning the solution increases along

the iterations. In other words, such algorithms are “locked” in the vector

subspace generated by these neurons. Consequently, the algorithm is not

able to reach the optimal solution if it does not belong to the neurons vector
subspace.
In this article, we propose an alternative approach very similar to tempo-
ral differences, based on functional gradient descent and using an infinite
kernel basis. Our algorithm is a result of the combination of stochastic ap-
proximation ideas, and nonparametric estimation concepts. Furthermore, our

algorithm, though aimed at infinite dimensional problems, is implementable
in practice. We prove the convergence of this algorithm under a few condi-

tions, which are classical in stochastic approximation schemes. We conclude
by showing on examples how this algorithm can be used to solve both infinite-
horizon discounted Markov chain problems, and bermudan option pricing.

Keywords: TD Learning, Robbins-Monro Algorithm, Kernel Approxima-

tion, Approximate Dynamic Programming

1. Introduction

Dynamic programming is a powerful methodology for dealing with problems of sequential
decision-making under uncertainty. In the case of a continuous system state, the usual approach to
apply dynamic programming is to perform a discretization of the state and recursively apply the
Bellman operator. This discretization usually leads to very large state spaces, a problem known
as the curse of dimensionality. An additionnal complexity arises in the stochastic case, since the
conditional expectation appearing in the Bellman equation must also be approximated through a
discretization of the dynamic.

Temporal difference learning introduced by Sutton[Sutton, 1988] provides a way to carry out
the Bellman operator fixed point iterations while approximating the expectation through ran-
dom sampling. While solving the second problem, this approach still requires a discretization
of the state space which, in the large scale case, might not be practicable. To overcome the

1École Nationale des Ponts et Chaussées (ENPC),

kengy.barty@cermics.enpc.fr
2EDF R&D

1, avenue du Général de Gaulle

F-92141 Clamart Cedex

jean-sebastien.roy@edf.fr
3EDF R&D

cyrille.strugarek@edf.fr

also with the École Nationale Supérieure de Techniques Avancées (ENSTA) and the École Nationale des Ponts et
Chaussées (ENPC)

1

curse of dimensionality most approaches so far have proposed to approximate the value func-
tion as a linear combination of basis functions. This approach, called approximate dynamic pro-
gramming, and first described in [Bellman and Dreyfus, 1959], has been thoroughly studied. See
[Sutton and Barto, 1998] and [Bertsekas and Tsitsiklis, 1996] for detailed introductions to tempo-
ral difference and approximate dynamic programming methods. Recent and promising approaches
to this problem include a formulation of dynamic programming through a linear program which
can ensure performance guarantees [de Farias and Van Roy, 2004]. Nevertheless, all these ap-
proaches require the use of a predefined finite functional basis and therefore give up optimality,
even asymptotically. Moreover, while the quality of the approximation might increase with the
number of functions used in the basis, the complexity of each iteration (usually a least-square
regression or linear program), renders the use of large basis impracticable.

We introduce an alternative approach, based on functional gradient descent and using an infinite
kernel basis, that preserves optimality under very light conditions while being implementable in
practice. In contrast to finite functional basis methods, where the a priori basis is used to abitrarily
generalize the local gradient information provided by each sample, we aim at generalizing using
only regularity assumptions of the value fonction and therefore better exploiting the information
provided.

Similar ideas dates back to recursive nonparametric density estimation [Wolverton and Wagner, 1969],
and have been proposed in the context of econometry in [Chen and White, 1998]. Our approach
aims at providing more sensible assumptions in the context of optimization and simpler proofs,
based on a completely different theory.

Section 2 describes our new algorithm to approximate the Bellman equation and shows its
convergence. Section 3 establishes a link between the Robbins-Monro stochastic approximation
[Robbins and Monro, 1951] and our algorithm. As an application, this analysis shows how our
algorithm is a generalization of classical temporal difference schemes in infinite dimensional frame-
work. Finally two numerical examples are presented in section 4, one of them being Bermudan
option pricing.

2. Learning with kernels

We consider the problem of approximating the cost-to-go function for an infinite-horizon dis-
counted Markov chain with possibly continuous state space. Let (Ω,F , P) be a probability space,
(S,B) be a topological space endowed with its Borel σ-field and (Xt)t∈N be a Markov chain with
values on the state space S. Under these assumptions there exist transition kernels describing
the dynamics of the Markov chain. We also suppose that the Markov chain is stationary, i.e.,
its transition kernels are time-independent. We can hence define Π : S × B → [0, 1] to be the
transition kernel of the Markov chain (Xt)t∈N, by:

∀t ∈ N, ∀x ∈ S, ∀A ∈ B, Π(x,A) = P(Xt ∈ A | X0 = x).

Assumption 2.1. There exists a measure denoted π : B → [0, 1] such that:

∀A ∈ B, π(A) =

∫

S

Π(x,A)π(dx).

