Abstract. In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F with values in a partially ordered vector space and formulate two versions of the Ekeland variational principle for these points involving coderivatives in the senses of Ioffe, Clarke and Mordukhovich. As applications we obtain sufficient conditions for F to have a Henig proper minimizer or a super minimizer under the Palais-Smale type conditions. The techniques are essentially based on characterizations of Henig proper efficient points and super efficient points by mean of the Henig dilating cones and the Hiriart-Urruty signed distance function.

Key words: Ekeland variational principle, vector optimization, Henig proper minimizer, super minimizer, Henig dilating cone, cone with base, set-valued map, coderivative.

1. Introduction

The well-known Ekeland Variational Principle (EVP) [11] say roughly that for any lower semicontinuous (lsc) function f bounded from below on a complete metric space X, there exists an approximate minimizer of f which is an exact minimizer of a perturbed function. When X is a Banach space and f is Gâteaux differentiable, its derivative can be made arbitrarily small. Moreover, if f additionally satisfies the Palais-Smale condition then it attains a minimum on X.

During the last three decades many authors have been interested in extending EVP and related results to a single- or set-valued map with values in a vector space partially ordered by a convex cone, see [3, 4, 6-8, 10, 12-18, 20-22, 25, 26, 29, 30, 35, 43, 44, 46, 50] and the references therein. A brief enquiry into the matter reveals that the authors concentrated mainly on exact/approximate Pareto minimizers or exact/approximate weak minimizers, and the ordering cone was often assumed to have a nonempty interior. However, this assumption does not hold in many cases. In the recent work [3], Bao and Mordukhovich dropped this assumption and obtained subdifferential versions of EVP for approximate minimizers of a set-valued map F in Asplund space settings as well as sufficient conditions for F to have intrinsic relative minimizers or primary relative Pareto minimizers under a refined subdifferential Palais-Smale condition. In [16] we established

1The author is grateful to Professor B. Mordukhovich for valuable comments on the first version of the manuscript that helped her to improve the original presentation.
EVP for exact/approximate positive proper minimizers of a set-valued map F taking values in a Banach space with the ordering cone admitting strictly positive functionals (or equivalently, this cone has a base).

In this paper we consider, for the first time, approximate Henig proper minimizers and approximate super minimizers of a set-valued map F. We formulate two theorems about EVP for these points involving the Ioffe approximate coderivative, the Clarke coderivative and the Mordukhovich coderivative of F, and apply them to obtain sufficient conditions for F to have a Henig proper minimizer or a super minimizer under the Palais-Smale type conditions. Specifically, we work in a broad class of Banach spaces and Asplund spaces in which the ordering cones have a base and are normal and, when it concerns with super efficiency, the ordering cones have a bounded base. The techniques are essentially based on characterizations of Henig proper efficient points and super efficient points by mean of the Henig dilating cones and the Hiriart-Urruty signed distance function.

The rest of the paper is organized as follows. In Section 2 we recall the notions of normal cone, subdifferential and coderivative in the senses of Ioffe, Clarke and Mordukhovich. Section 3 is devoted to characterizations of Henig proper efficient points and super efficient points. In Section 4 we present the concepts of approximate Henig proper minimizers and approximate super minimizers of a set-valued map F and formulate EVP for these points. In Section 5 we establish sufficient conditions for F to have a Henig proper minimizer or a super minimizer under the Palais-Smale type conditions.

2. Normal cone, subdifferential and coderivative in the senses of Ioffe, Clarke and Mordukhovich

For the convenience of the reader we repeat the relevant material from [9, 27, 28, 34, 38-42, 45], without proofs, thus making our exposition self-contained.

Throughout the paper X and Y are Banach spaces with their norms $\| \cdot \|$ and duals X^* and Y^*, respectively. The closed unit ball and the open unit ball in any space, say X, are denoted by B_X and \bar{B}_X, respectively; we omit the subscript X when no confusion occurs. For a nonempty set A in any space, say in X, we will use the following notations: $\text{int} A$ and $\text{clo} A$ stand for the interior and closure of A,

$$\text{cone} A = \{ta : t \in R_+, a \in A\},$$

where $R_+ = [0, \infty[$, d_A is the distance function $d_A(x) = \inf\{\|x - a\| : a \in A\}$ and χ_A is the indicator function

$$\chi_A(x) = \begin{cases} 0 & \text{if } x \in A \\ +\infty & \text{otherwise.} \end{cases}$$

Recall that a Banach space is Asplund if each of its separable subspace has a separable dual. This class has been comprehensively investigated in geometric theory of Banach.
spaces and has been largely employed in variational analysis; see, e.g. [41, 42].

Given a function \(g : X \to R \cup \{ \pm \infty \} \), its domain and epigraph are the sets \(\text{dom} g = \{ x \in X : g \text{ is finite at } x \} \) and \(\text{epig} = \{ (x, t) \in X \times R : g(x) \leq t \} \), respectively.

We recall the concepts of the Ioffe approximate subdifferential and approximate normal cone [27, 28]. Let \(x \in \text{dom} g \). Approximate subdifferential is first defined for Lipschitz functions. Namely, supposing that \(g \) is locally Lipschitz near \(x \), the Ioffe approximate subdifferential of \(g \) at \(x \) [27] is the set

\[
\partial_{A} g(x) = \cap_{L \in \mathcal{F}} \limsup_{(\epsilon, y) \to (0^+, x)} \partial_{\epsilon} g_{y+L}(y),
\]

where \(\mathcal{F} \) is the collection of all finite dimensional subspaces of \(X \), \(g_{y+L}(u) = g(u) \) if \(u \in y + L \) and \(g_{y+L}(u) = +\infty \) otherwise, for \(\epsilon \geq 0 \)

\[
\partial_{\epsilon} g_{y+L}(y) = \{ x^* \in X^* : x^*(v) \leq \epsilon \|v\| + \liminf_{t \to 0^+} t^{-1}[g_{y+L}(y + tv) - g_{y+L}(y)], \forall v \in X \}.
\]

Let \(\Omega \) be a nonempty subset of \(X \) different from \(X \) and \(x \in \text{cl} \Omega \). The Ioffe approximate normal cone to \(\Omega \) at \(x \in \Omega \) [27] is given by

\[
N_{A}(x; \Omega) = \cup_{\lambda > 0} \lambda \partial_{A} d(x; \Omega).
\]

Now approximate subdifferential can be defined for an arbitrary lsc function through the normal cone to its epigraph as follows

\[
\partial_{A} g(x) = \{ x^* \in X^* : (x^*, -1) \in N_{A}((x, g(x)); \text{epig}) \}.
\]

Next, we recall the concepts of the Clarke subdifferential and normal cone [9]. The Clarke subdifferential is first defined for Lipschitz functions. Namely, supposing that \(g \) is locally Lipschitz near \(x \), The Clarke generalized subdifferential of \(g \) at \(x \) is the set

\[
\partial_{C} g(x) = \{ x^* \in X^* : x^*(v) \leq g^0(x; v), \forall v \in X \},
\]

where \(g^0(x; v) \) is the generalized directional derivative of \(g \) at \(x \) in the direction \(v \)

\[
g^0(x; v) = \limsup_{y \to x, t \to 0^+} \frac{g(y + tv) - g(y)}{t}.
\]

The Clarke normal cone to \(S \) at \(x \in \Omega \) is given by

\[
N_{C}(x; \Omega) = \text{cl} \cup_{\lambda > 0} \lambda \partial_{C} d(x; \Omega).
\]

Now the Clarke subdifferential can be defined for an arbitrary lsc function through the normal cone to its epigraph as follows

\[
\partial_{C} g(x) = \{ x^* \in X^* : (x^*, -1) \in N_{C}((x, g(x)); \text{epig}) \}.
\]
Further we recall the concepts of the Mordukhovich subdifferential and normal cone [34, 38-42]. The set of Fréchet ε-normals to Ω at x is given by

$$N_\varepsilon(x; \Omega) = \{x^* \in X^*: \limsup_{x', \Omega} \frac{x^*(x' - x)}{\|x' - x\|} \leq \varepsilon\}.$$

