Explicit Sensor Network Localization
using
Semidefinite Representations and Facial Reductions *

Nathan Krislock Henry Wolkowicz

January 29, 2010

University of Waterloo
Department of Combinatorics and Optimization
Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2009-04

Key Words: Sensor Network Localization, Euclidean Distance Matrix Completions, Semidefinite Programming, loss of the Slater constraint qualification.

AMS Subject Classification:

Abstract

The sensor network localization, SNL, problem in embedding dimension r, consists of locating the positions of wireless sensors, given only the distances between sensors that are within radio range and the positions of a subset of the sensors (called anchors). Current solution techniques relax this problem to a weighted, nearest, (positive) semidefinite programming, SDP, completion problem, by using the linear mapping between Euclidean distance matrices, EDM, and semidefinite matrices. The resulting SDP is solved using primal-dual interior point solvers, yielding an expensive and inexact solution.

This relaxation is highly degenerate in the sense that the feasible set is restricted to a low dimensional face of the SDP cone, implying that the Slater constraint qualification fails. Cliques in the graph of the SNL problem give rise to this degeneracy in the SDP relaxation. In this paper, we take advantage of the absence of the Slater constraint qualification and derive a technique for the SNL problem, with exact data, that explicitly solves the corresponding rank restricted SDP problem. No SDP solvers are used. For randomly generated instances, we are able to efficiently solve many huge instances of this NP-hard problem to high accuracy, by finding a representation of the minimal face of the SDP cone that contains the SDP matrix representation of the EDM. The main work of our algorithm consists in repeatedly finding the intersection of subspaces that represent the faces of the SDP cone that correspond to cliques of the SNL problem.

*Research supported by Natural Sciences Engineering Research Council Canada and a grant from AFOSR.
List of Algorithms

1. SNLSDPclique – a facial reduction algorithm ... 25
2. RigidCliqueUnion .. 26
3. RigidNodeAbsorption ... 26
4. NonRigidCliqueUnion ... 26
5. NonRigidNodeAbsorption .. 27
1 Introduction

The sensor network localization problem, SNL, consists in locating the positions of n wireless sensors, $p_i \in \mathbb{R}^r$, $i = 1, \ldots, n$, given only the (squared) Euclidean distances $D_{ij} = \|p_i - p_j\|^2_2$ between sensors that are within a given radio range, $R > 0$, and given the positions of a subset of the sensors, p_i, $i = n - m + 1, \ldots, n$ (called anchors); r is the embedding dimension of the problem. Currently, many solution techniques for this problem use a relaxation to a nearest, weighted, semidefinite approximation problem

$$\min_{Y \succeq 0, Y \in \Omega} \|W \circ (\mathcal{K}(Y) - D)\|,$$ \hspace{1cm} (1.1)

where $Y \succeq 0$ denotes positive semidefiniteness, $Y \in \Omega$ denotes additional linear constraints, \mathcal{K} is a specific linear mapping, and \circ denotes the Hadamard (elementwise) product. This approach requires semidefinite programming, SDP, primal-dual interior point (p-d i-p) techniques; see, for example, [2, 3, 5, 11, 12, 15, 26]. This yields an expensive and inexact solution.

The SNL problem is a special case of the Euclidean Distance Matrix, EDM, completion problem, $EDMC$. If D is a partial EDM, then the completion problem consists in finding the missing elements (squared distances) of D. It is shown in [16], that there are advantages for handling the SNL problem as an $EDMC$, and ignoring the distinction between the anchors and the other sensors until after the $EDMC$ is solved. In this paper we use this framework and derive an algorithm that locates the sensors by exploiting the structure and implicit degeneracy in the SNL problem. In particular, we solve the SDP problems explicitly (exactly) without using any p-d i-p techniques. We do so by repeatedly viewing SNL in three equivalent forms: as a graph realization problem, as a $EDMC$, and as a rank restricted SDP.

A common approach to solving the $EDMC$ problem is to relax the rank constraint and solve a weighted, nearest, positive semidefinite completion problem (like problem (1.1)) using semidefinite programming, SDP. The resulting SDP is, implicitly, highly degenerate in the sense that the feasible semidefinite matrices have low rank. In particular, cliques in the graph of the SNL problem reduce the ranks of these feasible semidefinite matrices. This means that the Slater constraint qualification (strict feasibility) implicitly fails for the SDP. Our algorithm is based on exploiting this degeneracy. We characterize the face of the SDP cone that corresponds to a given clique in the graph, thus reducing the size of the SDP problem. Then, we characterize the intersection of two faces that correspond to overlapping cliques. This allows us to explicitly grow/increase the size of the cliques by repeatedly finding the intersection of subspaces that represent the faces of the SDP cone that correspond to these cliques. Equivalently, this corresponds to completing overlapping blocks of the EDM. In this way, we further reduce the dimension of the faces until we get a completion of the entire EDM. The intersection of the subspaces can be found using a singular value decomposition (SVD) or by exploiting the special structure of the subspaces. No SDP solver is used. Thus we solve the SDP problem in a finite number of steps, where the work of each step is to find the intersection of two subspaces (or, equivalently, each step is to find the intersection of two faces of the SDP cone).

Though our results hold for general embedding dimension r, our preliminary numerical tests involve sensors with embedding dimension $r = 2$ and $r = 3$. The sensors are in the region $[0, 1]^r$. There are n sensors, m of which are anchors. The radio range is R units.
1.1 Related Work/Applications

The number of applications for distance geometry problems is large and increasing in number and importance. The particular case of SNL has applications to environmental monitoring of geographical regions, as well as tracking of animals and machinery; see, for example, [5, 15]. There have been many algorithms published recently that solve the SNL problem. Many of these involve SDP relaxations and use SDP solvers; see, for example, [5, 7, 8, 9, 10, 12, 16] and more recently [21, 31]. Heuristics are presented in, for example, [14]. SNL is closely related to the EDMC problem; see, for example, [3, 15] and the survey [2].

Jin et al [13, 23] propose the SpaseLoc heuristic. It is limited to \(r = 2\) and uses an SDP solver for small localized subproblems. They then sew these subproblems together. So & Ye [28] show that the problem of solving a noiseless SNL with a unique solution can be phrased as an SDP and thus can be solved in polynomial time. They also give an efficient criterion for checking whether a given instance has a unique solution for \(r = 2\).

Two contributions of this paper are: we do not use iterative p-d i-p techniques to solve the SDP, but rather, we solve it with a finite number of explicit solutions; we start with local cliques and expand the cliques. Our algorithm has four different basic steps. The first basic step takes two cliques for which the intersection contains at least \(r + 1\) nodes and implicitly completes the corresponding EDM to form the union of the cliques. The second step does this when one of the cliques is a single element. Therefore, this provides an extension of the algorithm in [18], where Eren et al have shown that the family of trilateration graphs admit a polynomial time algorithm for computing a realization in a required dimension.\(^1\) Our first basic step also provides an explicit form for finding a realization of a uniquely localizable graph\(^2\). Our algorithm repeatedly finds explicit solutions of an SDP. Other examples of finding explicit solutions of an SDP are given in [30, 32].

The SNL problem with given embedding dimension \(r\) is NP-hard [21, 22, 27]. However, from our numerical tests it appears that random problems that have a unique solution can be solved very efficiently. This phenomenon fits into the results in [4, 19].

1.2 Outline

We continue in Section 1.3 to present notation and results that will be used. The facial reduction process is based on the results in Section 2. The single clique facial reduction is given in Theorem 2.3; the reduction of two overlapping cliques in the rigid and nonrigid cases is presented in Theorem 2.10 and Theorem 2.14, respectively; absorbing nodes into cliques in the rigid and nonrigid cases is given in Corollaries 2.17 and 2.18, respectively. These results are then used in our algorithm in Section 3. The numerical tests appear in Section 3.1 and Section 3.2. Our concluding remarks are given in Section 4.

1.3 Preliminaries

We work in the vector space of real symmetric \(k \times k\) matrices, \(\mathcal{S}^k\), equipped with the trace inner product, \(\langle A, B \rangle = \text{trace} \ AB\). We let \(\mathcal{S}_+^k\) and \(\mathcal{S}_{++}^k\) denote the cone of positive semidefinite and

\(^1\)A graph is a trilateration graph in dimension \(r\) if there exists an ordering of the nodes \(1, \ldots, r + 1, r + 2, \ldots, n\) such that: the first \(r + 1\) nodes form a clique, and each node \(j > r + 1\) has at least \(r + 1\) edges to nodes earlier in the sequence.

\(^2\)A graph is uniquely localizable in dimension \(r\) if it has a unique realization in \(\mathbb{R}^r\) and it does not have any realization whose affine span is \(\mathbb{R}^h\), where \(h > r\); see [28].
positive definite matrices, respectively; \(A \succeq B \) and \(A \succ B \) denote the Löwner partial order, \(A - B \in S^+_k \) and \(A - B \in S^+_k \), respectively; \(e \) denote the vector of ones of appropriate dimension; \(\mathcal{R}(\mathcal{L}) \) and \(\mathcal{N}(\mathcal{L}) \) denote the range space and null space of the linear transformation \(\mathcal{L} \), respectively; \(\text{cone}(S) \) denote the convex cone generated by the set \(S \). We use the MATLAB notation \(1:n = \{1, \ldots, n\} \).

A subset \(F \subseteq K \) is a face of the cone \(K \), denoted \(F \subseteq K \), if

\[
\left(x, y \in K, \frac{1}{2}(x + y) \in F \right) \implies (\text{cone}\{x, y\} \subseteq F).
\]

If \(F \subseteq K \), but is not equal to \(K \), we write \(F \ll K \). If \(\{0\} \neq F \ll K \), then \(F \) is a proper face of \(K \). For \(S \subseteq K \), we let \(\text{face}(S) \) denote the smallest face of \(K \) that contains \(S \). A face \(F \subseteq K \) is an exposed face if it is the intersection of \(K \) with a hyperplane. The cone \(K \) is facially exposed if every face \(F \subseteq K \) is exposed.

The cone \(S^n_+ \) is facially exposed. Moreover, each face \(F \subseteq S^n_+ \) is determined by the range of any matrix \(S \) in the relative interior of the face, \(S \in \text{relint} F \); if \(S = UU^T \) is the compact spectral decomposition of \(S \) with the diagonal matrix of eigenvalues \(\Gamma \), then (e.g., [25])

\[
F = US^n_+U^T. \tag{1.2}
\]

A matrix \(D = (D_{ij}) \in S^n \) with nonnegative elements and zero diagonal is called a pre-distance matrix. In addition, if there exist points \(p_1, \ldots, p_n \in \mathbb{R}^r \) such that

\[
D_{ij} = \|p_i - p_j\|^2 \quad i, j = 1, \ldots, n, \tag{1.3}
\]

then \(D \) is called a Euclidean distance matrix, denoted \(\text{EDM} \). Note that we work with squared distances. The smallest value of \(r \) such that (1.3) holds is called the embedding dimension of \(D \).

Throughout the paper, we assume that \(r \) is given and fixed. The set of \(\text{EDM} \) matrices forms a closed convex cone in \(S^n \), denoted \(\mathcal{E}^n \). If we are given an \(n \times n \) partial \(\text{EDM} \) \(D_p \), let \(\mathcal{G} = (N, E, \omega) \) be the corresponding simple graph on the nodes \(N = 1:n \) whose edges \(E \) correspond to the known entries of \(D_p \), with \((D_p)_{ij} = \omega_{ij}^2 \), for all \((i, j) \in E \).

Definition 1.1. For \(Y \in S^n \) and \(\alpha \subseteq 1:n \), we let \(Y[\alpha] \) denote the corresponding principal submatrix formed from the rows and columns with indices \(\alpha \). If, in addition, \(|\alpha| = k \) and \(\bar{Y} \in S^n_+ \) is given, then we define

\[
S^n(\alpha, \bar{Y}) := \{ Y \in S^n : Y[\alpha] = \bar{Y} \}, \quad S^n_+(\alpha, \bar{Y}) := \{ Y \in S^n_+ : Y[\alpha] = \bar{Y} \}.
\]

That is, the subset of matrices \(Y \in S^n \) \((Y \in S^n_+) \) with principal submatrix \(Y[\alpha] \) fixed to \(\bar{Y} \).

For example, the subset of matrices in \(S^n \) with the top left \(k \times k \) block fixed is

\[
S^n(1:k, \bar{Y}) = \left\{ Y \in S^n : Y = \begin{bmatrix} \bar{Y} & \cdot \\ \cdot & \cdot \end{bmatrix} \right\}. \tag{1.4}
\]

A clique \(\gamma \subseteq 1:n \) in the graph \(\mathcal{G} \) corresponds to a subset of sensors for which the distances \(\omega_{ij} = \|p_i - p_j\|^2 \) are known, for all \(i, j \in \gamma \); equivalently, the clique corresponds to the principal submatrix \(D_p[\gamma] \) of the partial \(\text{EDM} \) matrix \(D_p \), where all the elements of \(D_p[\gamma] \) are known.
Suppose that we are given a subset of the (squared) distances from (1.3) in the form of a partial **EDM**, D_p. The **EDM completion problem** consists of finding the missing entries of D_p to complete the **EDM**; see Figure 1.1. This completion problem can be solved by finding a set of points $p_1, \ldots, p_n \in \mathbb{R}^r$ satisfying (1.3), where r is the embedding dimension of the partial **EDM**, D_p. This problem corresponds to the graph realizability problem with dimension r, which is the problem of finding positions in \mathbb{R}^r for the vertices of a graph such that the inter-distances of these positions satisfy the given edge lengths of the graph.

