
The Time Dependent Traveling Salesman

Problem: Polyhedra and Algorithm

Hernán Abeledo Ricardo Fukasawa Artur Pessoa

Eduardo Uchoa

December, 2010

Abstract

The Time Dependent Traveling Salesman Problem (TDTSP) is a gen-
eralization of the classical Traveling Salesman Problem (TSP), where arc
costs depend on their position in the tour with respect to the source node.
While TSP instances with thousands of vertices can be solved routinely,
there are very challenging TDTSP instances with less than 100 vertices.
In this work, we study the polytope associated to the TDTSP formulation
by Picard and Queyranne, which can be viewed as an extended formula-
tion of the TSP. We determine the dimension of the TDTSP polytope and
identify several families of facet-defining cuts. We obtain good computa-
tional results with a branch-cut-and-price algorithm using the new cuts,
solving almost all instances from the TSPLIB with up to 107 vertices.

1 Introduction

The Time-Dependent Traveling Salesman Problem (TDTSP) is a generalization
of the Traveling Salesman Problem (TSP) where arc costs depend on their
position in the tour. This work departs from a formulation by Picard and
Queyranne [23] (proposed earlier in [28] as an extended formulation for the
TSP), to define and study the TDTSP polytope. Our motivations are the
following:

• The TDTSP itself is a rich problem, with a number of important appli-
cations. It includes as special cases routing problems, like the Traveling
Deliveryman Problem (TDP), known also as the Cumulative TSP or as
the Minimum Latency Problem; and scheduling problems, such as the
1|sij |

∑
Cj .

• The formulation in [23], called here PQ, can be generalized to provide very
effective formulations to be used in branch-cut-and-price algorithms for
several Vehicle Routing Problem (VRP) variants [24] (including “nasty”
cases, like the heterogenous fleet VRP [25]) and also complex single and

1

multi-machine scheduling problems [26]. The TDTSP facet-defining in-
equalities studied in this paper can be readily generalized and used on
those problems.

• The PQ formulation can be used for solving the TSP. Of course, every
known valid inequality for the TSP could still be added to the PQ formu-
lation. However, we verified that inequalities known to define facets of the
TSP polytope [3] correspond to disappointingly low dimensional faces of
the TDTSP polytope and are usually dominated by the newly proposed
TDTSP inequalities. This means that adding TDTSP inequalities to the
PQ formulation yields a TSP formulation that is potentially stronger than
those usually used, at the expense of having n times more variables. Fur-
thermore, we believe the TDTSP inequalities may be projected into more
complex, yet unknown, valid inequalities for the TSP polytope. Our hope
is supported by some precedents. For example, [2] derived new Sym-
metric TSP (STSP) facets from known Asymmetric TSP (ATSP) facets.
Similarly, [11] provides another case where relatively simple facets of an
extended formulation are combined and projected into new complex facets
of the original formulation.

Polyhedral studies of the TSP have been very productive, both theoretically
and because of their algorithmic implications. Results for the STSP are surveyed
in [13] and for the ATSP in [3]. Formulations for the TDTSP have been proposed
or studied in [23, 20, 7, 10, 29, 9]. Exact algorithms for the TDTSP are presented
in [20, 4, 29] and, for the special case of the TDP, in [6, 17, 18].

This paper is organized as follows. The TDTSP polytope is defined in Sec-
tion 2, where its dimension is also established. There is also a discussion about
the decision of investigating the actual TDTSP polytope and not its mono-
tone relaxation. Section 3 presents Admissible Flow Constraints, a family of
strong inequalities, including an important subfamily of inequalities proven to
define facets of the TDTSP polytope and with nice theoretical properties re-
lated to flow decomposition. Section 4 introduces Lifted Subtour Elimination
Constraints, which are a new family of facet-defining inequalities. Section 5
deals with Triangle Clique Constraints. Those last inequalities were already in-
troduced in the VRP context [24], but now we show that some, and perhaps all,
define facets of the TDTSP polytope. Section 6 describes a branch-cut-and-price
algorithm for the TDTSP, separating the newly proposed inequalities, while Sec-
tion 7 presents computational results. Some lengthier proofs are shown in the
Appendix.