When $\varepsilon = 0$, this set is a cone which is called the Fréchet normal cone to Ω at x and is denoted by $\hat{N}(x; \Omega)$. The set of limiting Fréchet ε-normals to Ω at x is given by

$$N_M(x; \Omega) = \limsup_{x', \Omega} \hat{N}_\varepsilon(x', \Omega),$$

where the limit in the right-hand side means the sequential Kuratowski-Painlevé upper limit with respect to the norm topology in X and the weak-star ω^* topology in X^*. The Mordukhovich normal cone to Ω at x is defined by

$$N_M(x; \Omega) = \limsup_{x', \Omega, \varepsilon \downarrow 0^+} \hat{N}_\varepsilon(x', \Omega).$$

Suppose that g is lsc. The Mordukhovich subdifferential of g at x is the set

$$\partial_M g(x) = \{x^* \in X^*: (x^*, -1) \in N_M((x, g(x)); \text{epi } g)\}.$$

Note that when g is convex and Lipschitz near x, the above subdifferentials reduce to the subdifferential of convex analysis ∂g, i.e.,

$$\partial g(x) = \{x^* \in X^*: x^*(x') - x^*(x) \leq g(x') - g(x) \text{ for all } x' \in \text{dom } g\}.$$

Throughout the paper $F : X \rightrightarrows Y$ is a map with set values. For the sake of convenience we assume that $F(x)$ is nonempty for all $x \in X$. We denote its graph by $\text{gr} F$, i.e., $\text{gr} F = \{(x, y) \in X \times Y : y \in F(x)\}$. Recall that F is upper semicontinuous (usc) at $x \in X$ if for any open set V with $F(x) \subseteq V$ there exists an open set U with $x \in U$ such that $F(x') \subseteq V$ for all $x' \in U$ and that F is usc on X if it is usc at every $x \in X$.

Let us recall the concept of coderivatives for the map F generated by the above normal cones to its graph [27, 28, 34, 38-42]. Suppose that F has a closed graph and let $(x, y) \in \text{gr} F$. The Ioffe approximate coderivative, the Clarke coderivative and the Mordukhovich coderivative of F at (x, y) are the set-valued maps $D_A^* F(x, y)$, $D_C^* F(x, y)$ and $D_M^* F(x, y)$ from Y^* into X^* defined by

$$D_A^* F(x, y)(y^*) = \{x^* \in X^*: (x^*, -y^*) \in N_A((x, y); \text{gr} F)\},$$

$$D_C^* F(x, y)(y^*) = \{x^* \in X^*: (x^*, -y^*) \in N_C((x, y); \text{gr} F)\}$$

and

$$D_M^* F(x, y)(y^*) = \{x^* \in X^*: (x^*, -y^*) \in N_M((x, y); \text{gr} F)\},$$
respectively.

Remark 2.1. Note that in [39] Mordukhovich introduced the very notion of coderivatives of a set-valued map regardless of the normal cone used. After he suggested this approach to differentiability of maps, we may consider different specific coderivatives generated by different normal cones. The Mordukhovich coderivative related to a normal cone in a finite dimensional space was introduced in [38]. This cone was extended to Banach spaces in [34]. We mention that Clarke never introduced nor used any coderivative concepts for either set-valued or single-valued maps, but the coderivative generated by the Clarke normal cone in the scheme of [39] as above has been used under the name "Clarke’s coderivative" in [40].

In the sequel, for the sake of convenience, we made the convention that the same notations ∂g and D^*F are used for the above kinds of subdifferentials and coderivatives and that the spaces under considerations are Asplund whenever the subdifferential and the coderivative are understood in the sense of Mordukhovich.

Among all the properties of the above subdifferentials let us recall those ones which will be used in the sequel [9, 27, 28, 45].

Proposition 2.1.

(i) $\partial \chi_{\Omega}(x) = N(x; \Omega)$.

(ii) If $g(x') \geq g(x)$ for all x' in a neighborhood of $x \in \text{dom} g$, then $0 \in \partial g(x)$.

(iii) (the sum rule) Let $h : X \to R \cup \{+\infty\}$. Suppose that h is Lipschitz near $x \in \text{dom} g \cap \text{dom} h$. Then one has $\partial (g + h)(x) \subset \partial g(x) + \partial h(x)$.

(iv) For the norm $\|\cdot\|$ in X one has $\partial \|\cdot\|(0) = B_{X^*}$.

3. Henig proper efficiency and super efficiency

This section is devoted to Henig proper efficient points and super efficient points of a set. We characterize these points by mean of the Henig dilating cones and of the Hiriart-Urruty signed distance function. We also establish some useful properties of these cones and function.

Throughout the paper $K \subset Y$ is a convex, pointed and closed cone (pointedness means $K \cap (-K) = \{0\}$). This cone induces a partial order on Y: For $y_1, y_2 \in Y$ we write $y_1 \leq_K y_2$ if $y_2 - y_1 \in K$.

Recall [33] that K is normal if there exists a scalar $N > 0$ such that for any $k_1, k_2 \in K$ with $k_1 \leq_K k_1$ one has $\|k_1\| \leq N\|k_2\|$.
We say that a convex set $\Theta \subset Y$ is a base of K if $0 \notin \text{cl}\Theta$ and

$$K = \{ t\theta : t \in R_+, \theta \in \Theta \}.$$

When Θ is bounded, we say that K has a bounded base.

Denote

$$K^+ = \{ \varphi \in Y^* : \varphi(k) > 0, \forall k \in K \setminus \{0\} \}.$$

It is known that K has a base iff $K^+ \neq \emptyset$, that K has a bounded base iff $\text{int}K^+ \neq \emptyset$ and if K has a bounded base then K is normal [33].

We provide examples of ordering cones in some classical Banach spaces.

Example 3.1. Consider the following Banach spaces: R^n - the n-dimensional euclidean space, $C_{[0,1]}$ - the space of continuous functions on $[0,1]$, $L^p_{[0,1]} (1 \leq p < \infty)$ - the space of p-integrable functions on $[0,1]$, $L^p (1 \leq p < \infty)$ - the space of p-summable sequences, m - the space of bounded sequences, c - the space of convergent sequences and c_0 - the space of null sequences (i.e., sequences which converge to zero). Let K be the nonnegative orthant in the corresponding space. It is known that the nonnegative orthants in $R^n, C_{[0,1]}, L^p_{[0,1]}, L^p (1 \leq p < \infty), m, c$ and c_0 have a base and are normal, the nonnegative orthants in $R^n, L^1_{[0,1]}$ and l^1 have a bounded base and only the nonnegative orthants in R^n and $C_{[0,1]}$ have a nonempty interior.

Let Θ be as before the base of K. Set

$$\delta = \inf \{ \| \theta \| : \theta \in \Theta \} > 0.$$

For each scalar $\eta \in]0, \delta[$ we associate to K a cone

$$K_\eta = \text{cl} \text{cone}(\Theta + \eta B).$$

This cone known as the Henig dilating cone [23] plays an important role in the study of proper efficiency and will be frequently used in our work. Note that K_η is convex, pointed and closed. By Theorem 1.1 in [5], $\text{cl}(\Theta + \eta B)$ is a base of K_η, i.e.,

$$K_\eta = \text{cone} \text{cl}(\Theta + \eta B). \quad (1)$$

Throughout this section let A be a nonempty subset of Y different from Y. In this paper we consider the following concepts of efficiency [5, 23, 31, 36, 48, 49, 51].

