Stopping Rules for Box-Constrained Stochastic Global Optimization

I. E. Lagaris and I. G. Tsoulos*
Department of Computer Science, University of Ioannina
P.O.Box 1186, Ioannina 45110 – GREECE

Abstract

We present three new stopping rules for Multistart based methods. The first uses a device that enables the determination of the coverage of the bounded search domain. The second is based on the comparison of asymptotic expectation values of observable quantities to the actually measured ones. The third offers a probabilistic estimate for the number of local minima inside the search domain. Their performance is tested and compared to that of other widely used rules on a host of test problems in the framework of Multistart.

Keywords: Stochastic Global optimization, Multistart, Stopping rules.

1 Introduction

The task of locating all the local minima of a continuous function inside a box-bounded domain, is frequently required in several scientific as well as practical problems. We will not dwell further on this, instead we refer to the article by [8]. The problem we are interested in, may be described as:

Given an objective function \(f(x), x \in S \subset \mathbb{R}^n \), find all its local minimizers \(x_i^* \in S \). \hspace{1cm} (1)

\(S \) will be considered herein to be a rectangular hyperbox in \(N \) dimensions. We limit our consideration to problems with a finite number of local minima. This is a convenient hypothesis as far as the implementation is concerned. We are interested in stochastic methods based on Multistart, a brief review of which follows.

The Multistart Algorithm

Step–0: Set \(i = 0 \) and \(X^* = \emptyset \)

Step–1: Sample \(x \) at random from \(S \)

Step–2: Apply a deterministic local search procedure (LS) starting at \(x \) and concluding at a local minimum \(x^* \).

*Corresponding author. Email: itsoulos@cs.uoi.gr
Step–3: Check if a new minimum is discovered
If \(x^* \not\in X^* \) then
increment: \(i \leftarrow i + 1 \)
set: \(x_i^* = x^* \)
add: \(X^* \leftarrow X^* \cup \{x_i^*\} \)
Endif

Step–4: If a stopping rule applies, STOP
Step–5: Go to Step–1

It would be helpful at this point to state a few definitions and terms to be used in the rest of the article. The “region of attraction” of a local minimum associated with a deterministic local search procedure LS is defined as:

\[
A_i \equiv \{ x : x \in S, LS(x) = x_i^* \} \tag{2}
\]

where \(LS(x) \) is the minimizer returned when the local search procedure LS is started at point \(x \). If \(S \) contains a total of \(w \) local minima, from the definition above follows:

\[
\bigcup_{i=1}^{w} A_i = S \tag{3}
\]

Let \(m(A) \) stand for the Lebesgue measure of \(A \subseteq \mathbb{R}^n \). Since the regions of attraction for deterministic local searches do not overlap, i.e. \(A_i \cap A_j = \emptyset \) for \(i \neq j \), then from eq. (3) one obtains:

\[
m(S) = \sum_{i=1}^{w} m(A_i) \tag{4}
\]

If a point in \(S \) is sampled from a uniform distribution, the apriori probability \(\pi_i \) that it is contained in \(A_i \) is given by \(\pi_i = \frac{m(A_i)}{m(S)} \). If \(K \) points are sampled from \(S \), the apriori probability that at least one point is contained in \(A_i \) is given by:

\[
1 - \left(1 - \frac{m(A_i)}{m(S)} \right)^K = 1 - (1 - \pi_i)^K \tag{5}
\]

From the above we infer that for large enough \(K \), this probability tends to one, i.e. it becomes “asymptotically certain” that at least one sampled point will be found to belong to \(A_i \). This holds \(\forall A_i \), with \(m(A_i) \neq 0 \).