2 Preliminaries

Let N = {1, 2, . . . n} and let N0 = N ∪ {0}. For a set of nodes S, K(S) shall
denote the complete (loopless) digraph over S. It is known that there is a one-
to-one correspondence between Hamiltonian tours of K(N0) and Hamiltonian
paths (with free ends) of K(N).

2

The TDTSP on a complete graph K(N0) can be modeled as an optimization
problem over a layered graph (V,A), where V consists of a source node 0, a
terminal node T , and intermediate nodes (i, t) for i, t ∈ N . The first index of
an intermediate node (i, t) identifies vertex i of the graph K(N) and the second
index will represent the position of vertex i in a path between nodes 0 and T .
The arc set A is composed of three types of arcs. For i ∈ N , (0, i, 0) denotes an
arc from node 0 to node (i, 1) and (i, T, n) denotes an arc from node (i, n) to
node T . Given i, j ∈ N such that i 6= j and 1 ≤ t ≤ n − 1, (i, j, t) will denote
an (intermediate) arc from node (i, t) to node (j, t + 1). The third index of an
arc is its layer. Likewise, the second index of an intermediate node identifies its
node layer.

It is convenient to define G(n) to be the subgraph of (V,A) induced by
V \ {0, T}. Thus, G(n) has n2 nodes {(i, t) : i, t ∈ N} and all the n(n − 1)2

intermediate arcs of A. A path with n vertices in G(n) is of the form {(vt, t) :
vt ∈ N, 1 ≤ t ≤ n}. Since consecutive nodes in the path are in consecutive
layers, we can describe such paths by an ordered array (vt : t ∈ N). Such
a path can be extended to a 0 − T path of (V,A) by appending nodes 0 and
T as first and last nodes, respectively. A path in G(n) with node sequence
(vt : t ∈ N, vi 6= vj for i 6= j) that corresponds to a permutation of the elements
of N will be called an s-path. A 0−T path of (V,A) will also be called an s-path
if it contains an s-path of G(n). Clearly, there is a one-to-one correspondence
between s-paths of G(n) and Hamiltonian paths of K(N). Similarly, an s-path
of (V,A) corresponds to a Hamiltonian tour of K(N0), where nodes 0 and T
both represent node 0 of K(N0). Figure 1 represents the arcs belonging to a
certain s-path in G(6) as lines in a 6 × 6 grid. A similar representation will
be used over this paper to illustrate the support graph of several families of
constraints.

2

3

4

5

1

6

2 3 4 5 6

Figure 1: Graphical representation of the s-path (1, 4, 3, 6, 5, 2) in G(6).

Picard and Queyranne [23] formulated the TDTSP over (V,A) as a linear
integer program with the following set of constraints, where variable xt

i,j with
cost ct

i,j indicates if arc (i, j, t) is used and N \ i denotes N \ {i}.

3

∑
j∈N

x0
0,j = 1 (1a)

x0
0,j =

∑
k∈N\j

x1
j,k, j = 1 . . . n (1b)

∑
i∈N\j

xt
i,j =

∑
k∈N\j

xt+1
j,k , j = 1 . . . n, t = 1 . . . n − 2 (1c)

∑
i∈N\j

xn−1
i,j = xn

j,T , j = 1 . . . n (1d)

x0
0,j +

n−1∑
t=1

∑
i∈N\j

xt
i,j = 1, j = 1 . . . n (1e)

x ≥ 0 and integer (1f)

We can use equations (1a) and (1d) to eliminate the 2n variables correspond-
ing to arcs incident to nodes 0 and T , obtaining the following equivalent system
of constraints whose solutions correspond to s-paths in G(n).