Definition 3.1. Let $\bar{\alpha} \in A$. We say that

(i) $\bar{\alpha}$ is an efficient (or Pareto minimal) point of A with respect to (wrt) K ($\bar{\alpha} \in \text{Min}(A; K)$) if $(A - \bar{\alpha}) \cap (-K \setminus \{0\}) = \emptyset$;

(ii) supposing that $\text{int}K \neq \emptyset$, $\bar{\alpha}$ is a weak efficient point of A wrt K ($\bar{\alpha} \in \text{WMin}(A; K)$) if $(A - \bar{\alpha}) \cap (-\text{int}K) = \emptyset$.
(iii) supposing that K has a base Θ, π is a Henig proper efficient point of A wrt Θ ($\pi \in \text{He}(A; \Theta)$) if there exists a scalar $\eta \in]0, \delta[$ such that
\[
\text{cl } \text{cone}(A - \pi) \cap (-K_\eta) = \{0\};
\]

(iv) π is a super efficient point of A wrt K ($\pi \in \text{SE}(A; K)$) if there is a scalar $\rho > 0$ such that
\[
\text{cl } \text{cone}(A - \pi) \cap (B - K) \subseteq \rho B.
\]

In the sequel, we always assume that K has a base Θ. When no confusion occurs, we simply write $\text{Min}(A)$, $\text{WMin}(A)$, $\text{He}(A)$ and $\text{SE}(A)$ for the sets of efficient points in Definition 3.1. Moreover, when speaking of weak efficient points we mean that $\text{int}K$ is nonempty and when speaking that K has a bounded base we mean that Θ is bounded. The above definition of Henig proper efficient points expressed in terms of the base Θ can be found in [5], see also [48, 49, 51]. Note that in [49] Zheng used the notation $\text{He}(A; K)$ instead of $\text{He}(A; \Theta)$. For an equivalent definition of Henig proper efficient point by means of a functional from K^+ the reader is referred to [37].

From the definition, one has
\[
\text{He}(A) \subseteq \text{Min}(A) \subseteq \text{WMin}(A).
\]

The following result is a key tool for obtaining geometric characterizations of Henig proper efficient points and super efficient points.

Proposition 3.1.

(i) $A \cap (-K_\eta) \subseteq \{0\}$ for some $\eta \in]0, \delta[\implies \text{cl cone} A \cap (-K_{\eta'}) = \{0\}$ for any $\eta' \in]0, \eta[.$

(ii) $\text{cl cone} A \cap (B - K) \subseteq \rho B$ for some $\rho > 0$ implies $\text{cl cone} A \cap (-K_\eta) = \{0\}$ for any $\eta \in]0, \delta/(\rho + 1)[.$

(iii) supposing that Θ is bounded, $\text{cl cone} A \cap (-K_\eta) = \{0\}$ for some $\eta \in]0, \delta[\implies \text{cl cone} A \cap (B - K) \subseteq \rho B$, where $\rho = 1 + \delta/\eta$ and $\delta = \sup\{\|\theta\| : \theta \in \Theta\}.$

Proof.

(i) Arguing by contradiction, suppose that $A \cap (-K_\eta) \subseteq \{0\}$ for some $\eta \in]0, \delta[\text{ but there exists } \eta' \in]0, \eta[\text{ such that the relation}
\[
\text{cl cone} A \cap (-K_{\eta'}) = \{0\}
\]

is not true. Then there exists $z \in \{\text{cl cone} A \cap (-K_{\eta'})\} \setminus \{0\}$. As $z \in -K_{\eta'} \setminus \{0\}$, (1) applied to $K_{\eta'}$ yields the existence of $\lambda > 0$ and $\omega \in \text{cl}(\Theta + \eta'B)$ such that $z = -\lambda \omega$. Therefore, one can find $u \in Y$ with $\|u\| \leq (\eta - \eta'/2$, $\theta \in \Theta$ and $b' \in B$ such that
\[
z = -\lambda(\theta + \eta'b' + u).
\]
On the other hand, as \(z \in \text{cl cone}A \), there exist \(\gamma \geq 0 \), \(a \in A \) and \(v \in Y \) such that \(\|v\| \leq \min\{\lambda(\eta - \eta')/2, \|z\|/2\} \) and \(z = \gamma a + v \). Thus, we have
\[
z = -\lambda(\theta + \eta'b' + u) = \gamma a + v. \tag{4}
\]
Observing that \(\|\eta'b' + u + v/\lambda\| \leq \eta' + (\eta - \eta')/2 + (\eta - \eta')/2 = \eta \), we can find \(b \in B \) such that \(\eta b = \eta'b' + u + v/\lambda \). Therefore, (4) gives
\[
\gamma a = -\lambda(\theta + \eta'b' + u + v/\lambda) = -\lambda(\theta + \eta b).
\]
Since \(\gamma\|a\| = \|z - v\| = \|z\| - \|v\| \geq \|z\|/2 > 0 \), we have \(\gamma > 0 \) and \(a \neq 0 \). It follows then that \(a \in [A \cap (-K_\eta)] \setminus \{0\} \). This contradicts \(A \cap (-K_\eta) \subseteq \{0\} \) and thus justifies (2).

(ii) Arguing by contradiction, suppose that \(\text{cl cone}A \cap (B - K) \subseteq \rho B \) for some \(\rho > 0 \) but (2) does not hold for some \(\eta' \in [0, \delta/(\rho + 1)] \). Then there exists \(z \in \text{cl cone}A \cap (-K_\eta') \setminus \{0\} \). Choose an arbitrary \(\eta \in [\eta', \delta/(\rho + 1)] \). Let \(\lambda > 0 \), \(\theta \in \Theta \), \(u \in Y \) with \(\|u\| \leq \eta - \eta' \) and \(b' \in B \) such that (3) holds. Since \(\|\eta'b' + u\| \leq \eta' + \eta - \eta' = \eta \), there exists \(b \in B \) such that \(\eta b = \eta'b' + u \) and \(z = -\lambda(\theta + \eta b) \). Therefore, we have
\[
\|z\| = \lambda\|\theta + \eta b\| \geq \lambda(\|\theta\| - \|\eta b\|) \geq \lambda(\delta - \eta).
\]
Denote \(\overline{z} = z/(\lambda \eta) \). Since \(\delta/\eta > \rho + 1 \), we obtain
\[
\|\overline{z}\| = \|z\|/(\lambda \eta) \geq (\delta - \eta)/\eta = \delta/\eta - 1 > \rho + 1 - 1 = \rho.
\]
Hence, \(\|\overline{z}\| > \rho \). On the other hand, it is easy to see that \(\overline{z} \in \text{cl cone}A \) and \(\overline{z} = -\theta/\eta - b \in B - K \) and, therefore, \(\overline{z} \in \text{cl cone}A \cap (B - K) \). Since \(\text{cl cone}A \cap (B - K) \subseteq \rho B \), we arrives at \(\|\overline{z}\| \leq \rho \), a contradiction.

(iii) Suppose that \(\text{cl cone}A \cap (-K_\eta) = \{0\} \) for some \(\eta \in [0, \delta[\). Let \(z \in \text{cl cone}A \cap (B - K) \) be an arbitrary nonzero vector. Let \(b \in B \), \(\lambda > 0 \), and \(\theta \in \Theta \) such that \(z = -\lambda \theta + b \). Then
\[
1/\lambda = \|\theta\|/\|z - b\| \leq \overline{\delta}/(\|z\| - 1). \quad (\text{If } \|z\| > 1 + \overline{\delta}/\eta \text{ then we get } 1/\lambda \leq \overline{\delta}/(\|z\| - 1) < \eta, \quad b/\lambda \in \eta B \text{ and } z = \lambda(\theta + b/\lambda) \in -K_\eta \text{. This contradicts } \text{cl cone}A \cap (-K_\eta) = \{0\} \text{ and thus implies } \|z\| \leq 1 + \overline{\delta}/\eta.)
\]

Let us state some consequences of Proposition 3.1 that will be used later. Firstly, we deduce the following known useful relations.

Proposition 3.2.

\[
\SE(A) \subseteq \text{He}(A)
\]
and
\[
\SE(A) = \text{He}(A) \quad \text{if } \Theta \text{ is bounded.}
\]

Proof. Let \(\overline{a} \in \SE(A) \). By the definition, there is a scalar \(\rho > 0 \) such that \(\text{cl cone}(A - \overline{a}) \cap (B - K) \subseteq \rho B \). Applying Proposition 3.1(ii) to the set \(A - \overline{a} \) in the place of \(A \) we get \(\text{cl cone}(A - \overline{a}) \cap (-K_\eta) = \{0\} \) for any \(\eta \in [0, \delta/(\rho + 1)] \). Therefore, \(\overline{a} \in \text{He}(A) \).