The previous equality implies that π is an invariant probability measure for the Markov chain
considered. Such a probability measure is often referred to as the steady-state probability.

We endow the space of square π-integrable random variables denoted by L2(S,B, π) with the
inner product 〈·, ·〉π:

∀u, v ∈ L2(S,B, π), 〈u, v〉π =

∫

S

u(x)v(x)π(dx),

and with the following norm ‖·‖π as well:

∀v ∈ L2(S,B, π), ‖v‖π =
√

〈v, v〉π.

2

To simplify notations let us denote:

∀f ∈ L2(S,B, π),∀x ∈ S, Π(f)(x) =

∫

S

f(y)Π(x, dy) and, π(f) =

∫

S

f(y)π(dy).

We will also write E [v] =
∫

Ω
v(ω)P(dω).

Let g : S → R be a bounded function. For a given α ∈ [0, 1[, we define the cost-to-go function
J∗ as follows:

J∗(x) = E

[
n∑

t=0

αtg(Xt) | X0 = x

]

.

J∗ is the unique solution to Bellman’s equation:

(2.1) J = TJ,

where T : L2(S,B, π) → L2(S,B, π) is given by:

(2.2) ∀J ∈ L2(S,B, π), TJ = g + αΠ(J),

which also reads, for all J ∈ L2(S,B, π):

∀x ∈ S, (TJ)(x) =

∫

S

(g(x) + αJ(y))Π(x, dy).

One can remark that Bellman’s operator T is α-Lipschitz continuous for the previously defined
norm:

∀J, J̄ ∈ L2(S,B, π),
∥
∥TJ − T J̄

∥
∥

2

π
=

∫

S

(
g(x) + αΠ(J)(x) − g(x) − αΠ(J̄)(x)

)2
π(dx),

= α2

∫

S

(
Π(J − J̄)(x)

)2
π(dx),

≤ α2

∫

S

Π(
(
J − J̄

)2
)(x)π(dx), by Jensen’s inequality,

≤ α2π
(
Π((J − J̄)2)

)
,

≤ α2π(J − J̄)2,

≤ α2
∥
∥J − J̄

∥
∥

2

π
.

This contraction property of the operator T ensures that the solution J ∗ of (2.1) is well-defined.
In a classical approach a discrete formulation of the problem is provided by introducing a linear

combination of prescribed basis functions [Tsitsiklis and Van Roy, 1997] to represent the Bellman
function. Its main drawback is the loss of any optimality guarantee: such approaches are known
to converge to the optimal linear combination of the prescribed basis, but the evaluation of the
deviation from the optimal solution is still open.

In order to avoid such an optimality loss, we present a new algorithm to approximate the
solution of (2.1) and show its convergence. The main advantage of this algorithm is that it
provides a method to incrementally increase the number of neurons while it improves its accuracy
as well. As long as the number of iterations grows, we build a sum of applications where each new
element contributes to reduce the distance to the optimal solution.

A description of our infinite dimensional TD(0) algorithm can be given by:

Algorithm 2.2 (Infinite dimensional TD(0)). Step -1 : initialize J0(·) = 0,
Step k ≥ 0 :

• Draw ξk+1 independently from the past draws with respect to the distribution π and wk+1

with respect to the distribution Π(ξk+1, ·);
• Update :

dk(ξ, w) := g(ξ) + αJk(w) − Jk(ξ),

(2.3) Jk+1(·) := Jk(·) + γkdk(ξk+1, wk+1)Kk(ξk+1, ·).
• If a maximal iteration number is reached, stop, else increment k and loop.

3

Where ∀k ∈ N, Kk : S × S → R is a predefined sequence of mappings. For example, consider
a nonnegative sequence (εk) decreasing to 0, let S = R

n, and V ∈ R
n × R

n an inversible matrix
then an adequate mapping Kk is the Gaussian kernel:

Kk : (x, y) →
(

1√
2π

)n

e
− 1

2εk

(x − y)′V −1(x − y)

Remark 2.3 (Sample space). The sequence (Jk)k∈N is a stochastic process defined on the sample
space (Ω⊗N,F⊗N, P⊗N) with values in the Hilbert space (L2(Ξ,B, π), ‖·‖π). We denote Fk the
complete σ-field generated by the random variable (ξ1, . . . , ξk) and by E

k [·], the conditional ex-
pectation according to Fk. In the one hand, one can observe that Jk is Fk-measurable, in the
other hand:

(2.4) E
k
[
Jk(ξk+1)

2
]

= ‖Jk‖2
π

The core of the algorithm is provided by the kernels Kk allowing to obtain a functional update
of Jk. Algorithm 2.2 can be viewed as a variant of the algorithm TD(0) since we have here a
functional temporal difference Dk:

Dk(ξ, w)(·) =
1

εk

dk(ξ, w)Kk(ξ, ·),

Jk+1 = Jk + γkεkDk(ξk+1, wk+1).

In the classical point of view, temporal differences are the realizations of random variables (dk),
in the previous point of view the temporal differences are realizations of random functions (Dk).
We call (Dk) functional temporal differences.

