On Cone of Nonsymmetric Positive Semidefinite Matrices

Yingnan Wang∗ Naihua Xiu† Jiye Han‡

(March 29, 2010)

Abstract

In this paper, we analyze and characterize the cone of nonsymmetric positive semidefinite matrices (NS-psd). Firstly, we study basic properties of the geometry of the NS-psd cone and show that it is a hyperbolic but not homogeneous cone. Secondly, we prove that the NS-psd cone is a maximal convex subcone of P_0-matrix cone which is not convex. But the interior of the NS-psd cone is not a maximal convex subcone of P-matrix cone. As the byproducts, some new sufficient and necessary conditions for a nonsymmetric matrix to be positive semidefinite are given. Finally, we present some properties of metric projection onto the NS-psd cone.

Keywords: Nonsymmetric positive semidefinite matrix; hyperbolic cone; facial structure; maximal convex subcone; P_0-matrix; projection.

AMS subject classification: 52A20, 90C25.

1 Introduction

We consider the space of $n \times n$ real matrices, denoted by \mathcal{M}^n, with the trace inner product

$$\langle X, Y \rangle := tr(X^T Y)$$

for $X, Y \in \mathcal{M}^n$ and the induced Frobenius matrix norm $\|X\| = \sqrt{tr(X^T X)}$.

A nonsymmetric matrix $X \in \mathcal{M}^n$ is called positive semidefinite (NS-psd for short) if $u^T X u \geq 0$ for all $u \in \mathbb{R}^n$, and called positive definite if $u^T X u > 0$ for all $0 \neq u \in \mathbb{R}^n$. We use \mathcal{M}^n_+ to denote the set of all nonsymmetric positive semidefinite matrices in \mathcal{M}^n, and \mathcal{M}^n_{++} to denote the set of all nonsymmetric positive definite matrices in \mathcal{M}^n. Then \mathcal{M}^n_+ is a closed convex cone and \mathcal{M}^n_{++} is the interior of \mathcal{M}^n_+.

Let \mathcal{S}^n be the subspace of $n \times n$ symmetric matrices in \mathcal{M}^n. Correspondingly, let \mathcal{S}^n_+ denote the cone of positive semidefinite matrices in \mathcal{S}^n, and \mathcal{S}^n_{++} denote the cone of positive definite matrices in \mathcal{S}^n. \mathcal{S}^n_+ is a closed convex cone and its interior is \mathcal{S}^n_{++}.

It’s well known that \mathcal{S}^n_+, as an very important non-polyhedral convex cone, has nice geometric properties and arises in many areas, including engineering, statistics, and system and

∗Corresponding author. Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China (e-mail: wyn1982@hotmail.com, tel:86-010-51466230)
†Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China (e-mail: nhxiu@bjtu.edu.cn)
‡Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R. China (e-mail: jiyehan@vip.sina.com)
control theory, etc. Linear optimization problem over S^n_+, known as semidefinite programming (SDP), plays a fundamental role in mathematical programming, see, e.g., [21, 2, 7]. However, compared with the S^n_+, the NS-psd cone M^n_+ hasn’t been well studied on convex analysis. Actually, S^n_+ and M^n_+ are very different in many aspects. Let us observe the following four examples:

- S^n_+ is a self-dual homogenous cone in S^n, but M^n_+ is a hyperbolic cone and not a homogenous cone in M^n (see Theorem 3.2).
- A matrix $X \in S^n_+$ is invertible if and only if it belongs to the interior of S^n_+, whereas an invertible matrix $X \in M^n_+$ doesn’t imply that X is in the interior of M^n_+. In fact, if we take $X = \begin{pmatrix} 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} \in M^2_+$, then for any $\epsilon > 0$, we have
 \[
 \begin{pmatrix} 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} + \epsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \epsilon & 1 \\ -1 & 1 \end{pmatrix} \in M^2_+,
 \]
 meanwhile
 \[
 \begin{pmatrix} 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} - \epsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\epsilon & 1 \\ -1 & -\epsilon \end{pmatrix} \notin M^2_+.
 \]
 This means that $\begin{pmatrix} 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ belongs to the boundary of M^2_+ but it is invertible.
- It’s well known that a symmetric matrix belongs to S^n_+ (resp. S^n_{++}) if and only if it is a P_0 (resp. P)-matrix, but the equivalence fails when symmetry assumption is dropped (see Example 3.3.2 in [5]).
- S^n_+ and M^n_+ are subsets of P_0-matrix cone (P_0 for short). For S^n_+, $bd(S^n_+) \subseteq bd(P_0)$, which implies $bd(S^n_+) \cap int(P_0) = \emptyset$. While, for M^n_+, $bd(M^n_+) \cap int(P_0) \neq \emptyset$ (see Proposition 4.1 (ii)).

In this paper, we will take a close look at the NS-psd cone in the view of convex analysis. First, we study the facial structure of M^n_+ in Section 3, which is a representative property for closed convex cones. We’ll show that M^n_+ is a hyperbolic cone but not a homogeneous cone in M^n, while S^n_+ is a self-dual homogenous cone in S^n. In Section 4, we study the relationship between the NS-psd cone and the P_0-matrix cone, where the latter one is a very important class of matrices in linear complementarity theory and it contains M^n_+ as a proper subclass. By proving some fundamental and interesting results about matrix determinant and the boundary properties of P_0 and M^n_+, we obtain that M^n_+ is a maximal convex subcone of P_0, however, M^n_{++} is not a maximal convex subcone of P. Some necessary and sufficient conditions for a matrix to be NS-psd are also presented. Finally, we study the metric projection onto M^n_+ in Section 5, including the strong semismoothness, explicit formulas of directional derivative and Clarke’s generalized Jacobian of the projection, which extend a series of results in [12, 17, 18].

2
2 Preliminaries

In this section, we review some concepts and properties about convex cones in a finite-dimensional real vector space \(\mathcal{E} \) equipped with an inner product \(\langle \cdot , \cdot \rangle \) and the induced norm \(\| \cdot \| \).

Convex cone A convex cone \(\mathcal{K} \subseteq \mathcal{E} \) is a nonempty set that is closed under nonnegative linear combination of all its members, i.e., \(\lambda \mathcal{K} \subseteq \mathcal{K}, \mathcal{K} + \mathcal{K} \subseteq \mathcal{K}, \forall \lambda \geq 0 \). The biggest subspace contained in \(\mathcal{K} \) is called the *linearity space* of \(\mathcal{K} \), denoted by \(L(\mathcal{K}) \). If \(L(\mathcal{K}) = \{0\} \), we call the convex cone \(\mathcal{K} \) is *pointed*. In other words, a convex cone \(\mathcal{K} \) is pointed if it has no lines. If a closed convex pointed cone has nonempty interior, we call it a *proper cone*.

Given two nonempty convex cones \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) in \(\mathcal{E} \), let \(\mathcal{K}_1 \oplus \mathcal{K}_2 \) denote the direct sum of \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \), i.e., each vector \(x \in \mathcal{K}_1 + \mathcal{K}_2 \) can be expressed uniquely in the form \(x = y + z \) where \(y \in \mathcal{K}_1, z \in \mathcal{K}_2 \). One special case of \(\mathcal{K}_1 \oplus \mathcal{K}_2 \) is when \(\langle \mathcal{K}_1, \mathcal{K}_2 \rangle = 0 \).

Given a set \(\mathcal{C} \subseteq \mathcal{E} \), the dual cone of \(\mathcal{C} \) is defined as \(\mathcal{C}^* = \{ x : \langle x, y \rangle \geq 0, \forall y \in \mathcal{C} \}. \) The convex hull of \(\mathcal{C} \) is denoted by \(\text{conv}(\mathcal{C}) \). \(\text{cone}(\mathcal{C}) \) denotes the convex cone generated by \(\mathcal{C} \). We let \(\text{int}(\mathcal{C}), \text{cl}(\mathcal{C}), \text{bd}(\mathcal{C}) \) and \(\text{ri}(\mathcal{C}) \) denote the interior, closure, boundary, relative interior and relative boundary of \(\mathcal{C} \), respectively. And we use \(\mathcal{C}_1 \subseteq \mathcal{C}_2 \) denote a proper subset, i.e., \(\mathcal{C}_1 \subset \mathcal{C}_2 \).

Typical closed convex cones A closed pointed convex cone \(\mathcal{K} \subseteq \mathcal{E} \) with nonempty interior is *homogeneous* if for any \(x, y \in \text{int}(\mathcal{K}) \) there exists an invertible linear mapping \(g \) such that \(g(\mathcal{K}) = \mathcal{K} \) and \(g(x) = y \), i.e., the group of automorphisms of \(\mathcal{K} \) acts transitively on the interior of \(\mathcal{K} \). If \(\mathcal{K} \) is homogenous and \(\mathcal{K}^* = \mathcal{K} \) (self dual), we call \(\mathcal{K} \) a *symmetric cone*. It’s well known that \(S^+_n \) is a symmetric cone in \(S^n \). And there are several other common symmetric cones, such as the nonnegative orthant \((R^n_+ \), the Lorentz cone \(\text{(i.e., second order cone)}, \) and so on. For more details about homogeneous and symmetric cones, see [6, 8, 20, 19], etc.