Next, suppose that \(\Theta \) is bounded and \(\overline{a} \in \text{He}(A) \). By the definition, there exists a scalar \(\eta \in [0, \delta[\) such that \(\text{cl cone}(A - \overline{a}) \cap (-K_\eta) = \{0\} \). Applying Proposition 3.1(iii) to
the set $A - \pi$ in the place of A we get \(\text{cl cone}(A - \pi) \cap (B - K) \subseteq \rho B_Y \) for \(\rho = 1 + \delta/\eta \), where \(\delta = \sup \{ \|\theta\| : \theta \in \Theta \} \). Therefore, \(\pi \in \text{SE}(A) \). \qed

Proposition 3.1 allows us to equivalently describe a Henig proper efficient point and a super efficient point as an efficient point not wrt K but wrt some Henig dilating cone. This fact plays an important role in our study.

Proposition 3.3.

(i) \(\pi \in \text{He}(A) \) iff \(\pi \in \text{Min}(A; K_\eta) \) for some \(\eta \in]0, \delta[\).

(ii) supposing that Θ is bounded, \(\pi \in \text{SE}(A) \) iff \(\pi \in \text{Min}(A; K_\eta) \) for some \(\eta \in]0, \delta[\).

Proof. (i) If \(\pi \in \text{He}(A) \) then \(\text{cl cone}(A - \pi) \cap (-K_\eta) = \{0\} \) for some \(\eta \in]0, \delta[\) and hence, \((A - \pi) \cap (-K_\eta) = \{0\} \), which means that \(\pi \in \text{Min}(A; K_\eta) \). Conversely, if \(\pi \in \text{Min}(A; K_\eta) \) for some \(\eta \in]0, \delta[\) then \((A - \pi) \cap (-K_\eta) = \{0\} \). This and Proposition 3.1(i) applied to the set $A - \pi$ in the place of A yield that \(\text{cl cone}(A - \pi) \cap (-K_{\eta'}) = \{0\} \) for any \(\eta' \in]0, \eta[\). Thus, \(\pi \in \text{He}(A) \).

(ii) The assertion is immediate from the assertion (i) and Proposition 3.2. \qed

Our next aim is to characterize a Henig proper efficient point and a super efficient point by the so called signed distance function. Given a nonempty set A in Y, Hirriart-Urruty [24] defined this function denoted by Δ_A as follows: for $y \in Y$,

\[
\Delta_A(y) = d_A(y) - d_{Y \setminus A}(y).
\]

We list some properties of Δ_A in the following proposition. Some nice and useful properties of the subdifferential of this function in several special cases will be established in the end of the section.

Proposition 3.4. Assume that A is closed. Then

(i) Δ_A is 1-Lipschitz;

(ii) Δ_A is convex when A is convex, positively homogenous when A is a cone.

(iii) In particular, Δ_{-K} is convex, positively homogenous and satisfies the triangle inequality, i.e.,

\[
\Delta_{-K}(y_1 + y_2) \leq \Delta_{-K}(y_1) + \Delta_{-K}(y_2) \quad \text{for all } y_1, y_2 \in Y.
\]

Proof. The first two assertions are established in [24] and the last one can be easily derived from the formers. \qed

In [47], Zaffaroni obtained characterizations of an efficient point and a weak efficient point by mean of the function Δ_{-K}. Below we use Proposition 3.3 and the function Δ_{-K_η}
to characterize a Henig proper efficient point and a super efficient point. We refer the interested reader to our recent work [19], where the signed distance function associated to different open cones was used to characterize not only the above efficient points but also efficient points in the sense of Benson, Borwein, Hurwicz and Hartley.

Proposition 3.5.

(i) \(\bar{a} \in \text{He}(A) \) iff there exists \(\eta \in]0, \delta[\) such that

\[
\Delta_{-K_\eta}(a - \bar{a}) \geq \Delta_{-K_\eta}(0) = 0 \quad \text{for all } a \in A. \tag{5}
\]

(ii) supposing that \(\Theta \) is bounded, \(\bar{a} \in \text{SE}(A) \) if there exists \(\eta \in]0, \delta[\) such that (5) holds.

Proof. Observe first that since \(K_\eta \) is closed and 0 belongs to the boundary of \(K_\eta \), we get \(\Delta_{-K_\eta}(0) = 0 \).

(i) Suppose that \(\bar{a} \in \text{He}(A) \). Proposition 3.3(i) implies that there is some \(\eta \in]0, \delta[\) such that \(\bar{a} \in \text{Min}(A; K_\eta) \). By the definition, \((A - \bar{a}) \cap (-K_\eta) = \{0\} \). Then for any \(a \in A \), \(a \neq \bar{a} \) we have \(a - \bar{a} \notin -K_\eta \) and hence,

\[
\Delta_{-K_\eta}(a - \bar{a}) = d_{-K_\eta}(a - \bar{a}) - d_{Y \setminus (-K_\eta)}(a - \bar{a}) = d_{-K_\eta}(a - \bar{a}) \geq 0.
\]

Thus, (5) holds. Next, suppose that (5) holds for some \(\eta \in]0, \delta[\). Let \(\eta' \in]0, \eta[\). We claim that

\[
(A - \bar{a}) \cap (-K_{\eta'}) = \{0\}. \tag{6}
\]

Indeed, if (6) does not hold then there exists \(a \in A \), \(a \neq \bar{a} \) such that \(a - \bar{a} \in -K_{\eta'} \). By (1), there exist \(\lambda > 0 \), \(u \in Y \) with \(\|u\| \leq (\eta - \eta')/4 \), \(\theta \in \Theta \) and \(b' \in B \) such that \(a - \bar{a} = -\lambda(\theta + \eta' b' + u) \). Since \(\|\eta' b' + u\| \leq \eta' + (\eta - \eta')/4 \), it is easy to see that \(\eta' b' + u + (\eta - \eta')/4B \subset (\eta + \eta')/2B \) and that \(\theta + \eta' b' + u + (\eta - \eta')/4B \subset \Theta + \eta B \). Therefore, \(a - \bar{a} \in \text{int}(-K_{\eta'}) \). It follows that \(d_{Y \setminus (-K_\eta)}(a - \bar{a}) > 0 \), which yields

\[
\Delta_{-K_\eta}(a - \bar{a}) = d_{-K_\eta}(a - \bar{a}) - d_{Y \setminus (-K_\eta)}(a - \bar{a}) = -d_{Y \setminus (-K_\eta)}(a - \bar{a}) < 0.
\]

This contradicts (5) and thus justifies (6). Now, (6) and Proposition 3.3(i) yield that \(\bar{a} \in \text{He}(A) \).

(ii) Suppose that (5) holds for some \(\eta \in]0, \delta[\). Then (i) yields that \(\bar{a} \in \text{He}(A) \). As \(\Theta \) is bounded, Proposition 3.2 implies that \(\bar{a} \in \text{SE}(A) \). \(\square \)

We conclude this section by establishing some properties of the subdifferential of the function \(\Delta_{-K_\eta} \) which will play an important role in formulating our EVP.

Proposition 3.6. Let \(\eta \in]0, \delta[\). Then

(i) \(\partial \Delta_{-K_\eta}(0) \subset K^+ \) and \(\eta/\delta \leq \|y^*\| \leq 1 \) for all \(y^* \in \partial \Delta_{-K_\eta}(0) \).

(ii) supposing that \(\Theta \) is bounded, we have \(\partial \Delta_{-K_\eta}(0) \subset \text{int}K^+ \).
Proof.

