SUFFICIENT CONDITIONS FOR A REAL POLYNOMIAL
TO BE A SUM OF SQUARES

JEAN B. LASSERRE

ABSTRACT. We provide explicit sufficient conditions for a polynomial
f to be a sum of squares (s.0.s.), linear in the coefficients of f. All
conditions are simple and provide an explicit description of a convex
polyhedral subcone of the cone of s.o.s. polynomials of degree at most
2d. We also provide a simple condition to ensure that f is s.o.s., possibly
after adding a constant.

1. INTRODUCTION

The cone X2 C R[X] of real polynomials that are sum of squares (s.0.s.)
and its subcone Zfl of s.0.s. of degree at most 2d, play a fundamental role in
many areas, and particularly in optimization; see for instance Lasserre [3, 4],
Parrilo [8] and Schweighofer [9]. When considered as a convex cone of a finite
dimensional euclidean space, Efl has a lifted semidefinite representation (such
sets are called SDr sets in [1]). That is, ¥2 is the projection of a convex cone
of an euclidean space of higher dimension, defined in terms of the coefficients
of the polynomial and additional variables (the ”lifting”). However, so far
there is no simple description of Z?l given directly in terms of the coefficients
of the polynomial. For more details on SDr sets, the interested reader is
referred to e.g. Ben Tal and Nemirovski [1], Helton and Vinnikov [2], Lewis
et al. [7].

Of course, one could use Tarski’s quantifier elimination to provide a de-
scription of 23, solely in terms of the coefficients, but such a description is
likely hopeless to be simple; in particular, it could be sensitive to the degree
d. Therefore, a more reasonable goal is to search for simple descriptions of
subsets (or subcones) of ¥2 only. This is the purpose of this note in which
we provide simple sufficient conditions for a polynomial f € R[X] of degree
at most 2d, to be s.0.s. All conditions are expressed directly in terms of the
coefficients (f,), with no additional variable (i.e. with no lifting) and define
a convex polyhedral subcone of Z?l. Finally, we also provide a sufficient con-
dition on the coefficients of highest degree to ensure that f is s.o.s., possibly
after adding a constant. All conditions stress the importance of the essen-
tial monomials (X2?*) which also play an important role for approximating
nonnegative polynomials by s.o.s., as demonstrated in e.g. [4, 6].
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2. CONDITIONS FOR BEING S.0.S.

For o € N" let || := Y"1 | |os|. Let R[X] be the ring of real polynomials
in the variables X = (Xi,...,X,), and let R[X]o4 the vector space of real
polynomials of degree at most 2d, with canonical basis of monomials (X¢) =
{X* : a e N" |a] <2d}. Given a sequence y = (yo) C R indexed in the
canonical basis (X%), let L, : R[X]2g — R be the linear mapping

FEY faX) = Ly(f) =) faba [ ER[X],

and let My(y) be the moment matrix with rows and columns indexed in
(X%), and defined by

(21)  Ma(y)(e, ) == Ly(X**) = yarp,  a,B€N": |of,|6] < d.

Let the notation My(y) = 0 stand for My(y) is positive semidefinite. It is
clear that

My(y) = 0 <= L,(f) >0 VfecR[X],.

The set ¥2 C R[X]yq4 of s.0.s. polynomials of degree at most 2d is a finite-
dimensional convex cone, and

(2.2) fEXT < Ly(f) =0 Vy st. My(y) = 0.

Remark 1. To prove that L, (f) > 0 for all y such that My(y) > 0 it suffices
to prove that L,(f) > 0 for all y such that My(y) > 0 and Ly(1) > 0 (and
equivalently, by homogeneity, for all y such that My(y) = 0 and L,(1) = 1).

Indeed, suppose that L, (f) > 0 for all y such that My(y) = 0 and L, (1) >
0. Next, let y be such that My(y) = 0 and L,(1) = 0. Fix € > 0 arbitrary
and let y(€) := y+(€,0,...,0) so that Ly (X?) = ya if a # 0 and Ly (1) =
€ > 0. Therefore My(y(e)) = 0 (because My(y) = 0) and so 0 < Ly (f) =
efo+ Ly(f). As € > 0 was arbitrary, letting € | 0 yields the desired result
Ly(f) > 0.

We first recall a preliminary result whose proof can be found in Lasserre
and Netzer [6].