Let $Y \in \mathcal{M}^n$ be an $n \times n$ real matrix and $y \in \mathbb{R}^n$ a vector. We let $\text{diag}(Y)$ denote the vector in \mathbb{R}^n formed from the diagonal of Y and we let $\text{Diag}(y)$ denote the diagonal matrix in \mathcal{M}^n with the vector y along its diagonal. Note that diag and Diag are the adjoint linear transformations of each other: $\text{Diag} = \text{diag}^*$. The operator offDiag can then be defined as $\text{offDiag}(Y) := Y - \text{Diag}(\text{diag}(Y))$. For

$$P = \begin{bmatrix} p_1^T \\ p_2^T \\ \vdots \\ p_n^T \end{bmatrix} \in \mathcal{M}^{n \times r},$$

where $p_j, j = 1, \ldots, n$, are the points used in (1.3), let $Y := PP^T$, and let D be the corresponding
EDM satisfying \((1.3)\). Defining the linear operators \(\mathcal{K}\) and \(\mathcal{D}_e\) on \(S^n\) as follows, we see that

\[
\begin{align*}
\mathcal{K}(Y) &:= \mathcal{D}_e(Y) - 2Y \\
&:= \text{diag}(Y) e^T + e \text{diag}(Y)^T - 2Y \\
&= \left(p_i^T p_i + p_j^T p_j - 2p_i^T p_j \right)_{i,j=1} \\
&= \left(\| p_i - p_j \|^2 \right)_{i,j=1} \\
&= D.
\end{align*}
\]
(1.5)

That is, \(\mathcal{K}\) maps the positive semidefinite matrix \(Y\) onto the **EDM** \(D\). More generally, we can allow for a general vector \(v\) to replace \(e\), and define \(\mathcal{D}_v(Y) := \text{diag}(Y) v^T + v \text{diag}(Y)^T\). By abuse of notation, we also allow \(\mathcal{D}_v\) to act on a vector; that is, \(\mathcal{D}_v(y) := yv^T + vy^T\). The adjoint of \(\mathcal{K}\) is

\[
\mathcal{K}^*(D) = 2(\text{Diag}(De) - D).
\]
(1.6)

The linear operator \(\mathcal{K}\) is one-one and onto between the centered and hollow subspaces of \(S^n\), which are defined as

\[
\begin{align*}
S_C &:= \{ Y \in S^n : Ye = 0 \} \quad \text{(zero row sums),} \\
S_H &:= \{ D \in S^n : \text{diag}(D) = 0 \} = \mathcal{R}(\text{offDiag}). \quad \text{(1.7)}
\end{align*}
\]

Let \(J := I - \frac{1}{n} ee^T\) denote the orthogonal projection onto the subspace \(\{e\}^\perp\) and define the linear operator \(\mathcal{T}(D) := -\frac{1}{2}J \text{offDiag}(D)J\). Then we have the following relationships.

Proposition 1.2. \((1.4)\) The linear operator \(\mathcal{T}\) is the generalized inverse of the linear operator \(\mathcal{K}\); that is, \(\mathcal{K}^\dagger = \mathcal{T}\). Moreover:

\[
\begin{align*}
\mathcal{R}(\mathcal{K}) = S_H; \quad &\mathcal{N}(\mathcal{K}) = \mathcal{R}(\mathcal{D}_e); \\
\mathcal{R}(\mathcal{K}^*) = \mathcal{R}(\mathcal{T}) = S_C; \quad &\mathcal{N}(\mathcal{K}^*) = \mathcal{N}(\mathcal{T}) = \mathcal{R}(\text{Diag}); \\
S^n = S_H \oplus \mathcal{R}(\text{Diag}) = S_C \oplus \mathcal{R}(\mathcal{D}_e). \quad &\mathcal{R}(Y) = \mathcal{R}(P), \\
\end{align*}
\]
(1.8)

Theorem 1.3. \((1.5)\) The linear operators \(\mathcal{T}\) and \(\mathcal{K}\) are one-to-one and onto mappings between the cone \(E^n \subset S_H\) and the face of the semidefinite cone \(S^n_+ \cap S_C\). That is,

\[
\mathcal{T}(E^n) = S^n_+ \cap S_C \quad \text{and} \quad \mathcal{K}(S^n_+ \cap S_C) = E^n.
\]

Remark 1.4. \(D \in E^n\) has embedding dimension \(r\) if and only if \(\mathcal{K}^\dagger(D) \succeq 0\) and \(\text{rank}(\mathcal{K}^\dagger(D)) = r\). In addition, we get \(\mathcal{K}^\dagger(D)e = 0\). Therefore, we can factor \(\mathcal{K}^\dagger(D) = PP^T\), for some \(P \in M_{n 	imes r}\), to recover the (centered) sensors in \(\mathbb{R}^r\) from the rows in \(P\). Note that rotations of the points in the rows of \(P\) do not change the value \(Y = PP^T\), since \(PP^T = PQ^TQP\) if \(Q\) is orthogonal. However, the nullspace of \(\mathcal{K}\) is related to translations of the points in \(P\). Let \(D \in E^n\) with embedding dimension \(r\) and let \(Y := \mathcal{K}^\dagger(D)\) have full rank factorization \(Y = PP^T\), with \(P \in M_{n \times r}\). Then the translation of points in the rows of \(P\) to \(\bar{P} := P + ew^T\), for some \(w \in \mathbb{R}^r\), results in \(\bar{Y} := \bar{P}P^T = Y + \mathcal{D}_e(y)\), with \(y := Pw + \frac{w^Tw}{2}e\), and \(\mathcal{K}(\bar{Y}) = \mathcal{K}(Y) = D\), since \(\mathcal{D}_e(y) \in \mathcal{N}(\mathcal{K})\). Note that \(\mathcal{R}(Y) = \mathcal{R}(P)\), therefore \(y = Pw + \frac{w^Tw}{2}e \in \mathcal{R}(Y) + \text{cone} \{e\}\), as we will also see in more generality in Lemma 2.1 below.
Let $D_p \in S^n$ be a partial EDM with embedding dimension r and let $W \in S^n$ be the 0–1 matrix corresponding to the known entries of D_p. One can use the substitution $D = K(Y)$, where $Y \in S^n_+ \cap SC$, in the EDM completion problem

\[
\begin{align*}
\text{Find} & \quad D \in \mathcal{E}^n \\
\text{s.t.} & \quad W \circ D = W \circ D_p
\end{align*}
\]

to obtain the SDP relaxation

\[
\begin{align*}
\text{Find} & \quad Y \in S^n_+ \cap SC \\
\text{s.t.} & \quad W \circ K(Y) = W \circ D_p
\end{align*}
\]

This relaxation does not restrict the rank of Y and may yield a solution with embedding dimension that is too large, if $\text{rank}(Y) > r$. Moreover, solving SDP problems with rank restrictions is NP-hard. However, we work on faces of S^n_+ described by $US_t^tU^T$, with $t \leq n$. In order to find the face with the smallest dimension t, we must have the correct knowledge of the matrix U. In this paper, we obtain information on U using the cliques in the graph of the partial EDM.

2 Semidefinite Facial Reduction

We now present several techniques for reducing an EDM completion problem when one or more (possibly intersecting) cliques are known. This extends the reduction using disjoint cliques presented in [16, 17]. In each case, we take advantage of the loss of Slater’s constraint qualification and project the problem to a lower dimensional SDP cone.

We first need the following two technical lemmas that exploit the structure of the SDP cone.

Lemma 2.1. Let $B \in S^n$, $Bv = 0$, $v \neq 0$, $y \in \mathbb{R}^n$ and $ar{Y} := B + D_v(y)$. If $\bar{Y} \succeq 0$, then

\[
y \in \mathcal{R}(B) + \text{cone}\{v\}.
\]

Proof. First we will show that $y \in \mathcal{R}(B) + \text{span}\{v\} = \mathcal{R}
([B \quad v])$. If this is not the case, then y can be written as the orthogonal decomposition

\[
y = Bu + \beta v + \bar{y},
\]

where $0 \neq \bar{y} \in \mathcal{R}
([B \quad v])^\perp = \mathcal{N}
([B \quad v]^T)$. Note that \bar{y} satisfies $B\bar{y} = 0$ and $v^T\bar{y} = 0$. To get a contradiction with the assumption that $\bar{Y} \succeq 0$, we let

\[
z := \frac{1}{2} \frac{v}{\|v\|^2} - (1 + |\beta|) \frac{\bar{y}}{\|\bar{y}\|^2},
\]

and observe that $Bz = 0$ and $v^Tz = 1/2$. Then,

\[
z^T\bar{Y}z = z^TD_v(y)z
= z^T(yv^T + vy^T)z
= y^Tz
= \frac{1}{2} \beta + \bar{y}^Tz
< \frac{1}{2}(1 + |\beta|) + \bar{y}^Tz
= -\frac{1}{2}(1 + |\beta|)
< 0,
\]
which gives us the desired contradiction. Therefore, $y \in \mathcal{R}(B) + \text{span} \{v\}$, so to show that $y \in \mathcal{R}(B) + \text{cone} \{v\}$, we only need to show that if $y = Bu + \beta v$, then $\beta \geq 0$. First note that $v^T y = \beta v^T v$.

Then,

$$v^T \bar{Y} v = v^T (yv^T + vy^T) v = 2v^T yv^T v = 2\beta (v^T v)^2.$$

Since $\bar{Y} \succeq 0$, we have $2\beta (v^T v)^2 \geq 0$. This implies that $\beta \geq 0$, since $v \neq 0$. \hfill \Box

If $\bar{Y} \in S^k_+$, then we can use the minimal face of S^k_+ containing \bar{Y} to find an expression for the minimal face of S^n_+ that contains $S^n_+(1:k, \bar{Y})$.

Lemma 2.2. Let $\bar{U} \in M^{k \times t}$ with $\bar{U}^T \bar{U} = I_t$. If face $\{\bar{Y}\} \subseteq \bar{U} S^n_+ \bar{U}^T$, then

$$\text{face } S^n_+(1:k, \bar{Y}) \subseteq \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right] S^{n-k+t}_+ \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right]^T. \quad (2.1)$$

Furthermore, if face $\{\bar{Y}\} = \bar{U} S^n_+ \bar{U}^T$, then

$$\text{face } S^n_+(1:k, \bar{Y}) = \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right] S^{n-k+t}_+ \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right]^T. \quad (2.2)$$

Proof. Since $\bar{Y} \in \bar{U} S^n_+ \bar{U}^T$, then $\bar{Y} = \bar{U} S \bar{U}^T$, for some $S \in S^n_+$. Let $Y \in S^n_+(1:k, \bar{Y})$ and choose \bar{V} so that $[\bar{U} \ \bar{V}]$ is an orthogonal matrix. Then, with Y blocked appropriately, we evaluate the congruence

$$0 \preceq \left[\begin{array}{cc} \bar{V} & 0 \\ 0 & I_{n-k} \end{array} \right]^T Y \left[\begin{array}{cc} \bar{V} & 0 \\ 0 & I_{n-k} \end{array} \right] = \left[\begin{array}{cc} 0 & \bar{V}^T Y_{21} \\ Y_{21} \bar{V} & Y_{22} \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & Y_{22} \end{array} \right].$$

Therefore, $Y \succeq 0$ implies that $\bar{V}^T Y_{21} = 0$. Since $\mathcal{N}(\bar{V}^T) = \mathcal{R}(\bar{U})$, we get $Y_{21} = \bar{U} X$, for some X. Therefore, we can write

$$Y = \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right] \left[\begin{array}{cc} S & X^T \\ X & Y_{22} \end{array} \right] \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right]^T.$$

This implies that face $S^n_+(1:k, \bar{Y}) \subseteq U S^{n-k+t+1} U^T$, where

$$U := \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right].$$

This proves (2.1). To prove (2.2), note that if face $\{\bar{Y}\} = \bar{U} S^n_+ \bar{U}^T$ then $\bar{Y} \in \text{relint} \left(\bar{U} S^n_+ \bar{U}^T \right)$, so $\bar{Y} = \bar{U} S \bar{U}^T$, for some $S \in S^n_+$. Letting

$$\hat{Y} := \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right] \left[\begin{array}{cc} S & 0 \\ 0 & I_{n-k} \end{array} \right] \left[\begin{array}{cc} \bar{U} & 0 \\ 0 & I_{n-k} \end{array} \right]^T,$$

we see that $\hat{Y} \in S^n_+(1:k, \bar{Y}) \cap \text{relint} \left(U S^{n-k+t+1} U^T \right)$. This implies that there is no smaller face of S^n_+ containing $S^n_+(1:k, \bar{Y})$, completing the proof. \hfill \Box
2.1 Single Clique Facial Reduction

If the principal submatrix \(\bar{D} \in \mathcal{E}^k \) is given, for index set \(\alpha \subseteq 1:n \), with \(|\alpha| = k \), we define

\[
\mathcal{E}^n(\alpha, \bar{D}) := \{ D \in \mathcal{E}^n : D[\alpha] = \bar{D} \}.
\]

Similarly, the subset of matrices in \(\mathcal{E}^n \) with the top left \(k \times k \) block fixed is

\[
\mathcal{E}^n(1:k, \bar{D}) = \left\{ D \in \mathcal{E}^n : D = \begin{bmatrix} \bar{D} & \cdot \\ \cdot & \cdot \end{bmatrix} \right\}.
\]

A fixed principal submatrix \(\bar{D} \) in a partial EDM \(D \) corresponds to a clique \(\alpha \) in the graph \(G \) of the partial EDM \(D \). Given such a fixed clique defined by the submatrix \(\bar{D} \), the following theorem shows that the following set, containing the feasible set of the corresponding SDP relaxation,

\[
\{ Y \in \mathcal{S}_+^n \cap \mathcal{S}_C : \mathcal{K}(Y[\alpha]) = D \} = \mathcal{K}^\dagger(\mathcal{E}^n(\alpha, D)),
\]

is contained in a proper face of \(\mathcal{S}_+^n \). This means that the Slater constraint qualification (strict feasibility) fails, and we can reduce the size of the SDP problem; see [10]. We expand on this and find an explicit expression for face \(\mathcal{K}^\dagger(\mathcal{E}^n(\alpha, D)) \) in the following Theorem 2.3. For simplicity, here and below, we often work with ordered sets of integers for the two cliques. This simplification can always be obtained by a permutation of the indices of the sensors.