Good stopping rules are important and should combine reliability and economy. A reliable rule is one that stops only when all minima have been collected with certainty. An economical rule is one that does not waste a large number of local searches to detect that all minima have been found. Several stopping rules have been developed in the past, most of them based on Bayesian considerations ([9, 5, 4, 6]) and they have been successfully used in practical applications. A review analyzing the topic of stopping rules is given in the book by Törn and Žilinskas ([3]). We refer also to Hart ([2]) noting however that his stopping rules aim to terminate the search as soon as possible once the global minimum is found and they are not designed for the retrieval of all the local minima. We present three different stopping rules. In section 2, a rule that relies on a coverage argument is presented. In section 3, a rule based on the comparison of asymptotic to measured values of observable quantities is developed, and in section 4, a probabilistic approach is employed to estimate the expected number of minimizers. We report in section 5, results of numerical experiments in conjunction with the Multistart method.
The Double-Box Stopping Rule

The covered portion of the search domain is a key element in preventing wasteful applications of the local search procedure. A relative measure for the region that has been covered is given by:

\[C = \sum_{i=1}^{w} \frac{m(A_i)}{m(S)} \]

(6)

where \(w \) is the number of the local minima discovered so far. The rule would then instruct to stop further searching when \(C \rightarrow 1 \).

The quantity \(\frac{m(A_i)}{m(S)} \) is not known and generally cannot be calculated, however asymptotically it can be approximated by the fraction \(\frac{L_i}{L} \), where \(L_i \) is the number of points, started from which, the local search led to the local minimum \(x_i^* \), and \(L = \sum_{i=1}^{w} L_i \), is the total number of sampled points (or equivalently, the total number of local search applications). An approximation for \(C \) may then be given by:

\[C \simeq \tilde{C} = \sum_{i=1}^{w} \frac{L_i}{L} \]

(7)

However the quantity \(\sum_{i=1}^{w} \frac{L_i}{L} \) is by definition equal to 1, and as a consequence the covered space can not be estimated by the above procedure. To circumvent this, a larger box \(S_2 \) is constructed that contains \(S \) and such that \(m(S_2) = 2 \times m(S) \). At every iteration, 1 point in \(S \) is collected, by sampling uniformly from \(S_2 \) and rejecting points not contained in \(S \). Let the number of points that belong to \(A_0 \equiv S_2 - S \) be denoted by \(L_0 \). The total number of sampled points is then given by \(L = L_0 + \sum_{i=1}^{w} L_i \) and the relative coverage may be rewritten as:

\[C = \frac{\sum_{i=1}^{w} m(A_i)}{m(S)} = 2 \sum_{i=1}^{w} \frac{m(A_i)}{m(S_2)} \]

(8)

The quantity \(\frac{m(A_i)}{m(S_2)} \) asymptotically is approximated by \(\frac{L_i}{L} \), leading to:

\[C \simeq \tilde{C} = 2 \sum_{i=1}^{w} \frac{L_i}{L} \]

(9)

After \(k \) iterations, let the accumulated number of points sampled from \(S_2 \) be \(M_k \), of which are contained in \(S \). The quantity then: \(\delta_k = \frac{1}{M_k} \sum_{i=1}^{k} \delta_i \) has an expectation value \(< \delta >_k = \frac{1}{k} \sum_{i=1}^{k} \delta_i \), that asymptotically, i.e. for large \(k \), tends to \(\frac{m(S)}{m(S_2)} = \frac{1}{2} \).

The variance is given by \(\sigma_k^2(\delta) = \delta^2 >_k - < \delta >^2_2 \) and tends to zero as \(k \rightarrow \infty \). This is a smoother quantity than \(< \delta >_k \) (see figure 1), and hence better suited for a termination criterion. We permit iterating without finding new minima until \(\sigma^2(\delta) < p\sigma^2_{last}(\delta) \), where \(\sigma_{last}(\delta) \) is the standard deviation at the iteration during which the most recent minimum was found, and \(p \in (0,1) \) is a parameter that controls the compromise between an exhaustive search \((p \rightarrow 0) \) and a search optimized for speed \((p \rightarrow 1) \).