∑
i∈N

∑
j∈N\i

x1
i,j = 1 (2a)

∑
i∈N\j

xt
i,j =

∑
k∈N\j

xt+1
j,k , j = 1 . . . n, t = 1 . . . n − 2 (2b)

∑
k∈N\j

x1
j,k +

n−1∑
t=1

∑
i∈N\j

xt
i,j = 1, j = 1 . . . n (2c)

x ≥ 0 and integer (2d)

Definition 1 Let P (n) be the convex hull of the incidence vectors of s-paths of
G(n) and refer to it as the TDTSP polytope.

Clearly, P (n) and the convex hull of s-paths of (V,A) are equivalent poly-
topes with the same dimension. By enumerating all integer vectors in P (n), one
can determine computationally that dimP (1) = 0, dim P (2) = 1, dimP (3) = 5,
dim P (4) = 22, and dimP (5) = 60. We establish the dimension of P (n) below.

Lemma 1 The system of equations (1a, 1b, 1c, 1d, 1e) has rank n2 + n.

Proof The subsystem composed by the n2 +1 flow conservation equations (1a,
1b, 1c, 1d) has (full) rank n2+1 since they are the flow conservations constraints
for the connected digraph G = (V,A) which has n2 + 2 nodes (note that the
flow conservation constraint for terminal node T is absent).

We prove next that exactly one of the n equations (1e) is redundant in the
system (1a, 1b, 1c, 1d, 1e). Equation (1a) combined with flow conservation
constraints (1b, 1c) imply that the total flow in each arc layer is equal to 1.
That is,

∑

i∈N

∑

j∈N\i

xt
i,j = 1, t = 1 . . . n − 1.

4

The sum of all flow variables in the first n of layers G = (V,A) equals n:

∑

j∈N

x0
0,j +

n−1∑

t=1

∑

i∈N

∑

j∈N\i

xt
i,j = n (3)

Thus, we can eliminate from (1e) the equation corresponding to an arbitrary
single index k ∈ N and (3) would imply that it still holds true:

x0
0,k +

n−1∑

t=1

∑

i∈N\k

xt
i,k = 1.

To complete our proof, we show that if more than one equation from (1e)
is eliminated then the set of solutions to the remaining system is enlarged,
implying that the rank of the system of equations decreased. Suppose then
that equations (1e) corresponding to indices k and l are eliminated. Consider
the incidence vector of the path (0, k, S, k, T), where S is any permutation of
N \ {k, l}. Finally, note that this vector satisfies all remaining constraints but
is not a feasible solution for the original system of equations (1a, 1b, 1c, 1d, 1e)
since constraints (1e) are violated for k and l.

Lemma 2 The system of equations (2a, 2b, 2c) has rank n2 − n.

The above result follows immediately from Lemma 1. The removal of any
single equation from (2), such as (2a), yields a full rank system of equations.

Theorem 3 If n ≥ 5, then dimension of P (n) = n(n − 1)(n − 2).

Proof Lemma 2 implies that dim P (n) ≤ n(n−1)(n−2). We prove by induction
that we can choose n(n−1)(n−2)+1 linearly independent (LI) vectors in P (n).
The induction basis for n = 5 is established computationally. Suppose the result
is true for n ≥ 5, we need to show that dimP (n+1) = (n+1)n(n−1). Consider
G(n + 1) and its subgraph G(n). The induction hypothesis asserts that G(n)
contains dimP (n) + 1 = n(n − 1)(n − 2) + 1 LI s-paths. Each of these s-
paths can be trivially extended to an s-path of G(n + 1) by simply appending
node (n + 1, n + 1) as the last node of the path. This yields dimP (n) + 1 =
n(n − 1)(n − 2) + 1 LI s-paths in G(n + 1). To complete the required set of LI
s-paths in G(n + 1) we need 3(n2 − n) = dim P (n + 1) − dim P (n) additional
s-paths. We iteratively construct the required set of LI s-paths by including,
in each successive s-path, an arc that was not used previously. Note that,
compared with G(n), G(n+1) has 3n2−n additional arcs and we need 3n2−3n
new s-paths. Thus, there are 2n “surplus” arcs available.