Theorem 2.3. Let \(D \in \mathcal{E}^n \), with embedding dimension \(r \). Let \(\bar{D} := D[1:k] \in \mathcal{E}^k \) with embedding dimension \(t \), and \(B := \mathcal{K}^\dagger(\bar{D}) = \bar{U}_B \bar{S}_B^T \), where \(\bar{U}_B \in \mathcal{M}^{k \times t} \), \(\bar{U}_B^T \bar{U}_B = I_t \), and \(S \in \mathcal{S}_+^t \). Furthermore, let \(U_B := \left[\bar{U}_B \frac{1}{\sqrt{k}} e \right] \in \mathcal{M}^{k \times (t+1)} \), \(U := \begin{bmatrix} U_B & 0 \\ 0 & I_{n-k} \end{bmatrix} \), and let \(V \left[\frac{U^T e}{\| U^T e \|} \right] \in \mathcal{M}^{n-k+t+1} \) be orthogonal. Then

\[
\text{face } \mathcal{K}^\dagger(\mathcal{E}^n(1:k, \bar{D})) = \left(U \mathcal{S}^{n-k-t+1}_+ U^T \right) \cap \mathcal{S}_C = (UV) \mathcal{S}^{n-k-t}_+ (UV)^T.
\]

Proof. Let \(Y \in \mathcal{K}^\dagger(\mathcal{E}^n(1:k, \bar{D})) \) and \(\bar{Y} := Y[1:k] \), then there exists \(D \in \mathcal{E}^n(1:k, \bar{D}) \) such that \(Y = \mathcal{K}^\dagger(D) \), implying that \(\mathcal{K}(Y) = D \), and that \(\mathcal{K}(\bar{Y}) = \bar{D} = \mathcal{K}(B) \). Thus, \(\bar{Y} \in B + \mathcal{N}(\mathcal{K}) = B + \mathcal{R}(D) \), where the last equality follows from Proposition 1.2. This implies that \(\bar{Y} = B + D_e(y) \), for some \(y \in \mathbb{R}^k \). From Theorem 1.3 we get \(\bar{Y} \succeq 0 \) and \(Be = 0 \). Therefore, Lemma 2.1 implies that \(y = Bu + \beta e \), for some \(u \in \mathbb{R}^k \) and \(\beta \geq 0 \). This further implies

\[
\bar{Y} = B + Bue^T + eu^T B + 2\beta ee^T.
\]

From this expression for \(\bar{Y} \), we can see that \(\mathcal{R}(\bar{Y}) \subseteq \mathcal{R} \left(\begin{bmatrix} B & e \end{bmatrix} \right) = \mathcal{R}(U_B) \), where the last equality follows from the fact that \(Be = 0 \). Therefore, \(\bar{Y} \in U_B \mathcal{S}^{n+1}_+ U_B^T \), implying, by Lemma 2.2, that face \(\mathcal{S}^{n}_+(1:k, \bar{Y}) \leq U \mathcal{S}^{n-k-t+1}_+ U^T \). Since \(Y \in \mathcal{S}^{n}_+(1:k, \bar{Y}) \) and \(Ye = 0 \), we have that \(Y \in \left(U \mathcal{S}^{n-k-t+1}_+ U^T \right) \cap \mathcal{S}_C \). Therefore, face \(\mathcal{K}^\dagger(\mathcal{E}^n(1:k, \bar{D})) \leq \left(U \mathcal{S}^{n-k-t+1}_+ U^T \right) \cap \mathcal{S}_C \). Since \(V^T U^T e = 0 \), we have that

\[
\left(U \mathcal{S}^{n-k-t+1}_+ U^T \right) \cap \mathcal{S}_C = UV \mathcal{S}^{n-k-t}_+ V^T U^T.
\]
To show that face $\mathcal{K}^\dagger(\mathcal{E}^n(1:k, \bar{D})) = \left(US^n_{+} - k - t + 1 U^T\right) \cap S_C$, we need to find

$$\hat{Y} = UZU^T \in \mathcal{K}^\dagger(\mathcal{E}^n(1:k, \bar{D})), \quad \text{with rank}(\hat{Y}) = n - k + t, \quad \hat{Y}e = 0, \quad Z \in S^n_{+} - k - t + 1. \quad (2.7)$$

To accomplish this, we let $T_1 = \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix}$. Then $T_1 \succ 0$ and

$$B + \frac{1}{k}ee^T = U_B T_1 U_B^T = \bar{P}\bar{P}^T, \quad \text{where } \bar{P} := U_B T_1^{1/2} \in \mathcal{M}^{k \times (t+1)}.$$

Let

$$P := \begin{bmatrix} \bar{P} & 0 \\ 0 & I_{n-k-1} \\ -e^T \bar{P} & -e^T \end{bmatrix} \in \mathcal{M}^{n \times (n-k+t)}.$$

Since \bar{P} has full-column rank, we see that P also has full-column rank. Moreover, $P^T e = 0$. Therefore,

$$\hat{Y} := PP^T = \begin{bmatrix} \bar{P}\bar{P}^T & 0 & -e \\ 0 & I_{n-k-1} & -e \\ -e^T & -e^T & n-1 \end{bmatrix} \in S^n_{+},$$

satisfies $\hat{Y} e = 0$ and $\text{rank}(\hat{Y}) = n - k + t$. Furthermore, we have that $\hat{Y} = UZU^T$, where

$$Z = \begin{bmatrix} S & 0 & 0 & 0 \\ 0 & 1 & 0 & -\sqrt{k} \\ 0 & 0 & I_{n-k-1} & -e \\ 0 & -\sqrt{k} & -e^T & n-1 \end{bmatrix} \in S^{n-k+t+1}_{+}.$$

Note that we can also write Z as

$$Z = \begin{bmatrix} S & 0 \\ 0 & T \end{bmatrix} \in S^{n-k+t+1}_{+},$$

where

$$T := \begin{bmatrix} 1 & 0 & -\sqrt{k} \\ 0 & I_{n-k-1} & -e \\ -\sqrt{k} & -e^T & n-1 \end{bmatrix} \in S^{n-k+1}_{+}.$$

The eigenvalues of \bar{T} are 0, 1, and n, with multiplicities 1, $n - k - 1$, and 1, respectively. Therefore, $\text{rank}(\bar{T}) = n - k + t$, which implies that $\text{rank}(Z) = n - k + t$ and $Z \succeq 0$.

Letting $\bar{D} := \mathcal{K}(\bar{Y})$, we have that $\bar{D} \in \mathcal{E}^n(1:k, \bar{D})$, since

$$\bar{D}[1:k] = \mathcal{K}(\bar{Y}[1:k]) = \mathcal{K}(\bar{P}\bar{P}^T) = \mathcal{K}\left(B + \frac{1}{k}ee^T\right) = \mathcal{K}(B) = \bar{D}.$$

Therefore, \hat{Y} satisfies (2.7), completing the proof. \hfill \square

Remark 2.4. Theorem 2.3 provides a reduction in the dimension of the EDM completion problem. Initially, our problem consists in finding $Y \in S^n_{+} \cap S_C$ such that the constraint $\mathcal{K}(Y[\alpha]) = D[\alpha], \quad \alpha = 1:k,$
Therefore, we have to allow for translations, e.g., to sensors are not necessarily centered once they are combined with the remaining \(P \) and \(1 - \bar{U} \) where

\[
\bar{U} = \frac{1}{\sqrt{n}} e.
\]

Corollary 2.6. Theorem 2.3 can be easily extended to two or more disjoint cliques; see also [16].

2.1.1 Disjoint Cliques Facial Reduction

The special case \(k = 1 \) is of interest.

Corollary 2.5. Suppose that the hypotheses of Theorem 2.5 hold but that \(k = 1 \) and \(\bar{D} = 0 \). Then \(U_B = 1, \bar{U} = I_n, \) and

\[
\text{face } K^+ (E^n(1:k, \bar{D})) = \text{face } K^+ (E^n) = S_+^n \cap S_C = V S_+^{n-1} V^T,
\]

where \([V \frac{1}{\sqrt{n}} e] \in M^n \) is orthogonal.

Proof. Since \(k = 1 \), necessarily we get \(t = 0 \) and we can set \(U_B = 1 \).

2.1.1 Disjoint Cliques Facial Reduction

Theorem 2.3 can be easily extended to two or more disjoint cliques; see also [16].

Corollary 2.6. Let \(D \in E^n \) with embedding dimension \(r \). Let \(k_0 := 1 < k_1 < \ldots < k_l \leq n \). For \(i = 1, \ldots, l \), let \(\bar{D}_i := D[k_{i-1}:k_i] \in E^{k_i-k_{i-1}+1} \) with embedding dimension \(t_i \), \(B_i := K^+ (\bar{D}_i) = \bar{U}_{B_i} S \bar{U}_{B_i}^T \), where \(\bar{U}_{B_i} \in M^{k \times t}, \bar{U}_{B_i}^T \bar{U}_{B_i} = I_{t_i}, S_i \in S_{+}^{t_i}, \) and \(U_B := \left[\bar{U}_{B_i} \frac{1}{\sqrt{t_i}} e \right] \in M^{k \times (t_i+1)} \). Let

\[
U := \begin{bmatrix}
U_{B_1} & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & U_{B_l} & 0 \\
0 & \ldots & 0 & I_{n-k_i}
\end{bmatrix},
\]

and \([V \frac{U^T e}{\|U^T e\|}] \in M^{n-k_i+\sum_{i=1}^l t_i+1} \) be orthogonal. Then

\[
\bigcap_{i=1}^l \text{face } K^+ (E^n(k_{i-1}:k_i, \bar{D}_i)) = \left(U S_+^{n-k_i+\sum_{i=1}^l t_i+1} U^T \right) \cap S_C
\]

\[
= (UV) S_+^{n-k_i+\sum_{i=1}^l t_i+1} (UV)^T.
\]

Proof. The result follows from noting that the range of \(U \) is the intersection of the ranges of the matrices \(U_{B_i} \) with appropriate identity blocks added.

\[\square \]
let F from Theorem 2.3, we have that

\[\mathbf{F} \in \mathbb{M} \]

and, after a permutation of rows and columns in Theorem 2.3,

\[\mathbf{\bar{w}} \]

where

The construction (2.6) illustrates how we can find the intersection of two faces. Using this approach, we now extend Theorem 2.3 to two cliques that (possibly) intersect; see the ordered indices in (2.10) and the corresponding Venn diagram in Figure 2.1. We also find expressions for the intersection of the corresponding faces in S^+_{+}; see equation (2.12). The key is to find the intersection of the subspaces that represent the faces, as in condition (2.11).

