
A Time Bucket Formulation for the TSP with Time Windows

Sanjeeb Dash, Oktay Günlük

IBM Research

Andrea Lodi, Andrea Tramontani

University of Bologna

November 10, 2009

Abstract

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a
minimum-cost path visiting a set of cities exactly once, where each city must be visited within
a given time window.

We present an extended formulation for the problem based on partitioning the time windows
into sub-windows, which we call buckets. We present cutting planes for this formulation that
are computationally more effective than the ones known in the literature as they exploit the
division of the time windows into buckets. To obtain a good partition of the time windows, we
propose an iterative LP-based procedure that may produce buckets of different sizes. The LP
relaxation of this formulation yields strong lower bounds for the TSPTW and provides a good
starting point for our branch-and-cut algorithm.

We also present encouraging computational results on hard test problems from the lite-
rature, namely asymmetric instances arising from a practical scheduling application, as well
as randomly generated symmetric instances. In particular, we solve a number of previously
unsolved benchmark instances.

1 Introduction

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a
minimum-cost path visiting a set of cities exactly once, where each city must be visited within
a given time window. The problem is NP-hard as it generalizes the classical Traveling Salesman
Problem (TSP) and Savelsbergh [27] showed that even finding a feasible solution of TSPTW is
NP-complete.

The TSPTW can be found in a variety of important real-life applications such as routing,
scheduling, and manufacturing-and-delivery problems. Cook [14] informs us that many companies
that inquire about using Concorde [13], the TSP solver, are interested in time constraints. Some
recent surveys on time-constrained routing problems are given by Desrosiers et al. [16] and Cordeau
et al. [15].
Literature review. The first computational approaches for solving the TSPTW, dating back to the
nineteen eighties, were given by Christofides, Mingozzi and Toth [12] and Baker [8] and considered

1



a variant of the problem where the total schedule time has to be minimized. Both papers presen-
ted branch-and-bound schemes where the former used a so-called state-space-relaxation approach,
whereas the latter exploited a time-constrained critical-path formulation.

In the nineties, several contributions were proposed. Langevin et al. [20] addressed the problem
by using a two-commodity flow formulation within a branch-and-bound scheme. Dumas et al. [17]
proposed a dynamic-programming approach with sophisticated elimination tests to reduce the state
space, while Mingozzi, Bianco and Ricciardelli [23] presented a dynamic-programming algorithm
with a generalization of the state-space-relaxation technique which can also be applied to TSPTW
problems with precedence constraints. Also in the nineteen nineties, the problem started to receive
a lot of attention from the Constraint Programming (CP) community. Indeed, the fact that the
TSPTW has both routing and scheduling characteristics makes it suitable for CP techniques. Small
TSPTW instances were solved as subproblems of a large task assignment problem by Caseau and
Koppstein [11]. Later, the TSPTW was the main focus of a paper by Pesant et al. [24] where the
authors solved it by enriching a simple CP model with redundant constraints. A variant of the
TSPTW, called TSP with multiple Time Windows, was solved by the same authors (Pesant et al.
[25]) with basically the same algorithmic approach (and a slightly adapted model), thus showing
the flexibility of the CP paradigm.

More recently, additional approaches have been considered. Balas and Simonetti [10] proposed
a special dynamic-programming approach: under the assumption that (for some initial ordering
of the cities) city i precedes city j if j ≥ i + k (k > 0), the authors described and experimented
with an algorithm that is linear in n and exponential in k. For the problems satisfying these con-
ditions, the dynamic-programming procedure finds an optimal solution, while in other cases it can
be used as a linear time heuristic to explore an exponential-size neighborhood exactly. Ascheuer,
Fischetti and Grötschel [7] considered several formulations for the asymmetric version (ATSPTW)
of the problem (including a new one introduced in the companion paper, Ascheuer, Fischetti and
Grötschel [6]), and computationally compared them within a branch-and-cut scheme. They in-
corporated up-to-date techniques tailored for the ATSPTW such as data preprocessing, primal
heuristics, local search, and variable fixing (in addition to problem-specific separation algorithms).
Finally, Focacci, Lodi and Milano [18] proposed a hybrid algorithm merging classical Operations
Research techniques (such as reduced-cost fixing, cutting planes and Lagrangean relaxations) for
coping with the optimization aspect (the routing part), and CP propagation algorithms for the
feasibility aspect (the scheduling part).

Contribution of the paper. We present an extended formulation for the TSPTW based on a partition
of time windows into sub-windows which yields a strong LP relaxation, in the sense that the
optimal relaxation value yields strong lower bounds on the optimal value. Further, we derive valid
inequalities for this formulation, and present efficient heuristics to separate them. Finally, we
embed these inequalities in a branch-and-cut algorithm, and test the algorithm on hard problems
from the literature, namely asymmetric instances, arising from a practical scheduling application,
as well as symmetric randomly generated instances. Our results show that the partition of time

2



windows into sub-windows is effective in practice for tackling the TSPTW. We are able to solve
several previously unsolved benchmark instances.

A variety of time-window discretization methods have been in use for a while in solving rou-
ting and scheduling problems with time constraints. Wang and Regan [31, 32] recently proposed
a similar formulation for obtaining lower bounds for a vehicle routing problem, and also for the
TSPTW. However, the present paper goes further by partitioning the time windows iteratively by
solving LPs. The resulting sub-windows are then exploited to devise strong cutting planes which
are embedded in a branch-and-cut framework with special emphasis on computational performance.

The paper is organized as follows. In Section 2 we formally state the problem and present
the new extended formulation for it. Section 3 presents some valid inequalities for the proposed
formulation and discusses their connections with other inequalities which are typically used to tackle
TSPTW. Section 4 describes the separation procedures for the proposed inequalities. Section 5
gives the main ingredients of the branch-and-cut algorithm and proposes a procedure to iteratively
partition the time windows into sub-windows. Section 6 reports computational results on a set
of asymmetric and symmetric benchmark instances, comparing the proposed approach with other
effective methods from the literature. Finally, some conclusions are drawn in Section 7.

2 Problem Definition and Formulations

We now formally define the ATSPTW, the directed version of the TSPTW. Let G = (V,A),
be a directed graph where each node i ∈ V represents a city with an associated time window
Wi = [Ri, Di]. We call Ri the release time and Di the deadline of node i. Each arc (i, j) ∈ A has
an associated travel cost cij ≥ 0, and a travel time θij > 0. We assume that all data is integral.
Moreover, there are two special nodes p, q ∈ V . What we call a tour is a permutation of V that
starts with node p and ends with node q. Given a tour, we associate an arrival time and a start time
with each node as follows. The arrival and start times at p are its release time Rp. For any other
node j, the arrival time is the start time at the previous node (say i) in the tour plus θij (therefore,
the processing time at each node is 0). The start time at node i is defined as the maximum of the
arrival time at i and Ri. A tour is feasible if the start time at each node is contained in its time
window. An optimal solution to the problem is a feasible tour with minimum cost. Early arrivals
are allowed, i.e., a tour can arrive at a node before its release time, in which case the tour “waits”
until the release time of the node.

Our definition of the problem requires two special “start” and “end” nodes p and q. In some
variants of the TSPTW studied in the literature, any permutation of the nodes is allowed (subject
to time window constraints). Such instances can be translated into our setting by creating two
artificial nodes p and q, adding arcs with cost zero and travel time 1 from p to all nodes and from
all nodes to q, and setting their time windows to be Wp = [m,m] and Wq = [M, M ], where m is
less than all release times, and M is larger than all deadlines. In other variants of the TSPTW,
nodes have processing times. One can incorporate node processing times into travel times between

3



nodes to obtain the variant we consider here.
Throughout the paper we use V +(i) to denote the set of nodes j such that there is an arc from

i to j, that is, V +(i) := {j ∈ V : (i, j) ∈ A}. Similarly, V −(i) := {j ∈ V : (j, i) ∈ A}. We
next describe three mixed integer programming formulations for the problem. The first one is the
so-called Big-M Formulation [7]. The next one is called the Time Indexed Formulation, and we call
the third one the Time Bucket Formulation.

2.1 Big-M Formulation (BMF)

This formulation uses a binary variable xij for each arc (i, j) ∈ A to denote whether or not node
j follows node i in the tour. In addition, there is a variable si associated with each node i ∈ V to
represent its start time in the tour. The Big-M Formulation (BMF) is:

min
∑

(i,j)∈A

cijxij (1)

∑

j∈V +(i)

xij = 1 ∀ i ∈ V \ {q}, (2)

∑

k∈V −(i)

xki = 1 ∀ i ∈ V \ {p}, (3)

si + θij − (1− xij)Mij ≤ sj ∀ (i, j) ∈ A, (4)

Ri ≤ si ≤ Di ∀ i ∈ V, (5)

xij ∈ {0, 1} ∀ (i, j) ∈ A, (6)

where Mij = Di − Rj + θij . The constraints (2) and (3) ensure that the xij variables with value
1 in a feasible integral solution correspond to the union of a path from p to q and a collection of
directed cycles. The constraints (4) ensure that start times at the nodes are increasing along any
path (as θij > 0) and therefore directed cycles cannot exist in the solution. Finally, the constraints
(4) and (5) together ensure that the solution respects time windows and defines a feasible tour.

2.2 Time Indexed Formulation (TIF)

Time indexed formulations have been studied for routing and scheduling problems with time con-
straints starting with the early work of Appelgren [3, 4] and Levin [21]. A time indexed formulation
for the ATSPTW with time dependent travel times is given by Albiach, Sanchis and Soler [2]; their
formulation reduces to the one discussed here if the travel times are constant. In the formulation
below, instead of the start time variables si, there are binary variables zt

i associated with each
t ∈ Wi such that zt

i = 1 if and only if the start time at node i is t. In addition, there are binary
variables yt

ij associated with each arc (i, j) ∈ A and each integral t ∈ Wi such that yt
ij = 1 if and

only if the start time at node i is t and arc (i, j) is present in the tour (recall that travel times are
integral). We assume that yt

ij is present in the formulation only if t + θij ≤ Dj , i.e., one can start
at time t at node i, travel along arc (i, j) and arrive at j by its deadline.

4



We use Ik(i, t) to denote the collection of possible start times at node k assuming that the start
time at node i is t and arc (k, i) is selected:

Ik(i, t) = {τ ∈ Wk : max{τ + θki, Ri} = t}.

In other words, if the start time t at node i is Ri, then the start time at node k in a feasible tour
is some τ ∈ Wk satisfying τ ≤ Ri − θki, otherwise the start time at node k is exactly t − θki if it
belongs to Wk.

The following is the Time Indexed Formulation (TIF) for TSPTW:

min
∑

(i,j)∈A

cijxij

∑

t∈Wi

zt
i = 1 ∀ i ∈ V, (7)

∑

j∈V +(i)

yt
ij = zt

i ∀ i ∈ V \ {q}, ∀ t ∈ Wi, (8)

∑

k∈V −(i)

∑

τ∈Ik(i,t)

yτ
ki = zt

i ∀ i ∈ V \ {p},∀ t ∈ Wi, (9)

∑

t∈Wi

yt
ij = xij ∀ (i, j) ∈ A, (10)

xij , y
t
ij , z

t
i ∈ {0, 1} ∀ i ∈ V,∀ (i, j) ∈ A,∀ t ∈ Wi. (11)

The constraints (7) above assert that a tour must start at each node i within the window Wi.
Constraint (8) asserts that a tour with start time t at node i 6= q must leave the node at time t

along some arc, whereas constraints (9) assert that for a node i 6= p, a tour has a start time at the
previous node (say k) contained in Ik(i, t). Clearly any feasible tour can be mapped to an integral
solution of TIF by setting xij = 1 if arc (i, j) is used in the tour, and zt

i = 1 if the tour has start
time t at node i. Note that if xij = 1, and for some t, t′ we have zt

i = 1 and zt′
j = 1, then t < t′

as θij > 0 for all arcs in A. Therefore, there cannot be any directed cycles in the support of the
solution and every integral solution of TIF defines a feasible tour. We now prove the following
relationship between the LP relaxations of TIF and TBF.