Lemma 1 ([6]). With d > 1, let y = (yo) C R be such that the mo-
ment matriz My(y) defined in (2.1) is positive semidefinite, and let 74 =
_max Ly (X?%). Then:

i=1,...,n

(2.3) |Ly(X*)| < max[Ly(1), 74], VaeN': |al <2d.
We next complement Lemma 1.
Lemma 2. Let y = (yo) C R be normalized with yo = Ly(1) =1, and such
that My(y) = 0. Let 74 := nax Ly (X?%). Then:
(2.4) Ly(X)Vlel < 712 waeN: 1< ol < 2d,
For a proof see §3.1.
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2.1. Conditions for a polynomial to be s.o.s. Withd € N, let I' C N”
be the set defined by:

(2.5) ' ={aeN":|a|<2d; a=203 forsome e N"}.
We now provide our first condition.
Theorem 3. Let f € R[X]oq and write f in the form
(2.6) f= f0+Zfi2dXi2d + h,
i=1

where h € R[X]aq contains no essential monomial X2, If

(2.7) fo = D Nfal =D minf0, fu]
agl aecl’
o f [ la]
(2.8) min fog >0 Y (falgr =Y minf0, fo] o
""’ agl a€el
thenfeEi.

For a proof see §3.2. The sufficient conditions (2.7)-(2.8) define a polyhe-
dral convex cone in the euclidean space of coefficients (f,) of polynomials
f € R[X]aq. This is because the functions,

S min fiq, fr=min(0, fo],  f = —[fal;

=1,...,

are all piecewise linear and concave. The description (2.7)-(2.8) of this con-
vex polyhedral cone is explicit and given only in terms of the coefficients
(fa), i-e., with no lifting.

Notice that (2.7)-(2.8) together with f;2q = 0 for some i, implies f, = 0
for all « € T', and f, > 0 for all @ € ', in which case f is obviously s.o.s.

Theorem 3 is interesting when f has a few non zero coefficients. When f
has a lot of non zero coefficients and contains the essential monomials Xiz’C
for all Kk =1,...,d, all with positive coefficients, one provides the following
alternative sufficient condition. With k£ < d, let
(2.9) I} = {aeN": 2k—1<|a| <2k}

(2.10) I? .= {acTl}: a=28 forsomef cN"}.

Corollary 4. Let f € R[X]|aq and write f in the form

d n
(2.11) f="To+h+Y " far X7F,

k=1 i=1
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where h € R[X]aq contains no essential monomial X*. If

(2.12) LD SRTARE SRS
el \I'2 ael?
: |al : |
(2.13) in fir = Y fa o > min(0, fo] 5%
el \I'2 ael?

forallk=1,...,d, then f € 2(21.

For a proof see §3.3. Notice that (2.12)-(2.13) together with f;or = 0 for
some i and some k € {1,...d}, implies f, = 0 for all @ € T} \T%, and f, > 0
for all o € T%.

Several variants of Corollary 4 can be derived; for instance, any other
way to distribute the constant term fj as Z‘,ﬁzl for with for # fo/d, is valid
and also provides another set of sufficient conditions. Consider also the case
when f can be written as

n
f="Ffo+h+> > fioxX7F,
keK =1
where K :={k € {1,...,d} : minj—; . fior >0}, d € K, and h € R[X]oq
contains no essential monomial Xizk , k € K. Then one may easily derive a
set of sufficient conditions in the spirit of Corollary 4; see e.g. [5].

Finally, one provides a simple condition for a polynomial to be s.o.s.,
possibly after adding a constant.

Corollary 5. Let f € R[X]oq and write f in the form

(2.14) f="Ffo+h+) foa X7,

=1

where h € R[X] contains no essential monomial X??. If

(2.15) min fiog > > fal= D min0, fa]

T agl; |a|=2d o€l |a|=2d
with T as in (2.5), then f + M € ¥2 for some M > 0.

Proof. Let —M := min [0, infy, {L,(f) : Mga(y) = 0; L,(1) = 1}]. We prove
that M < +o0o. Assume that M = +o0, and let 3/ be a minimizing sequence.
One must have 7jq := max;=1__n L (de) — 00, as j — oo, otherwise if
7ja is bounded by, say p, by Lemma 1 one would have |L,; (X*)| < max[1, p]
for all [a|] < 2d, and so L,;(f) would be bounded, in contradiction with
Ly (f) — —oo. But then from Lemma 2, for sufficiently large j, one obtains
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the contradiction

L (f . :
0> s i e~ Y Ml Y minlo, ]
Tid i=1,...,n
agl; |a|=2d o€l |a|=2d
—2d)/2d
- Z ‘fa| 7—3%04 & > O)
0<|a|<2d
where the last inequality follows from (2.15) and T]([lia‘_2d)/ 24, 0 as Jj — 0.