Theorem 2.7. Let $D \in \mathcal{E}^n$ with embedding dimension r and, as in Figure 2.7, define the sets of positive integers

\[\alpha_1 := 1:(\bar{k}_1 + \bar{k}_2), \quad \alpha_2 := (\bar{k}_1 + 1):(\bar{k}_1 + \bar{k}_2 + \bar{k}_3) \subseteq 1:n, \]

\[k_1 := |\alpha_1| = \bar{k}_1 + \bar{k}_2, \quad k_2 := |\alpha_2| = \bar{k}_2 + \bar{k}_3, \]

\[k := \bar{k}_1 + \bar{k}_2 + \bar{k}_3. \]

(2.10)

For $i = 1, 2$, let $\bar{D}_i := D[\alpha_i] \in \mathcal{E}^{k_i}$ with embedding dimension t_i, and $B_i := \mathcal{K}^i(\bar{D}_i) = \bar{U}_i S_i \bar{U}_i^T$, where $\bar{U}_i \in \mathbb{M}^{k_i \times t_i}$, $\bar{U}_i^T \bar{U}_i = I_{t_i}$, $S_i \in S^+_{+}$, and $U_i := \left[\bar{U}_i \frac{1}{\sqrt{k_i}} e \right] \in \mathbb{M}^{k_i \times (t_i + 1)}$. Let t and $\bar{U} \in \mathbb{M}^{k \times (t + 1)}$ satisfy

\[\mathcal{R}(\bar{U}) = \mathcal{R} \left(\begin{bmatrix} U_1 & 0 \\ 0 & I_{k_3} \end{bmatrix} \right) \cap \mathcal{R} \left(\begin{bmatrix} I_{k_1} & 0 \\ 0 & U_2 \end{bmatrix} \right), \text{ with } \bar{U}^T \bar{U} = I_{t+1}. \]

(2.11)

Let $U := \left[\bar{U} \begin{bmatrix} 0 \\ I_{n-k} \end{bmatrix} \right] \in \mathbb{M}^{n \times (n-k+t+1)}$ and $[V \begin{bmatrix} t e \|U^T e\| \end{bmatrix}] \in \mathbb{M}^{n-k+t+1}$ be orthogonal. Then

\[\bigcap_{i=1}^2 \text{face } \mathcal{K}^i \left(\mathcal{E}^n(\alpha_i, \bar{D}_i) \right) = \left(U S_{+}^{n-k+t+1} U^T \right) \cap S_C = (U V) S_{+}^{n-k+t} (U V)^T. \]

(2.12)

Proof. From Theorem 2.3 we have that

\[\text{face } \mathcal{K}^i \left(\mathcal{E}^n(\alpha_1, \bar{D}_1) \right) = \left[\begin{bmatrix} U_1 & 0 \\ 0 & I_{k_3} \end{bmatrix} \right] \mathcal{K} S_{+}^{n-k_1+t_1+1} \left[\begin{bmatrix} U_1 & 0 \\ 0 & I_{k_3} \end{bmatrix} \right]^T \cap S_C \]

and, after a permutation of rows and columns in Theorem 2.3

\[\text{face } \mathcal{K}^i \left(\mathcal{E}^n(\alpha_2, \bar{D}_2) \right) = \left[\begin{bmatrix} I_{k_1} & 0 \\ 0 & U_2 \end{bmatrix} \right] \mathcal{K} S_{+}^{n-k_2+t_2+1} \left[\begin{bmatrix} I_{k_1} & 0 \\ 0 & U_2 \end{bmatrix} \right]^T \cap S_C. \]
The range space condition (2.11) then implies that

\[\mathcal{R}(U) = \mathcal{R}\left(\begin{bmatrix} U_1 & 0 & 0 \\ 0 & I_{k_1} & 0 \\ 0 & 0 & I_{n-k} \end{bmatrix} \right) \cap \mathcal{R}\left(\begin{bmatrix} I_{k_1} & 0 & 0 \\ 0 & U_2 & 0 \\ 0 & 0 & I_{n-k} \end{bmatrix} \right) \],

giving us the result (2.12).

Remark 2.8. Theorem 2.7 provides a reduction in the dimension of the EDM completion problem. Initially, our problem consists in finding \(Y \in \mathcal{S}_n^+ \cap \mathcal{S}_C \) such that the two constraints

\[\mathcal{K}(Y[\alpha_i]) = D[\alpha_i], \quad i = 1, 2, \]

hold. After the reduction, we want to find the smaller dimensional \(Z \in \mathcal{S}_{n-k+t}^+ \); by construction \(Y := (UV)Z(UV)^T \) will automatically satisfy the above constraints.

The explicit expression for the intersection of the two faces is given in equation (2.12) and uses the matrix \(\bar{U} \) obtained from the intersection of the two ranges in condition (2.11). Finding a matrix whose range is the intersection of two subspaces can be done using [20, Algorithm 12.4.3]. However, our subspaces have special structure. We can exploit this structure to find the intersection; see Lemma (2.9) and Lemma (2.13) below.

The dimension of the face in (2.12) is reduced to \(n - k + t \). However, we can get a dramatic reduction if we have a common block with embedding dimension \(r \), and a reduction in the case the common block has embedding dimension \(r - 1 \) as well. This provides an algebraic proof using semidefinite programming of the rigidity of the union of the two cliques under this intersection assumption.

2.2.1 Nonsingular Facial Reduction with Intersection Embedding Dimension \(r \)

We now consider the case when the intersection of the two cliques results in \(D[\alpha_1 \cap \alpha_2] \) having embedding dimension \(r \); see Figure 2.2. We see that we can explicitly find the completion of the

![Figure 2.2: Two clique reduction with intersection with embedding dimension \(r \)](image)

EDM \(D[\alpha_1 \cup \alpha_2] \). We first need the following result on the intersection of two structured subspaces.
Lemma 2.9. Let

\[
U_1 := \begin{bmatrix} s_1 \mid \begin{bmatrix} U_1' \\ U_1'' \end{bmatrix} \end{bmatrix}, \quad U_2 := \begin{bmatrix} k \mid \begin{bmatrix} U_2' \\ U_2'' \end{bmatrix} \end{bmatrix}, \quad \hat{U}_1 := \begin{bmatrix} s_1 \mid \begin{bmatrix} U_1' \\ U_1'' \end{bmatrix} \end{bmatrix}, \quad \hat{U}_2 := \begin{bmatrix} k \mid \begin{bmatrix} U_2' \\ U_2'' \end{bmatrix} \end{bmatrix},
\]

be appropriately blocked with \(U_1'', U_2'' \in M^{k \times (r+1)}\) full column rank and \(\mathcal{R}(U_1'') = \mathcal{R}(U_2'')\). Furthermore, let

\[
\hat{U}_1 := \begin{bmatrix} s_1 \mid \begin{bmatrix} U_1' \\ U_1'' \end{bmatrix} \end{bmatrix}, \quad \hat{U}_2 := \begin{bmatrix} k \mid \begin{bmatrix} U_2' \\ U_2'' \end{bmatrix} \end{bmatrix}.
\]

Then \(\hat{U}_1\) and \(\hat{U}_2\) are full column rank and satisfy

\[
\mathcal{R}(\hat{U}_1) \cap \mathcal{R}(\hat{U}_2) = \mathcal{R}(\hat{U}_1) = \mathcal{R}(\hat{U}_2).
\]

Moreover, if \(e_{r+1} \in \mathbb{R}^{r+1}\) is the \((r+1)\)th standard unit vector, and \(U_ie_{r+1} = \alpha_ie\), for some \(\alpha_i \neq 0\), for \(i = 1, 2\), then \(\hat{U}_i e_{r+1} = \alpha_2e\), for \(i = 1, 2\).

Proof. From the definitions, \(x \in \mathcal{R}(\hat{U}_1) \cap \mathcal{R}(\hat{U}_2)\) if and only if

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} U_1'v_1 \\ U_1''v_1 \\ U_2'v_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \quad \text{for some } v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}.
\]

Note that \(U_1''v_1 = U_2''w_2\) if and only if \(w_2 = (U_2'')^\dagger U_1''v_1\); this follows from the facts that \(U_2''\) full column rank implies \((U_2'')^\dagger U_2'' = I\), and \(\mathcal{R}(U_2'') = \mathcal{R}(U_2'')\) implies \(U_2''(U_2'')^\dagger U_1'' = U_1''.\) Therefore, \(x \in \mathcal{R}(\hat{U}_1) \cap \mathcal{R}(\hat{U}_2)\) if and only if

\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} U_1'v_1 \\ U_1''v_1 \\ U_2'(U_2'')^\dagger U_1''v_1 \end{bmatrix} = \hat{U}_1v_1, \quad \text{for some } v_1,
\]

with \(v_2 := U_2'(U_2'')^\dagger U_1''v_1, w_1 := U_1'v_1\), and \(w_2 := (U_2'')^\dagger U_1''v_1\), implying that \(\mathcal{R}(\hat{U}_1) \cap \mathcal{R}(\hat{U}_2) = \mathcal{R}(\hat{U}_1)\); a similar argument shows that \(\mathcal{R}(\hat{U}_1) \cap \mathcal{R}(\hat{U}_2) = \mathcal{R}(\hat{U}_2)\).

Now suppose, for \(i = 1, 2\), that \(U_ie_{r+1} = \alpha_ie\), for some \(\alpha_i \neq 0\). Then \(e \in \mathcal{R}(\hat{U}_1) \cap \mathcal{R}(\hat{U}_2)\), so \(e \in \mathcal{R}(\hat{U}_1)\), implying that \(\hat{U}_1v = e\), for some \(v\). Since \(\hat{U}_1 = \begin{bmatrix} U_1 \\ U_2'(U_2'')^\dagger U_1'' \end{bmatrix}\), we have \(U_1v = e\). Furthermore, since \(U_1\) has full column rank, we conclude that \(v = \frac{1}{\alpha_1}e_{r+1}\), implying that \(\hat{U}_1e_{r+1} = \alpha_1e\). Similarly, we can show that \(\hat{U}_2e_{r+1} = \alpha_2e\). \(\square\)

We now state and prove a key result that shows we can complete the distances in the union of two cliques provided that their intersection has embedding dimension equal to \(r\).

Theorem 2.10. Let the hypotheses of Theorem 2.7 hold. Let

\[
\beta \subseteq \alpha_1 \cap \alpha_2, \quad \hat{D} := D|\beta], \quad B := \mathcal{K}^\dagger(\hat{D}), \quad \hat{U}_\beta := \hat{U}|\beta,] \]

16
where $\bar{U} \in \mathcal{M}^{k \times (t+1)}$ satisfies equation (2.11). Let $\begin{bmatrix} \bar{V} & \bar{V}^T e \end{bmatrix} \in \mathcal{M}^{t+1}$ be orthogonal. Let

$$Z := (J\bar{U}_\beta \bar{V})^T B ((J\bar{U}_\beta \bar{V})^T)^T.$$ (2.14)

If the embedding dimension for \bar{D} is r, then $t = r$, $Z \in S_{++}^r$ is the unique solution of the equation

$$(J\bar{U}_\beta \bar{V})Z(J\bar{U}_\beta \bar{V})^T = B,$$ (2.15)

and

$$D[\alpha_1 \cup \alpha_2] = \mathcal{K}((\bar{U} \bar{V})Z(\bar{U} \bar{V})^T).$$ (2.16)

Proof. Since the embedding dimension of \bar{D} is r, we have $\text{rank}(B) = r$. Furthermore, we have $Be = 0$ and $B \in S_+^{[\beta]}$, implying that $|\beta| \geq r + 1$. In addition, since the embedding dimension of D is also r, we conclude that the embedding dimension of \bar{D}_i is r, for $i = 1, 2$. Similarly, the embedding dimension of $D[\alpha_1 \cap \alpha_2]$ is also r.

Since $\bar{U} \in \mathcal{M}^{k \times (t+1)}$ satisfies equation (2.11), we have that

$$\mathcal{R}(\bar{U}) = \mathcal{R} \left(\begin{bmatrix} U_i^t & 0 \\ U_i^m & 0 \\ I_{k_3} \end{bmatrix} \right) \cap \mathcal{R} \left(\begin{bmatrix} I_{k_1} & 0 & 0 \\ 0 & U_2^m & 0 \\ 0 & 0 & U_2^t \end{bmatrix} \right).$$

Note that we have partitioned $U_i = \begin{bmatrix} U_i^t & \frac{1}{\sqrt{k_0}} e \end{bmatrix} \in \mathcal{M}^{k_i \times (r+1)}$ so that $U_i^m = \begin{bmatrix} U_i^m & \frac{1}{\sqrt{k_0}} e \end{bmatrix} \in \mathcal{M}^{[\alpha_1 \cap \alpha_2] \times (r+1)}$, for $i = 1, 2$. Moreover, we have used the fact that the embedding dimension of \bar{D}_i is r, so that $t_i = r$, for $i = 1, 2$.

We claim that U_i^t and U_i^m have full column rank and that $\mathcal{R}(U_i^t) = \mathcal{R}(U_i^m)$. First we let $Y := \mathcal{K}^+(D[\alpha_1 \cup \alpha_2])$. Then $Y \in \mathcal{K}^+(E^k(\alpha_1, \bar{D}_1))$. By Theorem 2.3 there exists $Z_1 \in S_+^{k_i + r + 1}$ such that

$$Y = \begin{bmatrix} U_i^t & 0 \\ U_i^m & 0 \\ 0 & I_{k_3} \end{bmatrix} Z_1 \begin{bmatrix} U_i^t & 0 \\ U_i^m & 0 \\ 0 & I_{k_3} \end{bmatrix}^T.$$ (2.17)

Therefore, $Y[\alpha_1 \cap \alpha_2] = [U_i^t & 0] Z_1 [U_i^t & 0]^T \in U_i^t S_+^{r+1}(U_i^m)^T$, so

$$\mathcal{R}(Y[\alpha_1 \cap \alpha_2]) \subseteq \mathcal{R}(U_i^m).$$

Furthermore, since $\mathcal{K}(Y) = D[\alpha_1 \cup \alpha_2]$, we have that $\mathcal{K}(Y[\alpha_1 \cap \alpha_2]) = D[\alpha_1 \cap \alpha_2] = \mathcal{K}(\mathcal{K}^+(D[\alpha_1 \cap \alpha_2]))$, so $Y[\alpha_1 \cap \alpha_2] \in \mathcal{K}^+(D[\alpha_1 \cap \alpha_2]) + \mathcal{N}(\mathcal{K})$. Since $\mathcal{N}(\mathcal{K}) = \mathcal{R}(D_e)$, there exists a vector y such that

$$Y[\alpha_1 \cap \alpha_2] = \mathcal{K}^+(D[\alpha_1 \cap \alpha_2]) + D_e(y) = \mathcal{K}^+(D[\alpha_1 \cap \alpha_2]) + ye^T + ey^T.$$ (2.18)

By Lemma 2.1 $y \in \mathcal{R}(\mathcal{K}^+(D[\alpha_1 \cap \alpha_2]) - e)$. Therefore,

$$\mathcal{R}(Y[\alpha_1 \cap \alpha_2]) = \mathcal{R}(\mathcal{K}^+(D[\alpha_1 \cap \alpha_2]) - e).$$ (2.19)

Moreover, rank $\mathcal{K}^+(D[\alpha_1 \cap \alpha_2]) = r$ and $\mathcal{K}^+(D[\alpha_1 \cap \alpha_2])e = 0$, so

$$r + 1 = \dim \mathcal{R}(Y[\alpha_1 \cap \alpha_2]) \leq \dim \mathcal{R}(U_i^m) \leq r + 1.$$
Therefore, \(U''_1 \) has full column rank and \(R(U''_1) = R(Y|\alpha_1 \cap \alpha_2) \). Similarly, we can show that \(U''_2 \) has full column rank and \(R(U''_2) = R(Y|\alpha_1 \cap \alpha_2) \), so we conclude that \(R(U''_1) = R(U''_2) \).