Proposition 1 The LP relaxation of TIF dominates the LP relaxation of BMF.

Proof. Let (x, y, z) be a feasible solution of the LP relaxation of TIF. Let s ∈ R|V | be defined as

si =
∑

t∈Wi

tzt
i for all i ∈ V.

We next show that (x, s) is a feasible solution of the LP relaxation of BMF; the proposition will
follow.

Firstly, (2) holds as
∑

j∈V +(i)

xij =
∑

j∈V +(i)

∑

t∈Wi

yt
ij =

∑

t∈Wi

∑

j∈V +(i)

yt
ij =

∑

t∈Wi

zt
i = 1.

5



The first equality above is implied by (10), the third equality by (8) and the last one by (7). To
see that (3) holds, note that

∑

k∈V −(i)

xki =
∑

k∈V −(i)

∑

t∈Wk

yt
ki =

∑

k∈V −(i)

∑

t′∈Wi

∑

t∈Ik(i,t′)

yt
ki =

∑

t′∈Wi

zt′
i = 1

where the last two equalities are implied by equations (8) and (9), respectively.
The constraints (5) are clearly satisfied by s. We now show that the constraints (4) are satisfied

by (x, s). Let z̄t
i = zt

i − yt
ij . Then

∑

t∈Wi

z̄t
i =

∑

t∈Wi

zt
i −

∑

t∈Wi

yt
ij = 1− xij

by equations (7) and (10). Therefore

si =
∑

t∈Wi

tzt
i =

∑

t∈Wi

tz̄t
i +

∑

t∈Wi

tyt
ij

≤ Di

∑

t∈Wi

z̄t
i +

∑

t∈Wi

tyt
ij = Di(1− xij) +

∑

t∈Wi

tyt
ij . (12)

Now, using the fact that Mij = Di + θij −Rj , we have

si + θij − (1− xij)Mij = si + θijxij − (1− xij)(Di −Rj).

The inequality in (12) and (10) imply that the last term above is less than or equal to

Rj(1− xij) + θijxij +
∑

t∈Wi

tyt
ij = Rj(1− xij) +

∑

t∈Wi

(t + θij)yt
ij .

Similarly, writing z̄τ = zτ −∑
t∈Ii(j,τ) yt

ij , we have
∑

τ∈Wj
z̄τ = 1− xij . Further

sj =
∑

τ∈Wj

τzτ
j =

∑

τ∈Wj

τ z̄τ +
∑

τ∈Wj

τ
∑

t∈Ii(j,τ)

yt
ij ≥ Rj(1− xij) +

∑

τ∈Wj

τ
∑

t∈Ii(j,τ)

yt
ij

≥ Rj(1− xij) +
∑

t∈Wi

(t + θij)yt
ij .

¤

2.3 Time Bucket Relaxation (TBR)

We next present a relaxation of the TSPTW obtained by aggregating some variables in the TIF
presented above; some of its feasible solutions may not correspond to feasible tours of the TSPTW.
This was noted earlier by Wang and Regan who propose a very similar relaxation (the “under-
constrained method”) for obtaining lower bounds for a vehicle routing problem in [31], and for the
TSPTW in [32]. In Section 2.4, we discuss how to obtain an exact formulation for the TSPTW by
adding the so-called subtour elimination constraints and infeasible path inequalities to this relaxa-
tion.

6



We call this relaxation the Time Bucket Relaxation (TBR); unlike the TIF, we do not have
variables for each time index. Instead, we partition a node time-window into a collection of non-
overlapping intervals and define variables for these intervals. More precisely, the time window
Wi for a node i ∈ V is divided into a set of buckets (sub-intervals) Bi = {bi

1, . . . , b
i
L}, where the

buckets bi
k = [rbi

k
, dbi

k
] satisfy (i) rbi

1
= Ri, (ii) dbi

L
= Di, and (iii) rbi

k+1
> dbi

k
for all k. We allow

Wi 6=
⋃

b∈Bi
[rb, db] as long as each missing time instant t ∈ Wi cannot be a valid starting time of

a feasible tour at node i. Using earlier notation, a sufficient condition for such a time instant t is⋃
k∈V −(i) Ik(i, t) = ∅.

As before, binary variables xij indicate whether or not arc (i, j) ∈ A is a part of the tour. We
define binary variables zb

i associated with each bucket b ∈ Bi of a node i ∈ V such that zb
i = 1 if

and only if bucket b is selected for node i (b is then called the starting bucket at i). We also define
binary variables yb

ij associated with each arc (i, j) ∈ A and each bucket b ∈ Bi such that yb
ij = 1 if

and only if xij = 1 and zb
i = 1.

We let Ik(i, b) denote the collection of possible starting buckets at node k assuming that arc
(k, i) is selected and the starting bucket at node i is b. More precisely, for a bucket b` ∈ Bi

Ik(i, b`) = {b ∈ Bk : db`−1
< rb + θki ≤ db`

}

where we assume db0 = −∞. Conversely, if the starting bucket at node k is b and arc (k, i) is
selected, then the starting bucket at node i is denoted by Ni(k, b) and is defined as the bucket
β ∈ Bi such that b ∈ Ik(i, β). If rb + θki > Di, we define Ni(k, b) to be null. As for the TIF, we
assume that yb

ki is present in the formulation only if Ni(k, b) is not null. The following is the time
bucket relaxation of TSPTW:

min
∑

(i,j)∈A

cijxij

∑

b∈Bi

zb
i = 1 ∀ i ∈ V, (13)

∑

j∈V +(i)

yb
ij = zb

i ∀ i ∈ V \ {q}, ∀ b ∈ Bi, (14)

∑

k∈V −(i)

∑

β∈Ik(i,b)

yβ
ki = zb

i ∀ i ∈ V \ {p},∀ b ∈ Bi, (15)

∑

b∈Bi

yb
ij = xij ∀ (i, j) ∈ A, (16)

xij , y
b
ij , z

b
i ∈ {0, 1} ∀ i ∈ V,∀ (i, j) ∈ A,∀ b ∈ Bi. (17)

Note that equation (13) implies that for each node i ∈ V , there is precisely one b ∈ Bi for which
zb
i = 1. Therefore, if i 6= q, equation (14) implies that precisely one yb

ij = 1 for some j ∈ V +(i).
Similarly, if i 6= p, equation (15) implies that precisely one yβ

ki = 1 for some k ∈ V −(i). Therefore,
if i 6= q, there is precisely one node j ∈ V +(i) for which xij = 1 and, if i 6= p, there is precisely one
node k ∈ V −(i) for which xki = 1. Consequently, a feasible solution to the TBR corresponds to the

7



union of a directed path from p to q and a collection of disjoint cycles. Unlike the TIF, a solution
may not correspond to a feasible tour, as disjoint cycles may be present in the solution. To see
this, consider a pair of nodes i and j with common time windows of [0, 10], and θij = θji = 10, and
assume there is only one time bucket at each node (equaling the time windows), namely b (at i)
and b′ (at j). Then the values xij = xji = zb

i = zb′
j = 1 are not ruled out by the TBR constraints

and the definition of Ik(i, b).
However, all feasible solutions to the TSPTW correspond to a feasible solution for the TBR.

The proof of this claim can be found in Tramontani [30].

Proposition 2 ([30]) Any feasible tour for TSPTW is also feasible for the TBR and therefore
TBR is a relaxation for TSPTW.

2.4 Time Bucket Formulation (TBF)

The TBR can be turned into a valid formulation for TSPTW with the subtour elimination and
infeasible path constraints. For proper subsets S, S′ of V , let δ(S, S′) be the set of arcs with their
tail in S and head in S′, i.e., δ(S, S′) = {(i, j) ∈ A : i ∈ S, j ∈ S′}. Further, let δ(S) = δ(S, V \ S)
and denote V \ S by S̄. Clearly, if q 6∈ S, then any feasible tour has at least one arc that connects
nodes in S to nodes in S̄, i.e., an arc in δ(S). Therefore, the well known subtour elimination
constraint (SEC)

∑

(i,j)∈δ(S)

xij ≥ 1 (18)

is valid for the TSPTW for all S ⊆ V \ {q}. If a feasible solution to the TBR also satisfies all
subtour elimination constraints, then it defines a tour.

Let P = (v1, v2, . . . , vh) be an ordered set of nodes in S ⊆ V . We call P an infeasible path if
it cannot be contained in any feasible tour. Clearly, any feasible tour satisfies the infeasible path
constraint

h−1∑

i=1

xvi,vi+1 ≤ h− 2 (19)

for every infeasible path P . If a solution to the TBR is a tour which contains no infeasible paths
(in particular, if the solution itself is not an infeasible path from p to q) then it defines a feasible
solution to the TSPTW. Note that, even though it is NP-hard to separate these inequalities for a
fractional solution, it is easy to do so for an integral solution (see Section 4.2 for details).

Therefore, one can formulate the TSPTW using the x variables, and an exponential number
of constraints (19), as in Ascheuer, Fischetti and Grötschel [6, 7]. We instead use this observation
to obtain a new formulation for the TSPTW which we call the Time Bucket Formulation (TBF).
The new formulation is obtained by simply adding all possible subtour elimination constraints (18)
and all possible infeasible path constraints (19) to the TBR. In practice, these constraints should
clearly be used as cutting planes in a branch-and-cut framework.

8



3 Valid Inequalities

In this section we describe valid inequalities for the TBF. Some of these inequalities are due to
Ascheuer, Fischetti and Grötschel [6, 7] and they are defined on x variables only. The remaining
inequalities are new and they involve y variables of the TBF. We start by defining a “bucket” graph
G′ = (B, AB) where B =

⋃
i∈V Bi and

AB =
⋃

(i,j)∈A

{
(b, b′) : b ∈ Bi, b

′ ∈ Bj , b
′ = Nj(i, b)

}
.

There is a one-to-one mapping from the arcs in AB to the variables yb
ij of TBF. We let µ denote

this mapping, i.e., µ : AB → V ×V ×B such that for an arc (b, b′) ∈ AB, µ((b, b′)) = (i, j, b) where b

is a bucket of node i, b′ is a bucket of node j, and b′ = Nj(i, b). Recall that Nj(i, b) is the starting
bucket at node j if arc (i, j) is selected and the starting bucket at node i is b. There is also a
one-to-one correspondence between the nodes in B and the variables zb

i . Therefore, every feasible
solution of TBF corresponds to a path in G′ that starts from a bucket in Bp and ends at a bucket
of Bq while visiting exactly one bucket of each of the remaining nodes.

For S ⊆ V , we use B(S) = ∪i∈SBi to denote the set of buckets associated with the nodes in
S. For B ⊆ B, we use V (B) = {i ∈ V : Bi ⊆ B} to denote the set of nodes which have all their
buckets contained in B. Further, we define B̄ = B \B.

3.1 Bucket Subtour Elimination Constraints

Recall the subtour elimination inequalities (18) that are valid for TSPTW. The inequalities

∑

(i,j,b)∈µ(δ(B))

yb
ij ≥ 1, (20)

where B ⊆ B \Bq and Bt ⊆ B for some t ∈ V , involve buckets and generalize inequalities (18).

Proposition 3 Inequalities (20) are valid for TBF and they subsume inequalities (18).