Besides the homogenous cone, there exists a more general closed convex cone, called hyperbolic cone. It is defined as follows. Given a homogeneous polynomial \(p \) of degree \(n \) on \(\mathcal{E} \), \(p \) is called to be hyperbolic with respect to the direction \(d \in \mathcal{E} \), if \(p(d) \neq 0 \) and the polynomial \(t \mapsto p(td + x) \) has only real roots for every \(x \in \mathcal{E} \). The associated hyperbolic cone of the hyperbolic polynomial \(p \) with direction \(d \) is defined as the set of all such \(x \) that the univariate polynomial \(\lambda \mapsto p(\lambda d - x) \) has only nonnegative roots, where \(\lambda \mapsto p(\lambda d - x) \) is called the characteristic polynomial of \(x \). Hyperbolic cones contain homogeneous cones as a subclass. For more details see [1, 14, 9] and references therein.

Faces of a closed convex cone Let \(\mathcal{K} \subseteq \mathcal{E} \) be a closed convex cone. A convex subset \(\mathcal{F} \subseteq \mathcal{K} \) is a *face* of \(\mathcal{K} \), denoted by \(\mathcal{F} \preceq \mathcal{K} \), if

\[
x \in \mathcal{F}, \ 0 \preceq_{\mathcal{K}} y \preceq_{\mathcal{K}} x \ \Rightarrow \ \text{cone} \{ \{ y \} \} \subseteq \mathcal{F},
\]

where \(\preceq_{\mathcal{K}} \) denotes the partial order with respect to \(\mathcal{K} \), that is, \(x_1 \preceq_{\mathcal{K}} x_2 \) means that \(x_2 - x_1 \in \mathcal{K} \). Equivalently, \(\mathcal{F} \preceq \mathcal{K} \) if \(x + y \in \mathcal{F}, x \in \mathcal{K} \), and \(y \in \mathcal{K} \) implies that \(x \in \mathcal{F} \) and \(y \in \mathcal{F} \). If \(\mathcal{F} \preceq \mathcal{K} \) but \(\mathcal{F} \neq \mathcal{K} \), we write \(\mathcal{F} \prec \mathcal{K} \). If \(\emptyset \neq \mathcal{F} \preceq \mathcal{K} \), then \(\mathcal{F} \) is a *proper face* of \(\mathcal{K} \). Every proper face of \(\mathcal{K} \) belongs to \(\text{rb}(\mathcal{K}) \). The complementary or conjugate face of \(\mathcal{F} \preceq \mathcal{K} \), denoted by \(\mathcal{F}^c \), is defined as \(\mathcal{F}^c = \mathcal{K}^* \cap \mathcal{F}^\perp \). For \(\mathcal{C} \subseteq \mathcal{K} \), we let \(\mathcal{F}(\mathcal{C}, \mathcal{K}) \) denote the smallest face that contains \(\mathcal{C} \), i.e., \(\mathcal{F}(\mathcal{C}, \mathcal{K}) \) is the intersection of all faces containing \(\mathcal{C} \). Followings are two important properties.
about facial structure of the closed convex cone K (see [15] or [16]):

$$\mathcal{F} = \mathcal{F}(C,K) \text{ if and only if } ri(C) \subseteq ri(\mathcal{F});$$ (2.1)

$$U := \{ri(\mathcal{F}), \mathcal{F} \prec K\} \text{ is a partition of } rb(K).$$ (2.2)

Here, (2.2) means that the elements of U are pairwise disjoint and cover $bd(K)$. Due to (2.1), it holds for any $\bar{x} \in ri(C)$ that

$$F(C,K) = \{y \in K : \alpha \bar{x} - y \in K, \exists \alpha > 0\}.\quad (2.3)$$

The ray generated by $0 \neq x \in K$ is called an extreme ray if $cone\{x\} \subseteq K$. Every extreme ray is a one-dimensional face. And a zero-dimensional face is called an extreme point, or a vertex. We use $Exe(K)$ denote the set of extreme rays of K. For S^n_+,

$$Exe(S^n_+) = \{uu^T : 0 \neq u \in \mathbb{R}^n\}.\quad (2.4)$$

If the closed convex cone K is not pointed, then it has no extreme ray and no extreme point. Conversely (see Section 2.8, [7]),

Every proper cone is equivalent to the convex hull of its extreme points and extreme rays.

(2.5)

A face $F \subseteq K$ is an exposed face if it is the intersection of K with a hyperplane. If every face of K is exposed, we call K the facially exposed. Further, K is called a nice cone if $F^* = K^* + F^\perp$ for all $F \subseteq K$. All nice cones are facially exposed (see [11]). And all proper faces of hyperbolic cones are exposed (Theorem 23, [14]), so do homogeneous cones.

Basic notations

$X \succeq 0$: X is a nonsymmetric positive semidefinite matrix.

$K_1 \setminus K_2$: difference of two sets K_1 and K_2, i.e., $\{x \in K_1 : x \notin K_2\}$.

AS^n : the subspace of antisymmetric matrices.

$N(A)$: the null space of a linear operator or a matrix A.

K^\perp : the orthogonal complement of K in M^n.

$K^{\perp\perp}$: the orthogonal complement of K in S^n.

$span(K)$: linear space spanned by set K.

E^{ij} : the matrix in M^n with (i,j)th element being 1, all else being zeros.

$X_{\alpha\beta} : (X_{ij})_{i \in \alpha, j \in \beta}$, where α, β are subsets of $\{1, \cdots, n\}$.

I : identity matrix of size depending on the context.

$diag(X)$: a vector generated by the diagonal elements of $X \in M^n$.

X^* : the classic adjoint matrix of $X \in M^n$, i.e., the transpose of the matrix formed by taking the cofactor of each element of X.

3 The geometry of NS-psd cone

In this section, we study some basic properties of M^n_+, mainly on its facial structure of it.
Since any real square matrix $A \in \mathcal{M}^n$ has a representation in terms of its symmetric and antisymmetric parts by
\[A = \frac{A + A^T}{2} + \frac{A - A^T}{2}, \] (3.1)
the antisymmetric part vanishes under quadratic form, i.e., $u^T A - A^T u = 0 \ \forall u \in \mathbb{R}^n$, and the symmetric part has a role determining positive semidefiniteness, we easily obtain the following basic facts and proposition.

Fact 1 $X \succeq 0 \iff X^T \succeq 0 \iff X + X^T \succeq 0$.

Fact 2 $\mathcal{M}^n = S^n \oplus A S^n$.

Fact 3 $\{ X \in \mathcal{M}^n : X + X^T \in C \} = C \oplus A S^n$ for any subset $C \subseteq S^n$.

Proposition 3.1 In space \mathcal{M}^n, the following statements are true:

(i) $\mathcal{M}^n_+ = S^n_+ \oplus A S^n$.

(ii) $L(\mathcal{M}^n_+) = A S^n$.

(iii) $(\mathcal{M}^n_+)^* = S^n_+$.

Proof. (i) Direct result of Fact 3 by taking $C = S^n_+$.

(ii) Since S^n_+ is a pointed cone, i.e., S^n_+ contains no line. The biggest subspace in \mathcal{M}^n_+ is just $A S^n$ by (i).

(iii) It’s known that S^n_+ is self dual in S^n. Then using the property $(K_1 + K_2)^* = K_1^* \cap K_2^*$ for any cones K_1 and K_2 ([16]), and by item (i), we have
\[(\mathcal{M}^n_+)^* = (S^n_+ \oplus A S^n)^* = (S^n_+)^* \cap (A S^n)^* = (S^n_+)^* \cap (A S^n)^\perp = (S^n_+)^* \cap S^n = S^n_+. \]
This completes the proof. \qed

Clearly, \mathcal{M}^n_+ is not a symmetric cone since $\mathcal{M}^n_+ \neq (\mathcal{M}^n_+)^*$. Also, due to the above statement (ii), \mathcal{M}^n_+ is not a pointed cone. This implies that \mathcal{M}^n_+ is not a homogeneous cone. Actually, it is a hyperbolic cone.

Theorem 3.2 \mathcal{M}^n_+ is a hyperbolic cone and not a homogeneous cone.

Proof. Let $P(X) = \det(\frac{X + X^T}{2})$, $X \in \mathcal{M}^n$. Then $P(X)$ is a homogeneous polynomial of degree n on \mathcal{M}^n. Since a real symmetric matrix has only real eigenvalues,
\[P(X + t I) = \det(t I + \frac{X + X^T}{2}) = 0 \]
has only real roots for all $X \in \mathcal{M}^n$. Thus, $P(X)$ is a hyperbolic polynomial with respect to the identity matrix I. Let $\Lambda_1(X), \Lambda_2(X), \cdots, \Lambda_n(X)$ denote n roots of $P(\lambda I - X) = \det(\lambda I - \frac{X + X^T}{2}) = 0$. Due to the fact that
\[X \in \mathcal{M}^n_+ \iff \frac{X + X^T}{2} \in S^n_+, \]
we conclude that $\mathcal{M}^n_+ = \{ X \in \mathcal{M}^n : \Lambda_i(X) \geq 0, i = 1, 2, \cdots, n \}$, i.e., \mathcal{M}^n_+ is a hyperbolic cone of P with direction I. \qed
From (2.5), Proposition 3.1 and Theorem 3.2, we know that all proper faces of M^n_+ are exposed and M^n_+ has no extreme ray and no extreme point.

To establish the facial structure of M^n_+, we first present the following two lemmas.