In table 1 we list the results from the application of the double box termination rule and the Multistart method in a series of test problems for different values of the parameter \(p \). As \(p \) increases the method becomes faster, but some local minima may be missed. The suggested value for general use is \(p = 0.5 \). Hence the algorithm may be stated as:

1. Initially set \(\alpha = 0 \).
Figure 1: Plots of $<\delta>_k - \frac{1}{2}$ and $\sigma^2_k(\delta)$ versus k

Table 1: Multistart with Double Box rule for a set of p-values.

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>$p = 0.3$</th>
<th>$p = 0.5$</th>
<th>$p = 0.7$</th>
<th>$p = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>FC</td>
<td>MIN</td>
<td>FC</td>
</tr>
<tr>
<td>SHUBERT</td>
<td>400</td>
<td>1150243</td>
<td>400</td>
<td>57773</td>
</tr>
<tr>
<td>GKLS(3,30)</td>
<td>30</td>
<td>961269</td>
<td>29</td>
<td>302583</td>
</tr>
<tr>
<td>RAstrigin</td>
<td>49</td>
<td>50384</td>
<td>49</td>
<td>19593</td>
</tr>
<tr>
<td>Test2N(5)</td>
<td>32</td>
<td>78090</td>
<td>32</td>
<td>30607</td>
</tr>
<tr>
<td>Test2N(6)</td>
<td>64</td>
<td>85380</td>
<td>64</td>
<td>34840</td>
</tr>
<tr>
<td>Guilin(20,100)</td>
<td>100</td>
<td>3405112</td>
<td>100</td>
<td>1906288</td>
</tr>
<tr>
<td>Shekel10</td>
<td>10</td>
<td>93666</td>
<td>10</td>
<td>36838</td>
</tr>
</tbody>
</table>
2. Sample from S_2 until a point falls in S as described above.
3. Calculate $\sigma^2(\delta)$.
4. Apply an iteration of Multistart (i.e. steps 2 and 3).
5. If a new minimum is found, set: $\alpha = p\sigma^2(\delta)$ and repeat from step 2.
6. STOP if $\sigma^2(\delta) < \alpha$, otherwise repeat from step 2.

3 The Observables Stopping Rule

We have developed a scheme based on probabilistic estimates for the number of times each of the minima is being rediscovered by the local search. Let L_1, L_2, \ldots, L_w be the number of local searches that ended up to the local minima $x_1^*, x_2^*, \ldots, x_w^*$ (indexed in order of their appearance). Let $m(A_1), m(A_2), \ldots, m(A_w)$ be the measures of the corresponding regions of attraction, and let $m(S)$, be the measure of the bounded domain S. x_1^* is discovered for the first time with one application of the local search. Let n_2 be the number of the subsequent applications of the local search procedure spent, until x_2^* is discovered for the first time. Similarly denote by n_3, n_4, \ldots, n_w the incremental number of local search applications to discover $x_3^*, x_4^*, \ldots, x_w^*$, i.e., x_2^* is found after $1 + n_2$ local searches, x_3^* after $1 + n_2 + n_3$, etc. n_2, n_3, \ldots are counted during the execution of the algorithm, i.e. they are observable quantities. Considering the above and taking into account that we sample points using a uniform distribution, the expected number $L_j^{(w)}$ of local search applications that have ended up to x_j^* at the time when the w^{th} minimum is discovered for the first time, is given by:

$$L_j^{(w)} = L_j^{(w-1)} + (n_w - 1) \frac{m(A_j)}{m(S)} .$$

(10)