Proof. Every feasible solution of TBF corresponds to a path in G′ that visits exactly one bucket
of each node and ends at a bucket of Bq. Therefore, the path has to use an arc of δ(B) at least
once as Bq ⊆ B̄ and Bt ⊆ B for some t ∈ V . Thus the inequalities (20) are valid. To see that
these inequalities subsume (18), observe that for any S ⊆ V \{q}, inequality (20) with B = ∪i∈SBi

implies inequality (18) as
∑

(i,j)∈δ(S) xij =
∑

(i,j)∈δ(S)

∑
b∈Bi

yb
ij =

∑
(i,j,b)∈µ(δ(B)) yb

ij . ¤

3.2 Sequential Ordering Polytope (SOP) Inequalities

SOP inequalities are based on a concept of “precedence” between pairs of nodes and were introduced
by Balas, Fischetti and Pulleyblank [9] in the context of the precedence-constrained TSP. These
inequalities are also effective for TSPTW where precedences between nodes are inferred based on
time windows, see [7]. A node i ∈ V precedes node j ∈ V \ {i} if j has to be visited after i in any

9



feasible tour; we denote this as i ≺ j. We extend this definition to subsets of nodes as follows: for
S, S′ ∈ V , we say S ≺ S′ if each node in S precedes every node in S′.

For S ⊆ V , let π(S) = {i ∈ V : i ≺ j for some j ∈ S}, and notice that for any feasible
tour, if i ∈ S ∩ π(S), then i cannot be the last node of S visited by the tour. Similarly, let
σ(S) = {j ∈ V : i ≺ j for some i ∈ S} and note that j ∈ S ∩ σ(S) cannot be the first node of S

visited by a feasible tour. For any set S ⊆ V , let

δπ(S) = δ(S \ π(S), S̄ \ π(S)) and δσ(S̄) = δ(S̄ \ σ(S), S \ σ(S)).

For all S ⊆ V \ {p, q}, the following π and σ-inequalities are valid for BMF and therefore for TBF:

(π-inequalities )
∑

(i,j)∈δπ(S)

xij ≥ 1, (21)

(σ-inequalities )
∑

(i,j)∈δσ(S̄)

xij ≥ 1. (22)

It is known that the constraints (21) and (22) dominate subtour elimination constraints (18) [9].
For any ordered set P = (v1, . . . , vh) of nodes from V , define θ(P ) =

∑h−1
i=1 θvi,vi+1 . Then, given

disjoint sets of nodes X,Y with X ≺ Y , let

Z = {k ∈ V \ (X ∪ Y ) : ∃ i ∈ X, j ∈ Y with Ri + θ(i, k, j) > Dj}, (23)

and note that a path from i to k to j arrives at node j after Dj even if it starts at i at time Ri and
cannot be part of a feasible tour. Further, let

Q := {(u, v) ∈ A : ∃ i ∈ X, j ∈ Y with Ri + θ(i, u, v, j) > Dj}. (24)

Finally, let W = π(X) ∪ σ(Y ) ∪ Z. Then, for any S ⊂ V such that X ⊆ S, Y ⊆ S̄, the following
(π, σ)-inequalities are also valid for BMF and therefore for TBF:

((π, σ)-inequalities )
∑

(i,j)∈δ(S\W,S̄\W )\Q
xij ≥ 1. (25)

These inequalities are in fact a strengthened version of the classical (π, σ)-inequalities for the
precedence-constrained TSP (see [6, 7]).

3.2.1 Bucket SOP Inequalities

For buckets, we extend the concept of precedence as follows: for a node i ∈ V , we say that bucket
b ∈ Bi precedes node j ∈ V if all feasible tours that visit node i at bucket b (i.e., zb

i = 1), have to
visit node j after node i. We denote this precedence as b ≺ j. In a similar fashion, we say that a
node j ∈ V precedes a bucket b ∈ Bi if all feasible tours that visit node i at bucket b, have to visit
node j before node i. We denote this precedence as j ≺ b. Note that the original node precedence
relationship implies bucket-node precedences as follows: i ≺ j ⇒ b ≺ j for all b ∈ Bi and i ≺ b

10



for all b ∈ Bj . Furthermore, the bucket-node precedence relationship can be combined with node
precedence relationships as follows: for a bucket b and nodes j, k ∈ V , b ≺ j and j ≺ k implies
b ≺ k, while j ≺ b and k ≺ j implies k ≺ b.

Let B ⊆ B be a collection of buckets. We next abuse notation and use π(B) to denote the set
of buckets which precede nodes with all buckets contained in B, in other words

π(B) = {b ∈ B : b ≺ i, where i ∈ V and Bi ⊆ B}.

Similarly, we define σ(B) as

σ(B) = {b ∈ B : i ≺ b, where i ∈ V and Bi ⊆ B}.

Let B ⊆ B such that Bt ⊆ B for some node t ∈ V and Bp ∪ Bq ⊆ B̄. We call the following
inequalities bucket SOP inequalities:

(πB-inequalities )
∑

(i,j,b)∈µ(δπ(B))

yb
ij ≥ 1, (26)

(σB-inequalities )
∑

(i,j,b)∈µ(δσ(B̄))

yb
ij ≥ 1. (27)

It is easy to see that bucket SOP inequalities (26) and (27) dominate bucket subtour elimination
inequalities (20).

Proposition 4 The Bucket SOP inequalities (26) and (27) are valid for TBF and dominate the
SOP inequalities (21) and (22), respectively.

Proof. As discussed earlier, a feasible solution to TBF corresponds to a directed path in G′ that
starts with a bucket in Bp, ends at a bucket in Bq and visits exactly one bucket associated with the
remaining nodes. As Bt ⊆ B for some t ∈ V and Bp ∪Bq ⊆ B̄ by assumption, the path must start
at one of the buckets in B̄, must visit one of the buckets in B and must end at one of the buckets
in B̄. Therefore, the path must use an arc in δ(B̄) and an arc in δ(B) at least once. Let (b, b′) be
the last arc on the path that crosses from B to B̄ and let b ∈ Bi and b′ ∈ Bj . Notice that b and
b′ 6∈ π(B). If b ∈ π(B), then there is a node k with Bk ⊆ B such that b ≺ k, which means that
some bucket of Bk is visited after b, a contradiction. The same argument holds for b′. Therefore
(b, b′) ∈ δπ(B) and the inequality (26) is valid. One can similarly argue that if (b, b′) is the first arc
crossing from B̄ to B in a feasible solution to TBF, then b, b′ /∈ σ(B). Therefore inequality (27) is
valid.

To see that the πB-inequalities dominate the π-inequalities, consider the π-inequality (22) with
S ⊆ V \ {p, q}. Recall that B(S) = ∪i∈SBi. Define X to be δ(B(S) \ B(π(S)), B(S̄) \ B(π(S))).
Now the left-hand side of the π-inequality can be written as

∑

(i,j)∈δπ(S)

xij =
∑

(i,j)∈δπ(S)

∑

b∈Bi

yb
ij =

∑

(i,j,b)∈µ(X)

yb
ij .

11



Let Y = δ(B(S) \ π(B(S)), B(S̄) \ π(B(S))); then the πB-inequality with B replaced by B(S) is
∑

(i,j,b)∈µ(Y )

yb
ij ≥ 1. (28)

As B(π(S)) ⊆ π(B(S)), it follows that Y is contained in X and
∑

(i,j,b)∈µ(X)

yb
ij ≥

∑

(i,j,b)∈µ(Y )

yb
ij .

Therefore the πB-inequalities dominate the π-inequalities. The proof of domination in the case of
σB-inequalities is very similar. ¤

When B = B(S) for some S ⊆ V we call the corresponding bucket SOP inequalities simple
bucket SOP inequalities, and more specifically, simple πB-inequalities and simple σB-inequalities.

It is easy to extend these ideas to generalize the (π, σ)-inequalities (25) as follows: Let X, Y be
two disjoint subsets of nodes with X ≺ Y . For any B ⊂ B such that X ⊆ V (B) and Y ⊆ V (B̄),
the following inequalities are valid for TBF:

((πB, σB)-inequalities )
∑

(i,j,b)∈µ(δ(B\W̃ ,B̄\W̃ )\Q̃)

yb
ij ≥ 1. (29)

where W̃ := π(B(X)) ∪ σ(B(Y )) ∪ B(Z), Q̃ = {(b, b′) ∈ AB : (i, j) ∈ Q, b ∈ Bi, b
′ ∈ Bj} and the

sets Z and Q are defined as in (23) and (24). Once again, if we let B = B(S) for some S with
X ⊆ S, and Y ⊆ S̄, we call the resulting inequality a simple (πB, σB)-inequality.

3.3 Infeasible Path and Tournament Constraints

Let P = (v1, v2, . . . , vh), be a directed elementary path in G and let |P | = h− 1 denote the number
of arcs on P. The path P is called an infeasible path if it cannot be contained in any feasible tour.
It is known that deciding whether a given path is infeasible or not is NP-complete. However, there
are some simple conditions that imply infeasibility. In particular the path P is infeasible if

rv1 + θ(P ) > Dvh
, (30)

where θ(P ) =
∑h−1

i=1 θvi,vi+1 denotes the length of the path. In addition, the path P is infeasible if
for some node vt that is not on the path, both P ′ = (vt, v1, v2, . . . , vh) and P ′′ = (v1, v2, . . . , vh, vt)
are infeasible. The infeasibility of the paths P ′ and P ′′ can again be checked using (30). As
discussed in Section 2.4, given an infeasible path P , the corresponding infeasible path elimination
constraint (19) is valid for TBF. Furthermore, these inequalities can be strengthened to obtain the
so-called tournament constraints (TOURs)

∑

(i,j)∈T (P )

xi,j ≤ |P | − 1, (31)

where T (P ) = {(i, j) ∈ A : (i, j) = (vi, vj) for some 1 ≤ i < j ≤ h}. The tournament constraints
were originally introduced by Ascheuer, Fischetti and Grötschel [6]. It is known that if P1 and P2

12



are two infeasible paths such that P1 is contained in P2, then the tournament constraint associated
with P2 is dominated by the one associated with P1.

Let S = {v1, . . . , vh} be the collection of nodes associated with path P = (v1, . . . , vh) and let
Ψ(S) denote the collection of all possible paths that visit all nodes in S. As described in [7], if all
paths in Ψ(S) are infeasible then the following stronger inequality

∑

(i,j)∈A(P )

xi,j ≤ |P | − 1, (32)

where A(P ) = {(i, j) ∈ A : (i, j) = (vi, vj) for some 1 ≤ i, j ≤ h}, is also valid for BMF and TBF.
Whenever a violated tournament constraint (31) is identified it is customary to try to strengthen
it this way.

3.3.1 Bucket Tournament Inequalities

We extend inequalities (31) by considering time buckets as follows. Let P = (v1, . . . , vh) be a path
and let bt ∈ Bv1 = {b1, . . . , bk} be the earliest bucket of v1 such that rbt + θ(P ) > Dvh

. In other
words, if the starting bucket at node v1 is one of L = {bt, bt+1, . . . , bk}, then a feasible tour cannot
visit the nodes in {v1, . . . , vh} in the order specified by P . Note that P itself is not necessarily an
infeasible path if t 6= 1. It is easy to see that the following inequality

∑

b∈{bt,bt+1,...,bk}
zb
v1

+
∑

(i,j)∈T (P )

xi,j ≤ |P | (33)

is valid for TBF. Notice that if one of the buckets in L is chosen for node v1, then P becomes an
infeasible path and inequality (33) becomes the tournament constraint (32). Conversely, if one of
{b1, . . . , bt−1} is chosen, the inequality is implied by the subtour elimination constraint.

It is possible to strengthen these inequalities as follows: Let S = {v1, . . . , vh} and for v ∈ V \S,
let Lv denote the collection of time buckets at node v that cannot be visited if arc (v, v1) is chosen
together with the path P . More precisely, Lv = {b ∈ Bv : rb + θv,v1 + θ(P ) > Dvh

}. We define the
bucket tournament inequality (BTOUR) as follows:

∑

v∈V \S

∑

b∈Lv

yb
v,v1

+
∑

i∈S:(i,v1)∈A

xi,v1 +
∑

(i,j)∈T (P )

xi,j ≤ |P |. (34)

Proposition 5 Given any elementary path P = (v1, . . . , vh), BTOUR inequality (34) is valid for
TBF. Furthermore, it dominates inequality (33).