Lemma 3.3 Given closed convex cones $K_1 \subset E$ and $K_2 \subset E$, $(K_1, K_2) = 0$. If $x \in K_1, y \in K_2, C_1 \subseteq K_1, C_2 \subseteq K_2$, and $x + y \in C_1 \oplus C_2$, then there holds $x \in C_1, y \in C_2$.

Proof. By the given, there exist $x_1 \in C_1, y_1 \in C_2$ such that $x + y = x_1 + y_2$. From $(\text{span}(K_1), y) = (\text{span}(K_1), y_2) = 0$, we obtain
\[
\langle \text{span}(K_1), x \rangle = \langle \text{span}(K_1), x + y \rangle = \langle \text{span}(K_1), x_1 + y_2 \rangle = \langle \text{span}(K_1), x_1 \rangle,
\]
i.e., $(\text{span}(K_1), x - x_1) = 0$. As $x - x_1 \in \text{span}(K_1)$, we have
\[
\langle x - x_1, x - x_1 \rangle = 0,
\]
which implies that $x = x_1 \in C_1$. Similarly, we have $y \in C_2$. This finishes the proof. \qed

Lemma 3.4 If $K = K_1 \oplus K_2$, where K_1, K_2 are two closed convex cones in E, and $K \ni x = x_1 + x_2, x_1 \in K_1, x_2 \in K_2$, then $F(x, K) = F(x_1, K_1) \oplus F(x_2, K_2)$.

Proof. We first show that $(F(x_1, K_1) \oplus F(x_2, K_2)) \subseteq K$. Let $F := F(x_1, K_1) \oplus F(x_2, K_2)$ and $y, z \in K$ satisfying $y + z \in F$. Then there exist $y_1, z_1 \in K_1, y_2, z_2 \in K_2$ such that $y = y_1 + y_2, z = z_1 + z_2$. So, $(y_1 + z_1) + (y_2 + z_2) = y + z \in F = F(x_1, K_1) \oplus F(x_2, K_2)$. Noting that $y_1 + z_1 \in K_1, y_2 + z_2 \in K_2$, by Lemma 3.3 we have $y_1 + z_1 \in F(x_1, K_1), y_2 + z_2 \in F(x_2, K_2)$. Using the definition of face, we immediately imply that
\[
y_1, z_1 \in F(x_1, K_1), y_2, z_2 \in F(x_2, K_2).
\]
Thus,
\[
y = y_1 + y_2 \in F, \quad z = z_1 + z_2 \in F,
\]
which means that $F = F(x_1, K_1) \oplus F(x_2, K_2)$ is a face of K.

Now we prove the desired result.

1. “\(\subseteq\)” : Noting that $x = x_1 + x_2 \in (F(x_1, K_1) \oplus F(x_2, K_2))$, we have $F(x, K) \subseteq F(x_1, K_1) \oplus F(x_2, K_2)$ due to the definition of minimal face.

2. “\(\supseteq\)” : By (2.3), we have
\[
F(x_1, K_1) = \{ y \in K_1 : \alpha x_1 - y \in K_1, \exists \alpha > 0 \},
\]
\[
F(x_2, K_2) = \{ y \in K_2 : \alpha x_2 - y \in K_2, \exists \alpha > 0 \}.
\]
Let $y_1 \in F(x_1, K_1), y_2 \in F(x_2, K_2)$. Then there exist $\alpha_1 > 0, \alpha_2 > 0$ such that $\alpha_1 x_1 - y_1 \in K_1, \alpha_2 x_2 - y_2 \in K_2$. Let $\alpha := \max\{\alpha_1, \alpha_2\}$. Thus
\[
\alpha (x_1 + x_2) - (y_1 + y_2) = (\alpha_1 x_1 - y_1) + (\alpha - \alpha_1) x_1 + (\alpha_2 x_2 - y_2) + (\alpha - \alpha_2) x_2 \in K_1 \oplus K_2,
\]
i.e.,
\[
\alpha x - (y_1 + y_2) \in K,
\]
which yields $y_1 + y_2 \in F(x, K)$. So $F(x_1, K_1) \oplus F(x_2, K_2) \subseteq F(x, K)$. The proof is complete. \qed
Utilizing Lemma 3.4, we give out the following results.

Theorem 3.5 In space \mathcal{M}^n, the following statements are true:

1. $(\mathcal{F} \oplus AS^n) \leq \mathcal{M}^n_+, \forall \mathcal{F} \leq S^n_+; \text{ adversely, } \forall \mathcal{F} \leq \mathcal{M}^n_+, \exists \mathcal{F}_1 \leq S^n_+ \text{ s.t. } \mathcal{F} = \mathcal{F}_1 \oplus AS^n$.

2. $(\mathcal{F}, \mathcal{M}^n_+) = \{Y \geq 0 : N(Y + Y^T) \supseteq N(X + X^T), X \in \mathcal{M}^n_+ \}$.

3. $\mathcal{F}^* = (\mathcal{M}^n_+)^* + \mathcal{F}^\perp$, for any $\mathcal{F} \leq \mathcal{M}^n_+$.

4. $bd(\mathcal{M}^n_+) = bd(S^n_+) \oplus AS^n$.

Proof. We present two existing results in \mathcal{M}^n (see [7] or [21]):

\begin{equation}
\mathcal{F}(X, S^n_+) = \{Y \in S^n_+ : N(Y) \supseteq N(X)\}, \tag{3.2}
\end{equation}

\begin{equation}
\mathcal{F}^* = S^n_+ + \mathcal{F}^\perp, \forall \mathcal{F} \subseteq S^n_+. \tag{3.3}
\end{equation}

Then we prove (i)-(iv):

(i) Let $\mathcal{F} \leq S^n_+$ and take $X \in \mathcal{M}^n$ such that $\frac{X + XT}{2} \in ri(\mathcal{F})$. Due to (2.1), we have $\mathcal{F} = \mathcal{F}(\frac{X + XT}{2}, S^n_+)$. Note that for any subspace $\mathcal{L} \subset \mathcal{M}^n$, $\mathcal{F}(X, \mathcal{L}) = \mathcal{L}, \forall X \in \mathcal{L}$. From Lemma 3.4, we obtain

\begin{align*}
\mathcal{F}(X, \mathcal{M}^n_+) &= \mathcal{F}(\frac{X + XT}{2} + \frac{X - XT}{2}, \mathcal{M}^n_+) \\
&= \mathcal{F}(\frac{X + XT}{2}, S^n_+) \oplus \mathcal{F}(\frac{X - XT}{2}, AS^n) \\
&= \mathcal{F} \oplus AS^n.
\end{align*}

That is, $\mathcal{F} \oplus AS^n \leq \mathcal{M}^n_+$.

Adversely, for each $\mathcal{F} \subseteq \mathcal{M}^n_+$, taking $Y \in ri(\mathcal{F})$, we have $\mathcal{F} = \mathcal{F}(Y, \mathcal{M}^n_+) = \mathcal{F}(\frac{Y + Y^T}{2}, S^n_+) \oplus AS^n = \mathcal{F}_1 \oplus AS^n$ where $\mathcal{F}_1 = \mathcal{F}(\frac{Y + Y^T}{2}, S^n_+)$.

(ii) By Lemma 3.4, Fact 3 and (3.2), we have

\begin{align*}
\mathcal{F}(X, \mathcal{M}^n_+) &= \mathcal{F}(\frac{X + XT}{2}, S^n_+) \oplus \mathcal{F}(\frac{X - XT}{2}, AS^n) \\
&= \mathcal{F}(X + XT, S^n_+) \oplus AS^n \\
&= \{Y \in \mathcal{M}^n : Y^T \in \mathcal{F}(X + XT, S^n_+)\} \\
&= \{Y \geq 0 : N(Y + Y^T) \supseteq N(X + X^T)\}.
\end{align*}

(iii) Let $\mathcal{F} \leq \mathcal{M}^n_+$. Due to above result (i), there exists $\mathcal{F}_1 \leq S^n_+$ such that $\mathcal{F} = \mathcal{F}_1 \oplus AS^n$. By (3.3), we have $\mathcal{F}^* = (\mathcal{F}_1 \oplus AS^n)^* = \mathcal{F}_1^* \cap S^n_+ = S^n_+ + \mathcal{F}_1^\perp$. Moreover, $(\mathcal{M}^n_+)^* + \mathcal{F}^\perp = S^n_+ + (\mathcal{F}_1 \oplus AS^n)^\perp = S^n_+ + (\mathcal{F}_1^\perp \cap S^n_+) = S^n_+ + \mathcal{F}_1^\perp$. Hence, $\mathcal{F}^* = (\mathcal{M}^n_+)^* + \mathcal{F}^\perp$.

(iv) By (2.2), the boundary $bd(\mathcal{M}^n_+)$ consists of all the relative interior of proper faces in \mathcal{M}^n_+. Using the result (i), we immediately get the result (iv). □

Theorem 3.5 (iii) tells us that \mathcal{M}^n_+ is a nice cone in \mathcal{M}^n. And the fact $bd(\mathcal{M}^n_+) = bd(S^n_+) \oplus AS^n$ from Theorem 3.5 (iv) implies that $int(\mathcal{M}^n_+) = int(S^n_+) \oplus AS^n$, which further means that for any given matrix $X \in \mathcal{M}^n_+$, X belongs to \mathcal{M}^n_+ if and only if $(X + X^T)$ is invertible.