The apriori probability that a local search procedure starting from a point sampled at random, concludes to the local minimum x_j^* is given by the ratio $m(A_j)/m(S)$, while the posteriori probability (observed frequency) is correspondingly given by $L_j / \sum_{i=1}^w L_i$. On the asymptotic limit the posteriori reaches the apriori probability, which implies $m(A_i)/m(A_j) = L_i/L_j$, which in turn permits substituting in eq. (10) L_i in place of $m(A_i)$ leading to:

$$L_j^{(w)} = L_j^{(w-1)} + (n_w - 1) \frac{L_j}{\sum_{i=1}^w L_i}.$$

(11)

with $n_1 = 1, \ J \leq w - 1$ and $L_w^{(w)} = 1$. Now consider that after having found w minima, an additional number of K local searches are performed without discovering any new minima. We denote by $L_j^{(w)}(K)$ the expected number of times the J^{th} minimum is found at that moment. One readily obtains:

$$L_j^{(w)}(K) = L_j^{(w)}(K - 1) + \frac{L_j}{K + \sum_{i=1}^w n_i} .$$

(12)
with \(L_j^{(w)}(0) = L_j^{(w)} \).

The quantity
\[
E_2(w, K) = \frac{1}{w} \sum_{j=1}^{w} \left(\frac{L_j^{(w)}(K) - L_j}{\sum_{l=1}^{w} L_l} \right)^2
\]
(13)
tends to zero asymptotically, hence a criterion based on the variance \(\sigma^2(E_2) \) may be stated as:

Stop if \(\sigma^2(E_2) < p \sigma^2_{\text{last}}(E_2) \)

where \(\sigma^2_{\text{last}}(E_2) \) is the variance of \(E_2 \) calculated at the time when the last minimum was retrieved. The value of the parameter \(p \) has the same justification as in the Double Box rule and the suggested value is again \(p = 0.5 \), although the user may choose to modify it according to his needs.

4 The Expected Minimizers Stopping Rule

This technique is based on estimating the expected number of existing minima of the objective function in the specified domain. The search stops when the number of recovered minima, matches this estimate. Note that the estimate is updated iteratively as the algorithm proceeds. Let \(P_m^l \) denote the probability that after \(m \) draws, \(l \) minima have been discovered. Here by “draw” we mean the application of a local search, initiated from a point sampled from the uniform distribution. Let also \(\pi_k \) denote the probability that with a single draw the minimum located at \(x_k^* \) is found. This probability is a priori equal to \(\pi_k = \frac{m(A_k)}{m(S)} \). The \(P_m^l \) probability can be recursively calculated by:

\[
P_m^l = \left(1 - \sum_{i=1}^{l-1} \pi_i \right) P_{m-1}^{l-1} + \left(\sum_{i=1}^{l} \pi_i \right) P_{m-1}^{l-1}
\]
(14)

Note that \(P_1^0 = 0 \), and \(P_1^1 = 1 \). Also \(P_m^l = 0 \) if \(l > m \), \(P_m^0 = 0 \), \(\forall m \geq 1 \). The rational for the derivation of eq. (14) is as follows. The probability that at the \(m^{th} \) draw \(l \) minima are recovered, is connected with the probabilities at the level of the \((m-1)^{th} \) draw, that either \(l-1 \) minima are found (and the \(l^{th} \) is found at the next, i.e. the \(m^{th} \), draw) or \(l \) minima are found (and no new minimum is found at the \(m^{th} \) draw). The quantity \(\sum_{i=1}^{l-1} \pi_i \) is the probability that one of the \(l \) minima is found in a single draw, likewise the quantity \(1 - \sum_{i=1}^{l-1} \pi_i \) is the probability that none of the \(l-1 \) minima is found in a single draw. Combining these observations the recursion above is readily verified. Since \(P_m^l \) denote probabilities they ought obey the closure:

\[
\sum_{l=1}^{m} P_m^l = 1.
\]
(15)