Proof. If the third term in inequality (34) equals |P |, then the first term must be 0 (if 1, the last
node of the path would be reached after its deadline) and the second must be 0 as well, as implied
by the subtour. If instead

∑
(i,j)∈T (P ) xi,j < |P |, then the inequality (34) is implied by constraint

(3) for node v1, which clearly holds for TBF (see Proposition 1).
It is easy to see that inequality (34) dominates (33) as L ⊆ ⋃

v∈V \{v1}{b ∈ Bv1 : (b′, b) ∈
AB for some b′ ∈ Lv} and hence

∑
v∈V \S

∑
b∈Lv

yb
v,v1

+
∑

i∈S:(i,v1)∈A xi,v1 ≥
∑

v∈V \{v1}
∑

b∈Lv
yb

v,v1
≥∑

b∈L zb
v1

. ¤

13



4 Separation Routines

In this section we describe the main steps of our separation routines for inequalities involving
buckets presented in the previous section.

4.1 Separating Bucket SOP Inequalities

In their most general version, SOP inequalities (21), (22) and (25) cannot be separated in polyno-
mial time. However, Ascheuer, Fischetti and Grötschel [7] developed an effective polynomial-time
separation heuristic, based on theoretical results of Balas, Fischetti and Pulleyblank [9] on the Pre-
cedence Constrained TSP. Following the approach in [7], we develop a polynomial-time separation
heuristic for bucket SOP inequalities. We next outline the main steps of our separation procedure
for simple πB-inequalities and simple (πB, σB)-inequalities. Our separation procedures for the other
bucket SOP inequalities are very similar.

Separating simple πB-inequalities

Consider a set S ⊆ V with q 6∈ S. Let AS = {(b, b′) ∈ AB : b, b′ 6∈ π(B(S))}, i.e., it is the collection
of arcs in the bucket graph with neither end preceding the buckets associated with the nodes in S.
Given a solution (x∗, y∗, z∗) of the TBR, let x̃ be defined by

x̃ij =
∑

(i,j,b)∈µ(AS)

(yb
ij)
∗.

Recall the definition of the simple πB-inequality for the set S given in (28). The left hand side of
this inequality evaluated at y∗ satisfies

∑

(i,j,b)∈µ(Y )

(yb
ij)
∗ =

∑

(i,j)∈δ(S)

x̃ij .

Therefore the simple πB-inequality above is violated if and only if x̃ violates the SEC (18). Given
any S′ ⊇ S with q 6∈ S′, as πB(S) ⊆ πB(S′) and the left hand side of the simple πB-inequality for
the set S′ is bounded above by

∑
(i,j)∈δ(S′) x̃ij , it follows that the simple πB-inequality for the set

S′ is violated if x̃ violates the corresponding SEC, but the converse is not true. Finally, note that
as x̃ ≤ x∗, if x∗ violates any SEC for some S′ ⊇ S, then so does x̃. Thus, we can use flows in the
graph G = (V, A) with arc capacities given by x̃ to find some violated simple πB-inequalities .

Our separation heuristic is as follows. For every v ∈ V \ {p, q}, let S := {v} and execute the
following steps:

1. Using the sets AS , Y defined above, compute x̃.

2. Compute the max-flow z0 from S to q in G = (V, A) with the capacity of an arc (i, j) equal
to x̃ij . Let δ(S′) be the corresponding min-cut. If z0 < 1, then add the violated simple
πB-inequality for the set S′ to the cut-pool.

14



3. If πB(S) = πB(S′), then terminate, otherwise set S := S′ and go to Step 1.

In Step 3, if πB(S) = πB(S′), then the weight of the cut δ(S′) with arcs weights x̃ij equals the
left hand side of the simple πB-inequality based on S′, but is an overestimate if πB(S) 6= πB(S′).
Therefore, when z0 ≥ 1, the simple πB-inequality based on S′ is definitely not violated by y∗ if
πB(S) = πB(S′), but maybe violated if πB(S) 6= πB(S′). Recomputing x̃ after the assignment
S := S′ yields a correct value of the left hand side of the simple πB-inequality based on S′.
The procedure described above acts as an exact separation algorithm for the subtour elimination
constraints. Whenever this procedure fails to find a violated simple πB-inequality starting from
any node v ∈ V \ {p, q}, there are no violated SECs either. Note, however, that there may exist
some violated bucket SECs. Our procedure for separating simple σB-inequalities is very similar.

Separating simple (πB, σB)-inequalities

Following Ascheuer, Fischetti and Grötschel [7], we separate over simple (πB, σB)-inequalities by
considering sets X and Y of the form X = {u}, Y = {w} with u ≺ w and u,w ∈ V \{p, q}. For each
u, v, w ∈ V such that u ≺ v ≺ w, it can easily be shown that all the simple (πB, σB)-inequalities
arising from X = {u}, Y = {w} are implied by those arising from X = {u}, Y = {v} together
with those arising from X = {v}, Y = {w}. Hence, when looking for violated simple (πB, σB)-
inequalities, we only consider pairs of nodes u,w such that u ≺ w and the precedence between u

and w does not immediately follow from known precedences of the form u ≺ v ≺ w.
Given a pair of nodes u,w satisfying the above criteria, let W̃ and Q̃ be defined as in (29),

with X = {u}, and Y = {w}. Let Au,w = {(b, b′) ∈ AB : b, b′ 6∈ W̃ , (b, b′) 6∈ Q̃}. Given a solution
(x∗, y∗, z∗) of the TBR, let x̃ be defined by

x̃ij =
∑

(i,j,b)∈µ(Au,w)

(yb
ij)
∗.

As in the case of simple πB-inequalities, one can measure the left hand side of some simple (πB, σB)-
inequalities via flows in G. More precisely, for any set S with u ∈ S and w ∈ S̄, the left hand side
of the simple (πB, σB)-inequality equals the weight of the cut δ(S) in G, where the weight of an
arc (i, j) is given by x̃ij .

Our separation algorithm is as follows. For every pair of nodes u,w such that u ≺ w and it is
not known that u ≺ v ≺ w for some node v, we execute the following steps:

1. Using the set Au,w defined above, compute x̃.

2. Compute the max-flow z0 from u to w in G (with arc capacities x̃ij) and let δ(S) be the
corresponding min-cut, with u ∈ S and w ∈ S̄. If z0 < 1, then add the violated simple
(πB, σB)-inequality corresponding to S, u,w to the cut-pool.

As highlighted in the description of the separation procedures above, the simple bucket SOPs
allow us to strengthen the SOPs by exploiting information from the y variables, even if all max-
flow computations are performed in the space of x variables, and thus in much smaller graphs.

15



We implemented similar heuristics to separate non-simple bucket SOPs; these procedures explicitly
work in the y-space and thus have to deal with larger graphs and are more time-consuming. Based
on a limited amount of experimentation, we concluded that the additional improvements in the
lower bound obtained by separating the more general inequalities was not worth the time spent
in separation. Further, we often found a very large number of violated non-simple bucket SOPs;
adding these made the subsequent LPs much harder to solve. Based on these considerations, we
only work with the simple bucket SOPs in our final branch-and-cut code.

4.2 Separating Tournament and Bucket Tournament Constraints

To find violated tournament constraints we use an enumeration algorithm similar to the one descri-
bed in [7]. Given a fractional solution x∗, the algorithm builds a tree for each node v ∈ V \ {p, q}
where every node of the tree associated with v corresponds to an elementary path ending at v.
The tree for node v is built by starting with an empty path initially, and the existing paths are
expanded by adding one more arc to the path at a time by following the arcs in the support of the
fractional solution x∗. The paths are expanded in a depth-first fashion until a certain termination
criterion is satisfied. Let P = (u, . . . , v) denote the path associated with a node of the enumeration
tree. Exactly one of the following three cases holds true for P :

(i) The tournament inequality (31) associated with P is not violated. In this case we stop
expanding the path P any further.

(ii) The tournament inequality (31) associated with P is violated and P is an infeasible path
because it satisfies the simple infeasibility test (30). In this case we stop expanding P and
add the violated tournament inequality associated with P to the cut-pool. (Before adding
the inequality (31) to the cut-pool, we check if it can be strengthened to an inequality (32).)

(iii) The tournament inequality associated with P is violated but P does not satisfy the infeasibility
test (30). In this case we generate a number of new paths by expanding P , one for each node
w ∈ V \ P such that x∗wu > 0.

To find violated bucket tournament constraints (34), we modified the enumeration algorithm
described above slightly by changing the third case to include a check for bucket tournament
constraints. Before we expand the path, we simply check if the bucket tournament constraint (34)
associated with P is violated. If it is, we add the corresponding inequality to the cut-pool.

Note that the procedure above stops extending a path P as soon as P satisfies inequality (31) or
P is discovered to be infeasible according to the trivial condition (30). If the first condition happens,
clearly any path obtained by expanding P also satisfies inequality (31) as well as inequality (34).
Further, if the x solution is integer and does not contain any cycle, then the trivial condition (30)
is sufficient at providing an exact separation for tournament constraints (31). Indeed, given a
Hamiltonian path P from p to q, P is feasible if and only if all the subpaths contained in P are
feasible according to the trivial condition (30). In [7], the authors state that this algorithm runs in

16



polynomial time because for any fractional solution there can only be a polynomial number of paths
that violate the tournament inequality. The proof is attributed to Savelsbergh, but, unfortunately,
there is no written proof of this claim. In any case, in our computational experiments we observed
that the algorithm terminates after a small number of iterations.

5 Solution Approach

In this section we describe the main components of our solution approach. Given an instance of
the problem, the first step is to produce an associated Time Bucket Formulation. To this end,
we preprocess the input data and then divide the time windows into buckets using an LP-based
iterative heuristic. The B&C algorithm starts with an initial formulation based on these buckets and
strengthens it at every node with valid inequalities. We also apply a fast primal heuristic at every
node and try to generate a feasible tour, i.e., an upper bound for the problem. We describe these
ideas in detail below. Throughout we assume that the triangle inequality holds for the traveling
times, that is, for all (i, j) ∈ A, the shortest path distance from node i to node j is equal to θij .

5.1 Preprocessing

Given an instance of the problem, we first modify the input graph G = (V, A) and the time
windows associated with nodes in V to obtain an equivalent instance with fewer arcs and tighter
time windows. We also build a list of node precedences.

5.1.1 Tightening the Time Windows

We tighten time windows following the procedure described in [7]. We cycle through the following
four steps until no more changes can be made to the time windows. Recall that Rk and Dk denote
the earliest and latest start time at node k ∈ V , respectively, and V +(k) and V −(k) denote the set
of nodes that are connected to k by arcs from k and arcs to k, respectively.

1. Rk ← max{Rk,mini∈V −(k){Ri + θik}} ∀ k ∈ V s.t. V −(k) 6= ∅.
2. Rk ← max{Rk,min{Dk, minj∈V +(k){Rj − θkj}}} ∀ k ∈ V s.t. V +(k) 6= ∅.
3. Dk ← min{Dk, max{Rk, maxi∈V −(k){Di + θik}}} ∀ k ∈ V s.t. V −(k) 6= ∅.
4. Dk ← min{Dk, maxj∈V +(k){Dj − θkj}} ∀ k ∈ V s.t. V +(k) 6= ∅.

5.1.2 Building the Node Precedence List

After tightening the time windows, we build a list of pairwise precedence relationships between the
nodes. We again follow the ideas described in [7]. These precedence relationships are used in the
preprocessing phase as well as in separating SOP inequalities. Recall that if a node i ∈ V has to
be visited before j ∈ V in any feasible tour, then we say i ≺ j. First, we set p ≺ j for all nodes
j ∈ V \ {p} and i ≺ q for all i ∈ V \ {q}. Then, we repeat the following two steps until no new
precedence relationships are found. We emphasize that the second step below is not implied by the
first one.