Remark 2.4 (Convolution and Stochastic Gradient). Let p be the density of the random variable
ξ w.r.t. the Lebesgue measure, and Kk(x, y) = 1

p(x)K(x−y
k

). Then the algorithm (2.3) can be re

written as:

(2.5) Jk+1(·) = Jk(·) + γkεkdk(ξk+1, wk+1)
K((ξk+1 − ·)/k)

p(·)εk

.

We can observe that our algorithm combines ideas concerning stochastic gradient and convolution
approximations. In fact, the application of a classical Robbins-Monro algorithm for equation (2.1)
gives us:

Jk+1 = Jk + γk(g + αΠ(Jk) − Jk).

A possible problem arises when Jk is of infinite dimension. In such a case it is not possible to
perform this algorithm. Hence to overcome this hurdle, we can approximate the previous equation
using a mollifier sequence. Rearranging terms, we see that the last relation can be written as
follows:

Jk+1(·) =Jk(·) + γkE [(g(ξ) + αJk(w) − Jk(ξ)) Kk((ξ, ·)]

=Jk(·) + γkεk

∫

g(x) + αJk(y) − Jk(x)

︸ ︷︷ ︸

temporal difference sample

K((x − ·)/k)

εk
︸ ︷︷ ︸

mollifier

Π(x, dy)dx(2.6)

In numerical analysis, the use of mollifier sequences is a useful method, provided that

lim
k→∞

∫

f(x, y)
K((x − ξ)/k)

εk

Π(x, dy)dx =

∫

f(ξ, y)Π(ξ, dy),

for a sufficiently large class of mappings f , including the successive temporal differences. The final
step consists of combining the convolution (or mollifier) ideas introduces in (2.6) with stochastic
approximation. Indeed, using a Monte-Carlo method, we replace the integral by successive samples
(ξk+1, wk+1), hoping that the mappings Jk do not change too much along the iterations:

Z

(g(x) + αJk(y) − Jk(x))
K((x − ξ)/k)

εk

Π(x, dy)dx ∼
X

l≤k

`

g(ξl+1) + αJl(wl+1) − Jl(ξl+1)
´ K((ξl+1 − ξ)/l)

p(ξl+1)εl

4

We are now going to give a proof of Algorithm 2.2. First of all, let us prove the following useful
lemma :

Lemma 2.5. Let f ∈ L2(S,B, π):

〈f,Π(f)〉π ≤ ‖f‖2
π .

Proof : The application of the Cauchy-Schwarz inequality and the Jensen inequality imply:

〈f, Π(f)〉π =

Z

S

f(x)Π(f)(x)π(dx),

≤

„Z

S

f(x)2π(dx)

«1/2 „Z

S

Π(f)(x)2π(dx)

«1/2

,

≤ ‖f‖π

„Z

S×S

f(y)2Π(x, dy)π(dx)

«1/2

.

Since π is an invariant distribution for the kernel Π,

〈f, Π(f)〉π ≤ ‖f‖π

„Z

S

f(y)2π(dy)

«1/2

,

≤ ‖f‖2
π ,

which completes the proof. 2

In order to simplify the formulas, we adopt the following notation:

Π(dk)(x) =

∫

S

dk(x, y)Π(x, dy).

Let us state the main result of this section:

Theorem 2.6. Under the following assumptions:

(i) (ξk, wk)k∈N is an i.i.d. sample of the random variable (ξ, w),
(ii) the functional temporal differences (Dk) are such that there exists a nonnegative sequence

(εk)k∈N and b1 ≥ 0 such that for all k ∈ N,
∥
∥E

k [Dk(ξk+1, wk+1)] − Π(dk)
∥
∥

π
≤ b1εk (1 + ‖Π(dk)‖π) ,(2.7a)

∫

S

Kk(ξk+1, y)2π(dy) ≤ εk,(2.7b)

(iii) the sequences (γk) and (εk) satisfy the following properties:

(2.8)
∑

k∈N

γkεk = ∞,
∑

k∈N

γ2
kεk < ∞,

∑

k∈N

b1γkε2
k < ∞,

the sequence (Jk)k∈N generated by Algorithm 2.2 strongly converges to the unique optimal solution
of (2.1).

Proof : We shall first study the evolution of the sequence (‖Jk − J∗‖π)k∈N. The conclusion will be
obtained as a consequence of the Robbins-Siegmund Lemma, (see [Robbins and Siegmund, 1971]).

‖Jk+1 − J
∗‖

2
π = ‖Jk − J

∗ + γk (g(ξk+1) + αJk(wk+1) − Jk(ξk+1)) Kk(ξk+1, ·)‖
2
π ,

= ‖Jk − J
∗‖

2
π + 2γk 〈Jk − J

∗
, (g(ξk+1) + αJk(wk+1) − Jk(ξk+1)) Kk(ξk+1, ·)〉π ,

+γ
2
k ‖(g(ξk+1) + αJk(wk+1) − Jk(ξk+1)) Kk(ξk+1, ·)‖

2
π .