Extending the set of LI s-paths in the induction hypothesis from G(n) to
G(n + 1) consumed the n arcs incident to node (n + 1, n + 1). Thus, we have
only n surplus arcs remaining in order to construct the 3(n2−n) s-paths we still
need. All additional s-paths defined next will contain a node of type (n + 1, t)
for t = 1, . . . , n and will use one surplus arc per node (n + 1, t).

5

We consider two cases: (1) s-paths that contain node (n + 1, 1) and (2) s-
paths that contain a node (n + 1, t), for t > 1. For case 1, we will construct a
set of n2 − 1 linearly independent s-paths that use the n incident arcs at node
(n + 1, 1) and the n(n− 1) arcs {(i, j, n), 1 ≤ i, j ≤ n, i 6= j}. Our construction
rests on the following observation: given a pair of arcs (n + 1, i, 1) and (j, k, n)
such that i 6= j and i 6= k, we can always find an s-path that contains these two
arcs.

We begin by fixing arc (n + 1, 1, 1) and generate a set of s-paths, each
one terminating with a different arc (i, j, n). Thus, the possible final arcs are
{(j, k, n), 2 ≤ j, k ≤ n, j 6= k}, yielding (n − 1)(n − 2) LI s-paths. Next, for
each arc (n + 1, i, 1), 2 ≤ i ≤ n, we construct an s-path that terminates in
one of the (already used) arcs (j, k, n), 2 ≤ j, k ≤ n, j 6= k. This produces
n − 1 additional s-paths. Next, we select arc (n + 1, 2, 1) and use it to produce
2(n − 2) s-paths terminating with either arcs (j, 1, n), j = 3, . . . , n or (1, k, n)
k = 3, . . . , n. Finally, we fix arc (n + 1, 3, 1) and use it to generate two s-paths,
terminating with arcs (2, 1, n) and (1, 2, n), respectively. This procedure created
n2 − 1 = (n − 1)(n − 2) + (n − 1) + 2(n − 2) + 2 LI s-paths.

For case 2, where t = 2, . . . , n, each node (n + 1, t) has n incoming arcs
{(i, n + 1, t− 1) : i = 1, . . . , n} and n outgoing arcs {(n + 1, j, t) : j = 1, . . . , n}.
We will construct 2n − 1 LI s-paths that contain node (n + 1, t). Note that,
given a pair of arcs {(i, n + 1, t − 1), (n + 1, j, t)}, such that i 6= j, it is always
possible to include this pair of arcs within an s-path.

We first fix the incoming arc (1, n+1, t−1). This arc can be combined with
an outgoing arc of the form (n + 1, j, t) for j = 2, . . . , n to be part of an s-path
of G(n+1). Similarly, outgoing arc (n+1, n, t) can be combined with incoming
arcs of the form (i, n + 1, t − 1) for i = 2, . . . n − 1 to produce n − 2 s-paths.
Pairing arc (2, n + 1, t − 1) with (n + 1, 1, t) yields one more path. Finally, we
combine arcs (n, n + 1, t − 1) and (n + 1, 1, t) to obtain the last s-path needed
to complete the set of 2n − 1 LI s-paths containing node (n + 1, t). Repeating
this procedure for each t = 2, . . . n yields (n − 1)(2n − 1) LI s-paths.

In summary, we created a total of 3n2 − 3n = (n2 − 1) + (n − 1)(2n − 1) LI
s-paths, in addition to the ones obtained from the induction hypothesis.

We remark that we could have used the n2 + n LI equalities identified
in Lemma 2 to remove n2 + n variables from (2). The potential advantage
would be an alternative definition for the TDTSP polytope, that would be full-
dimensional. However, we could not find any “simple” way of choosing those
variables. For example, it is not possible to remove all the n2 +n variables from
the same layer. Removing variables from different layers, in a complex way,
would define a complex full-dimensional TDTSP polytope, where the facets are
represented (uniquely up to scalar multiplication) by inequalities that have an
obscure interpretation. Therefore, we preferred to work with a polytope that is
not full-dimensional, but has facets that can be described by inequalities with
a clear interpretation.