17



1. For i, j ∈ V \ {p, q}, if Rj + θji > Di, then set i ≺ j.

2. For i, j, k ∈ V \ {p, q} if i ≺ j and j ≺ k, then set i ≺ k.

5.1.3 Deleting Arcs

After tightening the time windows and building a precedence list, we delete some of the arcs in
A using logical implications. First we delete all (i, j) ∈ A such that j ≺ i and all (i, j) ∈ A such
that i ≺ k ≺ j for some k ∈ V \ {i, j}. Next, we consider all remaining (i, j) ∈ A and for each
k ∈ V \ {i, j} we check if the condition

(k ≺ i or k ≺ j or Ri + θij + θjk > Dk) and (i ≺ k or j ≺ k or Rk + θki + θij > Dj)

holds. In such a case, we conclude that arc (i, j) cannot be part of a feasible tour and therefore we
delete it from A.

5.2 Building the Bucket Graph

There are many possible ways to divide the time windows into buckets and how the buckets are
chosen affects the quality of the formulation significantly. When the total number of buckets
increases, the size of the formulation increases and typically this leads to a continuous relaxation
which is harder to solve, but at the same time, tighter. Note that if the total number of buckets is
fixed, one has to decide how to distribute these buckets among individual nodes. If the number of
buckets allocated to a node is given, one still has to decide how to split the associated time window
into buckets.

In our initial experiments, we tried two natural ways to obtain buckets. The first one was to split
each time window into a fixed number of buckets and make the buckets of a node (approximately)
the same size. The second one was to fix the width of a bucket, and then divide all time windows
into buckets accordingly. In this approach, nodes with wider time windows are divided into more
buckets.

Subsequently, we observed that it is useful to treat nodes non-uniformly in dividing their win-
dows into buckets, and to use non-uniform buckets for a single node. We therefore developed a
heuristic that builds the bucket graph iteratively by solving LP relaxations of the TBR and refining
the buckets by inspecting the corresponding LP solutions. We describe this approach below.

5.2.1 Building an Initial Set of Buckets

To build the initial set of time buckets, we first identify time instants for each node when a feasible
tour cannot visit the node. In other words, for any node i ∈ V we identify t ∈ Wi such that
the start time of node i cannot be t. Though identifying all such time instants is clearly a hard
problem, a simple yet sufficient test for t ∈ Wi is to see if t − θki ∈ Wk for some k ∈ V such that
(k, i) ∈ A. If there is no such k ∈ V , and if t 6= Ri, then a feasible tour cannot have start time t

at node i and we call t a hole in the time window Wi (see also Section 2.3). After identifying holes

18



in the time windows we compute the bucket set Bi of node i ∈ V by combining consecutive time
instants that are not interrupted by holes.

5.2.2 Bucket Refinement Heuristic

Given a collection of buckets, we first preprocess these buckets and then construct the associated
bucket graph following the steps described later in detail in Section 5.3. Using this bucket graph
G′ = (B, AB), we solve the associated linear program TBR-LP and obtain the optimal solution
(x̄, z̄, ȳ) (such a notation for the optimal solution of the continuous relaxation is used instead
of the more usual (x∗, z∗, y∗) to avoid confusion in the following). Let B̄ = {b ∈ B : z̄b

i >

0 where b is a bucket of node i} denote the collection of buckets in this solution that have non-zero
activity. The bucket refinement heuristic divides each bucket b ∈ B̄ with rb 6= db into two new
buckets b1 = [rb, τ − 1] and b2 = [τ, db] of possibly different size. We pick the break point τ to
minimize what we call the “negative waiting time” associated with the current solution at bucket
b. More precisely, we choose τ as follows:

First we decompose z̄b
i into z̄t

i for t ∈ [rb, db] as follows:

z̄t
i =

∑

(k,b′)∈B−(t)

ȳb′
ki, t = rb + 1, . . . , db

where B−(t) = {(k, b′) : b′ ∈ Bk, (b′, b) ∈ AB, rb′+θki = t}. For t = rb, we set z̄t
i = z̄b

i−
∑db

t′=rb+1 zt′
i .

We say that the negative waiting time at bucket b is

db∑
t=rb

(t− rb)z̄t
i .

We then choose the break point τ to minimize the sum of the negative waiting times in the new
buckets b1 = [rb, τ − 1] and b2 = [τ, db]. In other words, τ ∈ [rb + 1, db] is chosen to be the index
that minimizes

α(b, τ) =
τ−1∑
t=rb

(t− rb)z̄t
i +

db∑
t=τ

(t− τ)z̄t
i .

5.2.3 Iterative Bucket Refinement Heuristic

The iterative bucket refinement heuristic starts with the initial set of buckets described in Section
5.2.1. These buckets are then refined by applying the bucket refinement heuristic described in
Section 5.2.2 repeatedly for k iterations. At the end of the k-th iteration, the optimal LP value
LB0 of the initial formulation is compared to the optimal LP value LB1 of the final formulation. If
dLB1e = dLB0e, then the refinement process is terminated. If, on the other hand, dLB1e > dLB0e,
then the current buckets are considered as the initial set of buckets and the whole refinement
procedure is repeated for another k iterations. This heuristic clearly depends on the number of
refinement iterations performed before the termination condition is checked. After preliminary
testing, we chose k = 5 for all our computational experiments. The formulation produced by this
iterative heuristic is the one we use in the branch-and-cut algorithm.

19



5.3 Bucket preprocessing

Given an instance of the problem and a collection of buckets B =
⋃

i∈V Bi, we perform the following
three preprocessing steps: First we refine B by subdividing some of the buckets b ∈ B until the
resulting collection of buckets B′ satisfies what we call the bucket triangle inequality. We then build
a list of bucket precedences. Finally, using the precedences, we delete some arcs of the bucket graph
G′ = (B, AB′). We describe these steps below.

5.3.1 Imposing bucket triangle inequality

Consider the bucket graph G′ = (B, AB), let i, j, k ∈ V be three distinct nodes of the original graph
G and let b ∈ Bi. Furthermore assume that bucket b can reach b1 ∈ Bk directly and b2 ∈ Bk via a
bucket of j. More precisely, this means that (b, b1) ∈ AB and (b, b′), (b′, b2) ∈ AB for some b′ ∈ Bj .
Buckets b1 and b2 do not have to be distinct. We say that the bucket triangle inequality is violated
if bucket b2 ∈ Bk is strictly earlier than b1 ∈ Bk, that is, if rb2 < rb1 . This can happen when there
is a large “negative waiting time” rb + θij − rb′ at the intermediate node j.

Whenever we identify a violated bucket triangle inequality, we divide the intermediate bucket
b′ that causes the violation into two new buckets so that this particular violation does not happen
with the new buckets. An easy way to do this is to break the bucket [rb′ , db′ ] into two new buckets
[rb′ , rb + θij − 1] and [rb + θij , db′ ].

Even though the validity of the TBF does not require elimination of these bucket triangle
inequality violations, we observed that the LP relaxation of the TBF becomes noticeably weaker
when such violations are present. We therefore always check for these violations and refine the
buckets until the bucket graph is free of them. We also note that separating bucket SOP inequalities
is easier when the bucket graph does not have any bucket triangle inequality violations.

5.3.2 Building the Bucket Precedence List

We build a list of precedence relationships among nodes and buckets by extending some of the ideas
discussed in Section 5.1.2. These precedence relationships are used to reduce the size of the bucket
graph as well as in separating bucket SOP inequalities. Recall that if any feasible tour that visits
node i ∈ V at bucket b ∈ Bi has to visit node j ∈ V after node i, we say b ≺ j. Similarly, if any
feasible tour that visits node j ∈ V at bucket b ∈ Bj has to visit node i ∈ V before node j, we say
i ≺ b. First, for every i ≺ j, we set b ≺ j for all b ∈ Bi and i ≺ b for all b ∈ Bj . We then iterate
the following steps until no new precedence relationships are found. Let i, j, k ∈ V and b ∈ Bi.

1. If rb + θij > Dj , set j ≺ b. If Rj + θji > db, set b ≺ j.

2. If b ≺ j and j ≺ k, set b ≺ k. If j ≺ k and k ≺ b, set j ≺ b.

Note that Step 1 above is valid provided that the bucket triangle inequality holds.

20



5.3.3 Deleting Arcs of the Bucket Graph

We delete some of the arcs of the bucket graph G′ using logical implications. First we inspect the
bucket precedence list and if b ≺ j for some b ∈ Bi and j ∈ V , we delete the bucket-arcs (b′, b) ∈ AB
for all b′ ∈ Bj . Similarly, we delete the bucket-arcs (b, b′) ∈ AB for all b′ ∈ Bj if j ≺ b.

Next, we consider all remaining (b, b′) ∈ AB. Let b ∈ Bi and b′ ∈ Bj for i, j ∈ V . If there exists
a node k ∈ V \ {i, j} such that b ≺ k and k ≺ b′ or such that

(k ≺ b or k ≺ b′ or rb + θij + θjk > Dk) and (b ≺ k or b′ ≺ k or Rk + θki + θij > Dj),

we conclude that bucket-arc (b, b′) cannot be part of a feasible tour and we delete it from AB.

5.4 Cutting

We add cuts at every node of the B&C tree. We separate violated inequalities in the following
order:

1. Simple πB-inequalities (26),

2. Simple σB-inequalities (27),

3. Simple (πB, σB)-inequalities (29),

4. Tournament constraints (31) and Bucket Tournament constraints (34) at the same time.

We do not use the classical TSPTW cutting planes such as SOP inequalities or the subtour
elimination constraints as they are dominated by simple bucket SOP inequalities. Furthermore, we
restrict ourselves to the simple bucket SOP inequalities instead of using the more general versions
due to practical reasons. After some experimentation, we observed that one can use a small number
of simple bucket SOP inequalities to achieve essentially the same bound as one can by using a large
number of general bucket SOP inequalities, but with noticeably less separation time.

5.5 Primal Heuristic

At each node of the branch-and-cut tree we try to construct a feasible tour using the current LP
solution. The heuristic starts with the node p ∈ V and extends the tour one node at a time by
choosing the next node among a list of candidate nodes that look promising according to the LP
solution. A node j is considered promising if the reduced cost associated with the variable xij is
zero. More precisely, let P denote the partial path constructed so far, i be the last node on this
path and ti be the start time at node i. In addition, let ĉij denote the reduced cost of variable xij

in the current solution. We first construct a set of good candidate nodes to extend the path

N = {j ∈ V \ ({q} ∪ P ) : ĉij = 0, ti + θij ≤ Dj}.
If N = ∅, we cannot extend the current path and we stop. Otherwise, we choose j = argminh∈N{Dh−
θih} to be the next node, i.e., according to a chronological rule, and augment the current path ac-
cordingly. The heuristic terminates with a feasible tour when all nodes except the last node q are
visited by the current path.

21



6 Computational Results

We solve instances of the TSPTW by solving the corresponding Time Bucket Formulation with a
branch-and-cut algorithm implemented in C++ using calls to the Cplex 10.0 [19] callable library.
All our computational results are obtained on a workstation with a Intel(R) 2.40 GHz processor
running the SUSE Linux 10.1 Operating System. We use the Cplex default branching strategy,
and disable all Cplex cuts. At every node of the branch-and-cut tree, we invoke our separation
routine to find violated globally valid cuts, and also run our primal heuristic to search for a feasible
solution to the TSPTW. For each instance, we impose a limit of 5 hours on the computing time. In
the following two sections we present our computational experiments on asymmetric and symmetric
instances separately.

6.1 Asymmetric Instances

Our first test set consists of the asymmetric TSPTW instances introduced by Ascheuer [5]. These
instances are derived from a practical scheduling application, and have between 12 and 233 nodes.
An extended computational study on these instances was carried out in Ascheuer, Fischetti and
Grötschel [7] using a branch-and-cut approach. Their paper is our main reference in this section.
Based on the results in [7], we divide the 50 asymmetric instances into 32 “easy” problems that
are solved to optimality within 5 hours of CPU time in [7], and 18 “hard” problems. To the best
of our knowledge, the only “hard” instance solved in a subsequent work is rbg042a (see Focacci,
Lodi and Milano [18]).