From Proposition 3.1, Theorems 3.2 and 3.5, we can see the difference between the psd cone and the NS-psd cone in geometry.
4 Relation with P_0-matrix cone

A matrix $X \in \mathcal{M}^n$ is said to be a P_0 (resp. P)-matrix if all its principal minors are nonnegative (resp. positive). Let \mathcal{P}_0 and \mathcal{P} denote the sets of P_0-matrices and P-matrices respectively [10], i.e.,

$$
\mathcal{P}_0 := \{ X \in \mathcal{M}^n : \det(X_{\alpha\alpha}) \geq 0, \ \forall \ \alpha \subseteq \{1, \ldots, n\} \},
\mathcal{P} := \{ X \in \mathcal{M}^n : \det(X_{\alpha\alpha}) > 0, \ \forall \ \alpha \subseteq \{1, \ldots, n\} \}.
$$

Then, they have following properties ([10], or see Section 3, [5]):

- $X \in \mathcal{P}_0 \iff \forall \ \alpha \subseteq \{1, \ldots, n\}$, all real eigenvalues of $X_{\alpha\alpha}$ are nonnegative.
- $X \in \mathcal{P} \iff \forall \ \alpha \subseteq \{1, \ldots, n\}$, all real eigenvalues of $X_{\alpha\alpha}$ are positive.
- $X \in \mathcal{P}_0 \iff \ \forall \ \varepsilon > 0, \ X + \varepsilon I \in \mathcal{P}$.

Further, there exist

(i) $\mathcal{P}_0 \cap S^n = S^n_+,$ $\mathcal{P} \cap S^n = S^n_{++}$,
(ii) $\mathcal{P}_0 \supset M^n_+, \ \mathcal{P} \supset M^n_{++}$,
(iii) $\mathcal{P} = \text{int}(\mathcal{P}_0)$.

Obviously, \mathcal{P}_0 is a cone in \mathcal{M}^n, but it’s not convex. For example, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ are P_0 matrices, but their sum $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ doesn’t belong to \mathcal{P}_0.

Followings are some basic facts about geometry of \mathcal{P}_0.

Proposition 4.1 The following statements are right:

(i) $\text{conv}(\mathcal{P}_0) = \text{cone}(\mathcal{P}_0) = \{ X \in \mathcal{M}^n : \text{diag}(X) \geq 0 \}$.
(ii) $\text{bd}(M^n_+) \not\subseteq \mathcal{P}$, $\text{bd}(M^n_+) \cap \mathcal{P} \neq \emptyset$.

Proof. (i) Given matrices $E^{ij}, 1 \leq i, j \leq n$ and $-E^{kl}, 1 \leq k \neq l \leq n$. It’s trivial that they are all P_0-matrices. Thus

$$
\text{conv}(\mathcal{P}_0) = \text{cone}(\mathcal{P}_0) \supseteq \text{cone}(\{ E^{ij}, 1 \leq i, j \leq n \} \cup \{ -E^{kl}, 1 \leq k \neq l \leq n \})
= \{ \sum_{1 \leq i,j \leq n} \lambda_{ij}E^{ij} + \sum_{1 \leq k \neq l \leq n} \mu_{kl}(-E^{kl}) : \lambda_{ij}, \mu_{kl} \geq 0, \forall i, j, k, l \}
= \{ \sum_{1 \leq i \leq n} \lambda_{ii}E^{ii} + \sum_{1 \leq i \neq j \leq n} \eta_{ij}E^{ij} : \eta_{ij} \in \mathbb{R}, \lambda_{ii} \geq 0, \forall i, j \}
= \{ X \in \mathcal{M}^n : \text{diag}(X) \geq 0 \}.
$$

Since every P_0-matrix must be with nonnegative diagonal elements by its definition, i.e., $\mathcal{P}_0 \subseteq \{ X \in \mathcal{M}^n : \text{diag}(X) \geq 0 \}$, there holds

$$
\text{conv}(\mathcal{P}_0) \subseteq \text{conv}(\{ X \in \mathcal{M}^n : \text{diag}(X) \geq 0 \}) = \{ X \in \mathcal{M}^n : \text{diag}(X) \geq 0 \}.
$$
Thus \(\text{conv}(P_0) = \{ X \in M^n : \text{diag}(X) \geq 0 \} \). The proof of statement (i) is complete.

(ii) By Theorem 3.5 (iv), \(bd(M^n_+) = bd(S^n_+) \oplus A S^n_+ \supset bd(S^n_+) \). Note that \(bd(S^n_+) = \{ X \in S^n_+ : \det X = 0 \} \notin P \).

We know \(bd(M^n_+) \notin P \). To prove \(bd(M^n_+) \cap P \neq \emptyset \), we just need to find an element \(X \) in \(P \) and \(bd(M^n_+) \). For example, take an upper triangular matrix

\[
X = \begin{pmatrix}
1 & 2 & \cdots & 2 \\
& \ddots & \ddots & \vdots \\
& & \ddots & 2 \\
& & & 1
\end{pmatrix}
\]

\(\in P \). Then \(X + X^T \) belongs to \(bd(S^n_+) \), which means \(X \in bd(M^n_+) \). This completes the proof. \(\Box \)

Since \(P_0 \) is not a convex cone, we are interested in the maximal convex subcone contained in \(P_0 \) whose definition is introduced as below.

Definition 4.2 Given a cone \(C \subseteq E \). A subset \(D \subseteq C \) is said to be a maximal convex subcone of \(C \) if it is a convex cone and there are no other convex cones in \(C \) containing \(D \). In other words, there isn’t such \(x \in C \setminus D \) that \(\text{cone}(x \cup D) \subseteq C \).

Because the convexity for a cone is equivalent to the closedness under nonnegative linear combination of any two elements in it, by the above definition, a convex cone \(D \) is a maximal convex subcone of \(C \) if and only if

\[
\forall x \in (C \setminus D), \exists y \in D \text{ such that } x + y \notin C. \tag{4.1}
\]

In other words, a convex cone \(D \) is a maximal convex subcone of \(C \) if and only if

\[
x + y \in C, \forall y \in D \Rightarrow x \in D. \tag{4.2}
\]

The implication (4.2) tells us that \(D \) can’t be expanded to a larger convex cone than itself in \(C \).

Obviously, if cone \(C \) is not empty, the maximal convex subcone of \(C \) must exist. And, for a convex cone, its maximal convex subcone is just itself. For a general nonconvex cone, its maximal convex subcones are not always unique.

Now, we investigate the relationship between the NS-psd cone and \(P_0 \)-matrix cone in low-dimensional space \(M^2 \).

Proposition 4.3 Let \(X \in M^2 \). The following statements are true:

(i) \(\det(X + dd^T) = \det X + d^T X^* d, \forall d \in \mathbb{R}^2 \).
(ii) \(X \succeq 0 \iff X^* \succeq 0 \iff \det(X + dd^T) \geq 0, \forall d \in \mathbb{R}^2 \).
(iii) \(M^2_+ \) is a maximal convex subcone of \(P_0 \).
Proof. (i) For any $d \in \mathbb{R}^2$, expanding $\det(X + dd^T)$, we have

$$
\det(X + dd^T) = \det \begin{pmatrix} X_{11} + d_1 d_1 & X_{12} + d_1 d_2 \\ X_{21} + d_2 d_1 & X_{22} + d_2 d_2 \end{pmatrix}
$$

$$
= (X_{11}X_{22} - X_{12}X_{21}) + X_{11}d_2^2 - (X_{12} + X_{21})d_1d_2 + X_{22}d_1^2
$$

$$
= \det X + d^T \begin{pmatrix} X_{22} & -X_{12} \\ -X_{21} & X_{11} \end{pmatrix} d
$$

$$
= \det X + d^T X^* d.
$$

(ii) The first “\iff” is due to the following fact:

$$
X^* = \begin{pmatrix} X_{22} & -X_{12} \\ -X_{21} & X_{11} \end{pmatrix} \succeq 0
$$

$$
\iff \begin{pmatrix} X_{22} & -\frac{X_{12} + X_{21}}{2} \\ -\frac{X_{12} + X_{21}}{2} & X_{11} \end{pmatrix} \succeq 0
$$

$$
\iff \begin{pmatrix} X_{11} & X_{12} + X_{21} \\ X_{12} + X_{21} & X_{22} \end{pmatrix} \succeq 0
$$

$$
\iff \frac{X + X^T}{2} \succeq 0 \iff X \succeq 0.
$$

For the second “\iff”, the necessity is due to

$$
X^* \succeq 0 \Rightarrow X \succeq 0 \Rightarrow X + dd^T \succeq 0, \forall d \in \mathbb{R}^2 \Rightarrow \det(x + dd^T) \geq 0, \forall d \in \mathbb{R}^2.
$$

For the sufficiency, by (i), we have

$$
\det X + d^T X^* d \geq 0, \forall d \in \mathbb{R}^2.
$$

which implies

$$
d^T X^* d \geq 0, \forall d \in \mathbb{R}^2,
$$

otherwise, if $d^T X^* d < 0$ for some $\hat{d} \in \mathbb{R}^2$, then

$$
(\lambda \hat{d})^T X^* (\lambda \hat{d}) = \lambda^2 \hat{d}^T X^* \hat{d} \to -\infty, \text{ when } \lambda \to \infty.
$$

Thus $X^* \succeq 0$. This completes the proof of statement (ii).