By considering the conditional expectation with respect to Fk:

E
k

h

‖Jk+1 − J
∗‖

2
π

i

= ‖Jk − J
∗‖

2
π + 2γk E

k ˆ
〈Jk − J

∗
, (g(ξk+1) + αJk(wk+1) − Jk(ξk+1)) Kk(ξk+1, ·)〉π

˜

| {z }

A

+γ
2
k E

k ˆ
‖(g(ξk+1) + αJk(wk+1) − Jk(ξk+1)) Kk(ξk+1, ·)‖

2
π

˜

| {z }

B

.(2.9)

5

We shall now provide upper bounds for 1
εk

A and B as well:

1

εk
A ≤

fi

Jk − J
∗
, E

k

»

(g(ξk+1) + αJk(wk+1) − Jk(ξk+1))
Kk(ξk+1, ·)

εk

–fl

π

,

≤

fi

Jk − J
∗
, E

k

»

dk(ξk+1, wk+1)
Kk(ξk+1, ·)

εk

–

− (g + αΠ(Jk) − Jk)

fl

π

+ 〈Jk − J
∗
, T (Jk) − Jk〉π ,

≤ ‖Jk − J
∗‖π

‚
‚
‚E

k [Dk(ξk+1, wk+1)] − Π(dk)
‚
‚
‚

π
,

+ 〈Jk − J
∗
, T (Jk) − J

∗〉π + 〈Jk − J
∗
, J

∗ − Jk〉π .

Assumption (2.7a) implies:

(2.10)
1

εk
A ≤ b1εk ‖Jk − J

∗‖π

`
1 + ‖Π(dk)‖π

´
+ ‖Jk − J

∗‖π ‖T (Jk) − J
∗‖π − ‖Jk − J

∗‖
2
π .

One can remark that:

‖Π(dk)‖π = ‖T (Jk) − Jk‖π ,

≤ ‖T (Jk) − J
∗‖π + ‖J∗ − Jk‖π ,

≤ (1 + α) ‖Jk − J
∗‖π .(2.11)

Equation (2.10) then becomes:

1

εk
A ≤ b1εk ‖Jk − J

∗‖π + (1 + α)b1εk ‖Jk − J
∗‖

2
π + (α − 1) ‖Jk − J

∗‖
2
π .

By use of the inequality x ≤ 1 + x2 and the Lemma 2.5 one can have:

1

εk
A ≤ (b1εk + (1 + α)b1εk + α − 1) ‖Jk − J

∗‖
2

+ b1εk.

The application of Cauchy-Schwarz inequality gives:

B ≤ E
k ˆ

|(g(ξk+1) + αJk(wk+1) − Jk(ξk+1))|
2 ‖Kk(ξk+1, ·)‖

2
π

˜
.

Assumption (2.7b) yields:

B ≤εkE
k ˆ

|(g(ξk+1) + αJk(wk+1) − Jk(ξk+1))|
2˜

,

≤εkE
k

h

(α(Jk(wk+1) − J
∗(wk+1)) − (Jk(ξk+1) − J

∗(ξk+1)) + g(ξk+1) + αJ
∗(wk+1) − J

∗(ξk+1))
2
i

.

Under Jensen’s inequality (x + y + z)2 ≤ 3(x2 + y2 + z2) the previous relation becomes:

B ≤ 3εk

“

α
2
E

k
h

(Jk(wk+1) − J
∗(wk+1))

2
i

+ E
k

h

(Jk(ξk+1) − J
∗(ξk+1))

2
i

+E
k

h

(g(ξk+1) + αJ
∗(wk+1) − J

∗(ξk+1))
2
i”

.

As a consequence of (2.4) it holds,

B ≤ 3εk(α2 + 1) ‖Jk − J
∗‖

2
π + 3εkE

k
h

(g(ξk+1) + αJ
∗(wk+1) − J

∗(ξk+1))
2
i

We use again the Jensen inequality (x + y + z)2 ≤ 3(x2 + y2 + z2):

B ≤ 3εk(α2 + 1) ‖Jk − J
∗‖

2
π + 9εk

“

E
k ˆ

g(ξk+1)
2˜

+ α
2
E

k ˆ
J
∗(wk+1)

2˜
+ E

k ˆ
J
∗(ξk+1)

2˜”

.

Thanks to (2.4):

B ≤ 3εk(α2 + 1) ‖Jk − J
∗‖

2
π + 9εk

“

‖g‖2
π + α

2 ‖J∗‖
2
π + ‖J∗‖

2
π

”

| {z }

δ

.

Therefore the inequality (2.9) can be rewritten as:

E
k

h

‖Jk+1 − J
∗‖

2
π

i

≤

»

1 + 2γkεk(b1εk + (1 + α)b1εk + α − 1 +
3

2
γk(α2 + 1))

–

‖Jk − J
∗‖

2
π

+ 2b1γkε
2
k + 9γ

2
kεkδ.