In Tables 1 to 4, we report on the performance of our TBF-based branch-and-cut algorithm
on the above asymmetric instances. The column headings common to many of these tables are
explained below.

Column headings Description
Prob. name of the problem instance
|V | number of nodes
|A| number of arcs (after preprocessing)
lpLB lower bound at the root node given by the LP relaxation
rLB lower bound at the root node after cuts
gLB lower bound at termination (at the time limit)
bestUB best upper bound known in prior literature (in bold if optimal).
UB best upper bound found (in bold if optimal)
#cuts number of generated cuts
#nodes number of B&C nodes
%gap percentage of the integrality gap closed
CPU total CPU time spent in seconds
CPU-sep CPU time spent in separation routines

22



In Table 1, we compare our TBF-based method with the branch-and-cut method proposed in
[7] (often denoted as AFG) on the 32 easy instances. For each instance, and for both methods,
we report the percentage value of the lower bound at the root node (after the addition of cutting
planes and before branching) with respect to the optimal solution OPT (computed as 100 * rLB /
OPT), the number of branch-and-cut nodes enumerated, and the overall CPU time in seconds.

Table 1: Time Bucket Formulation vs. Ascheuer et al. [7]: comparison on the “easy” instances.

Ascheuer et al. [7] (AFG) Time Bucket Formulation (TBF)

Prob. |V | |A| %rLB #nodes CPU %rLB #nodes CPU

rbg010a 12 54 99.3 2 0.1 100.0 1 0.0

rbg016a 18 79 98.9 2 0.2 100.0 0 0.0

rbg016b 18 167 93.7 76 8.8 97.2 2 0.2

rbg017.2 17 200 100.0 0 0.0 100.0 0 0.0

rbg017a 19 176 100.0 0 0.1 100.0 0 0.0

rbg017 17 122 100.0 4 0.8 99.3 0 0.0

rbg019a 21 71 100.0 0 0.0 100.0 0 0.0

rbg019b 21 211 98.9 820 54.6 99.5 1 0.3

rbg019c 21 229 95.8 58 8.7 96.8 42 0.9

rbg019d 21 156 99.7 2 0.8 100.0 6 0.2

rbg020a 22 95 100.0 0 0.2 100.0 0 0.0

rbg021.2 21 237 100.0 0 0.2 100.0 0 0.1

rbg021.3 21 256 97.8 340 27.2 98.4 62 2.7

rbg021.4 21 264 98.9 72 5.8 100.0 1 0.2

rbg021.5 21 268 98.8 76 6.6 100.0 1 0.3

rbg021.6 21 358 99.3 2 1.4 100.0 1 0.3

rbg021.7 21 375 96.2 24 4.3 100.0 0 0.6

rbg021.8 21 380 97.7 254 17.4 98.5 10 1.4

rbg021.9 21 380 97.0 320 26.1 98.5 23 2.8

rbg021 21 229 95.8 58 8.8 96.8 42 0.9

rbg027a 29 479 99.3 6 2.3 99.3 2 1.4

rbg031a 33 388 100.0 0 1.7 100.0 0 0.2

rbg033a 35 421 100.0 0 1.9 99.8 6 0.9

rbg034a 36 535 99.5 2 1.0 100.0 6 1.9

rbg035a.2 37 940 95.2 96 64.8 100.0 3 5.3

rbg035a 37 477 100.0 0 1.8 100.0 2 0.2

rbg038a 40 486 100.0 13204 4232.2 100.0 9 1.5

rbg040a 42 539 92.0 1756 751.8 96.6 25 3.6

rbg050a 52 1629 100.0 6 18.6 100.0 2 24.5

rbg055a 57 765 99.9 2 6.4 100.0 19 3.5

rbg067a 69 843 99.9 2 6.0 100.0 23 3.6

rbg125a 127 1824 99.5 56 229.8 100.0 8 9.6

avg. 98.5 538.8 171.6 99.4 9.3 2.1

These instances seem to be easy for both AFG and TBF. In particular, they both obtain a
strong lower bound at the root node. However, it is clear that our method explores substantially
fewer branch-and-cut nodes. One cannot really compare the reported times of the methods as they
are obtained on different machines1.

1The results reported in [7] were obtained on a SUN SPARC Station 10 by using the branch-and-cut framework

23



In Table 2 we present our results on the 18 “hard” instances, and also compare them with AFG.
For each problem, the table reports its size and the best upper bound known in the literature (and
the optimal value for rbg042a) when it is different from the value obtained by AFG; these bounds
are obtained in [18]. Then, for both AFG and TBF we report the lower bound at the root node, the
lower and upper bounds at the end of the computation, and the number of branch-and-cut nodes
enumerated. For TBF, we also report the initial LP relaxation value, the total CPU time and the
time spent in separation routines. Finally, for TBF, in the last column (denoted as r%gap) we give
the improvement at the root over the AFG root bound, measured as a fraction of the gap between
the AFG root bound and the best known upper bound BUB (either from the literature, including
AFG, or computed by TBF), i.e., 100*(TBF rLB - AFG rLB)/(BUB - AFG rLB).

Table 2: Time Bucket Formulation vs. Ascheuer et al. [7]: comparison on the “hard” instances.

Ascheuer et al. [7] (AFG) Time Bucket Formulation (TBF)

Prob. |V | |A| bestUB rLB gLB UB #nodes lpLB rLB gLB UB #nodes CPU CPU-sep r%gap

rbg041a 43 628 403 361 382 417 23396 389.4 392 402 402 270 146.8 2.7 75.61

rbg042a 44 762 411 394 409 435 22300 391.9 404 411 411 161 188.3 2.4 58.82

rbg048a 50 1288 492 454 455 527 25222 484.8 487 487 487 0 129.2 0.1 100.00

rbg049a 51 1083 488 408 418 501 17486 460.9 464 474 486 991 > 18000 30.0 71.79

rbg050b 52 1175 527 447 453 542 8600 482.6 493 495 — 382 > 18000 20.9 57.50

rbg050c 52 1396 — 507 509 536 25184 512.7 517 517 — 289 > 18000 16.8 34.48

rbg086a 88 926 — 1042 1049 1052 12208 1035.6 1049 1051 1051 16 4.9 0.6 77.78

rbg092a 94 1367 1109 1084 1102 1111 8828 1075.1 1091 1093 1093 40 90.4 5.4 77.78

rbg132.2 132 3126 — 1053 1069 1125 4336 1068.8 1081 1083 1083 25 2761.1 10.6 93.33

rbg132 132 1575 — 1323 1348 1400 7628 1324.3 1353 1360 1360 64 37.6 3.5 81.08

rbg152.3 152 6191 — 1521 1525 1594 2558 1517.1 1538 1539 1539 20 10353.3 27.4 94.44

rbg152 152 2125 — 1759 1770 1792 5038 1753.3 1780 1783 1783 29 43.7 3.0 87.50

rbg172a 174 2837 — 1777 1787 1897 3434 1739.9 1796 1799 1799 22 425.5 8.4 86.36

rbg193.2 193 6031 — 1969 1981 2093 1726 1986.0 2010 2013 — 5 > 18000 22.3 33.06

rbg193 193 3050 — 2386 2388 2452 2790 2394.3 2414 2414 2414 10 159.6 3.4 100.00

rbg201a 203 3287 — 2158 2159 2296 3282 2134.6 2187 2189 2189 20 462.7 9.4 93.55

rbg233.2 233 7588 — 2146 2152 2304 1200 2170.9 2181 2184 — 22 > 18000 26.9 22.15

rbg233 233 3766 — 2635 2647 2786 1106 2676.7 2689 2689 2689 15 749.4 8.2 100.00

avg. 9795.7 132.3 5864.0 11.2 74.74

Table 2 shows that the branch-and-cut algorithm based on the Time Bucket Formulation solves
13 out of the 18 problems, sometimes in just a few minutes, and improves upon the lower bound
obtained by AFG in the remaining 5 problems2. We also improve upon the best known upper
bound for one of the five problems we are unable to solve, namely rbg049a. Moreover, the root
lower bound with TBF is generally much stronger, thus dramatically reducing the number of B&C
nodes required to solve the problem. Indeed, for 9 out of the 18 problems, the lower bound we

ABACUS [1].
2A couple of AFG results, namely on instances rbg092a and rbg125a, have some numerical issues or typos in [7].

More precisely, (i) we obtained a feasible (and optimal) solution of value 1093 for instance rbg092a while [7] reports

a final lower bound value of 1102 and (ii) we obtained a feasible (and optimal) solution of value 1409 for instance

rbg125a while [7] reports an optimal value of 1410. The solutions of these instances – as well as of the others – are

available upon request to the authors.

24



obtain by solving the LP relaxation (obtained after a few rounds of bucket refinement and before
adding cuts) is better than the final lower bound obtained by AFG, often after the exploration of
many thousands of nodes in the branch-and-cut tree. However, in some cases the strength of the
LP relaxation of the TBF comes at the cost of difficult-to-solve LPs, due to the large number of
variables. Consequently, for some instances we can explore very few branch-and-cut nodes within
the time limit, especially for rbg193.2 and rbg233.2. On the negative side, on 4 of the 5 instances
we are unable to solve to optimality, our algorithm does not find any feasible solution within the
time limit. In all these problems the number of nodes explored is rather small because of the size
and difficulty of the LP relaxations. In addition, the primal heuristic we are using is not particularly
sophisticated.

By imposing as a cut off value that of the best known upper bound plus one, our branch-and-
cut algorithm is able to solve to optimality instance rbg049a (value 484), and to find for instances
rbg050b and rbg050c tighter lower and upper bounds, [502,516] and [520,527], respectively, within
an extended time limit of 10 hours.

6.1.1 Impact of Cutting Planes on TBF-based Branch-and-Cut

In this section we discuss the impact of cuts on our branch-and-cut algorithm.
The aim of Table 3 is to analyze the effectiveness of the bucket inequalities. We consider the 18

hard instances, perform iterative bucket refinement to obtain the desired time bucket relaxation,
and then invoke our separation routines till we cannot find violated cuts. Here we do not perform
branching. Table 3 compares the lower bound obtained using the classical cuts which do not
exploit the buckets in any way versus the bound obtained using our default setting. In both cases,
we measure the integrality gap closed, i.e., the fraction of the gap between the LP relaxation value
and the best known upper bound which is closed using cuts from each category. While separating
the classical cuts alone, we generate, in order, subtour elimination constraints, SOPs (21), (22),
(25) and finally TOURs (31).

It is clear that the bucket inequalities are useful: the “node inequalities” close 57.06 % of the
integrality gap on the average, whereas we can close 63.57 % of the integrality gap with bucket
inequalities. In some cases this improvement is crucial for the overall performance of the algorithm.
For example, instance rbg132.2 is solved in 7564.8 CPU seconds and 132 nodes with node cuts
instead of 2761.1 CPU seconds and 25 nodes with bucket cuts, and instance rbg152.3 cannot be
solved to optimality within the time limit (while it was solved in 10353.3 CPU seconds, see Table
2).

Although the computing time required by the code using bucket cuts is on average almost
double that when using node cuts alone, note that (i) the separation times for the bucket version
as reported in Table 2 are not too large and (ii) most of the difference in the averages of Table 3 is
due to instances rbg152.3 and rbg193.2. For these instances, bucket cuts are considerably more
time-consuming than node cuts, mainly during LP reoptimization.

To complete the analysis of the impact of cutting planes on branch-and-cut performance, we

25



Table 3: Node cuts vs. bucket cuts at the root node: comparison on the “hard” instances.