We now claim that \(t = r \), where \(\hat{U} \in \mathcal{M}^{k \times (t+1)} \) satisfies equation (2.11). Since \(U''_1, U''_2 \in \mathcal{M}^{(\alpha_1 \cap \alpha_2) \times (r+1)} \) have full column rank and \(R(U''_1) = R(U''_2) \), we have by Lemma 2.9 that \(R(\hat{U}) = R(\hat{U}_1) = R(\hat{U}_2) \), where

\[
\hat{U}_1 := \begin{bmatrix} U''_1 & U''_2 \end{bmatrix} \quad \text{and} \quad \hat{U}_2 := \begin{bmatrix} U''_1 & U''_2 \end{bmatrix}.
\]

Therefore,

\[
t + 1 = \dim R(\hat{U}) = \dim R(\hat{U}_1) = \dim R(\hat{U}_2) = r + 1,
\]

so we have \(t = r \), as claimed.

Recall, \(Y = K^\dagger(D[\alpha_1 \cup \alpha_2]) \), so \(Y \in \cap_{i=1,2} K^\dagger(\mathcal{E}^k(\alpha_i, \hat{D}_i)) \). Thus, Theorem 2.7 implies that there exists \(\bar{Z} \in S^r_+ \) such that \(Y = (\hat{U}\hat{V})Z(\hat{U}\hat{V})^T \). Observe that \(K(Y[\beta]) = D[\beta] = \hat{D} \). Thus,

\[
K((\hat{U}\hat{V})Z(\hat{U}\hat{V})^T) = \hat{D},
\]

implying that

\[
K^\dagger K((\hat{U}\hat{V})Z(\hat{U}\hat{V})^T) = B.
\]

Since \(K^\dagger K \) is the projection onto \(R(K^*) = S_C \), we have that \(K^\dagger K(\cdot) = J(\cdot)J \). Therefore, we have that \(\bar{Z} \) satisfies equation (2.13). It remains to show that equation (2.13) has a unique solution. Let \(A := J\hat{U}\hat{V} \in \mathcal{M}^{[\beta] \times r} \). Then \(A\bar{Z}A^T = B \) and \(\text{rank}(B) = r \) implies that \(\text{rank}(A) \geq r \), so \(A \) has full column rank. This implies that equation (2.13) has a unique solution, and that \(\bar{Z} = A^\dagger B(A^\dagger)^T = Z \). Finally, since \(Y = (\hat{U}\hat{V})Z(\hat{U}\hat{V})^T \) and \(D[\alpha_1 \cup \alpha_2] = K(Y) \), we get equation (2.16).

The following result shows that if we know the minimal face of \(S^r_+ \) containing \(K^\dagger(D) \), and we know a small submatrix of \(D \), then we can compute a set of points in \(\mathbb{R}^r \) that generate \(D \) by solving a small equation.

Corollary 2.11. Let \(D \in \mathcal{E}^n \) with embedding dimension \(r \), and let \(\beta \subseteq 1:n \). Let \(U \in \mathcal{M}^{n \times (r+1)} \) satisfy

\[
\text{face } K^\dagger(D) = (US_{r+1}^nU^T) \cap S_C,
\]

let \(U[\beta, :] \), and let \([V \quad U^T e] \in \mathcal{M}^{r+1} \) be orthogonal. If \(D[\beta] \) has embedding dimension \(r \), then

\[
(JU[\beta]V)(JU[\beta]V)^T = K^\dagger(D[\beta])
\]

has a unique solution \(Z \in S^r_+ \), and \(D = K(PP^T) \), where \(P := UVZ^{1/2} \in \mathbb{R}^{n \times r} \).

Proof. Apply Theorem 2.10 with \(\alpha_1 = \alpha_2 = 1:n \).

Remark 2.12. A more efficient way to calculate \(Z \) uses the full rank factorization

\[
B = QD^{1/2} \left(QD^{1/2}\right)^T, \quad Q^TQ = I_r, \quad D \in S^r_+.
\]

Let \(C = (J\hat{U}\hat{V})^\dagger(QD^{1/2}) \). Then \(Z \) in (2.14) can be found from \(Z = CC^T \). Note that our algorithm postpones finding \(Z \) until the end where we can no longer perform any clique reductions. At each
iteration, we compute the matrix \bar{U} that represents the face corresponding to the union of two cliques; \bar{U} is chosen from one of \bar{U}_i, for $i = 1, 2$ in (2.13). Moreover, for stability, we maintain $\bar{U}^T\bar{U} = I$, $\bar{U}e_{r+1} = \alpha e$.

For many of our test problems, we can repeatedly apply Theorem 2.10 until there is only one clique left. Since each repetition reduces the number of cliques by one, this means that there are at most n such steps.

2.2.2 Singular Facial Reduction with Intersection Embedding Dimension $r - 1$

![Figure 2.3: Two clique reduction with intersection having embedding dimension $< r$](image)

We now show that if the embedding dimension of the intersection is $r - 1$ (i.e., deficient), then we can find at most two completions. If exactly one of these two completions is feasible in the sense that it satisfies the related distance equality constraints and, if included, the related lower bound inequality constraints obtained from the radio range R, then we have identified the unique completion; see Figure 2.3. We first need the following extension of Lemma 2.9 on the intersection of two structured subspaces for the case where the common middle blocks are not full rank.

Lemma 2.13. Let $U_i, \bar{U}_i, \bar{U}_i$, for $i = 1, 2$, be defined and appropriately blocked as in Lemma 2.9, with $U_i'' \in \mathcal{M}^{k \times (r+1)}$ having rank r, for $i = 1, 2$, and $\mathcal{R}(U_i'') = \mathcal{R}(U_2'')$. Let $0 \neq u_i \in \mathcal{N}(U_i'')$, for $i = 1, 2$. If $\bar{U} \in \mathcal{M}^{k \times (t+1)}$ satisfies $\mathcal{R}(\bar{U}) = \mathcal{R}(\bar{U}_1) \cap \mathcal{R}(\bar{U}_2)$, then $t = r + 1$ and

$$
\mathcal{R}(\bar{U}) = \mathcal{R}
\begin{pmatrix}
U_1' & 0 \\
U_2' & 0 \\
(U_2'(U_2'')^\dagger U_1'') & U_2'w_2
\end{pmatrix}
= \mathcal{R}
\begin{pmatrix}
\bar{U}_1 & 0 \\
0 & 0 \\
(U_2'w_2)
\end{pmatrix}
= \mathcal{R}
\begin{pmatrix}
U_2' (U_1')^\dagger U_2' & U_2'w_1 \\
0 & 0 \\
U_2' & 0
\end{pmatrix}
= \mathcal{R}
\begin{pmatrix}
\bar{U}_2 & 0 \\
0 & 0
\end{pmatrix}
= \mathcal{R}
\begin{pmatrix}
U_1' & 0 \\
0 & 0
\end{pmatrix}
$$

(2.17)

Moreover, if $e_{r+1} \in \mathbb{R}^{r+1}$ is the $(r + 1)^{st}$ standard unit vector, and $U_i e_{r+1} = \alpha_i e$, for some $\alpha_i \neq 0$, for $i = 1, 2$, then $\bar{U}_i e_{r+1} = \alpha_i e$, for $i = 1, 2$.

19
Proof. From the definitions, \(x \in \mathcal{R}(\bar{U}) \) if and only if
\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} U_1^\top v_1 \\ U_1^\top w_2 \\ U_2^\top w_2 \end{bmatrix}, \text{ for some } v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \tag{2.18}
\]
Since \(\mathcal{R}(U_1'') = \mathcal{R}(U_2'') \), and \(U_i', i = 1, 2 \), are both rank \(r \), we conclude that \(x_2 = U_1''v_1 = U_2''w_2 \), for some \(v_1, w_2 \) if and only if \(x_2 \in \mathcal{R}(U_1'') \), with \(v_1, w_2 \) determined by
\[
v_1 = (U_1'')^\top x_2 + \alpha_1 u_1, \text{ for some } \alpha_1 \in \mathbb{R}, \quad w_2 = (U_2'')^\top U_1''v_1 + \alpha_2 u_2, \text{ for some } \alpha_2 \in \mathbb{R}.
\]
In other words, we get
\[
x_2 = U_1''v_1, \text{ for some } v_1, \text{ with } w_2 = (U_2'')^\top U_1''v_1 + \alpha_2 u_2, \text{ for some } \alpha_2 \in \mathbb{R}, \tag{2.19}
\]
After substituting for \(v_2 \) with \(v_2 = U_2''w_2 = U_2''(U_2'')^\top U_1''v_1 + \alpha_2 u_2 \), we conclude that (2.18) holds if and only if the first equality in (2.17) holds; i.e., (2.18) holds if and only if
\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} U_1^\top v_1 \\ U_1^\top w_2 \\ U_2^\top U_2''(U_2'')^\top U_1''v_1 + \alpha_2 U_2'' u_2 \end{bmatrix}, \text{ for some } v_1, \alpha_2,
\]
where
\[
v_2 = U_2''(U_2'')^\top U_1''v_1 + \alpha_2 U_2'' u_2, \quad w_1 = U_1^\top v_1, \quad w_2 = (U_2'')^\top U_1''v_1 + \alpha_2 u_2.
\]
The second equality in (2.17) follows similarly. The last statements about \(\bar{U}e_r+1 \) follow as in the proof of Lemma 2.9. \(\square \)

In the rigid case in Theorem 2.10 we use the expression for \(\bar{U} \) from Lemma 2.9 to obtain a unique \(Z \) in order to get the completion of \(D[\alpha_1 \cup \alpha_2] \). The \(Z \) is unique because the \(r+1 \) columns of \(\bar{U} \) that represent the new clique \(\alpha_1 \cup \alpha_2 \) are linearly independent, \(e \in \mathcal{R}(\bar{U}) \), rank \((B) = r \), and \(Be = 0 \). This means that the solution \(C \) of \((J\bar{U}\beta V)C = QD^{1/2} \) in Remark 2.12 exists and is unique. (Recall that \(J\bar{U}\beta V \) is full column rank.) This also means that the two matrices, \(U_1 \) and \(U_2 \), that represent the cliques, \(\alpha_1 \) and \(\alpha_2 \), respectively, can be replaced by the single matrix \(\bar{U} \) without actually calculating \(C \); we can use \(\bar{U} \) to represent the clique \(\alpha_1 \cup \alpha_2 \) and complete all or part of the partial EDM \(D[\alpha_1 \cup \alpha_2] \) only when needed.

We have a similar situation for the singular intersection case following Lemma 2.13. We have the matrix \(\bar{U} \) to represent the intersection of the two subspaces, where each subspace represents one of the cliques, \(\alpha_1 \) and \(\alpha_2 \). However, this is not equivalent to uniquely representing the union of the two cliques, \(\alpha_1 \) and \(\alpha_2 \), since there is an extra column in \(\bar{U} \) compared to the nonsingular case. In addition, since rank \((B) = r-1 \), then \(J\bar{U}\beta \bar{V} \) is not necessarily full column rank. Therefore, there may be infinite solutions for \(C \) in Remark 2.12; any \(C \in (J\bar{U}\beta \bar{V})^\top (QD^{1/2}) + \mathcal{N}(J\bar{U}\beta \bar{V}) \) will give us a solution. Moreover, these solutions will not necessarily satisfy \(K((\bar{U}C)(\bar{UC})^\top) = D[\alpha_1 \cup \alpha_2] \). We now see that we can continue and use the \(\bar{U} \) to represent a set of cliques rather than just \(\alpha_1 \cup \alpha_2 \). Alternatively, we can use other relevant distance equality constraints or lower bound constraints from the radio range \(R \) to determine the correct \(C \) in order to get the correct number of columns for \(\bar{U} \); we can then get the correct completion of \(D[\alpha_1 \cup \alpha_2] \) if exactly one of the two possible completions with embedding dimension \(r \) is feasible.
Theorem 2.14. Let the hypotheses of Theorem 2.10 hold with the special case that $U_i^T U_i = I$, $U_i e_{r+1} = \alpha_i e$, for $i = 1, 2$. In addition, let \bar{U} be defined by one of the expressions in (2.17) in Lemma 2.13. For $i = 1, 2$, let $\beta \subseteq \delta_i \subseteq \alpha_i$ and $A_i := J\bar{U}_i \bar{V}$, where $\bar{U}_i := \bar{U}(\delta_i, :)$). Furthermore, let $B_i := K^\dagger(D[\delta_i])$, define the linear system

$$
A_1 Z A_1^T = B_1 \quad A_2 Z A_2^T = B_2, \quad (2.20)
$$

and let $Z \in S^1$ be a particular solution of this system (2.20). If the embedding dimensions of $D[\delta_1]$ and $D[\delta_2]$ are both r, but the embedding dimension of $D := D[\beta]$ is $r - 1$, then the following holds.