(iii) In \mathcal{M}^2, suppose that \mathcal{M}^2_+ is not a maximal convex subcone of \mathcal{P}_0. Then by (4.1),

$$
\exists X \in (\mathcal{P}_0 \setminus \mathcal{M}^2_+), \text{ s.t. } X + Y \in \mathcal{P}_0, \forall Y \in \mathcal{M}^2_+.
$$

Hence, for all $d \in \mathbb{R}^2$, $X + dd^T \in \mathcal{P}_0$, i.e., $\det(X + dd^T) \geq 0$. By (ii), we get $X \succeq 0$, which contradicts the known fact $X \in (\mathcal{P}_0 \setminus \mathcal{M}^2_+)$. So we conclude that \mathcal{M}^2_+ is a maximal convex subcone of \mathcal{P}_0 in \mathcal{M}^2. \square
We’ll try to generalize the above results to high-dimensional space \(M^n (n > 2) \) in the rest of this section.

Proposition 4.4 Let \(X \in M^n \) with \(n > 2 \). The following statements hold:

(i) \(\det(X + dd^T) = \det X + d^T X d, \ \forall d \in \mathbb{R}^n. \)

(ii) If \(\det X > 0 \), then

\[X \geq 0 \iff X^* \geq 0 \iff \det(X + dd^T) \geq 0, \forall d \in \mathbb{R}^n. \]

Proof. (i) Clearly, \((X + dd^T)_{ij} = X_{ij} + d_i d_j, \ \forall i, j = 1, \ldots, n. \) Then

\[
\det(X + dd^T) = \sum_{j_1,j_2,\ldots,j_n} (-1)^{\tau(j_1,j_2,\ldots,j_n)} (X_{1j_1} + d_1 d_{j_1})(X_{2j_2} + d_2 d_{j_2}) \cdots (X_{nj_n} + d_n d_{j_n})
\]

\[
= \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \sum_{k=0,\ldots,n} \sum_{\tau_1,\tau_2,\ldots,\tau_k} (X_{\iota_1,k_1} X_{\iota_2,k_2} \cdots X_{\iota_k,k_k} d_{k+1} d_{j_{k+1}} \cdots d_n d_{j_n}) \right]
\]

\[
= \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \prod_{i=1}^n X_{ij_i} + \sum_{i=1}^n d_{d_{j_i}} \sum_{k=1}^{n-2} \sum_{\{\iota_1,\ldots,\iota_k\} \subseteq \{1,\ldots,n\}} \left(\prod_{t \in \mathcal{N} \setminus \{1,\ldots,k\}} d_{t_{j_t}} \right) \left(\prod_{t \in \{1,\ldots,k\}} X_{t_{j_t}} \right) \right]
\]

\[
= \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \prod_{i=1}^n X_{ij_i} \right] + \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \prod_{i=1}^n d_{d_{j_i}} \right]
\]

\[
+ \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \sum_{k=1}^{n-2} \sum_{\{\iota_1,\ldots,\iota_k\} \subseteq \{1,\ldots,n\}} \left(\prod_{t \in \mathcal{N} \setminus \{1,\ldots,k\}} d_{t_{j_t}} \right) \left(\prod_{t \in \{1,\ldots,k\}} X_{t_{j_t}} \right) \right]
\]

\[
+ \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \sum_{i=1}^n d_{d_{j_i}} \prod_{t \neq i} X_{t_{j_t}} \right]
\]

\[
= \det X + \det dd^T + \sum_{k=1}^{n-2} \sum_{\{\iota_1,\ldots,\iota_k\} \subseteq \{1,\ldots,n\}} \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} \left(\prod_{t \in \mathcal{N} \setminus \{1,\ldots,k\}} d_{t_{j_t}} \right) \left(\prod_{t \in \{1,\ldots,k\}} X_{t_{j_t}} \right) \right]
\]

\[
+ \sum_{i=1}^n \sum_{j_1,j_2,\ldots,j_n} \left[(-1)^{\tau(j_1,j_2,\ldots,j_n)} d_{d_{j_i}} \prod_{t \neq i} X_{t_{j_t}} \right]
\]

\[
= \det X + \det dd^T + \sum_{k=1}^{n-2} \sum_{\{\iota_1,\ldots,\iota_k\} \subseteq \{1,\ldots,n\}} A_{\{1,\ldots,k\}} + \sum_{i=1}^n B_i, \quad \text{(4.3)}
\]
where, \(j_1 j_2 \cdots j_n \) is a permutation of \(12 \cdots n \), \(\tau(j_1 j_2 \cdots j_n) \) denotes the inverse ordinal number of this permutation, \(\mathcal{N} \) denotes the set \(\{1, 2, \cdots, n\} \), and
\[
A_{\{l_1, \cdots, l_k\}} := \sum_{j_1 j_2 \cdots j_n} \left((-1)^{\tau(j_1 j_2 \cdots j_n)} \prod_{t \in \mathcal{N} \setminus \{l_1, \cdots, l_k\}} d_{t j_i} \prod_{t \in \{l_1, \cdots, l_k\}} X_{t j_i} \right),
\]
\[
B_i := \sum_{j_1 j_2 \cdots j_n} \left((-1)^{\tau(j_1 j_2 \cdots j_n)} d_{i j_i} \prod_{t \neq i} X_{t j_i} \right).
\]

Note that, \(A_{\{l_1, \cdots, l_k\}} = \det Y \), where \(Y = (Y_{ij})_{n \times n} \), and \(Y_{ij} = \left\{ \begin{array}{cl} X_{t j_i}, & t \in \{l_1, \cdots, l_k\} \\ d_{i j_i}, & t \in \mathcal{N} \setminus \{l_1, \cdots, l_k\} \end{array} \right\} \).

When \(1 \leq k \leq n - 2 \), \(Y \) has at least two rows whose components are proportional. Thus
\[
A_{\{l_1, \cdots, l_k\}} = \det Y = 0, \quad \forall 1 \leq k \leq n - 2.
\]

Meanwhile,
\[
B_i = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} X_{1 j_1} \cdots X_{l_{j_i} - 1 j_i} d_{i j_i} d_{j_i j_i} X_{i + 1 j_i + 1} \cdots X_{n j_n}
\]
\[
= \det \begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix}
\]
\[
= d_i d_1 (X^*)_{1i} + \cdots + d_i d_n (X^*)_{ni} \quad \text{(expanding by the } i\text{-th row),}
\]
from which we conclude that
\[
\sum_{i=1}^{n} B_i = \sum_{1 \leq i, j \leq n} (X^*)_{ij} d_i d_j = d^T X^* d.
\]

Above all, due to (4.3), we obtain \(\det(X + d d^T) = \det X + d^T X^* d \).

(ii) The first \("\leftrightarrow" \): If \(X \geq 0 \), then \(X + d d^T \geq 0 \) for all \(d \in \mathbb{R}^n \). Thus \(\det(X + d d^T) \geq 0 \), for all \(d \in \mathbb{R}^n \). By statement (i), we have
\[
\det X + d^T X^* d \geq 0, \forall d \in \mathbb{R}^n \Rightarrow d^T X^* d \geq 0, \forall d \in \mathbb{R}^n \Rightarrow X^* \succeq 0.
\]

If \(X^* \succeq 0 \), applying the above implication again, we have \((X^*)^* \succeq 0 \). Since \(\det X > 0 \) and
\[
(X^*)^* = \det X^* \cdot (X^*)^{-1} = \det[\det X \cdot X^{-1}] \cdot (\det X \cdot X^{-1})^{-1} = (\det X)^{n-2} X,
\]
we have \(X \succeq 0 \).

The second \("\leftrightarrow" \): By (i) and the first \("\leftrightarrow" \), we easily obtain the desired result. \(\square \)
Proposition 4.4 can be generalized to any principal submatrix of X by replacing X with X_{aa} ($\alpha \subset \{1, \ldots, n\}$). And Proposition 4.4 (i) is the generalization of Proposition 4.3 (i) to case $n > 2$. However, Proposition 4.3 (ii) is no longer correct for $n > 2$, because $\text{rank}(X^*) = 0$ whenever $\text{rank}(X) \leq n - 2$, which means “$X^* \succeq 0 \Rightarrow X \succeq 0$” for $n > 2$. Coming with it, is it still true that M_n^α is a maximal convex subcone of P_0 for general n? The answer is affirmative.

In order to prove it, we present several basic facts on theory of maximal convex subcones.

Let $Mcs(l, C)$ denote the collection of maximal convex subcones of C that contain l, where $l \subset C$, C is a cone in E. And we call D a maximal convex cone generated by l in C if $D \in Mcs(l, C)$. Since $\text{cone}(l)$ is the smallest convex cone containing l, every maximal convex cone generated by l in C (if it exists) contains $\text{cone}(l)$ as a subset, the maximal convex cones generated by l in C equal the maximal convex cones generated by $\text{cone}(l)$ in C, i.e.,

$$Mcs(l, C) = Mcs(\text{cone}(l), C).$$

(4.4)

Apparently, $Mcs(l, C) = \{\emptyset\}$ if $\text{cone}(l) \not\subset C$. Two evident facts can be directly derived from Definition 4.2:

(i) If $l_1 \subseteq l_2$, then $Mcs(l_1, C) \supseteq Mcs(l_2, C)$. \hspace{1cm} (4.5)

(ii) If $D \in Mcs(l, C)$, $D \subseteq K \subseteq C$, and K is a convex cone, then $K = D$. \hspace{1cm} (4.6)

Lemma 4.5 Suppose that $Mcs(l, C) = \{D\}$. Then the following statements hold:

(i) $Mcs(D_1, C) = \{D\}$, for any subset $D_1 \subset C$ such that $l \subseteq D_1 \subseteq D$.