(i) Note that the inclusion \(\partial \Delta_{-K_\eta}(0) \subset K^+ \) has already been established with a slightly modified argument in [19]. Let \(y^* \in \partial \Delta_{-K_\eta}(0) \). For any \(\theta \in \Theta \), we have \(-(\theta + \eta B) \subset -K_\eta \). Hence, \(d_{Y\setminus(-K_\eta)}(-\theta) \geq \eta \). The definition of the convex subdifferential yields

\[
y^*(-\theta) \leq \Delta_{-K_\eta}(-\theta) - \Delta_{-K_\eta}(0) = d_{-K_\eta}(-\theta) - d_{Y\setminus(-K_\eta)}(-\theta) = -d_{Y\setminus(-K_\eta)}(-\theta) \leq -\eta.
\]

It follows then that

\[
y^*(\theta) \geq \eta \quad \text{for all } \theta \in \Theta.
\]

(ii) Let \(y^* \in \partial \Delta_{-K_\eta}(0) \). It is known that when \(\Theta \) is bounded, \(y^* \in \text{int}K^+ \) iff \(y^* \) is uniformly positive on \(K \) in the following sense: there exists a scalar \(\alpha > 0 \) such that \(y^*(k) \geq \alpha \|k\| \) for all \(k \in K \setminus \{0\} \). We claim that \(y^* \) is uniformly positive on \(K \) with \(\alpha = \eta/\delta \), where \(\delta = \sup\{\|\theta\| : \theta \in \Theta\} \). Indeed, let \(k \in K \setminus \{0\} \). Then \(k = t\theta \) for some scalar \(t > 0 \) and \(\theta \in \Theta \). One has \(t = \|k\|/\|\theta\| \geq \|k\|/\delta \), which together with (7) imply

\[
y^*(k) = ty^*(\theta) \geq (\eta/\delta)\|k\|.
\]

Thus, \(y^* \) is uniformly positive on \(K \) and hence \(y^* \in \text{int}K^+ \). \(\square \)

4. Variants of EVP for approximate Henig proper minimizers and approximate super minimizers

Let \(F \) be as before a set-valued map with nonempty values from \(X \) to \(Y \). In this section we formulate two variants of EVP for approximate Henig proper minimizers and approximate super minimizers of the map \(F \) which involve the Clarke normal cone to the graph of \(F \).

Let us recall some concepts of exact/approximate minimizers of a set-valued map. Note that the concepts of efficient points of a set in Definition 3.1 naturally induce the following concepts of minimizers of \(F \). Set \(F(X) = \cup_{x \in X} F(x) \).

Definition 4.1. Let \((\overline{x}, \overline{y}) \in \text{gr} F\). We say that

(i) \((\overline{x}, \overline{y})\) is a minimizer wrt \(K \) of \(F \) if \(\overline{y} \in \text{Min}(F(X)) \);

(ii) \((\overline{x}, \overline{y})\) is a weak minimizer wrt \(K \) of \(F \) if \(\overline{y} \in \text{WMin}(F(X)) \);
(iii) \((\mathbf{x}, \mathbf{y})\) is a Henig proper minimizer wrt \(\Theta\) of \(F\) if \(\mathbf{y} \in \text{He}(F(X))\);

(iv) \((\mathbf{x}, \mathbf{y})\) is a super minimizer wrt \(K\) of \(F\) if \(\mathbf{y} \in \text{SE}(F(X))\).

Next, we recall the concept of an approximate minimizer. Throughout this section let \(\epsilon > 0\) and \(k_0 \in K \setminus \{0\}\).

Definition 4.2. Let \((\mathbf{x}, \mathbf{y}) \in \text{gr} F\). We say that \((\mathbf{x}, \mathbf{y})\) is an \(\epsilon k_0\)-minimizer wrt \(K\) of \(F\) over \(X\) iff \(\mathbf{y} \in \text{Min}(F(\mathbf{x}))\) and

\[y + \epsilon k_0 \not\subseteq K \quad \text{for all } y \in F(X) \]

or equivalently,

\[(F(X) + \epsilon k_0 - \mathbf{y}) \cap (-K) = \emptyset. \]

Now, let us introduce the concepts of a Henig proper \(\epsilon k_0\)-minimizer wrt \(\Theta\) and of a super \(\epsilon k_0\)-minimizer wrt \(K\) for \(F\).

Definition 4.3. Let \((\mathbf{x}, \mathbf{y}) \in \text{gr} F\). We say that

(i) \((\mathbf{x}, \mathbf{y})\) is a Henig proper \(\epsilon k_0\)-minimizer wrt \(\Theta\) of \(F\) over \(X\) if \(\mathbf{y} \in \text{He}(F(\mathbf{x}))\) and there exists \(\eta \in]0, \delta]\) such that

\[\text{cl cone}(F(X) + \epsilon k_0 - \mathbf{y}) \cap (-K_\eta) = \{0\}. \]

(ii) \((\mathbf{x}, \mathbf{y})\) is a super \(\epsilon k_0\)-minimizer wrt \(K\) of \(F\) over \(X\) if \(\mathbf{y} \in \text{SE}(F(\mathbf{x}))\) and there exists \(\rho > 0\) such that

\[\text{cl cone}(F(X) + \epsilon k_0 - \mathbf{y}) \cap (B - K) \subseteq \rho B. \]

One can check that Definition 4.3 reduces to Definition 4.1 (iii)-(iv) when \(\epsilon = 0\).

In [1], Amahroq, Penot and Syam introduced the notion of \(\epsilon k_0\)-blunt minimizers of a function. Motivated by their concept we present the following definitions of a Henig proper \(\epsilon k_0\)-blunt minimizer and a super \(\epsilon k_0\)-blunt minimizer for the set-valued map \(F\).

Definition 4.4. Let \((\mathbf{x}, \mathbf{y}) \in \text{gr} F\). We say that

(i) \((\mathbf{x}, \mathbf{y})\) is a Henig proper \(\epsilon k_0\)-blunt minimizer wrt \(\Theta\) of \(F\) over \(X\) if \(\mathbf{y} \in \text{He}(F(\mathbf{x}))\) and there exists \(\eta \in]0, \delta]\) such that

\[\text{cl cone}(F(X) + \epsilon k_0 - \mathbf{y}) \cap (-K_\eta) = \{0\}. \]

(ii) \((\mathbf{x}, \mathbf{y})\) is a super \(\epsilon k_0\)-blunt minimizer wrt \(K\) of \(F\) over \(X\) if \(\mathbf{y} \in \text{SE}(F(\mathbf{x}))\) and there exists \(\rho > 0\) such that

\[\text{cl cone}(F(X) + \epsilon k_0 - \mathbf{y}) \cap (B - K) \subseteq \rho B. \]

Below is a variant of EVP established in [8] for an \(\epsilon k_0\)- minimizer of \(F\) that will be used later. Recall that \(F\) is bounded from below wrt \(K\) if there is \(v \in Y\) such that \(v \leq_K y\) for all \(y \in F(X)\) or equivalently, if \(F(X) \subset v + K\)

Theorem 4.1. Assume that \(F\) is compact-valued, usc, and bounded from below wrt \(K\). For any \(\mathbf{y} \in F(X)\) there exists an \(\epsilon k_0\)-minimizer wrt \(K\), say \((\mathbf{x}_\epsilon, \mathbf{y}_\epsilon)\), of \(F\) such that
(a) \(y_\epsilon \leq_K \tilde{y} \).

(b) \((x_\epsilon, y_\epsilon)\) is a strict minimizer wrt \(K \) of the perturbed set-valued map \(x \mapsto F(x) + \epsilon\|x - x_\epsilon\|k_0 \) in the following sense

\[
y + \epsilon\|x - x_\epsilon\|k_0 \not\leq_K y_\epsilon
\]

for all \((x, y) \in \text{gr}F, (x, y) \neq (x_\epsilon, y_\epsilon)\).

In other words, \((x_\epsilon, y_\epsilon)\) in the above theorem is both an \(\epsilon k_0 \)-minimizer and an \(\epsilon k_0 \)-blunt minimizer of \(F \).

Our version of EVP for approximate Henig proper minimizers of \(F \) reads as follows.

Theorem 4.2. Assume that \(F \) is compact-valued, usc, and bounded from below wrt \(K \). Let \(\epsilon > 0, k_0 \in K \) with \(\|k_0\| = 1 \) and \(\tilde{y} \in F(X) \). Then for any \(\eta \in [0, \delta] \) there exists a Henig proper \(\epsilon k_0 \)-minimizer wrt \(\Theta \), say \((x_\epsilon, y_\epsilon)\), of \(F \) such that

(a) \(y_\epsilon \leq_{K_\eta} \tilde{y} \), i.e., \(\tilde{y} - y_\epsilon \in K_\eta \).

(b) \((x_\epsilon, y_\epsilon)\) is a Henig proper minimizer wrt \(\Theta \) of the perturbed set-valued map \(x \mapsto F(x) + \epsilon\|x - x_\epsilon\|k_0 \).