1. $\dim \mathcal{N}(A_i) = 1$, for $i = 1, 2$.

2. For $i = 1, 2$, let $n_i \in \mathcal{N}(A_i)$, $\|n_i\|_2 = 1$, and $\Delta Z := n_1 n_2^T + n_2 n_1^T$. Then, Z is a solution of the linear system (2.20) if and only if

$$
Z = Z + \tau \Delta Z, \quad \text{for some } \tau \in \mathbb{R}. \quad (2.21)
$$

3. There are at most two nonzero solutions, τ_1 and τ_2, for the generalized eigenvalue problem $-\Delta Zv = \tau \bar{Z}v$, $v \neq 0$. Set $Z_i := \bar{Z} + \frac{1}{\tau_i} \Delta Z$, for $i = 1, 2$. Then

$$
D[\alpha_1 \cup \alpha_2] \in \left\{ \mathcal{K}(U \bar{V} Z_i \bar{V}^T U^T) : i = 1, 2 \right\}. \nonumber
$$

Proof. We follow a similar proof as in the nonsingular case. For simplicity, we assume that $\delta_i = \alpha_i$, for $i = 1, 2$ (choosing smaller δ_i can reduce the cost of solving the linear systems).

That a particular solution Z exists for the system (2.20), follows from the fact that \bar{U} provides a representation for the intersection of the two faces (or the union of the two cliques).

Since the embedding dimension of \bar{D} is $r - 1$, we have $\text{rank } (B) = r - 1$. Furthermore, we have $B e = 0$ and $B \in S^1_{+r}$, implying that $|\beta| \geq r$. Without loss of generality, and for simplicity, we assume that $|\beta| = r$. Therefore, there exists $0 \neq u_i \in \mathcal{N}(U_i^r)$, for $i = 1, 2$. From Lemma 2.13, we can assume that we maintain $\bar{U}_i^T U_i = I$, $U_i e_{r+1} = \alpha_i e$, for some $\alpha_i \neq 0$, for $i = 1, 2$. Therefore, the action of \bar{V} is equivalent to removing the $r + 1$ column of \bar{U}_i. We can then explicitly write down $n_i \in \mathcal{N}(A_i)$. By construction, we now have $A_i (n_1 n_2^T + n_2 n_1^T) A_i^T = 0$, for $i = 1, 2$.

From the first expression for \bar{U} in (2.17), we see that the choices for n_1 and n_2 in Part 1 are in the appropriate nullspaces. The dimensions follow from the assumptions on the embedding dimensions.

Part 2 now follows from the definition of the general solution of a linear system of equations; i.e., the sum of a particular solution with any solution of the homogeneous equation.

Part 3 now follows from the role that \bar{U} plays as a representation for the union of the two cliques. \Box

Remark 2.15. As above in the nonsingular case, a more efficient way to calculate Z uses the full rank factorization

$$
B_i = Q D^{1/2} \left(Q_i D_i^{1/2} \right)^T, \quad Q_i^T Q_i = I_r, \quad D_i \in S^r_{++}, \quad i = 1, 2.
$$

(We have assumed that both have embedding dimension r, though we only need that one does.) We solve the equations $A_i C = \left(Q_i D_i^{1/2} \right) \bar{Q}_i$, $\bar{Q}_i \bar{Q}_i^T = I$, for $i = 1, 2$, for the unknowns C, and \bar{Q}_i,
for \(i = 1, 2 \). Then a particular solution \(\tilde{Z} \) in (2.20) can be found from \(\tilde{Z} = CC^T \). Note that the additional orthogonal matrices \(\bar{Q}_i \), for \(i = 1, 2 \) are needed since, they still allow \(A_i C (A_i C)^T = B_i \), for \(i = 1, 2 \). Also, without loss of generality, we can assume \(\bar{Q}_1 = I \).

2.3 Clique Initialization and Node Absorption

Using the above clique reductions, we now consider techniques that allow one clique to grow/absorb other cliques. This applies Theorem 2.10. We first consider an elementary and fast technique to find some of the existing cliques.

Lemma 2.16. For each \(i \in \{1, \ldots, n\} \), use half the radio range and define the set

\[
C_i := \{ j \in \{1, \ldots, n\} : D_{ij} \leq (R/2)^2 \}.
\]

Then each \(C_i \) corresponds to a clique of sensors that are within radio range of each other.

Proof. Let \(j, k \in C_i \) for a given \(i \in \{1, \ldots, n\} \). An elementary application of the triangle inequality shows that \(\sqrt{D_{jk}} \leq \sqrt{D_{ji}} + \sqrt{D_{ki}} \leq R \).

We can now assume that we have a finite set of indices \(\mathcal{C} \subseteq \mathbb{Z}_+ \) corresponding to a family of cliques, \(\{C_i\}_{i \in \mathcal{C}} \). We can combine cliques using the reductions given in Theorems 2.10 and 2.14. We now see how a clique can grow further by absorbing individual sensors; see Figure 2.4.

![Figure 2.4: Absorption with intersection having embedding dimension \(r \)](image)

Corollary 2.17. Let \(C_k \), for \(k \in \mathcal{C} \), be a given clique with node \(l \notin C_k \), \(\beta := \{j_1, \ldots, j_{r+1}\} \subseteq C_k \), such that the distances \(D_{i,j_i} \), for \(i = 1, \ldots, r + 1 \) are known. If

\[
\text{rank } K(\beta^\dagger) = r, \tag{2.22}
\]

then \(l \) can be absorbed by the clique \(C_k \) and we can complete the missing elements in column (row) \(l \) of \(D[C_k \cup \{l\}] \).

Proof. Let \(\alpha_1 := C_k \), \(\alpha_2 := \{j_1, \ldots, j_{r+1}, l\} \), and \(\beta := \alpha_1 \cap \alpha_2 = \{j_1, \ldots, j_{r+1}\} \). Then the conditions in Theorem 2.10 are satisfied and we can recover all the missing elements in \(D[C_k \cup \{l\}] \). \(\square \)

22
2.3.1 Node Absorption with Degenerate Intersection

We can apply the same reasoning as for the clique reduction in the nonsingular case, except now we apply Theorem 2.14. To obtain a unique completion, we test the feasibility of the two possible completions against any related distance equality constraints or, if included, any related lower bound inequality constraints. See Figure 2.5.

Figure 2.5: Degenerate absorption with intersection with embedding dimension < r

Corollary 2.18. Let C_k, for $k \in \mathcal{C}$, be a given clique with node $l \notin C_k$, $\beta := \{j_1, \ldots, j_r\} \subseteq C_k$ such that the distances D_{lj_i}, for $i = 1, \ldots, r$ are known. If

$$\text{rank } K^\dagger(D[\beta]) = r - 1,$$

then we can determine two possible completions of the distances. If exactly one of these two completions is feasible, then l can be absorbed by the clique C_k. We can also complete the missing elements in column (row) l of $D[C_k \cup \{l\}]$.

Proof. Let $\alpha_1 := C_k$, $\alpha_2 := \{j_1, \ldots, j_r, l\}$, and $\beta := \alpha_1 \cap \alpha_2 = \{j_1, \ldots, j_r\}$. Then the conditions in Theorem 2.14 are satisfied and we can recover all the missing elements in $D[C_k \cup \{l\}]$.

3 SNLSDPclique Facial Reduction Algorithm and Numerical Results

Our SNLSDPclique algorithm starts by forming a clique C_i around each sensor i. If and when we use this clique, we find a subspace representation from the r eigenvectors corresponding to the r nonzero eigenvalues of $B = K^\dagger(D[C_i])$.

The algorithm then grows and combines cliques using Theorem 2.10 Theorem 2.14 Corollary 2.17 and Corollary 2.18. In particular, we do not complete the EDM each time we combine or grow cliques; i.e., we do not evaluate the missing distances. Instead, we use the subspace representations of the corresponding faces of the SDP cone and then find the intersection of the subspaces that represent the faces. This yields a subspace representation of the new smaller face
representing the union of two cliques. This is based on Lemma 2.9 and Lemma 2.13 and is therefore inexpensive.

Once we cannot, or need not, grow cliques, we complete the distances using Corollary 2.11. This is also inexpensive. Finally, we rotate and translate the anchors to their original positions using the approach outlined in [16]. We have provided an outline of our facial reduction algorithm SNLSDPclique in Algorithm 1.

3.1 Numerical Tests

Our tests are on problems with sensors and anchors randomly placed in the region $[0,1]^r$ by means of a uniform random distribution. We vary the number of sensors from 2000 to 10000 in steps of 2000, and the radio range R from .07 to .04 in steps of -.01. We also include tests on very large problems with 20000 to 100000 sensors. In our tests, we did not use the lower bound inequality constraints coming from the radio range; we only used the equality constraints coming from the partial Euclidean distance matrix. Our tests were done using the 32-bit version of MATLAB R2009b on a laptop running Windows XP, with a 2.16 GHz Intel Core 2 Duo processor and with 2 GB of RAM. The source code used for running our tests has been released under a GNU General Public License, and has been made available from the authors’ websites.

We in particular emphasize the low CPU times and the high accuracy of the solutions we obtain. Our algorithm compares well with the recent work in [26, 31], where they use, for example, $R = .06$ for $n = 1000$, 2000, $R = .035$ for $n = 4000$, $R = .02$ for $n = 10000$, and also use 10% of the sensors as anchors and limit the degree for each node in order to maintain a low sparsity for the graph.

Tables 3.1, 3.2, and 3.3 contain the results of our tests on noiseless problems. These tables contain the following information.

1. **# sensors, r, # anchors, and R**: We use $m = (#\text{anchors})$, $n = (#\text{sensors})+(#\text{anchors})$, and r to generate ten random instances of $p_1, \ldots, p_n \in \mathbb{R}^r$; the last m points are taken to be the anchors. For each of these ten instances, and for each value of the radio range $R > 0$, we generate the the $n \times n$ partial Euclidean distance matrix D_p according to

$$(D_p)_{ij} = \begin{cases} \|p_i - p_j\|^2, & \text{if } \|p_i - p_j\| < R, \text{ or both } p_i \text{ and } p_j \text{ are anchors} \\ \text{unspecified}, & \text{otherwise.} \end{cases}$$

2. **# Successful Instances**: An instance was called successful if at least some, if not all, of the sensors could be positioned. If, by the end of the algorithm, the largest clique containing the anchors did not contain any sensors, then none of the sensor positions could be determined, making such an instance unsuccessful.

3. **Average Degree**: We have found that the average degree of the nodes of a graph is a good indicator of the percentage of sensors that can be positioned. In the results reported, we give the average of the average degree over all ten instances.

4. **# Sensors Positioned**: We give the average number of sensors that could be positioned over all ten instances. Note that below we indicate that the error measurements are computed only over the sensors that could be positioned.
Algorithm 1: SNLSDPclique – a facial reduction algorithm

input: Partial \(n \times n \) Euclidean Distance Matrix \(D_p \) and anchors \(A \in \mathbb{R}^{m \times r} \);
output: \(X \in \mathbb{R}^{(|C_i| \times r)} \), where \(C_i \) is the largest final clique that contains the anchors;

1. Let \(C := \{1, \ldots , n + 1\} \);
2. Let \(\{C_i\}_{i \in C} \) be a family of cliques satisfying \(i \in C_i \) for all \(i = 1, \ldots , n \); /* For example, by Lemma 2.16, we could choose \(C_i := \{j : (D_p)_{ij} < (R/2)^2\} \), for \(i = 1, \ldots , n \). Alternatively, we could simply choose \(C_i := \{i\} \), for \(i = 1, \ldots , n \). */
3. Let \(C_{n+1} := \{n - m + 1, \ldots , n\} \); /* \(C_{n+1} \) is the clique of anchors */

/* GrowCliques */
4. Choose \(\text{MaxCliqueSize} > r + 1 \); /* For example, \(\text{MaxCliqueSize} := 3(r + 1) \) */
5. for \(i \in C \) do
6. while \(|C_i| < \text{MaxCliqueSize} \) and \(\exists \) a node \(j \) adjacent to all nodes in \(C_i \) do
7. \(C_i := C_i \cup \{j\} \);
8. end
9. end