Hence M < 400 and so, Ly(f + M) > 0 for every y such that My(y) = 0
and Ly(1) = 1 . But then, in view of Remark 1, L,(f + M) > 0 for all y
such that M,(y) > 0, which in turn implies that f + M is s.o.s. O

In Theorem 3, Corollary 4 and 5, it is worth noticing the crucial role
played by the constant term and the essential monomials (X¢), as was al-
ready the case in [4, 6] for approximating nonnegative polynomials by s.o.s.

3. PrOOFS

The proof of Lemma 2 first requires the following auxiliary result.
Lemma 6. Let d > 1, and y = (yo) C R be such that the moment matriz
My(y) defined in (2.1) is positive semidefinite, and let 74 := max Ly(XiQd).

i=1,...,n
Then: Ly(X?*) < 74 for all « € N™ with |a| = d.
Proof. The proof is by induction on the number n of variables. The case
n = 1 is trivial and the case n = 2 is proved in Lasserre and Netzer [6,
Lemma 4.2].

Let the claim be true for K = 1,...,n—1 and consider the case n > 2. By
the induction hypothesis, the claim is true for all L, (X 20‘), where |a] = d
and a; = 0 for some i. Indeed, L, restricts to a linear form on the ring
of polynomials with n — 1 indeterminates and satisfies all the assumptions
needed. So the induction hypothesis gives the boundedness of all those
values L, (XQa).

Now take L, (X?*), where |a| = d and all o; > 1. With no loss of
generality, assume a1 < as < ... < . Consider the two elements

v = (20,0, 3 + ag — a1, 04, ...,ap) € N” and
7/ = (0,200, 3 + 1 — a2, Ay, ..., ) € N
We have |y| = || = d and 72 = v, = 0, and from what precedes,
Ly(X?) < 74 and Ly(X¥") < .
As My(y) = 0, one also has
Ly(X™)? = L(X) < L,(X) - Ly(X*) < 73
which yields the desired result |L,(X?%®)| < 74. O
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3.1. Proof of Lemma 2. The proof is by induction on d. Assume it is true
for k=1,...,d, and write Mgy1(y) in the following block form below with
appropriate matrices V,U;, V;, S;:

My o(y)| Ui Us Vv

Ul Sad—2 | Vag—1 | Vo

T T
Us Voge1 | S2a | Vads

T T T
4 Vaa | Vaasr | S2d+2

When d = 1, the blocks My_5(y), and Uy, Uz, UL, UJ, V disappear.

e The case |a| = 2d + 2. By Lemma 6, all diagonal elements of Sa4:2
satisfy yo < T4+1, and so do all other elements of Ssg40 because Sogio = 0.

e Consider an arbitrary y, with || = 2d. From the definition of the
moment matrix, one may choose a pair (¢, j) such that the position (7, j) in
the matrix Mgy1(y) lies in the submatrix Va4, and the corresponding entry
is Y. From Mgiiq(y) = 0,

May1(y) (i, 8) Mas1(y) (4, 5) > 2,

As Mgi1(y)(4,7) is an element yg of Saq_o with |G| = 2d — 2, invoking the
induction hypothesis yields Myy1(y)(i,7) < T§2d_2)/2d. On the other hand,
Mgi1(y)(j,7) is a diagonal element yag of Spqio with [3] = d + 1. From
Lemma 6, every diagonal element of Soq10 is dominated by 7441, and so

Ma1(y)(4,7) < Tg41. Combining the two yields

y2 < Tcgd_l)/deH, Va: |a|l = 2d.

Next, picking up the element « such that y, = 74 one obtains

1-1/d 1/d 1/(d+1
(3.1) 72 < T / Td+1 = Td/ STd-{-(l ),
and so,
d—1)/d 1/(2d+2
yi < T(g )/ Tdi1; \yoé|1/‘°‘| < Td_{_(l ), Va : |al =2d.
e Next, consider an arbitrary y, with || = 2d + 1. Again, one may

choose a pair (i,j) such that the position (7,7) in the matrix My, 1(y)
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lies in the submatrix Vo441, and the corresponding entry is y,. The en-
try Mgy1(y)(i,4) corresponds to an element ya5 of Soq with |5] = d, and
so, by Lemma 6, My.1(y)(i,i) < 74; similarly the entry Mgyq1(y)(j,J) cor-
responds to an element yo3 of Spq4o with |5| = d + 1, and so, by Lemma 6
again, Mg1(y)(4,7) < Ta+1. From Mg,1(y) > 0, we obtain

Tap1Ta = May1(y)(i,6) Masa(y) (4, 5) > 2,

which, using (3.1), yields |yq|"1¢ = |yo|V/ 24D < T;J/r(fdﬁ) for all a with
la] = 2d + 1.

e Finally, for an arbitrary y, with 1 < |a| < 2d, use the induction hy-
pothesis |y, |/l < T;/Zd and (3.1) to obtain |ya|'/lol < Téﬁ(dﬂ). This
argument is also valid for the case || = 2d, but this latter case was treated
separately to obtain (3.1).