TBF + Node cuts TBF + Bucket cuts

Prob. #cuts %gap CPU #cuts %gap CPU

rbg041a 12 2.29 2.5 37 13.75 3.5

rbg042a 21 49.54 4.7 80 59.74 6.5

rbg048a 12 85.58 112.6 49 99.24 141.6

rbg049a 12 4.79 82.7 57 9.32 94.7

rbg050b 24 17.66 121.1 127 21.74 175.2

rbg050c 13 7.32 337.2 48 14.17 385.5

rbg086a 37 74.75 0.8 81 83.80 1.2

rbg092a 55 74.71 3.9 137 84.13 5.6

rbg132.2 45 67.04 128.7 191 80.09 314.1

rbg132 47 67.18 5.9 72 78.21 8.6

rbg152.3 31 92.03 4461.1 197 92.99 8671.2

rbg152 38 77.90 12.1 61 88.68 26.0

rbg172a 58 90.80 35.8 176 94.49 56.1

rbg193.2 52 21.27 1820.7 209 22.08 5981.1

rbg193 49 100.00 178.3 49 100.00 103.7

rbg201a 60 91.34 74.6 156 94.97 76.8

rbg233.2 44 6.95 4398.9 130 6.95 4877.1

rbg233 78 95.95 257.4 110 100.00 336.0

avg. 38.2 57.06 668.8 109.3 63.57 1181.4

experimented by adding to the version of the code separating only node cuts (as in Table 3 above)
one bucket cut type at the time, namely (26), or (27), or (29), or (34). Though all four versions are
more effective than the basic one with only node cuts, the version which adds (πB, σB)-inequalities
(29) is the most interesting one. Indeed, this version closes 62.49 % of the integrality gap on the
“hard” instances, generating 174.3 cuts on average. However, the additional 1 % gap closed using
all other bucket cuts is important for the overall performance of the algorithm. Further, the version
with all bucket cuts is less time-consuming, as fewer cuts are added on the average, namely 109.3
cuts versus 174.3 cuts.

6.1.2 Experimenting with Different Time Discretizations

We performed two sets of experiments to evaluate the impact of the time discretization. In Ta-
ble 4 we compare the Time Indexed Formulation presented in Section 2.2 with the Time Bucket
Formulation based on our heuristic partitioning of time windows into buckets.

The table compares the two formulations in terms of (i) size (number of buckets |B| and number
of arcs |AB|), (ii) lower bound given by the LP relaxation as a percentage of the best known solution
(%lpLB), and (iii) total CPU time spent solving the initial LP (CPU-LP). In addition, for TBF
the table also reports the lower bound at the root node (after cuts) again as a percentage of the
best known solution (%rLB) and total CPU time spent at the root node (CPU-root).

Table 4 clearly shows that the quality of the bound of TIF is only slightly stronger than that of
TBF at the price of being two orders of magnitude more time-consuming. In addition, once cuts
are added to TBF the root lower bound is stronger than that from TIF, yet takes much less time

26



Table 4: TIF vs. TBF, root node on the “hard” instances.

TIF TBF

Prob. |B| |AB| %lpLB CPU-LP |B| |AB| %lpLB CPU-LP %rLB CPU-root

rbg041a 24,675 247,377 96.52 659.2 1,638 15,996 97.01 2.3 97.51 3.5

rbg042a 25,750 314,857 95.86 1016.2 1,379 18,687 95.38 2.8 98.30 6.5

rbg048a 44,931 914,756 99.79 18723.6 3,635 77,508 99.59 86.1 100.00 141.6

rbg049a 39,937 679,686 95.06 13020.2 3,896 70,998 94.86 65.8 95.47 94.7

rbg050b 41,387 751,953 91.84 11943.3 3,794 75,414 91.65 99.5 93.55 175.2

rbg050c 53,518 1,115,444 96.08 31925.0 4,643 111,482 95.71 283.6 96.46 385.5

rbg086a 43,871 338,813 98.57 756.3 1,011 8,935 98.57 0.5 99.81 1.2

rbg092a 52,755 530,504 98.54 3913.7 1,439 16,609 98.44 1.7 99.82 5.6

rbg132.2 155,993 2,546,567 98.80 98155.6 5,838 104,898 98.71 75.8 99.82 314.1

rbg132 76,951 639,210 97.72 2572.0 2,781 25,214 97.43 3.6 99.49 8.6

rbg152.3 269,654 7,540,079 — — 11,794 350,735 98.64 1106.9 99.94 8671.2

rbg152 89,942 842,037 98.37 5103.2 3,760 37,732 98.37 7.8 99.83 26.0

rbg172a 104,905 1,122,761 96.83 14959.5 4,968 57,586 96.72 18.5 99.83 56.1

rbg193.2 229,153 4,804,593 — — 8,503 195,995 94.89 304.2 96.03 5981.1

rbg193 115,993 1,231,735 99.21 10274.7 7,179 87,328 99.21 46.5 100.00 103.7

rbg201a 121,713 1,292,053 97.53 19903.6 6,776 77,318 97.53 38.0 99.91 76.8

rbg233.2 277,398 6,019,216 — — 11,681 273,930 94.23 421.8 94.66 4877.1

rbg233 140,623 1,515,251 99.59 23620.7 9,037 108,668 99.55 82.2 100.00 336.0

avg. all 106063.8 1,802,605.1 97.36 17103.1 5208.4 95,279.6 97.03 147.1 98.36 1181.4

avg. 75529.6 938,866.9 97.36 17103.1 4118.3 59,624.9 97.25 54.3 98.65 115.7

to obtain.
It is interesting that for rbg041a the lower bound of TIF is weaker than that of TBF. After

spending some time looking for a bug in our code or an error in our reasoning (it is very intuitive
that TIF should be provably tighter), we realized that TBF plus bucket preprocessing can indeed
be tighter than TIF with bucket preprocessing. We present a small example demonstrating this in
the Appendix.

As a final experiment, we compared our iterative bucket refinement procedure (IBR for short,
see Section 5.2.3) with two straightforward strategies. For a given instance of the problem, let N

indicate the overall number of buckets obtained with IBR. It is also possible to partition the time
windows into approximately N buckets using one of the following procedures.

• Uniform buckets on nodes (UBN). Time window of node i ∈ V is divided into min{|Wi|, dN/|V |e}
buckets where |Wi| = Di − Ri + 1 is the size of the time window. Time buckets associated
with the same node are constructed to have (almost) the same size.

• Uniform buckets on times (UBT). Let T =
∑

i∈V |Wi| be the overall number of time instants.
The Time window of node i ∈ V is divided into dN ∗ (|Wi|/T )e buckets. In this case, all time
buckets are constructed to have approximately the same size.

These two alternative procedures by construction give formulations that are very similar in size
to the one given by IBR. However, the LP bound given by the IBR is significantly better than both
of them. In particular, the improvement on the quality of the LP bound (with no cuts) of IBR

27



with respect to UBN is 23.14 % and with respect to UBT is 21.86 %.

6.2 Symmetric Instances

The symmetric TSPTW instances we consider are derived from the rc instances proposed by
Solomon [28] in the context of the Vehicle Routing Problem with Time Windows (VRPTW). Our
TSPTW instances are obtained from the single-vehicle decomposition of the VRPTW solutions in
the literature (i.e., Rochat and Taillard [26] and Taillard et al. [29]). The 27 TSPTW instances
have up to 44 cities and have been studied, among others, by Pesant et al. [24] and by Focacci, Lodi
and Milano [18]. For the underlying VRPTW instances, the travel costs or times between cities
are computed as the Euclidean distances between their coordinates. Pesant et al. [24] showed that
an optimal solution computed with travel costs truncated to two decimal places may even become
infeasible with respect to the travel costs truncated to four decimal places. To construct symmetric
instances for our branch-and-cut code we followed the recipe by Focacci, Lodi and Milano [18]: we
create integer travel times by multiplying the Euclidean distances by 10,000 and then rounding each
scaled distance to the nearest integer value. Since the travel time associated with each arc (i, j) is
computed as θij = cij + pi, where pi is the processing time associated with node i, we applied the
same scaling operation to the processing times and time windows.

In Table 5 we present the results obtained by running our TBF-based branch-and-cut code on
the above symmetric instances treated as asymmetric ones by replacing each edge between two
nodes by two arcs in opposite directions. The reference results for the symmetric TSPTW are
those in [18] where 23 of the 27 instances were solved to optimality within 1,800 CPU seconds on
a Pentium III 700 MHz PC.

The table reports the usual pieces of information already encountered in the previous tables and
compares the best solutions found in [18] (or, in the case of instances rc203.0, rc203.1, rc204.2
and rc208.0, the best solutions reported in [24]) with the TBF-based branch-and-cut algorithm.
Our code is able to solve all the 23 instances solved in [18] plus 2 more among the 4 unsolved
instances3.

The only remaining unsolved instances, namely rc204.2 and rc208.0 are the largest instances
both in terms of nodes (40 and 44, respectively) and arcs (1530 and 1964, respectively). For these
instances, as in the case of difficult asymmetric ones, our algorithm cannot find a feasible solution
within the time limit. However, using a cutoff value equal to the best upper bound in [18] plus
one, the branch-and-cut code solved instance rc204.2 to optimality within the time limit (value
378.40) and improved significantly the lower bound (value 364.21) on instance rc208.0.

3A couple of results in [18], namely on instances rc203.2 and rc205.2, show a rounding error confirmed by the

authors [22]. The optimal solutions for these instances have value 337.47 and 434.70, respectively.

28



Table 5: TBF branch-and-cut on symmetric benchmark instances.

Time Bucket Formulation (TBF)

Prob. |V | |A| UB [18] |B| |AB| UB lpLB rLB gLB %rLB #cuts #nodes CPU-root CPU

rc201.0 25 169 378.62 116 588 378.62 371.24 378.62 378.62 100.00 4 0 0.0 0.0

rc201.1 28 157 374.70 107 485 374.70 340.32 374.70 374.70 100.00 4 0 0.0 0.0

rc201.2 28 209 427.65 140 748 427.65 400.50 427.65 427.65 100.00 8 0 0.0 0.0

rc201.3 19 127 232.54 70 324 232.54 216.81 229.51 232.54 98.70 24 2 0.0 0.1

rc202.0 25 440 246.22 581 6420 246.22 235.67 246.22 246.22 100.00 10 0 0.2 0.2

rc202.1 22 298 206.53 188 1620 206.53 186.35 206.53 206.53 100.00 33 0 0.1 0.1

rc202.2 27 379 341.77 234 1510 341.77 310.44 341.77 341.77 100.00 14 0 0.1 0.1

rc202.3 26 433 367.85 475 4045 367.85 331.74 367.85 367.85 100.00 39 0 0.2 0.2

rc203.0 35 1084 384.8 1510 30311 377.45 303.29 360.11 377.45 95.41 934 1906 23.1 3437.7

rc203.1 37 1144 357.3 2656 41241 356.99 262.55 348.44 356.99 97.60 387 353 36.8 2722.7

rc203.2 28 548 337.46 508 5927 337.47 289.17 337.47 337.47 100.00 54 0 0.8 0.9

rc204.0 32 1003 221.45 322 8023 221.45 184.82 221.35 221.45 99.95 123 0 1.3 2.8

rc204.1 28 798 205.37 620 14500 205.37 180.88 203.31 205.37 99.00 87 40 4.8 14.9

rc204.2 40 1530 379.0 4303 97694 — 315.98 365.51 366.02 96.44 1080 1081 271.6 > 18000

rc205.0 26 375 251.65 327 2659 251.65 223.50 251.65 251.65 100.00 16 0 0.1 0.1

rc205.1 22 229 271.22 202 1275 271.22 254.08 271.22 271.22 100.00 7 0 0.0 0.0

rc205.2 28 347 434.69 372 2311 434.70 355.74 434.70 434.70 100.00 89 0 0.2 0.3

rc205.3 24 280 361.24 207 951 361.24 336.48 361.24 361.24 100.00 11 0 0.0 0.0

rc206.0 35 675 485.23 513 7311 485.23 374.73 473.18 485.23 97.52 317 225 1.6 73.3

rc206.1 33 686 334.73 686 10988 334.73 291.35 328.59 334.73 98.17 216 105 4.4 85.0

rc206.2 32 663 335.37 687 10689 335.37 276.34 331.34 335.37 98.80 130 27 3.5 84.8

rc207.0 37 1030 436.69 1091 20068 436.69 358.15 434.50 436.69 99.50 129 4 7.8 19.0

rc207.1 33 860 396.36 903 16253 396.36 312.52 389.95 396.36 98.38 146 72 8.7 34.9

rc207.2 30 771 246.41 540 9536 246.41 219.92 239.40 246.41 97.16 210 143 1.1 116.4

rc208.0 44 1964 381.1 3174 111867 — 279.00 355.57 359.46 93.30 703 455 556.2 > 18000

rc208.1 27 755 239.04 492 12741 239.04 186.06 229.71 239.04 96.10 589 2220 1.3 990.6

rc208.2 29 869 213.92 1252 30775 213.92 184.39 213.92 213.92 100.00 28 0 7.9 7.9

avg. 98.74 199.7 245.7 34.5 1614.5

7 Conclusions

In this paper we presented an extended formulation for the Traveling Salesman Problem with Time
Windows, a well known generalization of the classical TSP where each node must be visited within
a given time window. In particular, we proposed a quite general idea based on partitioning time
windows into sub-windows. We showed how to implement this idea to obtain a strong formulation,
and also how to generate strong valid inequalities and incorporate them in a classical branch-and-cut
framework.