To prove the above let us define the quantity \(s_l = \sum_{i=1}^{l} \pi_i \). Perform a summation over \(l \) on both sides of eq. (14) and obtain:

\[
\sum_{l=1}^{m} P_m^l = \sum_{l=1}^{m} P_{m-1}^{l-1} - \sum_{l=1}^{m} s_{l-1} P_{m-1}^{l-1} + \sum_{l=1}^{m} s_l P_{m-1}^{l-1}
\]
(16)
Note that since $P_{m-1}^0 = 0$ and $P_{m-1}^m = 0$ the last two sums in eq. (16) cancel, and hence we get: \[\sum_{l=1}^{m} P_m^l = \sum_{l=1}^{m-1} P_{m-1}^l. \] This step can be repeated to show that
\[\sum_{l=1}^{m} P_m^l = \sum_{l=1}^{m-1} P_{m-1}^l = \cdots = \sum_{l=1}^{m-k} P_{m-k}^l = \sum_{l=1}^{1} P_1^l = P_1^1 = 1. \]

The expected number of minima after m draws is then given by:
\[< L >_m \equiv \sum_{l=1}^{m} l P_m^l \]
and its variance by:
\[\sigma^2(L)_m = \sum_{l=1}^{m} l^2 P_m^l - \left(\sum_{l=1}^{m} l P_m^l \right)^2 \] (17)

The quantities π_i are unknown apriori and need to be estimated. Naturally the estimation will improve as the number of draws grows. A plausible estimate $\pi_i^{(m)}$ for approximating π_i after m draws, may be given by:
\[\pi_i^{(m)} \equiv \frac{L_i^{(m)}}{m} \rightarrow \frac{m(A_i)}{m(S)} = \pi_i \] (18)
where $L_i^{(m)}$ is the number of times the minimizer x_i^* is found after m draws. Hence eq. (14) is modified and reads:
\[P_m^l = \left(1 - \sum_{i=1}^{l-1} \pi_i^{(m-1)} \right) P_{m-1}^{l-1} + \left(\sum_{i=1}^{l} \pi_i^{(m-1)} \right) P_{m-1}^l \] (19)

The expectation $< L >_m$ tends to w asymptotically. Hence a criterion based on the variance $\sigma^2(L)_m$, that asymptotically tends to zero, may be proper. Consequently, the rule may be stated as: **Stop if** $\sigma^2(L)_m < p\sigma^2(L)_{\text{last}}$, where again $\sigma^2(L)_{\text{last}}$ is the variance at the time when the last minimum was found and the parameter p is used in the same manner as before. The suggested value for p is again $p = 0.5$.

5 Computational Experiments

We compare the new stopping rules proposed in the present article to three established rules that have been successfully used in a host of applications. If by w we denote the number of recovered local minima after having performed t local search procedures, then the estimate of the fraction of the uncovered space is given by ([9]):
\[P(w) = \frac{w(w+1)}{t(t-1)}. \] (20)

The corresponding rule is then:
\[\text{Stop when } P(w) \leq \epsilon \] (21)
ϵ being a small positive number. In our experiments we used $\epsilon = 0.001$. [5] showed that the estimated number of local minima is given by:
\[w_{\text{est}} = \frac{w(t-1)}{t-w-2} \] (22)
and the associated rule becomes:

\[
\text{Stop when } w_{\text{est}} - w \leq \frac{1}{2} \quad \text{(23)}
\]

In another rule ([6]) the probability that all local minima have been observed is given by:

\[
\prod_{i=1}^{w} \left(\frac{t-1-i}{t-1+i} \right) \quad \text{(24)}
\]

leading to the rule:

\[
\text{Stop when } \prod_{i=1}^{w} \left(\frac{t-1-i}{t-1+i} \right) > \tau \quad \text{(25)}
\]

\(\tau\) tends to 1 from below.

Every experiment represents 100 runs, each with different seed for the random number generator. The local search procedure used is a BFGS version due to Powell ([1]). We report the average number of the local minima recovered, as well as the mean number of functional evaluations. In table 3 results are presented Multistart. We used a set of 21 test functions that cover a wide spectrum of cases, i.e. lower and higher dimensionality, small and large number of local minima, with narrow and wide basins of attraction etc. These test functions are described in the appendix in an effort to make the article as self contained as possible.