It remains to prove that the induction hypothesis is true for d = 1. This
easily follows from the definition of the moment matrix M;(y). Indeed, with
la] = 1 one has y2 < yao < 71 (as Ly(1) = 1), so that |y,| < 7'11/2 for all «
with |a| = 1. With |a| = 2, say with o; + «; = 2, one has

> Ly(Xz?)Ly(XJZ) = Ly(Xin)2 = Yoo

and so |yo| < 7 for all @ with |a| =2. O

3.2. Proof of Theorem 3. From (2.2), it suffices to show that L,(f) >0
for any y such that My(y) = 0, and by Remark 1, we may and will assume
that L,(1) = 1.

So let y be such that My(y) = 0 with L,(1) = 1. Let 74 be as in Lemma
1 and consider the two cases 74 < 1 and 74 > 1.

e The case 7y < 1. By Lemma 1, |L,(X%)| < 1 for all a € N" with
|a] < 2d. Therefore,

Ly(f) > fo =Y lfal +D_ minf0,fa] >0,
agl acl

where the last inequality follows from (2.7).
e The case 75 > 1. Recall that L,(1) = 1, and from Lemma 2, one has

| Ly (X@)|Hlel < 7';/2d for all @ € N” with 1 < |a| < 2d. Therefore,
Ly(f) = fo+ (Z._Hllinnfnd) Td

=1,...,

S al 23 mino, fo] 7

agl’ ael
Consider the univariate polynomial ¢ — p(t), with
- i o) 24 lot] i ||
p(t) = fo+ (min fioa)t*' = [fal 81+ D min[0, fu] ¢,
agl a€cl’

and denote p®) € R[X], its k-th derivative.
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By (2.8), min fiq > 0 and so by (2.7), p(1) = 0. By (2.8) again,

=1,..,n

p/(1) > 0. In addition, with 1 < k < 2d, (2.8) also implies

i_min fioa > Z ‘fd@ (la[=1) (el = (k—-1))

) 2d 2d—1 2d— (k—1)
agl’; lal>k
: laf (Ja| =1)  (Jof = (k= 1))
2 min0, fol g i 2 — (k- 1)
o€l |a| >k

because |a| —j <2d—j, forall j=1,...,k—1, and so

k—1 k—1
[1d-7) min fiag > >l | [Tl =4)
j=0 o agl; o>k j=0
k—1
— > minfo, fo] | [Tl =) |,
o€l |a| >k J=0

which implies p¥)(1) > 0. Therefore, p*)(1) > 0 for all k = 0,1, ..., 2d, and
so0, p has no root in (1,+00); indeed, the (non trivial) polynomial p(t — 1)
has all its coefficients nonnegative and so has no root in (0,+o0c). Hence,

p>0on (1,+00) and as 74 > 1, Ly(f) > p(T;/M) >0. O

3.3. Proof of Corollary 4. Let y be such that My(y) = 0. Again in view
of Remark 1, we may and will assume that L, (1) = 1.

d
Then Ly(f) > > A, with

k=1
(32 A = %+Zfi2kLy(X¢2k)+Zmin[(),fa]Ly(Xa)
i=1 ael?
— Y Rl (X)), k=14
a€eli\I'2

Fix k arbitrary in {1,...,d} and consider the moment matrix M (y) > 0,
which is a submatrix of My(y).

e Case 7, < 1. By Lemma 1 applied to My(y), |Ly(X*)| < 1 for all
a € N with |a| < 2k. Therefore, with Ay as in (3.2),

Y

D YA SN A

ael}\I'; ael?

where the last inequality follows from (2.12).
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e Case 74 > 1. From Lemma 2 applied to My (y), |L,(X*)[Y/lel < T;/2k
for all  with |«| < 2k. Therefore, Ay > pk(T,i/%), where pi € R[t], and

pe) =204 [ min foe 3 min0.f]) = 3 £l #,

d
aels el \I'}

As in the proof of Theorem 3, but now using (2.12)-(2.13), one has p]gj)(l) >

0 for all j = 0,1,...,2k, and so p; has no root in (1,4+00). Therefore,
pr > 0 on (1,400) which in turn implies Ay > pk(Tkl;/Zk) > 0 because
7, > 1. Finally, L,(f) > zzzl A >0, as A, > 0 in both cases 7, < 1 and

T > 1. ]
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