Another alternative to avoid the technical difficulties of non-full-dimensional
polytopes would be working with monotonized polytopes:

6

Definition 2 Let Pmon(n) be the convex hull of the incidence vectors that can
be extended to an s-path of G(n) and refer to it as the monotonized TDTSP
polytope.

Is is clear that Pmon(n) is full-dimensional and that P (n) = Pmon(n)∩ (2a,
2b, 2c). Many of the classical polyhedral results for the STSP and ATSP were
actually obtained on monotonized polytopes [13, 3]. However, we realized that
a similar approach in the TDTSP would have its own pitfalls. The first pitfall
is that the relaxation from P (n) to Pmon(n) may create many redundant facets.
Indeed, the following Lemma shows an example of an exponential familty of
distinct facets of Pmon(n) that define the same facet of P (n). The proof of
Lemma 4 will be given by construction of an example in Section 5.

Lemma 4 There are cases where Ω(2n) inequalities defining distinct facets of
Pmon(n) define a single facet of P (n).

When the STSP or ATSP polytopes are monotonized, only Θ(n) LI equalities
are relaxed. On the other hand, the monotonization of the TDTSP polytope
relaxes Θ(n2) LI equalities. This larger “dimension gap” makes the relation
between original and monotonized polytopes less direct. In particular, Lemma
4 suggests that the relaxation from P (n) to Pmon(n) creates many redundant
facets.

Besides that, there is also the natural difficulty that appears when dealing
with monotonized polytopes: determining whether an inequality that defines a
facet of the monotonized polytope also defines a facet of the original polytope.
In the TSP case, there are some known simple sufficient conditions that may
help a lot on that [3]. We could not find similar conditions for the TDTSP.
In our experience, the knowledge that an inequality defines a facet of Pmon(n)
provides little help on proving that it defines a facet of P (n), this being as
difficult as making the proof from the scratch. For those reasons, we chose to
work in the original polytope P (n).

3 Admissible Flow Constraints

Let p = (0, v1, v2, . . . , vn, T) be a 0 − T path in (V,A). We define an r-cycle in
p as a subpath (vi, . . . , vi+r) such that vi = vi+r. Note that no path p contains
1-cycles, since A does not has arcs of type (j, j, t). Also note that integral
solutions of (1) are s-paths and do not contain r-cycles. A network flow in an
acyclic digraph can be decomposed as a sum of flows along paths. In particular,
a fractional solution satisfying equalities (1a, 1b, 1c, 1d) can be decomposed
into a set of 0 − T paths. However, these paths may contain r-cycles, for some
r ≥ 2. The Admissible Flow Constraints are devised to improve the formulation
by restricting the occurrence of r-cycles.

Consider t such that 1 ≤ t ≤ n− 2. The flow on arc (i, j, t) should exit node
(j, t+1) using arcs other than (j, i, t+1) to avoid creating a 2-cycle. Constraints
below model this observation.

7

xt
i,j ≤

∑

k∈N\{i,j}

xt+1
j,k , (i, j, t) ∈ A, 1 ≤ t ≤ n − 2. (4)

2

3

4

5

1

6

2 3 4 5 6

Figure 2: Example of a 2-cycle constraint: x2
1,2 ≤ x3

2,3 + x3
2,4 + x3

2,5 + x3
2,6.

We next show that inequalities (4) define a family of facets of P (n).

Theorem 5 If n ≥ 6, then each constraint of (4) defines a distinct facet of
P (n).

Proof We first prove that each constraint of (4) defines a facet of P (n). Assume
without loss of generality (by potentially relabeling vertices) that i = 1 and
j = n. Note that arc (1, n, t) enters node (n, t + 1) where 1 ≤ t ≤ n − 2. To
show that constraint (4) is not satisfied as an equation for all vectors of P (n),
we note there exists an s-path that contains arcs (2, n, t) and (n, 3, t + 1). The
incidence vector of such a path satisfies constraint (4) for arc (1, n, t) as strict
inequality.