Hence we can apply the Robbins-Siegmund’s Lemma [Robbins and Siegmund, 1971]:

‖Jk − J
∗‖

2
π converges as when k → ∞ and,

6

X

∈N

γkεk ‖Jk − J
∗‖

2
π < ∞.

The previous relations prove that (‖Jk − J∗‖π)k∈N converges to 0. 2

Remark 2.7. We shall stress here the importance of the following two remarks:

• The idea of the assumption (2.7a) is that the functional temporal difference constitutes
in expectation an approximation of the conditional expectation of the classical temporal
difference. It is hence a convolution assumption.

• Assumption (2.8) is useful since it provides the joint stepsize decrease speed. Furthermore
it is worth noting the symetry of these relations since it implies that the sequences (γk)k∈N

and (εk)k∈N may exchange their decrease speed.

3. Perturbed Gradient analysis

We are going to provide another convergence proof using recent results about perturbed gradient
methods with biased estimators (see [Barty et al., 2005]). This other setting will lead to a more
general result than Theorem 2.6. We will use the same notations as before, and add a few ones.
First of all, consider U to be a finite dimensional Hilbert space, endowed with the inner product
〈·, ·〉U . We consider now the bilinear real valued application denoted by 〈·, ·〉π,U , and defined by :

∀u, v : S → U , 〈u, v〉π,U =

∫

S

〈u(x), v(x)〉U π(dx).

It will turn out that this application is a scalar product, and we will denote the associated norm
by ‖·‖π,U . We also define H to be

H : L2
U (S,B, π) → L2

U (S,B, π) H(u)(x) =

∫

S

h(x, u(y))Π(x, dy),

where L2
U (S,B, π) denote the set of all the B-measurable mappings u : S → U such that ‖u‖π,U <

∞. It is of course an Hilbert space, endowed with the inner product 〈·, ·〉π,U .
The aim is to approximate numerically the solution of the following fixed point equation:

(3.1) u = H(u).

We propose the following algorithm:

Algorithm 3.1. Step -1 : initialize u0(·),
Step k ≥ 0 :

• Draw ξk+1 independently from the past draws with respect to a distribution π and then
draw wk+1 with respect to the distribution Π(ξk+1, ·);

• Update:

sk =H(uk) − uk,

∆k =h(ξk+1, uk(wk+1)) − uk(ξk+1),

zk =∆k

Kk(ξk+1, ·)
εk

− (H(uk) − uk),(3.2)

uk+1 =uk + γkεk(sk + zk).

We have already presented an original algorithm in various points:

(1) We are working directly in the infinite dimension space to which the solution belongs. In
spite of the infinite dimension, this method remains numerically tractable since in order
to compute uk+1 one only needs to keep in memory {uk,∆k, ξk+1}. Using the previous
notation of ∆k it holds that:

uk+1(·) =

k∑

i=0

γi∆iKi(ξi+1, ·) + u0(·).

7

Since ∆i ∈ U and ξi ∈ S we need (k+1)(dimU+dim S) scalar values to compute completely
the function uk+1. One can also observe that in the worst case, the computational time to
perform uk grows linearly with k, but in most cases, the expensive part of the computation
will be the evaluation of ∆k.

(2) A second worthwhile point is that we are solving the original problem, without any a priori
knowledge on the solution.

Theorem 3.2. If the following assumptions are verified

(i) (ξk, wk)k∈N is an i.i.d. sample of the random variable (ξ, w),
(ii) the mapping H is a contraction mapping with ‖·‖π,U :

(3.3) ∃β ∈ [0, 1[, ∀u, ū ∈ L2
U (S,B, π), ‖H(u) − H(ū)‖π,U ≤ β ‖u − ū‖π,U .

(iii) it holds for the sequence defined by (3.2):

∃b ≥ 0, ∀k ∈ N, ‖E [zk | Fk]‖π,U ≤ bεk(1 + ‖H(uk) − uk‖π,U),(3.4a)

∃A ≥ 0, ∀k ∈ N, E

[

‖zk‖2
π,U | Fk

]

≤ A(1 +
1

εk

‖H(uk) − uk‖2
π,U),(3.4b)

(iv) the sequences (γk) and (εk) are such that:

(3.5)
∑

k∈N

γkεk = ∞,
∑

k∈N

γ2
kεk < ∞,

∑

k∈N

bγkε2
k < ∞,

then there exist a unique u∗ ∈ L2
U (S,B, π), such that H(u∗) = u∗, and the sequence (uk)k∈N

strongly converges to u∗.

Proof : The proof will be obtained by means of [Barty et al., 2005, Theorem 2.4].
Let us define a Lyapunov function f : U → R as follow:

∀u ∈ L
2
U (S,B, π), f(u) =

1

2
‖u − u

∗‖
2
π,U .