/* ComputeFaces */
10. for \(i \in C \) do
11. Compute \(U_{B_i} \in \mathbb{R}^{(|C_i| \times (r + 1))} \) to represent face for clique \(C_i \); /* see Theorem 2.3 */
12. /* Alternatively, wait to compute \(U_{B_i} \) when first needed. This can be more efficient since \(U_{B_i} \) is not needed for every clique. */
13. end
14. repeat
15. if \(|C_i \cap C_j| \geq r + 1 \), for some \(i, j \in C \) then
16. \(\text{RigidCliqueUnion}(C_i, C_j) \); /* see Algorithm 2 */
17. else if \(|C_i \cap N(j)| \geq r + 1 \), for some \(i \in C \) and node \(j \) then
18. \(\text{RigidNodeAbsorption}(C_i, j) \); /* see Algorithm 3 */
19. else if \(|C_i \cap C_j| = r \), for some \(i, j \in C \) then
20. \(\text{NonRigidCliqueUnion}(C_i, C_j) \); /* see Algorithm 4 */
21. else if \(|C_i \cap N(j)| = r \), for some \(i \in C \) and node \(j \) then
22. \(\text{NonRigidNodeAbsorption}(C_i, j) \); /* see Algorithm 5 */
23. end
24. until not possible to decrease \(|C| \) or increase \(|C_i| \) for some \(i \in C \);
25. Let \(C_i \) be the largest clique that contains the anchors;
26. if \(\text{clique} C_i \) contains some sensors then
27. Compute a point representation \(P \in \mathbb{R}^{(|C_i| \times r)} \) for the clique \(C_i \); /* see Cor. 2.11 */
28. Compute positions of sensors \(X \in \mathbb{R}^{(|C_i| - m) \times r} \) in clique \(C_i \) by rotating \(P \) to align with anchor positions \(A \in \mathbb{R}^{m \times r} \); /* see Ding et al. [16, Method 3.2] */
29. return \(X \);
30. else
31. return \(X := \emptyset \);
32. end
Algorithm 2: RigidCliqueUnion

input : Cliques C_i and C_j such that $|C_i \cap C_j| \geq r + 1$;
1 Load $U_{B_i} \in \mathbb{R}^{|C_i|\times (r+1)}$ and $U_{B_j} \in \mathbb{R}^{|C_j|\times (r+1)}$ representing the faces corresponding to the cliques C_i and C_j, respectively;
2 Compute $\bar{U} \in \mathbb{R}^{|C_i \cup C_j|\times (r+1)}$ using one of the two formulas in equation (2.13) from Lemma 2.9 where $U_1 = U_{B_i}$, $U_2 = U_{B_j}$, and $k = |C_i \cap C_j|$; /* see Theorem 2.7 */
3 Update $C_i := C_i \cup C_j$;
4 Update $U_{B_i} := \bar{U}$;
5 Update $C := C \setminus \{j\}$;

Algorithm 3: RigidNodeAbsorption

input : Clique C_i and node j such that $|C_i \cap \mathcal{N}(j)| \geq r + 1$;
1 Load $U_{B_i} \in \mathbb{R}^{|C_i|\times (r+1)}$ representing the face corresponding to clique C_i;
2 if $C_i \cap \mathcal{N}(j)$ not a clique in the original graph then
3 Use U_{B_i} to compute a point representation $P_i \in \mathbb{R}^{|C_i|\times r}$ of the sensors in C_i;
4 Use P_i to compute the distances between the sensors in $C_i \cap \mathcal{N}(j)$;
end
6 Use the distances between the sensors in $(C_i \cap \mathcal{N}(j)) \cup \{j\}$ to compute the matrix $U_{B_j} \in \mathbb{R}^{|(C_i \cap \mathcal{N}(j)) \cup \{j\}|\times (r+1)}$ representing the face corresponding to the clique $(C_i \cap \mathcal{N}(j)) \cup \{j\}$; /* see Theorem 2.3 */
7 Compute $\bar{U} \in \mathbb{R}^{|(C_i \cap \mathcal{N}(j)) \cup \{j\}|\times (r+1)}$ using one of the two formulas in equation (2.13) from Lemma 2.9 where $U_1 = U_{B_i}$, $U_2 = U_{B_j}$, and $k = |C_i \cap \mathcal{N}(j)|$; /* see Theorem 2.7 */
8 Update $C_i := C_i \cup \{j\}$;
9 Update $U_{B_i} := \bar{U}$;

Algorithm 4: NonRigidCliqueUnion

input : Cliques C_i and C_j such that $|C_i \cap C_j| = r$;
1 Load $U_{B_i} \in \mathbb{R}^{|C_i|\times (r+1)}$ and $U_{B_j} \in \mathbb{R}^{|C_j|\times (r+1)}$ representing the faces corresponding to the cliques C_i and C_j, respectively;
2 Using U_{B_i} and U_{B_j}, find the two point representations of the sensors in $C_i \cup C_j$; /* see Theorem 2.14 */
3 if exactly one of these two point representations is feasible then
4 Use the feasible point representation to compute $\bar{U} \in \mathbb{R}^{|C_i \cup C_j|\times (r+1)}$ representing the face corresponding to the clique $C_i \cup C_j$; /* see Theorem 2.3 */
5 Update $C_i := C_i \cup C_j$;
6 Update $U_{B_i} := \bar{U}$;
7 Update $C := C \setminus \{j\}$;
end
Algorithm 5: NonRigidNodeAbsorption

input : Clique C_i and node j such that $|C_i \cap \mathcal{N}(j)| = r$;

1. Load $U_{B_i} \in \mathbb{R}^{[C_i] \times (r+1)}$ representing the face corresponding to clique C_i;
2. if $C_i \cap \mathcal{N}(j)$ not a clique in the original graph then
 3. Use U_{B_i} to compute a point representation $P_i \in \mathbb{R}^{[C_i] \times r}$ of the sensors in C_i;
 /* see Cor. 2.11 */
 4. Use P_i to compute the distances between the sensors in $C_i \cap \mathcal{N}(j)$;
5. end
6. Use the distances between the sensors in $(C_i \cap \mathcal{N}(j)) \cup \{j\}$ to compute the matrix $U_{B_j} \in \mathbb{R}^{((C_i \cap \mathcal{N}(j)) + 1) \times (r+1)}$ representing the face corresponding to the clique $(C_i \cap \mathcal{N}(j)) \cup \{j\}$; /* see Theorem 2.3 */
7. Using U_{B_i} and U_{B_j}, find the two point representations of the sensors in $C_i \cup \{j\}$; /* see Theorem 2.14 */
8. if exactly one of these two point representations is feasible then
 9. Use the feasible point representation to compute $\bar{U} \in \mathbb{R}^{[C_i \cup C_j] \times (r+1)}$ representing the face corresponding to the clique $C_i \cup \{j\}$; /* see Theorem 2.3 */
10. Update $C_i := C_i \cup \{j\}$;
11. Update $U_{B_i} := \bar{U}$;
12. end

5. **CPU Time:** Indicates the average running time of SNLSDPclique over all ten instances. This time does not include the time to generate the random problems, but it does include all aspects of the Algorithm 1 including the time for GrowCliques and ComputeFaces at the beginning of the algorithm.

6. **Max Error:** The maximum distance between the positions of the sensors found and the true positions of those sensors. This is defined as
 \[
 \text{Max Error} := \max_{i \text{ positioned}} \|p_i - p_i^{\text{true}}\|_2.
 \]

7. **RMSD:** The root-mean-square deviation of the positions of the sensors found and the true positions of those sensors. This is defined as
 \[
 \text{RMSD} := \left(\frac{1}{\# \text{ positioned}} \sum_{i \text{ positioned}} \|p_i - p_i^{\text{true}}\|_2^2 \right)^{\frac{1}{2}}.
 \]

We note that for each set of ten random instances, the Max Error and RMSD values reported are the average Max Error and average RMSD values over the successful instances only; this is due to the fact that an unsuccessful instance will have no computed sensor positions to compare with the true sensor positions.

We have three sets of tests on noiseless problems.

1. In Table 3.1 we report the results of using only the RigidCliqueUnion step (see Figure 2.2) to solve our random problems.

27
Table 3.1: Results of Algorithm 1 on noiseless problems, using step RigidCliqueUnion. The values for Average Degree, # Sensors Positioned, and CPU Time are averaged over ten random instances. The values for Max Error and RMSD values are averaged over the successful instances.

<table>
<thead>
<tr>
<th># sensors</th>
<th>r</th>
<th># anchors</th>
<th>R</th>
<th># Successful Instances</th>
<th>Average Degree</th>
<th># Sensors Positioned</th>
<th>CPU Time</th>
<th>Max Error</th>
<th>RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>9/10</td>
<td>14.5</td>
<td>1632.3</td>
<td>1 s</td>
<td>6e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>5/10</td>
<td>10.7</td>
<td>720.0</td>
<td>1 s</td>
<td>1e-12</td>
<td>4e-13</td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>0/10</td>
<td>7.5</td>
<td>0.0</td>
<td>1 s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>0/10</td>
<td>4.9</td>
<td>0.0</td>
<td>1 s</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>29.0</td>
<td>3904.1</td>
<td>2 s</td>
<td>2e-13</td>
<td>6e-14</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>21.5</td>
<td>3922.3</td>
<td>2 s</td>
<td>6e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>15.1</td>
<td>3836.2</td>
<td>2 s</td>
<td>4e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>1/10</td>
<td>9.7</td>
<td>237.8</td>
<td>2 s</td>
<td>1e-13</td>
<td>4e-14</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>43.5</td>
<td>5966.9</td>
<td>4 s</td>
<td>3e-13</td>
<td>8e-14</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>32.3</td>
<td>5964.4</td>
<td>4 s</td>
<td>2e-13</td>
<td>7e-14</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>22.6</td>
<td>5894.8</td>
<td>3 s</td>
<td>3e-13</td>
<td>1e-13</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>10/10</td>
<td>14.6</td>
<td>5776.9</td>
<td>3 s</td>
<td>7e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>8000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>58.1</td>
<td>7969.8</td>
<td>6 s</td>
<td>3e-13</td>
<td>8e-14</td>
</tr>
<tr>
<td>8000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>43.0</td>
<td>7980.9</td>
<td>6 s</td>
<td>2e-13</td>
<td>8e-14</td>
</tr>
<tr>
<td>8000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>30.1</td>
<td>7953.1</td>
<td>5 s</td>
<td>6e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>8000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>10/10</td>
<td>19.5</td>
<td>7891.0</td>
<td>5 s</td>
<td>6e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>72.6</td>
<td>9974.6</td>
<td>9 s</td>
<td>3e-13</td>
<td>7e-14</td>
</tr>
<tr>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>53.8</td>
<td>9969.1</td>
<td>8 s</td>
<td>9e-13</td>
<td>1e-13</td>
</tr>
<tr>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>37.7</td>
<td>9925.4</td>
<td>7 s</td>
<td>5e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>10/10</td>
<td>24.3</td>
<td>9907.2</td>
<td>7 s</td>
<td>3e-13</td>
<td>1e-13</td>
</tr>
<tr>
<td>20000</td>
<td>2</td>
<td>4</td>
<td>.03</td>
<td>10/10</td>
<td>27.6</td>
<td>19853.3</td>
<td>17 s</td>
<td>7e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>40000</td>
<td>2</td>
<td>4</td>
<td>.02</td>
<td>10/10</td>
<td>24.7</td>
<td>39725.2</td>
<td>50 s</td>
<td>2e-12</td>
<td>6e-13</td>
</tr>
<tr>
<td>60000</td>
<td>2</td>
<td>4</td>
<td>.015</td>
<td>10/10</td>
<td>21.0</td>
<td>59461.1</td>
<td>1 m 52 s</td>
<td>1e-11</td>
<td>8e-13</td>
</tr>
<tr>
<td>80000</td>
<td>2</td>
<td>4</td>
<td>.013</td>
<td>10/10</td>
<td>21.0</td>
<td>79314.1</td>
<td>3 m 24 s</td>
<td>4e-12</td>
<td>1e-12</td>
</tr>
<tr>
<td>100000</td>
<td>2</td>
<td>4</td>
<td>.011</td>
<td>10/10</td>
<td>18.8</td>
<td>99174.4</td>
<td>5 m 42 s</td>
<td>2e-10</td>
<td>9e-11</td>
</tr>
</tbody>
</table>
2. In Table 3.2 we report the results of increasing the level of our algorithm to use both the RigidCliqueUnion and RigidNodeAbsorb steps (see Figures 2.2 and 2.4) to solve the random problems. We see that the number of sensors localized has increased and that there has been a small, almost insignificant, increase in the CPU time.

3. In Table 3.3 we report the results of increasing the level of our algorithm to use steps RigidCliqueUnion, RigidNodeAbsorb, and NonRigidCliqueUnion (see Figures 2.2, 2.4, and 2.3) to solve the random problems, further increasing the class of problems that we can complete.

Testing a version of our algorithm that uses all four steps is still ongoing. From the above results, we can see that our facial reduction technique works very well for solving many instances of the SNL problem. We are confident that the results of our ongoing tests will continue to show that we are able to solve an even larger class of SNL problems.
Table 3.3: Results of Algorithm 1 on noiseless problems, using steps RigidCliqueUnion, RigidNodeAbsorb, and NonRigidCliqueUnion. The values for Average Degree, # Sensors Positioned, and CPU Time are averaged over ten random instances. The values for Max Error and RMSD values are averaged over the successful instances. The results of the tests with more than 6000 sensors remain the same as in Table 3.2.