Columns labeled as FUNCTION, MIN, FC list the function name, the number of recovered minimizers and the number of function calls. The labels PCOV and KAN refer to the stopping rules given in equations (21) and (23), while the labels DOUBLE, OBS and EXPM to the proposed rules in an obvious correspondence.

Experiments have indicated that the rule in equation (25) is rather impractical, as can be readily verified by inspecting table 2. Note the excessive number of function calls even for \(\tau = 0.7\) (a value that is too low). Hence this rule is not included in table 3, where the complete set of the test functions is used. As we can observe from table 3 the new rules in most cases perform better, requiring fewer functional evaluations. However in the case of functions such as CAMEL, GOLDSTEIN, SHEKEL, HARTMAN, where only a few minima exist, the rules PCOV and KAN have a small advantage. Among the new rules there is not a clear winner, although EXPM seems to perform marginally better than the other two in terms of function evaluations. The rule DOUBLE seems to be more exhaustive and retrieves a greater number of minimizers.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>PCOV</th>
<th>KAN</th>
<th>DOUBLE</th>
<th>OBS</th>
<th>EXPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>FC</td>
<td>MIN</td>
<td>FC</td>
<td>MIN</td>
</tr>
<tr>
<td>CAMEL</td>
<td>6</td>
<td>5642</td>
<td>6</td>
<td>2549</td>
<td>6</td>
</tr>
<tr>
<td>RASTRIGIN</td>
<td>49</td>
<td>38104</td>
<td>49</td>
<td>121182</td>
<td>49</td>
</tr>
<tr>
<td>SHUBERT</td>
<td>400</td>
<td>316640</td>
<td>400</td>
<td>8034563</td>
<td>400</td>
</tr>
<tr>
<td>HANSEN</td>
<td>527</td>
<td>426056</td>
<td>527</td>
<td>1422025</td>
<td>527</td>
</tr>
<tr>
<td>GRIEWANK2</td>
<td>528</td>
<td>565932</td>
<td>529</td>
<td>18941546</td>
<td>529</td>
</tr>
<tr>
<td>GKLS(3,30)</td>
<td>16</td>
<td>5286</td>
<td>13</td>
<td>4249</td>
<td>29</td>
</tr>
<tr>
<td>GKLS(3,100)</td>
<td>34</td>
<td>11464</td>
<td>61</td>
<td>97124</td>
<td>97</td>
</tr>
<tr>
<td>GKLS(4,100)</td>
<td>20</td>
<td>6010</td>
<td>12</td>
<td>7816</td>
<td>95</td>
</tr>
<tr>
<td>GUILIN(10,200)</td>
<td>191</td>
<td>354650</td>
<td>200</td>
<td>4736609</td>
<td>200</td>
</tr>
<tr>
<td>GUILIN(20,100)</td>
<td>96</td>
<td>263869</td>
<td>100</td>
<td>1760826</td>
<td>100</td>
</tr>
<tr>
<td>Test2N(4)</td>
<td>16</td>
<td>17373</td>
<td>16</td>
<td>18716</td>
<td>16</td>
</tr>
<tr>
<td>Test2N(5)</td>
<td>32</td>
<td>37639</td>
<td>32</td>
<td>78931</td>
<td>32</td>
</tr>
<tr>
<td>Test2n(6)</td>
<td>64</td>
<td>81893</td>
<td>64</td>
<td>336353</td>
<td>64</td>
</tr>
<tr>
<td>Test2n(7)</td>
<td>128</td>
<td>175850</td>
<td>128</td>
<td>1435579</td>
<td>128</td>
</tr>
<tr>
<td>GOLDSTEIN</td>
<td>4</td>
<td>5906</td>
<td>4</td>
<td>3812</td>
<td>4</td>
</tr>
<tr>
<td>BRANIN</td>
<td>3</td>
<td>2173</td>
<td>3</td>
<td>1782</td>
<td>3</td>
</tr>
<tr>
<td>HARTMAN3</td>
<td>3</td>
<td>3348</td>
<td>3</td>
<td>2750</td>
<td>3</td>
</tr>
<tr>
<td>HARTMAN6</td>
<td>2</td>
<td>3919</td>
<td>2</td>
<td>3851</td>
<td>2</td>
</tr>
<tr>
<td>SHEKEI5</td>
<td>5</td>
<td>8720</td>
<td>5</td>
<td>4733</td>
<td>5</td>
</tr>
<tr>
<td>SHEKEI7</td>
<td>7</td>
<td>11742</td>
<td>6</td>
<td>5485</td>
<td>7</td>
</tr>
<tr>
<td>SHEKEI10</td>
<td>10</td>
<td>16020</td>
<td>10</td>
<td>10611</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3: Multistart
6 Conclusions