The gradient of f denoted by ∇f is given by:

∀u ∈ L
2
U (S,B, π), ∇f(u) = u − u

∗
.

Clearly f is a strongly convex function and its Gâteaux derivative ∇f is Lipschitz continuous so the first
and the third assumptions of [Barty et al., 2005, Theorem 2.4] are fulfilled as well.

Moreover it holds true that:

〈sk, uk − u
∗〉π,U = 〈H(uk) − uk, uk − u

∗〉π,U ,

= 〈H(uk) − u
∗
, uk − u

∗〉π,U + 〈u∗ − uk, uk − u
∗〉π,U ,

≤ ‖H(uk) − u
∗‖π,U ‖uk − u

∗‖π,U − ‖uk − u
∗‖

2
π,U ,

≤ (β − 1)f(uk),

≤ (1 − β)(f(u∗) − f(uk)).

Therefore sk is a descent direction for the Lyapunov function f .
Furthermore:

‖sk‖π,U = ‖H(uk) − uk‖π,U ,

≤ ‖H(uk) − u
∗‖π,U + ‖u∗ − uk‖π,U ,

≤ (1 + β) ‖uk − u
∗‖π,U ,

≤ (1 + β)(1 + ‖∇f(uk)‖π,U).

We have already satisfied the fourth assumption of [Barty et al., 2005, Theorem 2.4]. Since all assumptions

of [Barty et al., 2005, Theorem 2.4] are satisfied we deduce that (uk) strongly converge to u∗. 2

Remark 3.3 (Variance assumption). Clearly one can easily see the main advantage of assumption
(3.4b). The key point here is that a priori it is much easier to bound the variance of zk by a non-
constant amount.

8

Remark 3.4 (Contraction of H and invariant distribution). Theorem 3.2 shows that it is possible
to obtain the convergence result as soon as the operator H is a contraction with respect to the
underlying L2 norm. The fact that H is a contraction mapping is often linked with the invariance
property of the probability measure π, when the underlying problem is a stochastic dynamic
programming problem. Very often, the invariant probability of a Markov chain is not easy to
compute.
We can notice that if we have a probability measure on the same space, denoted by π ′, such
that the associated Hilbert spaces L2

U (S,B, π) and L2
U (S,B, π′) coincides, and such that they are

equivalent, with essentially bounded Radon-Nykodym derivatives, then the two norms ‖ · ‖π,U

and ‖ · ‖π′,U are topologically equivalent. Hence, a mapping which is a contraction mapping with
parameter β with the norm ‖ · ‖π,U is Lipschitz continuous for the norm ‖ · ‖π′,U , with Lipschitz
constant β′ given by:

β′ = β

√∥
∥
∥
∥

dπ

dπ′

∥
∥
∥
∥
∞

∥
∥
∥
∥

dπ′

dπ

∥
∥
∥
∥
∞

.

Therefore, a condition on the Radon-Nykodym derivatives may ensure that a mapping remains a
contraction mapping under norms induced by different equivalent probability measures.
Practically, it means that it is possible to use another probability measure as soon as it is not far
(in the sense of the Radon-Nykodym derivatives) from the invariant one for which the mapping is
a contraction.

Remark 3.5 (Convergence of the TD(0) Algorithm). The convergence of Algorithm 2.2 can be
obtained by the use of Theorem 3.2 and an appropriate mapping H. The Algorithm 2.2 is obtained
as an application of Algorithm 3.1 with U = R and the mapping h defined by:

h(x, J) = g(x) + αJ, ∀x ∈ S, J ∈ R,

and H(J)(x) =
∫

S
(g(y) + αJ(y)) Π(x, dy). That is:

Jk+1(·) = Jk(·) + γk(g(ξk+1) + αJk(wk+1) − Jk(wk+1)
︸ ︷︷ ︸

dk(ξk+1,wk+1)

)Kk(ξk+1, ·).

If dk(ξk+1, wk+1) denotes the classical temporal difference then an implementation of Algorithm
3.1 is given by:

Jk+1(·) = Jk(·) + γkdk(ξk+1, wk+1)Kk(ξk+1, ·).
Hence, the functional temporal difference learning algorithm is a particular case of the general
stochastic approximation Algorithm 3.1, and if one seeks to verify the assumptions of Theorem
3.2, one will get it under the assumptions of Theorem 2.6.

4. Applications

To amplify and to enhance our understanding, let us present in more details two applications
of the previously defined Algorithms 2.2 and 3.1. The first one provides the computation of the
Bellman function of a not-controled infinite horizon problem. The second one adresses the pricing
of a Bermudan put option.

4.1. Infinite Horizon problem. Let α be a discount factor and (Xt)t∈N
be an autoregressive

process in R:
∀t ∈ N, Xt+1 = γXt + ηt,

with (ηt) i.i.d. with distribution N
(
0, σ2

)
and γ the autocorrelation factor.

We are interested in computing

J∗ (x) = E

∑

t≥0

αtX2
t | X0 = x

 .