(ii) If l is a convex cone, then $x + y \in C$, $\forall y \in l \Rightarrow x \in D$.

Proof. (i) By the fact $Mcs(l, C) = \{D\}$ and (4.5), we have

$$\{D\} = Mcs(D, C) \subseteq Mcs(D_1, C) \subseteq Mcs(l, C) = \{D\}.$$

So we get the proof of statement (i).

(ii) By contradiction, suppose that $x \notin D$ and $x + y \in C$ for any $y \in l$. Since l is a convex cone and C is a cone, it follows that, for any nonnegative integer k,

$$\{\mu x + \sum_{i=1}^{k} \lambda_i y_i : y_i \in l, \mu \geq 0, \lambda_i \geq 0, i = 1, \ldots, k\} \subseteq C.$$

In other words,

$$\text{cone}(\{x\} \cup l) \subseteq C.$$

Since $\text{cone}(\{x\} \cup l)$ is a convex cone and $\text{cone}(\{x\} \cup l) \supset l$, there exists $D_1 \in Mcs(l, C)$ such that $D_1 \supseteq \text{cone}(\{x\} \cup l)$. Noting that $x \notin D$, we know $D_1 \neq D$, which contradicts $Mcs(l, C) = \{D\}$. So we get the proof of statement (ii).
Lemma 4.6 Suppose that $\mathcal{Mcs}(l, C) \neq \{\emptyset\}$, where $ri(C) = ri(cl(C))$ and $l = ri(l) \subseteq ri(C)$. Let K be a subset of E. If $D_1 \subseteq K$ holds for any $D_1 \in \mathcal{Mcs}(l, C)$, then $D_2 \subseteq cl(K)$ holds for any $D_2 \in \mathcal{Mcs}(l, cl(C))$.

Proof. By contradiction, we assume that there exists $\hat{D}_2 \in \mathcal{Mcs}(l, cl(C))$ such that $\hat{D}_2 \not\subseteq cl(K)$. We’ll show that $ri(\hat{D}_2) \not\subseteq K$.

If $ri(\hat{D}_2) \subseteq K$, by convexity of \hat{D}_2, we have

$$\hat{D}_2 \subseteq cl(\hat{D}_2) = cl(ri(\hat{D}_2)) \subseteq cl(K),$$

which contradicts $\hat{D}_2 \not\subseteq cl(K)$. So $ri(\hat{D}_2) \not\subseteq K$.

Note that $ri(\hat{D}_2) \subseteq ri(cl(C)) = ri(C) \subseteq C$ and $ri(\hat{D}_2)$ is a convex cone which contains $ri(l) = l$. So there exists $\hat{D}_1 \in \mathcal{Mcs}(l, C)$ such that $ri(\hat{D}_2) \subseteq \hat{D}_1$. Since $ri(\hat{D}_2) \not\subseteq K$, we have $\hat{D}_1 \not\subseteq K$. This contradicts the precondition that $\hat{D}_1 \subseteq K$ since $\hat{D}_1 \in \mathcal{Mcs}(l, C)$. The proof is complete.

Utilizing the Lemma 4.6 and Proposition 4.4, we are ready to prove the main result of this section.

Theorem 4.7 M^n_+ is the unique maximal convex subcone generated by S^n_{++} in P_0.

Proof. First we show that

$$\mathcal{D} \subseteq M^n_+ \text{ for any } \mathcal{D} \in \mathcal{Mcs}(S^n_{++}, P). \quad \text{(4.8)}$$

For any $\mathcal{D} \in \mathcal{Msc}(S^n_{++}, P)$, take $0 \neq d \in \mathbb{R}^n$. There exists $n - 1$ vectors $v_1, \cdots, v_{n-1} \in \mathbb{R}^n$ such that

$$\begin{bmatrix} v_1, \cdots, v_{n-1}, \frac{d}{\|d\|_2} \end{bmatrix}$$

forms an orthogonal matrix. In this case, for any $\lambda > 0, \lambda_i > 0, i = 1, \cdots, n - 1, \sum_{i=1}^{n-1} \lambda_i v_i v_i^T + \lambda d d^T$ is a symmetric matrix whose eigenvalues are all positive, i.e.,

$$\{ \sum_{i=1}^{n-1} \lambda_i v_i v_i^T + \lambda d d^T : \lambda_i > 0, \lambda > 0, i = 1, \cdots, n - 1 \} \subset S^n_{++}.$$

Taking any $X \in \mathcal{D}$, by the convexity of \mathcal{D} and $S^n_{++} \subseteq \mathcal{D}$, we have

$$\{ X + \sum_{i=1}^{n-1} \lambda_i v_i v_i^T + \lambda d d^T : \lambda_i > 0, \lambda > 0, i = 1, \cdots, n - 1 \} \subset \mathcal{D},$$

which implies that

$$\det(X + \sum_{i=1}^{n-1} \lambda_i v_i v_i^T + \lambda d d^T) > 0, \forall \lambda_i > 0, \lambda > 0, i = 1, \cdots, n - 1.$$
Taking limit when $\lambda_i \to 0$, $i = 1, \ldots, n - 1$, and fixing $\lambda = 1$, we have
\[
\det(X + dd^T) \geq 0.
\]
By the arbitrariness of $d \in \mathbb{R}^n$, we obtain
\[
\det(X + dd^T) \geq 0, \text{ for all } d \in \mathbb{R}^n.
\]
For $n = 2$, this implies $X \succeq 0$ by Proposition 4.3. For $n > 2$, noting that $X \in \mathcal{P}$ means $\det X > 0$, by Proposition 4.4 (ii), we also get $X \succeq 0$. Hence, $D \subseteq \mathcal{M}^n_+.$

Seeing that $ri(\mathcal{P}) = ri(cl(\mathcal{P}))$ and $S^n_{++} = ri(S^n_+) \subset ri(\mathcal{P}_0) = \mathcal{P}$, then applying Lemma 4.6 to (4.8), we have
\[
D \subseteq cl(\mathcal{M}^n_+) \text{ for any } D \in \mathcal{M}cs(S^n_{++}, cl(\mathcal{P})),
\]
\[
\text{i.e.,} \quad D \subseteq \mathcal{M}^n_+ \text{ for any } D \in \mathcal{M}cs(S^n_{++}, \mathcal{P}_0). \tag{4.9}
\]
Since \mathcal{M}^n_+ is a convex cone and $\mathcal{M}^n_+ \subseteq \mathcal{P}_0$, applying the fact (4.6) to (4.9), it holds that
\[
D = \mathcal{M}^n_+ \text{ for any } D \in \mathcal{M}cs(S^n_{++}, \mathcal{P}_0).
\]
That is to say
\[
\mathcal{M}cs(S^n_{++}, \mathcal{P}_0) = \{\mathcal{M}^n_+\}. \tag{4.10}
\]
This completes the proof. \square

Consequently, we obtain the following corollary.

Corollary 4.8 Let $X \in \mathcal{M}^n$. The following statements are true:

(i) $X \in \mathcal{M}^n_+$ if and only if $X + Y \in \mathcal{P}_0$ for all $Y \in S^n_{++}$, i.e.,
\[
X \succeq 0 \Leftrightarrow \det(X + Y)_{\alpha\alpha} \geq 0, \forall Y \in S^n_{++}, \forall \alpha \subseteq \{1, \cdots, n\}.
\]

(ii) $\mathcal{M}cs(Exe(S^n_+), \mathcal{P}_0) = \{\mathcal{M}^n_+\}$.

Proof. (i) The necessity of statement (i) is trivial. The sufficiency is the straight result of (4.10) and Lemma 4.5 (ii).

(ii) Combining with (4.10) and Lemma 4.5 (i), we have
\[
\mathcal{M}cs(S^n_+, \mathcal{P}_0) = \{\mathcal{M}^n_+\}.
\]
And due to the fact that $cone(Exe(S^n_+)) = cone(\{dd^T : d \in \mathbb{R}^n\}) = S^n_+$ and by (4.4), we have
\[
\mathcal{M}cs(S^n_+, \mathcal{P}_0) = \mathcal{M}cs(Exe(S^n_+), \mathcal{P}_0).
\]
Hence
\[
\mathcal{M}cs(Exe(S^n_+), \mathcal{P}_0) = \{\mathcal{M}^n_+\}.
\]
The proof is complete. \square
However, \(M_{++}^n \) is not a maximal convex subcone of \(\mathcal{P} \).

Theorem 4.9 \(M_{++}^n \) is not a maximal convex subcone of \(\mathcal{P} \). Therefore, if \(X \in \mathcal{P} \), then
\[
\det(X + Y)_{\alpha\alpha} > 0, \forall \ Y \in S^n_{++}, \forall \alpha \subseteq \{1, \cdots, n\} \neq X > 0.
\]

Proof. By Proposition 4.1 (ii), \(bd(M_{++}^n) \cap \mathcal{P} \neq \emptyset \). Let \(X \in bd(M_{++}^n) \cap \mathcal{P} \). Then \(cone(\{X\}) \subset bd(M_{++}^n) \cap \mathcal{P} \). Moreover,
\[
M_{++}^n \subset (M_{++}^n \cup cone(\{X\})) \subset \mathcal{P},
\]
where \((M_{++}^n \cup cone(\{X\}))\) is a convex cone since for any \(Y \in M_{++}^n, Z \in bd(M_{++}^n), Y + Z \in M_{++}^n \). Thus, \(M_{++}^n \) is not a maximal convex subcone of \(\mathcal{P} \).