We tested the overall branch-and-cut algorithm on hard benchmark instances from the litera-
ture, arising from a practical scheduling application in the asymmetric case, and randomly generated
in the symmetric one. The results show that the proposed formulation is effective in practice for
tackling the TSPTW. We solved several previously unsolved benchmark instances.

Future directions of work include, on the methodological side, the extension and generalization
of the presented approach to other contexts in which the time window component is relevant.
On the computational side, some difficult instances remained unsolved. There are at least three

29



ingredients of the current framework that could be improved. Namely,

1. Off line experiments obtained imposing a cut off value to the branch-and-cut algorithm sug-
gested that more sophisticated primal heuristics could lead to improved results on both asym-
metric and symmetric instances.

2. Table 3 has shown that some of the instances for which bucket inequalities are not much better
than node inequalities are among the ones we cannot solve. A more clever exploitation of the
bucket information might lead to better cutting planes and, possibly, to optimal solutions of
these problems.

3. There is a trade-off between very detailed partitions of the time windows into sub-windows
(leading to very strong bounds) and the difficulty of the resulting LPs. It may be possible
to reduce the time to solve these LPs by working with a subset of variables and pricing the
remaining ones only when necessary in a column generation framework.

Appendix

Consider the following “toy” TSPTW instance with V = {1, 2, . . . , 7} and with time windows
W1 = [0, 0], W2 = [1, 2], W3 = [1, 2], W4 = [5, 12], W5 = [5, 9], W6 = [5, 11], W7 = [20, 20].
Assume the graph G = (V, A) to be complete. Traveling times are θij = 1 for (i, j) ∈ Aθ

1 =
{(1, 2), (1, 3), (2, 3), (2, 6), (3, 2), (5, 4)}, θij = 3 for (i, j) ∈ Aθ

3 = {(2, 4), (3, 5), (4, 6)}, θij = 4 for
(i, j) = (3, 4) and θij = 2 for all the other arcs. Traveling costs are cij = 0 for (i, j) = (4, 6), cij = 1
for (i, j) ∈ Ac

1 = {(1, 2), (2, 3), (3, 4), (3, 5), (4, 5), (4, 7), (5, 6), (5, 7), (6, 5), (6, 4), (6, 7)} and cij = 2
for all the other arcs. The triangle inequality holds for the traveling times θij but not for the costs
cij because of the arc (4, 6) with cost zero.

The optimal tour is (1, 2, 3, 4, 5, 6, 7) where the nodes are visited at times t1 = 0, t2 = 1,
t3 = 2, t4 = 6, t5 = 8, t6 = 10, t7 = 20. The cost of the optimal tour is copt = 6. LP-
TIF yields a lower bound c∗TIF = 5.5 that corresponds to the fractional solution x12 = x23 = 1,
x34 = x35 = x46 = x47 = x56 = x57 = x64 = x65 = 0.5. Note in particular that node 3 is
visited at bucket [2, 2] ∈ B3 with z

[2,2]
3 = 1, arc (3, 4) is used with x34 = 0.5 and hence node 4 is

visited at bucket [6, 6] ∈ B4 with z
[6,6]
4 = 0.5. Thus, the arc (i, j) = (4, 6) with cost 0 can be used

with x46 = 0.5 because the bucket-arc (b, b′) ∈ AB, b = [6, 6] ∈ B4, b′ = [9, 9] ∈ B6 is used with
y

[6,6]
46 = 0.5.

Now consider a time bucket relaxation where nodes 2 and 3 have only one bucket, i.e. B2 =
{[1, 2]} and B3 = {[1, 2]}, while the time windows of all the other nodes are completely discretized as
in TIF. With this choice of the buckets, LP-TBR yields the same lower bound as TIF, c∗TBR = 5.5,
that corresponds exactly to the same fractional x solution. In this case, node 3 is visited at bucket
[1, 2] ∈ B3 with z

[1,2]
3 = 1, arc (3, 4) is used with x34 = 0.5 and hence node 4 is visited at bucket

[5, 5] ∈ B4 (instead of [6,6]) with z
[5,5]
4 = 0.5, because of the negative waiting time introduced by

the bucket [1, 2] ∈ B3. Thus, the arc (i, j) = (4, 6) with cost 0 is again used with x46 = 0.5, because
the bucket-arc (b, b′) ∈ AB, b = [5, 5] ∈ B4, b′ = [8, 8] ∈ B6 can be used with y

[5,5]
46 = 0.5.

30



However, if we apply the so-called bucket preprocessing to the above TIF and TBR, then the
bucket-arc (b, b′) ∈ AB, b = [5, 5] ∈ B4, b′ = [8, 8] ∈ B6 is removed, since for node k = 5 we have
b ≺ k and rb + θ46 + θ65 > Dk. Thus, the lower bound yielded by LP-TBR improves to c∗TBR = 6,
that corresponds to the optimal tour (1, 2, 3, 4, 5, 6, 7), while the optimal solution of LP-TIF does
not change, since the bucket-arc (b, b′) ∈ AB, b = [6, 6] ∈ B4, b′ = [9, 9] ∈ B6 is not removed by the
bucket preprocessing.

Acknowledgments

Part of this research was carried out when the fourth author was a summer intern at the Department
of Mathematical Sciences of the IBM T.J. Watson Research Center, whose support is strongly
acknowledged.

References

[1] ABACUS, A Branch-And-CUt System, http://www.informatik.uni-koeln.de/abacus/.

[2] J. Albiach, J. M. Sanchis, and D. Soler. An asymmetric TSP with time windows and with
time-dependent travel times and costs: An exact solution through a graph transformation.
European Journal of Operational Research 189, 789–802, 2008.

[3] L. Appelgren. A column generation approach for a ship scheduling problem. Transportation
Science 3, 53–68, 1969.

[4] L. Appelgren. Integer programming methods for a vessel scheduling problem. Transportation
Science 5, 62–74, 1971.

[5] N. Ascheuer. Hamiltonian path problems in the on-line optimization of flexible manufacturing
systems. PhD thesis, Technische Universität Berlin, Berlin, Germany, 1995.

[6] N. Ascheuer, M. Fischetti, M. Grötschel. A polyhedral study of the asymmetric travelling
salesman problem with time windows. Networks 36, 69–79, 2000.

[7] N. Ascheuer, M. Fischetti, M. Grötschel. Solving the asymmetric travelling salesman problem
with time windows by branch-and-cut, Mathematical Programming, Ser. A 90, 475–506, 2001.

[8] E.K. Baker. An exact algorithm for the time-constrained travelling salesman problem. Opera-
tions Research 31, 938–945, 1983.

[9] E. Balas, M. Fischetti and W.R. Pulleyblank. The precedence-constrained asymmetric trave-
ling salesman polytope. Mathematical Programming, Ser. A 68, 241–265, 1995.

[10] E. Balas, N. Simonetti. Linear time dynamic programming algorithms for new classes of re-
stricted TSPs: a computational study. INFORMS Journal on Computing 13, 56-75, 2001.

31



[11] Y. Caseau, P. Koppstein. A rule-based approach to a time-constrained traveling salesman
problem. Proceedings of the 2nd International Symposium of Artificial Intelligence and Mathe-
matics, Fort Lauderdale, FL. 1992.

[12] N. Christofides, A. Mingozzi, P. Toth. State space relaxation procedures for the computation
of bounds to routing problems. Networks 11, 145–164, 1981.

[13] Concorde TSP Solver. http://www.tsp.gatech.edu/concorde.html

[14] W. Cook. Personal communication, 2008.

[15] J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M.M. Solomon, F. Soumis. VRP with Time
Windows. In P. Toth, D. Vigo, eds. The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications. pp. 157–194, 2002.

[16] J. Desrosiers, Y. Dumas, M.M. Solomon, F. Soumis. Time constrained routing and scheduling.
In M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds. Network Routing. Elsevier,
Amsterdam, The Netherlands. pp. 35–139, 1995.

[17] Y. Dumas, J. Desrosiers, E. Gelinas, M.M. Solomon. An optimal algorithm for the travelling
salesman problem with time windows. Operations Research 43, 367–371, 1995.

[18] F. Focacci, A. Lodi, M. Milano. A hybrid exact algorithm for the TSPTW. INFORMS Journal
on Computing 14, 403–417, 2002.

[19] ILOG Cplex, http://www.ilog.com/products/cplex.

[20] A. Langevin, M. Desrochers, J. Desrosiers, F. Soumis. A two-commodity flow formulation
for the traveling salesman and makespan problem with time windows. Networks 23, 631–640,
1993.

[21] A. Levin. Scheduling and fleet routing models for transportation systems. Transportation
Science 5, 232–255, 1971.

[22] A. Lodi. Personal communication, 2009.

[23] A. Mingozzi, L. Bianco, S. Ricciardelli. Dynamic programming strategies for the travelling
salesman problem with time windows and precedence constraints. Operations Research 45,
365–377, 1997.

[24] G. Pesant, M. Gendreau, J.-Y. Potvin, J.M. Rousseau. An exact constraint logic programming
algorithm for the travelling salesman problem with time windows. Transportation Science 32,
12–29, 1998.

[25] G. Pesant, M. Gendreau, J.-Y. Potvin, J.M. Rousseau. On the flexibility of constraint pro-
gramming models: from single to multiple time windows for the travelling salesman problem.
European Journal of Operational Research 117, 253–263, 1999.

32



[26] Y. Rochat, E. D. Taillard. Probabilistic diversification and intensification in local search for
vehicle routing. Journal of Heuristics 1, 147–167, 1995.

[27] M.W.P. Savelsbergh. Local search in routing problems with time windows. Annals of Opera-
tions Research 4, 285–305, 1985.

[28] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time window
constraints. Operations Research 35, 254–265, 1987.

[29] E. D. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin. A new neighborhood
structure for the vehicle routing problems with time windows. Publication CRT-95-66, Centre
de Recherche sur les Transports, Université de Montréal, Montréal, Quebec, Canada, 1995.

[30] A. Tramontani. Enhanced mixed integer programming techniques and routing problems. PhD
thesis, DEIS, University of Bologna, Bologna, Italy, 2009.

[31] X. Wang, A. C. Regan. Local truckload pickup and delivery with hard time window constraints.
Transportation Research Part B 36, 97–112, 2002

[32] X. Wang, A. C. Regan. On the convergence of a new time window discretization method
for the traveling salesman problem with time window constraints. Computers & Industrial
Engineering 56, 161–164, 2009.

33