This example is chosen so that the calculation can be carried out by hand. It yields:

J∗ (x) =
x2 − σ2 α

(α−1)

1 − αγ2
.

9

For the numerical application, we implement the use of the temporal difference learning method
TD(0) adapted to use kernels (Algorithm 2.2). We progressively draw a realization of the (Xt)
process and incrementally update an estimation Jk of the expected income J∗, starting with
J0 (·) = 0. A straightforward application of Algorithm 2.2 yields:

Jk (·) = Jk−1 (·) + γk

(
X2

k + αJk−1 (Xk+1) − Jk−1 (Xk)
)
Kk (Xk, ·)

With Kk a given Gaussian kernel of chosen variance ε2
k, centered in Xk and γk an appropriately

chosen stepsize.
We obtain the Figure 4.1 showing the evolution of the L2 error between Jk and J∗ along the
iterations.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

||Jk-J||2

Figure 4.1. Convergence speed

Figure 4.2 shows the iterates Jk and the optimal solution J∗ after 100, 1000, 10000 and 100000
iterations, and illustrates the convergence.

After this first academic example, we go to a more important example, namely the pricing of
bermudan put options.

4.2. Option pricing. We apply our algorithm to the pricing of a Bermudan put option. A
Bermudan put option is an option giving the right to sell the underlying stock at prescribed
exercising dates, during a given period, at prescribed prices. It is hence a kind of intermediate
between european and american options. In our case, the exercise dates are restricted to equispaced
dates t in 0, . . . , T , and the stock price Xt follows a discretized risk-neutral Black-Scholes dynamics,
given by:

∀t ∈ N, ln
Xt+1

Xt

= r − 1

2
σ2 + σηt

where (ηt) is a Gaussian white noise of variance unity, and r is the risk-free interest rate. The
strike price is assumed to be s, therefore the intrinsic value of the option when the price is x is
g (x) = max (0, s − x). Let us define the discount factor α = e−r. Given the price x0 at t = 0, our
objective is to calculate the value of the option:

max
τ

E [ατg(Xτ) | X0 = x0] ,

where τ is taken among the stopping times with respect to the filtration generated by the dis-
cretized price process (Xt). In our case, τ ∈ {0, . . . , T}.

10

-5

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1 0 1 2 3 4

J100 J J100-J

-5

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1 0 1 2 3 4

J1000 J J1000-J

After 100 iterations After 1000 iterations

-5

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1 0 1 2 3 4

J10000 J J10000-J

-5

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1 0 1 2 3 4

J100000 J J100000-J

After 10000 iterations After 100000 iterations

Figure 4.2. Estimation and error at 100, 1000, 10000, 100000 iterations

Among the multiple methods that have been proposed for option pricing, two share similarities
with our approach. [Van Roy and Tsitsiklis, 2001] describes an approximate dynamic program-
ming approach but neither presents numerical results nor suggests good choices for the basis. Our
work directly extends the methodolgy presented by guaranteing asymptotic convergence and elim-
inating the need to choose a basis. [Longstaff and Schwartz, 2001] describes a regression approach
to estimate the conditional expected payoff of the option. Our scheme can be very roughly seen
as an incremental, non parametric implementation of this regression.

Let Jt (x) be the value of the option at time t if the price Xt is equal to x. Since the option
must be exercised before T + 1, we have JT+1 (x) = 0. Therefore, for all t ≤ T :

(4.1) Jt (x) = max (g (x) , αE [Jt+1(Xt+1) | Xt = x]) .

(Jt(Xt)) is often referred to as the Snell enveloppe of the stochastic process (g(Xt)).
In order to get a formula analogous to (3.1), we introduce the Q-functions (Qt) defined by:

Qt (x) = αE [Jt+1(Xt+1) | Xt = x]

i.e. the expected payoff at time t if we do not exercise the option. At each time t the value of the
option is hence given by Jt (x) = max (g (x) , Qt (x)). Since JT+1 (x) = 0, we have QT (x) = 0.
Equation (4.1) now reads:

Qt (x) = αE [max (g (Xt+1) , Qt+1 (Xt+1)) | Xt = x]

We perform the resolution using Algorithm 3.1, with the mapping H : L2
RT+1(R

T+1,B) →
L2

RT+1(R
T+1,B) defined by:

∀t ∈ {0, . . . , T}, H(Q)t(y) := E [α max(g(Xt), Qt+1(Xt+1)) | Xt = y] .

We are now able to implement Algorithm 3.1. For the numerical experiment, we take µ = 1,
σ = 1, s = 1, x0 = 1 and r = 0.01 (and therefore α = 0.99).

Lacking an analytic solution, our results (referred to as Qk for the kth iterate in the following
graphs) are compared to a reference implementation of dynamic programming where the price
process is finely discretized. we abusively denote this approximation of the optimal solution by
Q∗. The graph of Q∗ is provided in Figure 4.4.

Figure 4.3 shows the L2 error along the iterations, while Figure 4.5 show the Q-functions (Qt,k)
along the iterations.