We end this section by stating some other maximal convex subcones in \(\mathcal{P}_0 \).

Theorem 4.10 Let \(\mathcal{M}_u = \{X \in M^n : \text{\text{diag}}(X) \geq 0, X_{ij} = 0, i > j\} \), \(\mathcal{M}_l = \{X \in M^n : \text{\text{diag}}(X) \geq 0, X_{ij} = 0, i < j\} \). Then both \(\mathcal{M}_u \) and \(\mathcal{M}_l \) are maximal convex subcones of \(\mathcal{P}_0 \).

Proof. It’s clear that \(\mathcal{M}_u, \mathcal{M}_l \) are two convex cones in \(M^n \). And for any \(X \in \mathcal{M}_u \) or \(\mathcal{M}_l \), any \(\alpha \subseteq \{1, \cdots, n\} \), the eigenvalues of \(X_{\alpha\alpha} \) are exactly the diagonal elements of \(X_{\alpha\alpha} \). So all eigenvalues of \(X_{\alpha\alpha} \) with \(\alpha \subseteq \{1, \cdots, n\} \) are nonnegative, which means \(X \in \mathcal{P}_0 \). This further implies that \(\mathcal{M}_u, \mathcal{M}_l \) are two convex subcones of \(\mathcal{P}_0 \).

Next, we just prove the maximal convexity of \(\mathcal{M}_u \) in \(\mathcal{P}_0 \). The proof for \(\mathcal{M}_l \) is in the similar way. As we know, the maximal convexity of \(\mathcal{M}_u \) in \(\mathcal{P}_0 \) is equivalent to
\[
\forall \ X \in \mathcal{P}_0 \setminus \mathcal{M}_u, \exists Y \in \mathcal{M}_u, \text{s.t.} \ (X + Y) \notin \mathcal{P}_0.
\]

Take any \(X \in \mathcal{P}_0 \setminus \mathcal{M}_u \), which implies that \(X_{kl} \neq 0 \) for some \(k > l \). Choose \(Y \in \mathcal{M}_u \) satisfying \(X_{kl}Y_{lk} > 0 \) and \((X_{ll} + Y_{ll})(X_{kk} + Y_{kk}) < X_{kk}X_{lk} + X_{kl}Y_{lk} \). Such \(Y \) always exists because of the arbitrariness of \(Y_{lk} \) (one just needs to make \(|Y_{lk}| \) big enough such that the right hand side of the above inequality is bigger enough than the left). Let \(\alpha = \{l, k\} \), it follows
\[
\det(X + Y)_{\alpha\alpha} = \det\left(\begin{array}{ccc}
X_{ll} + Y_{ll} & X_{lk} + Y_{lk} \\
X_{kl} & X_{kk} + Y_{kk}
\end{array}\right)
= (X_{ll} + Y_{ll})(X_{kk} + Y_{kk}) - (X_{kl}X_{lk} + X_{kl}Y_{lk}) < 0,
\]
which implies \(X + Y \notin \mathcal{P}_0 \). So \(\mathcal{M}_u \) is a maximal convex subcone of \(\mathcal{P}_0 \).

Above all, the sets \(\mathcal{M}_u, \mathcal{M}_l \) and \(M_{++}^n \) are members of \(\mathcal{Mcs}(I_+, \mathcal{P}_0) \), where
\[
I_+ := \{X \in M^n : \text{\text{diag}}(X) \geq 0, X_{ij} = 0 \ \forall i \neq j\}
\]
is the intersection of \(\mathcal{M}_u, \mathcal{M}_l \) and \(M_{++}^n \). Therefore,
\[
\mathcal{Mcs}(I_+, \mathcal{P}_0) \supset \{\mathcal{M}_u, \mathcal{M}_l, M_{++}^n\} \supset \{M_{++}^n\} = \mathcal{Mcs}(S^n_{++}, \mathcal{P}_0).
\]
This inclusion is consistent with the fact (4.5), which says that the smaller \(l \) is, the larger \(\mathcal{Mcs}(l, \mathcal{C}) \) is.
5 Projection onto NS-psd cone

Let $\Pi_C : E \rightarrow E$ denote the metric projection of x onto C, where $C \subseteq E$ is a nonempty closed convex set. Then, for any $x \in E$,

$$\Pi_C(x) = \arg\min \left\{ \frac{1}{2} \|x - y\|^2 : y \in C \right\}.$$

Equivalently,

$$\langle \Pi_C(x) - y, \Pi_C(x) - x \rangle \leq 0, \forall y \in C. \quad (5.1)$$

It’s well known that $\Pi_C(\cdot)$ is unique and contractive, i.e., $\|\Pi_C(x) - \Pi_C(y)\| \leq \|x - y\|$, $\forall x, y \in E$. Let $\text{dist}(x, C) := \min \left\{ \|x - y\| : y \in C \right\}$. Then $\text{dist}(x, C) = \|x - \Pi_C(x)\|$.

For the projection onto M^n_+, Qi and Sun have already given its expression as follows (see Section 4.3, [13])

$$\Pi_{M^n_+}(X) = \Pi_{S^n_+}(\frac{X + X^T}{2}) + \frac{X - X^T}{2}. \quad (5.2)$$

From the positive homogeneity of $\Pi_K(\cdot)$ for any closed convex cone K, we immediately get

$$\text{dist}(X, M^n_+) = \frac{1}{2} \text{dist}(X + X^T, S^n_+). \quad (5.3)$$

We now discuss the tangent cone and second order tangent set of M^n_+. For the closed convex set $C \subseteq E$, the tangent cone of C at $x \in C$ is defined as (see Section 2.2.4, [4])

$$T_C(x) := \left\{ y \in E : \text{dist}(x + ty, C) = o(t), t \geq 0 \right\}.$$

And the inner and outer second order tangent sets of C at $x \in C$ in direction $h \in E$ are respectively defined by (see Section 3.2.1, [4])

$$T^{i,2}_C(x, h) := \left\{ y \in E : \text{dist}(x + th + \frac{1}{2}t^2y, C) = o(t^2), t \geq 0 \right\}$$

and

$$T^{o,2}_C(x, h) := \left\{ y \in E : \exists t_k \downarrow 0, \text{dist}(x + t_k h + \frac{1}{2}t_k^2y, C) = o(t_k^2), t_k \geq 0 \right\}.$$

Obviously $T^{i,2}_C(x, h) \subseteq T^{o,2}_C(x, h)$.

From Example 3.40 of [4], we know that in space S^n, the inner and outer second order tangent sets for S^n_+ are the same at any point and in any direction, and their explicit formulas are presented therein. For convenience, let $T^{i,2}_{S^n_+}(\cdot, \cdot)$ and $T^{o,2}_{S^n_+}(\cdot, \cdot)$ denote the tangent cone, inner and outer second order tangent sets of S^n_+ restricted in space S^n, respectively. Then $T^{i,2}_{S^n_+}(X, H) = T^{o,2}_{S^n_+}(X, H)$ for any $X \in S^n$ and any $H \in S^n$. For the tangent cone and second order tangent sets of M^n_+ in space M^n, they have the following forms.

Theorem 5.1 For any $X \in M^n$, the following statements hold:

(i) $T_{M^n_+}(X) = T^{i,2}_{S^n_+}(X + X^T) \oplus AS^n$.

(ii) $T^{o,2}_{M^n_+}(X, H) = T^{i,2}_{M^n_+}(X, H) = T^{o,2}_{S^n_+}(X + X^T, H + H^T) \oplus AS^n$.

17
The following statements hold:

\[\partial \]

Furthermore, we have the following conclusions.

\[\text{semismooth on } S \]

\[\text{directionally differentiable everywhere in } (ii) \]

\[\Pi \]

\[J \]

\[\text{with} \]

\[\text{from (5.3) and Fact 3, we have} \]

\[\text{Proof.} \]

\[F\text{-differentiable almost everywhere. Let} \]

\[x \]

\[f \]

\[\text{real vector spaces equipped with an inner product } \langle \cdot , \cdot \rangle \text{ and the induced norm } \| \cdot \|. \]

\[\text{We say that} \]

\[f : X \to Y \]

\[\text{is directionally differentiable at } \]

\[x, \] \text{and} \[f(x + h) = f(x) + f'(x; h) + o(\|h\|), \]

\[h \in X. \]

\[\text{In addition, if } f' \text{ is linear and continuous, then } f \text{ is said to be } F(\text{Fréchet})\text{-differentiable at } x. \]

\[\text{Suppose that} \]

\[f : X \to Y \]

\[\text{is a locally Lipschitz function. Thus } f \]

\[\text{is } F\text{-differentiable almost everywhere in } X \]

\[\text{from the well-known Rademacher’s theorem that every locally Lipschitz continuous function is} \]

\[F\text{-differentiable almost everywhere.} \]

\[\text{Let } D_f \text{ denote the set of points where } f \text{ is } F\text{-differentiable in } X. \]

\[\text{Then the Clarke’s generalized Jacobian of } f \text{ at } x \text{ is defined as} \]