We presented three new stopping rules for use in conjunction with Multistart for global optimization. These rules, although quite different in nature, perform similarly and significantly better than other rules that have been widely used in practice. The comparison does not render a clear winner among them, hence the one that is more conveniently integrated with the global optimization method of choice may be used. Efficient stopping rules are important especially for problems where the number of minima is large and the objective function expensive. Such problems occur frequently in molecular physics, chemistry and biology where the interest is in collecting stable molecular conformations that correspond to local minimizers of the steric energy function ([10, 11, 12]). Devising new rules and adapting the present ones to other stochastic global optimization methods is within our interests and currently under investigation.
A Test Functions

We list the test functions used in our experiments, the associated search domains and the number of the existing local minima.

1. Rastrigin.
 \[f(x) = x_1^2 + x_2^2 - \cos(18x_1) - \cos(18x_2) \]
 \(x \in [-1, 1]^2 \) with 49 local minima.

2. Shubert.
 \[f(x) = -2 \sum_{i=1}^{5} \sum_{j=1}^{5} j \sin[(j + 1)x_i + 1] \]
 \(x \in [-10, 10]^2 \) with 400 local minima.

3. GKLS.
 \(f(x) = Gkls(x, n, w) \), is a function with \(w \) local minima, described in [7].
 \(x \in [-1, 1]^n \), \(n \in [2, 100] \). In our experiments we considered the following cases:
 (a) \(n = 3 \), \(w = 30 \).
 (b) \(n = 3 \), \(w = 100 \).
 (c) \(n = 4 \), \(w = 100 \).

 \[f(x) = 3 + \sum_{i=1}^{n} c_i \frac{x_i}{x_i + 10} \sin \left(\frac{\pi}{1 - x_i + 1/(2k_i)} \right) \]
 \(x \in [0, 1]^n \), \(c_i > 0 \), and \(k_i \) are positive integers. This function has \(\prod_{i=1}^{n} k_i \) minima. In our experiments we chose \(n = 10 \) and \(n = 20 \) and arranged \(k_i \) so that the number of minima is 200 and 100 respectively.

5. Griewank # 2.
 \[f(x) = 1 + \frac{1}{200} \sum_{i=1}^{2} x_i^2 - \prod_{i=1}^{2} \cos(x_i) \sqrt{i} \]
 \(x \in [-100, 100]^2 \) with 529 minima.

 \[f(x) = \sum_{i=1}^{5} i \cos[(i-1)x_1 + i] \sum_{j=1}^{5} j \cos[(j + 1)x_2 + j] \]
 \(x \in [-10, 10]^2 \) with 527 minima.

7. Camel.
 \[f(x) = 4x_1^2 - 2.1x_1^4 + \frac{1}{3}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4 \]
 \(x \in [-5, 5]^2 \) with 6 minima.

8. Test2N.
 \[f(x) = \frac{1}{2} \sum_{i=1}^{n} x_i^4 - 16x_i^2 + 5x_i \]
with $x \in [-5, 5]^n$. The function has 2^n local minima in the specified range. In our experiments we have used the values $n = 4, 5, 6, 7$. These cases are denoted by Test2N(4), Test2N(5), Test2N(6) and Test2N(7) respectively.