(c) There exist \(x^*_\epsilon \in X^* \) and \(y^*_\epsilon \in K^{++} \) such that

\[
\|y^*_\epsilon\| = 1, \quad \|x^*_\epsilon\| \leq (\delta/\eta)\epsilon
\]

and

\[
(x^*_\epsilon, -y^*_\epsilon) \in N((x_\epsilon, y_\epsilon); \text{gr}F)
\]

or equivalently,

\[
D^*F(x_\epsilon, y_\epsilon)(y^*_\epsilon) \cap (\delta/\eta)\epsilon B_{X^*} \neq \emptyset.
\]

In other words, \((x_\epsilon, y_\epsilon)\) in the above theorem is both a Henig proper \(\epsilon k_0 \)-minimizer and a Henig proper \(\epsilon k_0 \)-blunt minimizer of \(F \). Note that we impose the requirement \(\|k_0\| = 1 \) in the formulation of the theorem to get a ”nicer” coderivative condition.

Let us prove an auxiliary result.

Lemma 4.1. Let be given \(k_0 \in K \) with \(\|k_0\| = 1 \). Then the following implication holds

\[
y + \epsilon k_0 \not\leq_{K_\eta} y' \Rightarrow 0 < \Delta_{-K_\eta}(y - y') + \epsilon.
\]

Proof. From \(k_0 \in K \) and \(\|k_0\| = 1 \) we deduce that \(d_{-K_\eta}(k_0) \leq d_{-K}(k_0) \leq \|k_0\| = 1 \). Therefore, \(\Delta_{-K_\eta}(\epsilon k_0) = \epsilon d_{-K_\eta}(k_0) \leq \epsilon \). Further, since \(K_\eta \) is closed and \(y - y' + \epsilon k_0 \notin -K_\eta \), we have \(\Delta_{-K_\eta}(y - y' + \epsilon k_0) > 0 \). The triangle inequality (Proposition 3.4(iii)) yields

\[
0 < \Delta_{-K_\eta}(y - y' + \epsilon k_0) \leq \Delta_{-K_\eta}(y - y') + \Delta_{-K_\eta}(\epsilon k_0)
= \Delta_{-K_\eta}(y - y') + \epsilon d_{-K_\eta}(k_0) \leq \Delta_{-K_\eta}(y - y') + \epsilon,
\]

13
as it was to be shown.

Proof of Theorem 4.2. It is obvious that if F is bounded from below wrt K then it is bounded from below wrt K_η. Applying Theorem 4.1 to F with K_η in the place of K we find (x_ϵ, y_ϵ), an ϵk_0-minimizer wrt K_η of F, such that (a) holds and (x_ϵ, y_ϵ) is a strict minimizer wrt K_η of the perturbed set-valued map $x \mapsto F(x) + \epsilon \|x - x_\epsilon\| k_0$, i.e.,

$$y + \epsilon \|x - x_\epsilon\| k_0 \not\subset K_\eta y_\epsilon \quad \text{for all } y \in F(X).$$

(8)

By Definition 4.2, $y_\epsilon \in \Min(F(x_\epsilon); K_\eta)$ and $(F(X) + \epsilon k_0 - y_\epsilon) \cap (-K_\eta) = \emptyset$. Then Proposition 3.3(i) yields that $y_\epsilon \in \He(F(x_\epsilon))$ and Proposition 3.1(i) yields that

$$\cl \cone(F(X) + \epsilon k_0 - y_\epsilon) \cap (-K_{\eta'}) = \{0\}$$

for any $\eta' \in [0, \eta]$. Therefore, (x_ϵ, y_ϵ) is a Henig proper ϵk_0-minimizer wrt Θ of F. Moreover, Proposition 3.3(i) again yields that (x_ϵ, y_ϵ) is a Henig proper minimizer wrt the perturbed set-valued map. We have showed that (b) holds. Further, (8) and Lemma 4.1 give

$$\Delta_{-K_\eta}(y - y_\epsilon) + \epsilon \|x - x_\epsilon\| > 0 \quad \text{for all } (x, y) \in \gr F, (x, y) \neq (x_\epsilon, y_\epsilon),$$

which means that (x_ϵ, y_ϵ) is the unique minimizer of the function $g : X \times Y \to R \cup \{+\infty\}$ defined by

$$g(x, y) = \Delta_{-K_\eta}(y - y_\epsilon) + \epsilon \|x - x_\epsilon\| + \chi_{\gr F}(x, y).$$

By the assumption, the map F has a closed graph and therefore, the function $\chi_{\gr F}$ is lsc. Proposition 2.1 then implies that

$$0 \in \partial g(x_\epsilon, y_\epsilon)$$

and

$$\partial g(x_\epsilon, y_\epsilon) \subseteq \{0\} \times \partial \Delta_{-K_\eta}(0) + \epsilon B_{X^*} \times \{0\} + N((x_\epsilon, y_\epsilon); \gr F).$$

Taking account of Proposition 3.5, we obtain

$$\partial g(x_\epsilon, y_\epsilon) \subseteq \{0\} \times (K^{+i} \cap (B_{Y^*} \setminus (\delta/\eta)B_{Y^*}) + \epsilon B_{X^*} \times \{0\} + N((x_\epsilon, y_\epsilon); \gr F).$$

Hence, there exist $\tilde{x}_\epsilon^* \in B_{X^*}$ and $\tilde{y}_\epsilon^* \in K^{+i}$ such that $\|\tilde{x}_\epsilon^*\| \leq \epsilon$, $\|\tilde{y}_\epsilon^*\| \geq \eta/\delta$ and

$$(\tilde{x}_\epsilon^*, -\tilde{y}_\epsilon^*) \in N((x_\epsilon, y_\epsilon); \gr F).$$

Denote $x_\epsilon^* = \tilde{x}_\epsilon^*/\|\tilde{y}_\epsilon^*\|$, $y_\epsilon^* = \tilde{y}_\epsilon^*/\|\tilde{y}_\epsilon^*\|$. It is easy to check that $\|x_\epsilon^*\| \leq (\delta/\eta)e$, $y_\epsilon^* \in K^{+i}$, $\|y_\epsilon^*\| = 1$ and

$$(x_\epsilon^*, -y_\epsilon^*) \in N((x_\epsilon, y_\epsilon); \gr F)$$

or equivalently,

$$D^*F(x_\epsilon, y_\epsilon)(y_\epsilon^*) \cap (\delta/\eta)\epsilon B_{X^*} \neq \emptyset.$$

Thus, the assertion (c) is true. \qed

Our version of EVP for approximate super minimizers of F reads as follows.

Theorem 4.3. Assume that K has a bounded base and that F is compact-valued, usc, and bounded from below wrt K. Let $\epsilon > 0$, $k_0 \in K$ with $\|k_0\| = 1$ and $\tilde{y} \in F(X)$.
Then for any $\eta \in]0, \delta[$ there exists a super ϵk_0-minimizer wrt K, say (x_ϵ, y_ϵ), of F such that

(a) $y_\epsilon \leq K, \bar{y}$.
(b) (x_ϵ, y_ϵ) is a super minimizer wrt K of the perturbed set-valued map $x \Rightarrow F(x) + \epsilon \|x - x_\epsilon\| k_0$.
(c) There exist $x^*_\epsilon \in X^*$ and $y^*_\epsilon \in \text{int}K^+$ such that

$$\|y^*_\epsilon\| = 1, \quad \|x^*_\epsilon\| \leq (\delta/\eta)\epsilon$$

and

$$(x^*_\epsilon, -y^*_\epsilon) \in N((x_\epsilon, y_\epsilon); \text{gr} F)$$

or equivalently,

$$D^\delta F(x_\epsilon, y_\epsilon)(y^*_\epsilon) \cap (\delta/\eta)\epsilon B_{X^*} \neq \emptyset.$$

In other words, (x_ϵ, y_ϵ) in the above theorem is both a super ϵk_0-minimizer and a super ϵk_0-blunt minimizer of F.

Proof. Apply the same arguments as in the proof of Theorem 4.2 and take account of the statements concerned with the case Θ is bounded in Propositions 3.2, 3.3 and 3.5. □

Let us return to the Banach spaces with the ordering cones being the nonnegative orthants considered in Example 3.1. Remark that Theorems 4.2 can be applied to set-valued maps taking values in R^n, $C_{[0,1]}$, $L^p_{[0,1]}$, $L^p (1 \leq p < \infty)$, m, c and c_0 and Theorems 4.3 can be applied to set-valued maps taking values in R^n, $L^1_{[0,1]}$ and l^1. Let us illustrate Theorems 4.2 and 4.3 by some examples.