\[\partial f(x) := \text{conv}\{\partial_B f(x)\} \]

\[\text{with} \]

\[\partial_B f(x) := \{ \lim_{k \to \infty} J f(y^k) : y^k \in D_f, y^k \to x \}, \]

\[\text{where } J f(y^k) \text{ denotes the F-derivative of } f \text{ at } y^k. \]

\[\text{Bonnans et al. [3] showed that } \Pi_{S^n} (\cdot) \text{ is directionally differentiable everywhere in } S^n. \]

\[\text{Sun and Sun [17] proved that } \Pi_{S^n} (\cdot) \text{ is strongly semismooth on } S^n. \]

\[\text{Qi and Sun [13] showed the strong semismoothness of } \Pi_{M^n} (\cdot) \text{ over } M^n. \]

\[\text{Furthermore, we have the following conclusions.} \]

\[\textbf{Theorem 5.2} \]

\[\text{The following statements hold:} \]

\[(i) \] \text{\(\Pi_{M^n} (\cdot) \) is directionally differentiable everywhere in } M^n, \text{ and the directional derivative} \]

\[\Pi'_{M^n} (X; H) = \Pi'_{S^n} \left(\frac{X+X^T}{2}; \frac{H+H^T}{2} \right) + \frac{H-H^T}{2}, \]

\[H \in M^n. \]

\[(ii) \] \text{For any } V_1 \in \partial_B \Pi_{M^n} (X) \text{ (resp. } \partial \Pi_{M^n} (X)), \text{ there exists } V_2 \in \partial_B \Pi_{S^n} \left(\frac{X+X^T}{2} \right) \text{ (resp.} \]

\[\partial \Pi_{S^n} \left(\frac{X+X^T}{2} \right)), \text{ such that} \]

\[V_1(H) = V_2 \left(\frac{H+H^T}{2} \right) + \frac{H-H^T}{2}, \]

\[H \in M^n. \]
Proof. (i) Taking $X \in M^n$, by the definition of directional derivative and from (5.2), we have

$$
\Pi'_{M^n}(X; H) = \lim_{t \downarrow 0} \frac{\Pi_{M^n}(X+tH) - \Pi_{M^n}(X)}{t} = \lim_{t \downarrow 0} \frac{\Pi_{S^n}(x^T + \frac{X+H}{2}t) - \Pi_{S^n}(\frac{X+X^T}{2} + \frac{H+H^T}{2})}{t}
$$

The result (i) is proved.

(ii) Let D_M and D_S, respectively, denote the sets of points in M^n and S^n where $\Pi_{M^n}(\cdot)$ and $\Pi_{S^n}(\cdot)$ are almost everywhere F-differentiable. Since $\Pi_{M^n}(\cdot)$ and $\Pi_{S^n}(\cdot)$ are almost everywhere F-differentiable.

Proof. Taking any $V_1 \in \partial B \Pi_{M^n}(X)$, there exists a sequence $\{X^k\}$ in D_M converging to X such that $V_1 = \lim_{k \to \infty} J \Pi_{M^n}(X^k)$. Then by (5.5), it follows that for any $H \in M^n$,

$$
V_1(H) = \lim_{k \to \infty} J \Pi_{M^n}(X^k)(H) = \lim_{k \to \infty} \Pi'_{M^n}(X^k; H) = \lim_{k \to \infty} \Pi'_{S^n}(\frac{X^k+X^T}{2}; \frac{H+H^T}{2}) + \frac{H-H^T}{2} = [\lim_{k \to \infty} J \Pi_{S^n}(\frac{X^k+X^T}{2})(\frac{H+H^T}{2}) + \frac{H-H^T}{2}].
$$

Letting $V_2 = \lim_{k \to \infty} J \Pi_{S^n}(\frac{X^k+X^T}{2})$, we obtain the desired result. Taking the convex hull of the above limit points will yield the corresponding result for $\partial \Pi_{M^n}(X)$. Here, we omit the proof.

Utilizing Theorem 5.2 and combining with the results in [17, 18, 12], we can obtain the explicit formulas for the directional derivative and Clarke's generalized Jacobian of $\Pi_{M^n}(\cdot)$.

Let $X \in M^n$ with the spectral decomposition $\frac{X+X^T}{2} = \Lambda P P^T$, where Λ is the diagonal matrix of eigenvalues of $\frac{X+X^T}{2}$ and P is a corresponding orthogonal matrix of orthonormal eigenvectors. Denote three index sets of positive, zero and negative eigenvalues of $\frac{X+X^T}{2}$, respectively, by

$$
\alpha := \{i : \lambda_i(\frac{X+X^T}{2}) > 0\}, \quad \beta := \{i : \lambda_i(\frac{X+X^T}{2}) = 0\}, \quad \gamma := \{i : \lambda_i(\frac{X+X^T}{2}) < 0\}.
$$

Rearrange Λ as

$$
\begin{bmatrix}
\Lambda_\alpha & 0 & 0 \\
0 & \Lambda_\beta & 0 \\
0 & 0 & \Lambda_\gamma
\end{bmatrix}
$$

and P as $[P_\alpha, P_\beta, P_\gamma]$, where $P_\alpha \in \mathbb{R}^{n \times |\alpha|}$, $P_\beta \in \mathbb{R}^{n \times |\beta|}$, $P_\gamma \in \mathbb{R}^{n \times |\gamma|}$. And define the matrix $U \in S^n$ with entries

$$
U_{ij} = \max\{\lambda_i(\frac{X+X^T}{2}), 0\} + \max\{\lambda_j(\frac{X+X^T}{2}), 0\} \quad \text{if } |\lambda_i(\frac{X+X^T}{2})| + |\lambda_j(\frac{X+X^T}{2})| > 0.
$$

where $0/0$ is also defined to be 1. Using Sun and Sun's results (Corollary 10 and Lemma 11,
where $\tilde{H} := P^T(H + H^T/2)P$, and \circ denotes the Hadamard product. Clearly, from the above expression (5.6) and Theorem 5.2 (i), we claim that

$$\Pi_{M^n_+}^\prime(X; H) = P \begin{bmatrix} \tilde{H}_{\alpha\alpha} & \tilde{H}_{\alpha\beta} & U_{\alpha\gamma} \odot \tilde{H}_{\alpha\gamma} \\ \tilde{H}_{\alpha\beta}^T & \Pi_{S^+_{n\mid\beta}}(H_{\beta\beta}) & 0 \\ \tilde{H}_{\alpha\gamma}^T \odot U^T_{\alpha\gamma} & 0 & 0 \end{bmatrix} + \hat{H}_{\beta\beta} \odot \tilde{H}_{\alpha\gamma}^T \odot U^T_{\alpha\gamma} \cdot 0 \cdot 0 \cdot \left(P^T + \frac{H - H^T}{2} \right).$$

Moreover we obtain:

- $\Pi_{M^n_+}^\prime(\cdot)$ is F-differentiable at $X \in M^n$ if and only if $X + X^T$ is nonsingular.
- The directional derivative $\Pi_{M^n_+}^\prime(X; \cdot)$ is F-differentiable at $H \in M^n$ if and only if $\hat{H}_{\beta\beta}$ is nonsingular.
- For any $V \in \partial B\Pi_{M^n_+}^\prime(X)$ (resp. $\partial B\Pi_{M^n_+}^\prime(\cdot)$), there exists a $W \in \partial B\Pi_{S^+_{n\mid\beta}}(0)$ (resp. $\partial B\Pi_{S^+_{n\mid\beta}}(0)$) such that

$$V(H) = P \begin{bmatrix} \hat{H}_{\alpha\alpha} & \hat{H}_{\alpha\beta} & W(H_{\beta\beta}) & U_{\alpha\gamma} \odot \hat{H}_{\alpha\gamma} \\ \hat{H}_{\alpha\beta}^T & \Pi_{S^+_{n\mid\beta}}(H_{\beta\beta}) & 0 & 0 \\ \hat{H}_{\alpha\gamma}^T \odot U^T_{\alpha\gamma} & 0 & 0 & 0 \end{bmatrix} + \hat{H}_{\beta\beta} \odot \hat{H}_{\alpha\gamma}^T \odot U^T_{\alpha\gamma} \cdot \left(P^T + \frac{H - H^T}{2} \right).$$

Conversely, for any $W \in \partial B\Pi_{S^+_{n\mid\beta}}(0)$ (resp. $\partial B\Pi_{S^+_{n\mid\beta}}(0)$), there exists a $V \in \partial B\Pi_{M^n_+}^\prime(X)$ (resp. $\partial B\Pi_{M^n_+}^\prime(\cdot)$) such that the above equation holds.

6 Conclusions

In this paper, we mainly have given a convex analysis on the NS-psd cone from three aspects that are presented in Sections 3, 4 and 5. Especially, we have given some conditions on determining the positive semidefiniteness of a nonsymmetric matrix in Propositions 4.3, 4.4 and Corollary 4.8. The research results are useful for us to study nonlinear optimization problems over the NS-psd cone, and may help us to open a typical instance for hyperbolic cone programming, where the hyperbolic cone is a research-worthy and more general kind of convex cones so far as we’ve known.

Acknowledgements

The authors thank the anonymous reviewer for helpful comments; they also thank Ziyuan Luo, Yanfang Zhang for their advice and encouragement. This work is partly supported by the National Basic Research Program of China (2010CB732501), and the National Natural Science Foundation of China (70871008).
References