Next, since dim P (n) = n(n−1)(n−2), we need to show that n(n−1)(n−2)
linearly independent vectors in P (n) satisfy constraint (4) associated with arc
(1, n, t) as equality. The construction in the proof of Theorem 3 shows that
we can find dim P (n) + 1 linearly independent s-paths in G(n). We partition
this set of linearly independent s-paths into two subsets, B and B, such that B
are the s-paths that do not contain node (n, t + 1) and B are the s-paths that
contain node (n, t + 1).

The s-paths in B all satisfy constraint (4) associated with arc (1, n, t) as
equality with value 0 since they do not contain node (n, t + 1). In the proof
of Theorem 3, |B| = 2n − 3. We replace B by a set B′ composed of 2n − 4
linearly independent s-paths, all of which satisfy constraint (4) for arc (1, n, t)
as equality.

The set B′ is constructed as follows. For each k ∈ N \ {1, n} we combine
incoming arc (k, n, t) with outgoing arc (n, 1, t + 1) to generate n − 2 linearly
independent s-paths which satisfy (4) as equation with value 0. Finally, we
combine incoming arc (1, n, t) with the n − 2 outgoing arcs (n, k, t + 1), for

8

k ∈ N \{1, n} to obtain n−2 independent s-paths which satisfy (4) as equation
with value 1. Note B∪B′ is linearly independent by construction and |B∪B′| =
dim P (n).

To prove that each inequality in (4) defines a different facet, it suffices to
show that, given two distinct (4) constraints, there is an s-path satisfying one
constraint at equality while satisfying the other at strict inequality. This same
type of argument will be used throughout the paper.

There exists one inequality (4) for each (i, j, t). To simplify notation assume
that one of the constraints is defined by i = 1, j = 2, that is, we have two
distinct constraints (1, 2, t) and (i, j, t′).

Notice that if an s-path does not go through node (2, t+1) then that s-path
satisfies constraint (1, 2, t) at equality. Also if an s-path uses arc (1, 2, t) then
that s-path also satisfies constraint (1, 2, t) at equality.

So if j 6= 2 or t 6= t′ one can easily construct an s-path that does not go
through node (2, t + 1) and that goes through node (j, t′ + 1) from node (k, t′)
and exits through node (l, t′ + 2) with k, l /∈ {2, i, j} and k 6= l.

If t′ = t and j = 2, then one can just consider the s-path going through
(2, t + 1) from node (1, t) and leaving to node (k, t + 2) for k 6= i. This s-path
uses arc (1, 2, t) and arc (2, k, t + 1) which is in constraint (i, j, t′) and therefore
does not satisfy the latter at equality.

The next result is that inequalities (4) suffice to eliminate all 2-cycles, that is,
any solution satisfying the original Picard and Queyranne TDTSP constraints
plus (4) will be in the convex hull of 0−T paths without 2-cycles. The following
lemma will be used in our proof. It relies on a characterization of feasible net-
work flow problems obtained by Gale and Hoffman which, if applied to balanced
transportation problems on incomplete bipartite graphs, yields a generalization
of Hall’s marriage theorem [14].

Lemma 6 [8, 15] Let S and D be the set of supply and demand nodes of a
balanced transportation problem and suppose N(R) = D for every subset R ⊂ S
such that |R| = 2 (N(R) is the set of neighbors of R). Then the transportation
problem is feasible if and only if b(v) ≤ b(N(v)) for each supply node v ∈ S
(b(v) is the supply of v, b(N(v)) is the total demand of N(v)).

We proceed to show the desired result.

Theorem 7 Let x ∈ RA
+ satisfy constraints (1a, 1b, 1c, 1d) and (4). Then x

can be decomposed into flows along 0−T paths such that none of them contains
a 2-cycle.

Proof Let x ∈ RA
+ satisfy the assumptions of the theorem. We show that x is

a convex combination of incidence vectors of 0 − T paths which do not contain
two-cycles.