9. **Branin.**
\[
f(x) = \left(x_2 - \frac{5}{\pi} x_1^2 + \frac{5}{\pi} x_1 - 6\right)^2 + 10 \left(1 - \frac{1}{8\pi}\right) \cos(x_1) + 10 \text{ with } -5 \leq x_1 \leq 10, \ 0 \leq x_2 \leq 15.\]
The function has 3 minima in the specified range.

10. **Goldstein & Price**
\[
f(x) = [1 + (x_1 + x_2 + 1)^2 \\
(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)] \times \\
[30 + (2x_1 - 3x_2)^2 \\
(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)]\]
The function has 4 local minima in the range $[-2, 2]^2$.

11. **Hartman3**
\[
f(x) = -\sum_{i=1}^{4} c_i \exp \left(-\sum_{j=1}^{3} a_{ij} (x_j - p_{ij})^2 \right)\]
with $x \in [0, 1]^3$ and
\[
a = \begin{pmatrix} 3 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3 & 10 & 30 \end{pmatrix} \]
and
\[
c = \begin{pmatrix} 1 \\ 1.2 \\ 3 \end{pmatrix} \]
and
\[
p = \begin{pmatrix} 0.3689 & 0.117 & 0.2673 \\ 0.4699 & 0.4387 & 0.747 \\ 0.1091 & 0.8732 & 0.5547 \\ 0.03815 & 0.5743 & 0.8828 \end{pmatrix} \]
The function has 3 minima in the specified range.

12. **Hartman6**
\[
f(x) = -\sum_{i=1}^{4} c_i \exp \left(-\sum_{j=1}^{6} a_{ij} (x_j - p_{ij})^2 \right)\]
with $x \in [0,1]^6$ and

$$a = \begin{pmatrix} 10 & 3 & 17 & 3.5 & 1.7 & 8 \\ 0.05 & 10 & 17 & 0.1 & 8 & 14 \\ 3 & 3.5 & 1.7 & 10 & 17 & 8 \\ 17 & 8 & 0.05 & 10 & 0.1 & 14 \end{pmatrix}$$

and

$$c = \begin{pmatrix} 1 \\ 1.2 \\ 3 \\ 3.2 \end{pmatrix}$$

and

$$p = \begin{pmatrix} 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886 \\ 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\ 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\ 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \end{pmatrix}$$

The function has 2 local minima in the specified range.

13. **Shekel-5.**

$$f(x) = -\sum_{i=1}^{5} \frac{1}{(x-a_i)(x-a_i)^T + c_i}$$

with $x \in [0,10]^4$ and

$$a = \begin{pmatrix} 4 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \\ 8 & 8 & 8 & 8 \\ 6 & 6 & 6 & 6 \\ 3 & 7 & 3 & 7 \end{pmatrix}$$

and

$$c = \begin{pmatrix} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \end{pmatrix}$$

The function has 5 local minima in the specified range.

14. **Shekel-7.**

$$f(x) = -\sum_{i=1}^{7} \frac{1}{(x-a_i)(x-a_i)^T + c_i}$$
The function has 7 local minima in the specified range.

15. **Shekel-10.**

\[
f(x) = - \sum_{i=1}^{m} \frac{1}{(x - A_i)(x - A_i)^T + c_i}
\]

with \(x \in [0, 10]^4 \) and

\[
a = \begin{bmatrix}
 4 & 4 & 4 & 4 \\
 1 & 1 & 1 & 1 \\
 8 & 8 & 8 & 8 \\
 6 & 6 & 6 & 6 \\
 3 & 7 & 3 & 7 \\
 2 & 9 & 2 & 9 \\
 5 & 3 & 5 & 3 \\
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
 0.1 \\
 0.2 \\
 0.2 \\
 0.4 \\
 0.4 \\
 0.6 \\
 0.3 \\
\end{bmatrix}
\]

The function has 7 local minima in the specified range.

\[
x \in [0, 10]^4 \text{ with 10 minima.}
\]
References