Example 4.1.

1. Let $X = c_0 \times m, Y = c_0$. For $u = \{u_1, u_2, \ldots\}$ and $v = \{v_1, v_2, \ldots\}$ in any of the spaces m or c_0, uv means $\{u_1v_1, u_2v_2, \ldots\}$ and (supposing $u_i \geq 0$ for all i) \sqrt{u} means $\{\sqrt{u_1}, \sqrt{u_2}, \ldots\}$. Let K be the nonnegative orthant in c_0 consisting of nonnegative sequences. We claim that this cone has an empty interior. Arguing by contradiction, suppose that there is $k = \{k_1, k_2, \ldots\} \in \text{int}K$ with $\|k\| = 1$. Note that we also have $\sqrt{k} \in c_0$ and $\|\sqrt{k}\| = 1$. As $k \in \text{int}K$, there exists a scalar $\zeta > 0$ such that $k + \zeta B \subset K$. However, we have $k - \zeta \sqrt{k} \notin K$. Indeed, if $k - \zeta \sqrt{k} \in K$, then we should have $k_i - \zeta \sqrt{k_i} \geq 0$ for all $i = 1, 2, \ldots$, which should yield $\sqrt{k_i} \geq \zeta$ for all $i = 1, 2, \ldots$. This is a contradiction to $\sqrt{k} \in c_0$ and thus justifies $\text{int}K = \emptyset$. Further, given $\xi = (\xi_1, \xi_2, \ldots) \in c_0$ we define $\varphi(\xi) = \xi_1 + \xi_2/2 + \ldots + \xi_n/2^n + \ldots$. It is easy to check that $\varphi \in K^+$ and $\Theta := \{k \in K: \varphi(k) = 1\}$ is a base of K.

Let ω and τ be arbitrary fixed vectors in $K \setminus \{0\}$. Set $S = \{t\omega: t \in R_+\}$. Then S is a compact set in c_0. We define a set-valued map F as follows

$$F(x_1, x_2) = f(x_1, x_2) + S$$

for all $(x_1, x_2) \in c_0 \times m$,

15
where $f(x_1, x_2) := (x_1)^2 + (x_1 x_2 - \tau)^2$, i.e., $y \in F(x_1, x_2)$ means the existence of $v \in S$ such that $y = (x_1)^2 + (x_1 x_2 - \tau)^2 + v$. One can check that the map F is compact-valued, usc, and bounded from below ($F(X) \subset K$). Therefore, Theorem 4.2 is applicable to this map. Observe by passing that F has no minimizer. Indeed, fix $\bar{y} \in F(X)$, i.e., $\bar{y} = f(\overline{x}_1, \overline{x}_2) + \bar{v}$ for some $(\overline{x}_1, \overline{x}_2) \in c_0 \times m$ and $\bar{v} \in S$. Let $\tilde{x}_1 = \tau/4 \in c_0$, $\tilde{x}_2 = \{1, 1, 1, \ldots\} \in m$. Let $\tilde{y} \in c_0$ be a vector chosen as follows

$$
\tilde{y} = \begin{cases}
 f(\overline{x}_1/2, 2\overline{x}_2) + \bar{v} & \text{if } \overline{x}_1 \neq 0, \\
 f(\overline{x}_1, \overline{x}_2) + \bar{v}/2 & \text{if } \overline{x}_1 = 0, \bar{v} \neq 0, \\
 f(\tilde{x}_1, \tilde{x}_2) & \text{if } \overline{x}_1 = 0, \bar{v} = 0.
\end{cases}
$$

One has $\tilde{y} \in F(X)$, $\tilde{y} \neq \bar{y}$ and $\tilde{y} \leq \bar{y}$. This means that \bar{y} cannot be an efficient point of $F(X)$. Thus, F has no minimizers and no Henig proper minimizer as well.

We refer the interested reader to [18] for an example of a set-valued map with values in $C_{[0,1]}$ which satisfies all conditions of Theorem 4.2 while it does not possess any Henig proper minimizer.

2. Similarly, one can provide an example of a set-valued map with values in l^1 or $L_{[0,1]}^1$ (the nonnegative orthants in these spaces have a bounded base) which does not possess any super minimizer but satisfies all conditions of Theorem 4.3 and therefore has approximate super minimizers. We provide an example for the case $Y = L_{[0,1]}^1$. Let $X = C_{[0,1]} \times C_{[0,1]}$, $Y = L_{[0,1]}^1$, and K be the nonnegative orthant in $L_{[0,1]}^1$ consisting of a.e. nonnegative functions. One can check that K has an empty interior and that K has a bounded base $\Theta := \{x \in K, \int_0^1 x(t)dt = 1\}$. Let $S \subset K$ be a nonempty compact set defined by $S = \{v \in L_{[0,1]}^1 : v(t) = \int_0^t u(s)ds, u \in C_{[0,1]}, 0 \leq u(t) \leq 1 \text{ for all } t \in [0,1]\}$. We define F as follows

$$
F(x_1, x_2) = (x_1)^2 + (x_1 x_2 - 1)^2 + S \text{ for all } (x_1, x_2) \in C_{[0,1]} \times C_{[0,1]},
$$

i.e., $y \in F(x_1, x_2)$ means the existence of $v \in S$ such that $y(t) = (x_1(t))^2 + (x_1(t)x_2(t) - 1)^2 + v(t)$ for all $t \in [0,1]$. The map F is compact-valued, usc, and bounded from below ($0 \leq y$ for all $y \in F(X)$). Therefore, Theorem 4.3 is applicable to this map. By an argument similar to that used in Example 3.1 of [18] one can prove that F has no minimizer and therefore, it has no super minimizer.

Observe that since c_0, l^1, and $L_{[0,1]}^1$ are not Asplund spaces and the nonnegative orthants in these spaces have an empty interior, existing set-valued versions of EVP obtained either under the assumption that the ordering cone has a nonempty interior or in Asplund space setting cannot be applied to the maps in Example 4.1.

Remark 4.1. We note that the concepts of the Henig proper efficient points and super efficient points in a locally convex space have been defined and investigated in [43]. A question arises: how to extend the statements (i)-(ii) of Theorems 4.2 and 4.3 to the case when F takes values in such a space.

5. Sufficient conditions for the existence of Henig proper minimizers and
super minimizers

In this section we apply Theorems 4.2 and 4.3 to obtain the existence of Henig proper minimizers and super minimizers for a set-valued map satisfying some Palais-Smale type conditions.

Motivated by modified versions of the Palais-Smale condition which are defined for a single-valued function and expressed in terms of its subdifferential [2] or for a set-valued map and expressed in terms of its subdifferential [3] or its coderivatives [11, 12], we introduce the following Palais-Smale type conditions.

(PS1) Every sequence \(\{x_n\} \) in \(X \) such that

\[
\text{there are } y_n \in F(x_n), \ y_n^* \in K^{++} \text{ with } ||y_n^*|| = 1,
\]

\[
x_n^* \in D^*F(x_n, y_n)(y_n^*) \text{ with } ||x_n^*|| \to 0
\]

contains a convergent subsequence, provided that \(\{y_n\} \) is norm bounded.

(PS2) Every sequence \(\{x_n\} \) in \(X \) such that

\[
\text{there are } y_n \in F(x_n), \ y_n^* \in \text{int}K^+ \text{ with } ||y_n^*|| = 1,
\]

\[
x_n^* \in D^*F(x_n, y_n)(y_n^*) \text{ with } ||x_n^*|| \to 0
\]

contains a convergent subsequence, provided that \(\{y_n\} \) is norm bounded.

We note that the above conditions agree with the classical Palais-Smale condition when \(F \) is a (single-valued) Fréchet function from \(X \) to \(\mathbb{R} \).

Our sufficient condition for \(F \) to have a Henig proper minimizer reads as follows.

Theorem 5.1. Assume that \(K \) is normal and that \(F \) is compact-valued, usc, bounded from below wrt \(K \), and satisfies (PS1). Then \(F \) has a Henig proper minimizer wrt \(\Theta \).

Let us prove an auxiliary result.