<table>
<thead>
<tr>
<th># sensors</th>
<th>r</th>
<th># anchors</th>
<th>R</th>
<th># Successful Instances</th>
<th>Average Degree</th>
<th># Sensors Positioned</th>
<th>CPU Time</th>
<th>Max Error</th>
<th>RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>14.5</td>
<td>2000.0</td>
<td>1 s</td>
<td>6e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>10.7</td>
<td>1999.9</td>
<td>1 s</td>
<td>8e-13</td>
<td>3e-13</td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>7.5</td>
<td>1997.9</td>
<td>1 s</td>
<td>9e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>10/10</td>
<td>4.9</td>
<td>1590.8</td>
<td>5 s</td>
<td>2e-11</td>
<td>7e-12</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>29.0</td>
<td>4000.0</td>
<td>2 s</td>
<td>2e-13</td>
<td>6e-14</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>21.5</td>
<td>4000.0</td>
<td>2 s</td>
<td>6e-13</td>
<td>2e-13</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>15.1</td>
<td>3999.9</td>
<td>2 s</td>
<td>6e-13</td>
<td>3e-13</td>
</tr>
<tr>
<td>4000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>10/10</td>
<td>9.7</td>
<td>3998.2</td>
<td>3 s</td>
<td>1e-12</td>
<td>5e-13</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.07</td>
<td>10/10</td>
<td>43.5</td>
<td>6000.0</td>
<td>4 s</td>
<td>3e-13</td>
<td>8e-14</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>10/10</td>
<td>32.3</td>
<td>6000.0</td>
<td>4 s</td>
<td>2e-13</td>
<td>7e-14</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.05</td>
<td>10/10</td>
<td>22.6</td>
<td>6000.0</td>
<td>3 s</td>
<td>3e-13</td>
<td>1e-13</td>
</tr>
<tr>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>10/10</td>
<td>14.6</td>
<td>5999.4</td>
<td>3 s</td>
<td>8e-13</td>
<td>3e-13</td>
</tr>
</tbody>
</table>

3.2 Noisy Data and Higher Dimensional Problems

The above algorithm was derived based on the fact that the SNL had exact data; i.e., for a given clique \(\alpha \) we had an exact correspondence between the EDM and the corresponding Gram matrix \(B = K^\dagger(D[\alpha]) \). To extend this to the noisy case, we apply a naive, greedy approach. When the Gram matrix \(B \) is needed, then we use the best rank \(r \) positive semidefinite approximation to \(B \) using the well-known Eckert-Young result; see e.g., [20, Cor. 2.3.3].

Lemma 3.1. Suppose that \(B \in S^n \) with spectral decomposition \(B = \sum_{i=1}^{n} \lambda_i u_i u_i^T \), \(\lambda_1 \geq \ldots \geq \lambda_n \). Then the best positive semidefinite approximation with at most rank \(r \) is \(B_+ = \sum_{i=1}^{r} (\lambda_i)_+ u_i u_i^T \), where \((\lambda_i)_+ = \max\{0, \lambda_i\} \).

We follow the multiplicative noise model in, e.g., [6, 11, 24, 26, 29, 31]; i.e., the noisy (squared) distances \(D_{ij} \) are given by

\[
D_{ij} = (\|p_i - p_j\|(1 + \sigma \epsilon_{ij}))^2,
\]

where \(\sigma \geq 0 \) is the noise factor and \(\epsilon_{ij} \) is chosen from the standard normal distribution \(N(0, 1) \). We include preliminary test results in Table 3.2 for problems with 0%-1% noise with embedding dimension \(r = 2, 3 \). Note that we do not apply the noise to the distances between the anchors.

4 Conclusion

The SDP relaxation of SNL is highly (implicitly) degenerate, since the feasible set of this SDP is restricted to a low dimensional face of the SDP cone, resulting in the failure of the Slater constraint qualification (strict feasibility). We take advantage of this degeneracy by finding explicit representations of intersections of faces of the SDP cone corresponding to unions of intersecting cliques. In addition, from these representations we force further degeneracy in order to find the
Table 3.4: Results of Algorithm 1 for problems with noise and \(r = 2, 3 \), using \texttt{RigidCliqueUnion} and \texttt{RigidNodeAbsorb}. The values for Average Degree, \# Sensors Positioned, CPU Time, Max Error and RMSD are averaged over ten random instances.

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th># sensors</th>
<th>(r)</th>
<th># anchors</th>
<th>(R)</th>
<th>Average Degree</th>
<th># Sensors Positioned</th>
<th>CPU Time</th>
<th>Max Error</th>
<th>RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.08</td>
<td>18.8</td>
<td>2000.0</td>
<td>1 s</td>
<td>1e-13</td>
<td>3e-14</td>
</tr>
<tr>
<td>1e-6</td>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.08</td>
<td>18.8</td>
<td>2000.0</td>
<td>1 s</td>
<td>2e-04</td>
<td>4e-05</td>
</tr>
<tr>
<td>1e-4</td>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.08</td>
<td>18.8</td>
<td>2000.0</td>
<td>1 s</td>
<td>2e-02</td>
<td>4e-03</td>
</tr>
<tr>
<td>1e-2</td>
<td>2000</td>
<td>2</td>
<td>4</td>
<td>.08</td>
<td>18.8</td>
<td>2000.0</td>
<td>1 s</td>
<td>2e+01</td>
<td>3e+00</td>
</tr>
<tr>
<td>0</td>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>32.3</td>
<td>6000.0</td>
<td>4 s</td>
<td>2e-13</td>
<td>7e-14</td>
</tr>
<tr>
<td>1e-6</td>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>32.3</td>
<td>6000.0</td>
<td>4 s</td>
<td>8e-04</td>
<td>3e-04</td>
</tr>
<tr>
<td>1e-4</td>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>32.3</td>
<td>6000.0</td>
<td>4 s</td>
<td>9e-02</td>
<td>3e-02</td>
</tr>
<tr>
<td>1e-2</td>
<td>6000</td>
<td>2</td>
<td>4</td>
<td>.06</td>
<td>32.3</td>
<td>6000.0</td>
<td>4 s</td>
<td>2e+01</td>
<td>3e+00</td>
</tr>
<tr>
<td>0</td>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>24.3</td>
<td>10000.0</td>
<td>6 s</td>
<td>3e-13</td>
<td>1e-13</td>
</tr>
<tr>
<td>1e-6</td>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>24.3</td>
<td>10000.0</td>
<td>6 s</td>
<td>5e-04</td>
<td>2e-04</td>
</tr>
<tr>
<td>1e-4</td>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>24.3</td>
<td>10000.0</td>
<td>6 s</td>
<td>5e-02</td>
<td>2e-02</td>
</tr>
<tr>
<td>1e-2</td>
<td>10000</td>
<td>2</td>
<td>4</td>
<td>.04</td>
<td>24.3</td>
<td>10000.0</td>
<td>7 s</td>
<td>4e+02</td>
<td>1e+02</td>
</tr>
<tr>
<td>0</td>
<td>2000</td>
<td>3</td>
<td>5</td>
<td>.20</td>
<td>26.6</td>
<td>2000.0</td>
<td>1 s</td>
<td>3e-13</td>
<td>8e-14</td>
</tr>
<tr>
<td>1e-6</td>
<td>2000</td>
<td>3</td>
<td>5</td>
<td>.20</td>
<td>26.6</td>
<td>2000.0</td>
<td>1 s</td>
<td>7e-04</td>
<td>2e-04</td>
</tr>
<tr>
<td>1e-4</td>
<td>2000</td>
<td>3</td>
<td>5</td>
<td>.20</td>
<td>26.6</td>
<td>2000.0</td>
<td>1 s</td>
<td>8e-02</td>
<td>2e-02</td>
</tr>
<tr>
<td>1e-2</td>
<td>2000</td>
<td>3</td>
<td>5</td>
<td>.20</td>
<td>26.6</td>
<td>2000.0</td>
<td>1 s</td>
<td>2e+03</td>
<td>4e+02</td>
</tr>
<tr>
<td>0</td>
<td>6000</td>
<td>3</td>
<td>5</td>
<td>.15</td>
<td>35.6</td>
<td>6000.0</td>
<td>5 s</td>
<td>3e-13</td>
<td>6e-14</td>
</tr>
<tr>
<td>1e-6</td>
<td>6000</td>
<td>3</td>
<td>5</td>
<td>.15</td>
<td>35.6</td>
<td>6000.0</td>
<td>5 s</td>
<td>1e-03</td>
<td>2e-04</td>
</tr>
<tr>
<td>1e-4</td>
<td>6000</td>
<td>3</td>
<td>5</td>
<td>.15</td>
<td>35.6</td>
<td>6000.0</td>
<td>5 s</td>
<td>1e-01</td>
<td>2e-02</td>
</tr>
<tr>
<td>1e-2</td>
<td>6000</td>
<td>3</td>
<td>5</td>
<td>.15</td>
<td>35.6</td>
<td>6000.0</td>
<td>6 s</td>
<td>9e+01</td>
<td>9e+00</td>
</tr>
<tr>
<td>0</td>
<td>10000</td>
<td>3</td>
<td>5</td>
<td>.10</td>
<td>18.7</td>
<td>10000.0</td>
<td>9 s</td>
<td>3e-12</td>
<td>2e-13</td>
</tr>
<tr>
<td>1e-6</td>
<td>10000</td>
<td>3</td>
<td>5</td>
<td>.10</td>
<td>18.7</td>
<td>10000.0</td>
<td>10 s</td>
<td>4e-02</td>
<td>2e-03</td>
</tr>
<tr>
<td>1e-4</td>
<td>10000</td>
<td>3</td>
<td>5</td>
<td>.10</td>
<td>18.7</td>
<td>10000.0</td>
<td>10 s</td>
<td>2e+00</td>
<td>8e-02</td>
</tr>
<tr>
<td>1e-2</td>
<td>10000</td>
<td>3</td>
<td>5</td>
<td>.10</td>
<td>18.7</td>
<td>10000.0</td>
<td>10 s</td>
<td>4e+02</td>
<td>1e+01</td>
</tr>
</tbody>
</table>
minimal face that contains the optimal solution. In many cases, we can efficiently compute the exact solution to the SDP relaxation without using any SDP solver.

In some cases it is not possible to reduce the problem down to a single clique. However, in these cases, the intersection of the remaining faces returned by SNLSDPclique will produce a face containing the feasible region of the original problem. This face can then be used to reduce the problem before passing the problem to an SDP solver, where, for example, the trace of the semidefinite matrix can be maximized \([9]\) to try to keep the embedding dimension small. As an example, if the problem is composed of disjoint cliques, then Corollary 2.6 can be used to significantly reduce the problem size. This reduction can transform a large intractable problem into a much smaller problem that can be solved efficiently via an SDP solver.
References

Index

1 : n = \{1, \ldots, n\}, 6
J, orthogonal projection onto \{e\}^\perp, 8
\mathcal{E}^n(\alpha, \bar{D}), \text{principal submatrix of } \text{EDM}, 11
S^n(1 : k, \bar{Y}), \text{principal submatrix top-left block}, 6
S^n(1 : k, \bar{Y}), \text{top-left block fixed}, 6
\mathbf{T} = K^\dagger, 8
n \times n \text{ matrices, } \mathcal{M}^n, 7
\text{EDM}, 4
\text{EDM completion problem}, 7
\text{SNL}, \text{sensor network localization}, 4
clique, 6
clique index set, \mathcal{C}, 22
cone generated by \mathcal{C}, \text{cone (C)}, 6
cone of \text{EDM}, \mathcal{E}^k, 6
cone of positive definite matrices, \mathcal{S}^++_k, 6
cone of positive semidefinite matrices, \mathcal{S}^+_k, 6
diagonal matrix from a vector, \text{Diag } v, 7
diagonal of a matrix, \text{diag } M, 7
embedding dimension (fixed), r, 4 5 8
embedding dimension, r, 5
Euclidean distance matrix, \text{EDM}, 6
exposed face, 6
face, \mathcal{F} \subseteq K, 6
facially exposed cone, 6
graph of the \text{EDM}, \mathcal{G} = (\mathcal{N}, \mathcal{E}, \omega), 6
graph realizability, 7
\text{Hadamard product}, 4
half radio range clique centered at node i, \mathcal{C}_i, 22
\text{Löwner partial order}, A \succeq B, 6
matrix of points in space, \mathcal{P}, 8
nonsingular reduction, 15
null space of \mathcal{L}, \mathcal{N}(\mathcal{L}), 6
offDiag operator of a matrix, \text{offDiag } M, 7
pre-distance matrix, \mathcal{D}, 6
principal submatrix of \text{EDM}, \mathcal{E}^n(\alpha, \bar{D}), 11
principal submatrix positive semidefinite set, \mathcal{S}^+_n(\alpha, \bar{Y}), 6
principal submatrix set, \mathcal{S}^n(\alpha, \bar{Y}), 6
principal submatrix top-left block, \mathcal{E}^n(1 : k, \bar{D}), 11
principal submatrix top-left block, \mathcal{S}^n(1 : k, \bar{Y}), 6
principal submatrix, \mathcal{Y}[\alpha], 6
proper face, 6
radio range, R, 4
range space of \mathcal{L}, \mathcal{R}(\mathcal{L}), 6
relative interior, \text{relint } \cdot, 6
rigidity, 15
sensor network localization, \text{SNL}, 4
singular intersection, 19
singular reduction, 19
symmetric k \times k matrices, \mathcal{S}^k, 5
top-left block fixed, \mathcal{E}^n(1 : k, \bar{D}), 11
top-left block fixed, \mathcal{S}^n(1 : k, \bar{Y}), 6
trace inner product, \langle A, B \rangle = \text{trace } AB, 5
trilateration graph, 5
uniquely localizable graph, 5
vector of ones, e, 6