11

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000

||Qk-Q*||2

Figure 4.3. Convergence speed

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

Figure 4.4. Optimum Q∗ function

5. Conclusion

For Stochastic Dynamic Programming Problems, an usual and fruitfull way was up to now to
use neural networks to avoid the drawbacks of any discretization of the underlying state space.
Such approaches have but no guarantee of optimality.

In this paper, we present a new approach, based on nonparametric estimation and stochastic
approximation techniques. Our approach generalizes e.g. the TD(0) Learning Algorithm in a con-
tinuous state space setting. Its main strength is to build iteratively a solution whose optimality
is proven, by using only draws of the underlying stochastic processes, and without any a priori
knowledge of the optimal solution. By using successive kernels, the iterations are performed di-
rectly in the infinite dimensional space, without any loss of optimality.

Two convergence proofs are given for the Algorithm. The first one is centered on the estima-
tion of the cost-to-go function for an infinite horizon discounted Markov chain with continuous
state space, whereas the second one allows to consider stopping time problems, i.e. finite horizon
markovian control problems. The assumptions of the convergence theorems are classical in the

12

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

-0.5

 0

 0.5

t
x

Estimation Q100 Error Q100 − Q∗

After 100 iterations

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

-0.5

 0

 0.5

t
x

Estimation Q1000 Error Q1000 − Q∗

After 1000 iterations

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

 0
 0.2
 0.4
 0.6
 0.8

 1

t
x

 1 2 3 4 5 6 7 8 9
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1
 10

-0.5

 0

 0.5

t
x

Estimation Q10000 Error Q10000 − Q∗

After 10000 iterations

Figure 4.5. Estimation and error at 100, 1000, 10000 iterations.

framework of stochastic approximation, and allow a lot of applications.
In a straightforward application of our approach, the invariant distribution of the underlying
Markov chain is not necessary to perform Algorithm 2.2. After a careful inspection of this paper
the only requirement concerning the distribution, is that the Bellman operator must be a contrac-
tion mapping for the associated norm. Essentially, as shown in the Remark 3.4 such measures exist.

As an illustration, we show how our approach can be used for the pricing of Bermudan put
options in the Black-Scholes framework.

13

A forthcoming work focuses on the extension of this approach to general Q-Learning algorithms.
This would enable us to solve general optimal control problems with possibly high dimensional
state space.

References

[Barty et al., 2005] Barty, K., Roy, J.-S., and Strugarek, C. (2005). A perturbed gradient algorithm in Hilbert

spaces. Optimization Online. http://www.optimization-online.org/DB_HTML/2005/03/1095.html.

[Bellman and Dreyfus, 1959] Bellman, R. and Dreyfus, S. (1959). Functional approximations and dynamic pro-

gramming. Math tables and other aides to computation, 13:247–251.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. and Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Sci-

entific.

[Chen and White, 1998] Chen, X. and White, H. (1998). Nonparametric learning with feedback. Journal of Eco-

nomic Theory, 82:190–222.

[de Farias and Van Roy, 2004] de Farias, D. and Van Roy, B. (2004). A linear program for bellman error minimiza-

tion with performance guarantees. submitted to Mathematics of Operations Research.

[Longstaff and Schwartz, 2001] Longstaff, F. A. and Schwartz, E. S. (2001). Valuing american options by simulation:

A simple least squares approach. Rev. Financial Studies, 14(1):113–147.

[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951). A stochastic approximation method. Annals of

Mathematical Statistics, 22:400–407.

[Robbins and Siegmund, 1971] Robbins, H. and Siegmund, D. (1971). A convergence theorem for nonnegative al-

most supermartingales and some applications. In Rustagi, J., editor, Optimizing Methods in Statistics, pages

233–257. Academic Press, New York.
[Sutton, 1988] Sutton, R. (1988). Learning to predict by the method of temporal difference, volume 37. IEEE

Transaction on Automatic Control.
[Sutton and Barto, 1998] Sutton, R. and Barto, A. (1998). Reinforcement Learning, an Introduction. MIT press

Cambridge.
[Tsitsiklis and Van Roy, 1997] Tsitsiklis, J. and Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. IEEE Transaction on automatic control, 42(5):674–690.
[Van Roy and Tsitsiklis, 2001] Van Roy, B. and Tsitsiklis, J. (2001). Regression methods for pricing complex
american-style options. IEEE Trans. on Neural Networks, 12(4):694–703.

[Wolverton and Wagner, 1969] Wolverton, C. and Wagner, T. (1969). Recursive estimates of probability densities.
IEEE Transactions on Systems, Science and Cybernetics, 5:307.

14

http://www.optimization-online.org/DB_HTML/2005/03/1095.html

	1. Introduction
	2. Learning with kernels
	3. Perturbed Gradient analysis
	4. Applications
	4.1. Infinite Horizon problem
	4.2. Option pricing

	5. Conclusion
	References