Lemma 5.1. Assume that \(K \) is normal with the constant \(N \). Let \(\eta \in]0, \delta[\) be a scalar such that \(\eta \leq \delta/(2N) \). Let \(u, v \in Y \) such that

\[
0 \leq K \ u \leq K_\eta \ v.
\]

Then one has

\[
||u|| \leq 2N(||v|| + 1).
\]
Proof. As \(v - u \in K_\eta \), there exist a scalar \(\lambda > 0 \), vectors \(\theta \in \Theta \), \(b \in B \) and \(z \in B \) such that \(u = v - \lambda(\theta + \eta b) - z \). So we have

\[
0 \leq K u = v - \lambda(\theta + \eta b) - z \leq K v - \lambda \eta b - z =: \omega.
\]

Observe that

\[
\|\omega\| \leq \|v\| + \lambda \eta \|b\| + \|z\| \leq \|v\| + \lambda \eta + 1
\]

and hence,

\[
N\|\omega\| \leq N(\|v\| + 1) + N \lambda \eta \leq N(\|v\| + 1) + \lambda \delta / 2.
\]

Since \(\delta \leq \|\theta\| \), \(0 \leq \lambda \theta \leq K \omega \) and the cone \(K \) is normal, we obtain

\[
\lambda \delta \leq \|\lambda \theta\| \leq N\|\omega\| \leq N(\|v\| + 1) + \lambda \delta / 2,
\]

which yields \(\lambda \delta / 2 \leq N(\|v\| + 1) \). It follows that \(N\|\omega\| \leq 2N(\|v\| + 1) \). Finally, as \(0 \leq K u \leq K \omega \) and the cone \(K \) is normal, we get

\[
\|u\| \leq N\|\omega\| \leq 2N(\|v\| + 1)
\]

as it was to be shown. \(\Box \)

Proof of Theorem 5.1. We adapt the technique used in the proof of Theorem 4.1 in [18]. Let \(k_0 \in K \setminus \{0\} \) with \(\|k_0\| = 1 \), \(\tilde{y} \in F(X) \) and \(\epsilon_n = 2^{-n} \) for all \(n = 1, 2, ... \). Let \(\eta \) be a scalar satisfying \(\eta = \min\{\delta / 2, \delta / (2N)\} \). By Theorem 4.2, there exist \((x_n, y_n) \in \text{gr} F \) and \((x_n^*, y_n^*) \in N((x_n, y_n); \text{gr} F) \) such that \(y_n \leq K_\eta \tilde{y}, y_n^* \in K^{+ \infty}, \|y_n^*\| = 1 \) and

\[
\|x_n^*\| \leq (\delta / \eta)\epsilon_n. \tag{9}
\]

Let \(w \in Y \) be such that \(w \leq K y \) for all \(y \in F(X) \). Then \(w \leq K y_n \leq K_\eta \tilde{y} \) for all \(n = 1, 2, ... \) or \(0 \leq K y_n - w \leq K_\eta \tilde{y} - w \). By Lemma 5.1, the sequence \(\{y_n - w\} \) is bounded and so is the sequence \(\{y_n\} \). Further, (9) yields that \(\|x_n^*\| \rightarrow 0 \). By (PS1), there exist \(\bar{x} \in X \) and a subsequence \(\{x_{n_i}\}_{i=1}^{\infty} \) converging to \(\bar{x} \). Since \(F \) is usc, for each \(i = 1, 2, ... \) there exists a positive integer \(m_i \) such that

\[
F(x_{n_i}) \subset F(x) + 2^{-i}B_Y \quad \text{for all } n_j > m_i.
\]

Passing to a subsequence if necessary we can assume that

\[
F(x_{n_i}) \subset F(\bar{x}) + 2^{-i}B_Y \quad \text{for all } i = 1, 2, ...
\]

Hence, one can find \(\bar{y}_{n_i} \in F(\bar{x}) \) for each \(i = 1, 2, ... \) such that

\[
\|\bar{y}_{n_i} - y_{n_i}\| \leq 2^{-i} \quad \text{for all } i = 1, 2, ... \tag{10}
\]

As \((x_n, y_n) \) are \(\epsilon_n k_0 \)-minimizers wrt \(K_\eta \) of \(F \), one has

\[
y + \epsilon_n k_0 \not\leq_{K_\eta} y_n \quad \text{for all } y \in F(X).
\]
Lemma 4.1 then implies that for all \(n = 1, 2, \ldots \)

\[
\Delta_{-\mathcal{K}_n}(y - y_n) + \epsilon_n > 0 \quad \text{for all } y \in F(X)
\]

or

\[
\Delta_{-\mathcal{K}_n}(y - y_n) + 2^{-n} > 0 \quad \text{for all } y \in F(X).
\] \hspace{1cm} (11)

We claim that for all \(i = 1, 2, \ldots \) one has

\[
\Delta_{-\mathcal{K}_n}(y - \overline{y}_{n_i}) + 2^{-n_i} + 2^{-i} > 0 \quad \text{for all } y \in F(X).
\] \hspace{1cm} (12)

Indeed, fix \(i \) and \(y \in F(X) \). If \(\overline{y}_{n_i} - y_{n_i} \notin -\mathcal{K}_n \) then the triangle inequality and (11) yield

\[
\Delta_{-\mathcal{K}_n}(y - \overline{y}_{n_i}) \geq \Delta_{-\mathcal{K}_n}(y - y_{n_i}) - \Delta_{-\mathcal{K}_n}(\overline{y}_{n_i} - y_{n_i}) \\
\geq -2^{-n_i} + d_{Y \setminus (-\mathcal{K}_n)}(\overline{y}_{n_i} - y_{n_i}) \geq -2^{-n_i} > -2^{-n_i} - 2^{-i}
\]

and if \(\overline{y}_{n_i} - y_{n_i} \notin -\mathcal{K}_n \) then the triangle inequality and (10) yield

\[
\Delta_{-\mathcal{K}_n}(y - \overline{y}_{n_i}) \geq \Delta_{-\mathcal{K}_n}(y - y_{n_i}) - \Delta_{-\mathcal{K}_n}(\overline{y}_{n_i} - y_{n_i}) \\
\geq -2^{-n_i} + d_{-\mathcal{K}_n}(\overline{y}_{n_i} - y_{n_i}) \geq -2^{-n_i} - d(0, \overline{y}_{n_i} - y_{n_i}) \\
\geq -2^{-n_i} - 2^{-i}.
\]

Thus, (12) holds.

Further, since \(F(x) \) is compact and \(\overline{y}_{n_i} \in F(x) \) for all \(i = 1, 2, \ldots \), without loss of generality we can assume that \(\overline{y}_{n_i} \) converges to some \(\overline{y} \in F(x) \). Letting \(i \to \infty \) in (12) we get

\[
\Delta_{-\mathcal{K}_n}(y - \overline{y}) \geq 0 \quad \text{for all } y \in F(X).
\]

By Proposition 3.5(i), \((x, \overline{y})\) is a Henig proper minimizer wrt \(\Theta \) of \(F \).

Our sufficient condition for \(F \) to have a super minimizer reads as follows.

Theorem 5.2. Assume that \(K \) has a bounded base and that \(F \) is compact-valued, usc, bounded from below wrt \(K \), and satisfies (PS2). Then \(F \) has a super minimizer wrt \(K \).

Proof. Recall that a cone having a bounded base is normal. To complete the proof it suffices to take account of Theorem 4.3, Lemma 5.1, Proposition 3.5 (ii) and apply the same arguments as in the proof of Theorem 5.1 \(\square \)

Remark 5.1. In [3] Bao and Mordukhovich deduced from their subdifferential EVP the existence of relative Pareto minimizers under very weak conditions on the considered set-valued map \(F \) and in Asplund space settings. In contrast to Bao and Mordukhovich’s work, our conditions in Theorems 5.1 and 5.2 on \(F \) may be stronger but these theorems can be applied to Banach spaces which are not Asplund. Namely, Theorem 5.1 can be applied to the case when \(F \) takes values in \(\mathbb{R}^n, C_{[0,1]}, L^p_{[0,1]}, L^p (1 \leq p < \infty), m, c \) and \(c_0 \) and Theorem 5.2 can be applied to the case when \(F \) takes values in \(\mathbb{R}^n, L^1_{[0,1]} \) and \(l^1 \).
REFERENCE