Let (j, t) be a node of (V,A) such that 1 < t < n. We consider the flow
on arcs incident to node (j, t), along incoming arcs {xt−1

i,j : i ∈ N \ j} and

outgoing arcs {xt
j,k : k ∈ N \ j}. Associated with node (j, t), we construct a

9

transportation problem with (n− 1) source nodes S = N \ j and a symmetrical
set of demand nodes D = N \ j. Each node i ∈ S has its available supply set
equal to xt−1

i,j and each node k ∈ D has its demand set equal to xt
j,k. For each

pair i, k ∈ N \ j such that i 6= k, we place an arc (i, k) connecting node i ∈ S
with k ∈ D.

The above transportation problem satisfies the condition of Lemma 6. In
particular, a feasible solution to this transportation problem provides a way of
decomposing the entire flow along arcs incident to node (j, t) into flow along
paths of length two, where each one is of the form (i, t − 1), (j, t), (k, t + 1) and
i 6= k. None of these paths of length two in the decomposition, when viewed as
a path in the graph K(N), forms a two-cycle in K(N).

Given a flow in x of (V,A) and a feasible solution for each of the transporta-
tion problems described above, we combine them to construct a feasible flow
for a larger network as follows. The new network is created by substituting
each node (j, t) in G = (V,A) with j ∈ N and 2 ≤ i ≤ n − 1, by a bipartite
digraph with uncapacitated arcs as described above. The arc flows in each of
these bipartite graphs are set equal to the feasible solutions of the corresponding
transportation problem.

Nodes 0, T , and (j, t) for j ∈ N and t = 1 or n remain in the new network
without further node splitting. Each arc (i, j, t) in the original graph (V,A)
would have a corresponding arc, with flow value set equal to xt

i,j , connecting
the appropriate nodes in the new network. Clearly, the flow thus defined in
the new network is feasible for a problem where all nodes, except 0 and T , are
transshipment nodes. Thus, the flow can be decomposed as a sum of flows on
paths (in the new network) that start at node 0 and end at node T . Finally, by
shrinking each of the bipartite graphs to its original node in (V,A), each of these
paths can be shortened to a path of (V,A) that does not contain a two-cycle.
This procedure yields the desired decomposition of x.

Inequalities (4) may be aptly called 2-cycle elimination constraints. The
complete elimination of larger r-cycles by means of inequalities appears to be
much more difficult, even for r = 3. Nevertheless, the following generalization
of those inequalities proved to be a rich source of strong cuts.

Definition 3 Let X be a connected set of vertices of G = (V,A) not containing
vertices in {0, T}. If e ∈ δ−(X), define C(X, e) ⊆ δ+(X) as the set of leaving
arcs that are admissible for e with respect to X: those arcs f that belong to
an s-path entering X at e and leaving X for the first time at f . For a set
E ⊆ δ−(X), define C(X,E) ⊆ δ+(X) as ∪e∈EC(X, e). For a given X and E,
the following valid inequality is called an Admissible Flow Constraint (AFC):

∑
e∈E

xe ≤
∑

f∈C(X,E)

xf (5)

The AFCs where |E| = 1 are called unitary AFCs.

Notice that (4) is a unitary AFC with |X| = 1. Another subset of AFCs that
is worth mentioning is the r-cycle elimination constraints, which also generalize
(4).

10

Definition 4 Let ((i, t), (u1, t+1), . . . , (ur−1, t+r−1), (ur, t+r)), ur = i, be a
minimal r-cycle in G. The unitary AFCs where X = {(u1, t + 1), . . . , (ur−1, t +
r − 1)} and E = {(i, u1, t)} are called r-cycle elimination constraints and are
written as:

xt
i,u1

≤
r−1∑

k=1

∑

j∈N\{i,u1,...,uk+1}

xt+k
uk,j .

Computational experiments and partial results not stated here support the
conjecture that all r-cycle elimination constraints (not only the 2-cycle elimina-
tion) are facet-defining. Figure 3 illustrates a 4-cycle elimination constraint that
is facet-defining. Figure 4 depicts an example of a unitary AFC over a certain
set X that is also facet-defining. Figure 5 shows an example of an AFC over
the same X, but with |E| = 5, that is not facet-defining (it has dimension 119).
While the more general AFCs are usually not facet-defining (it seems pretty
hard to determine which ones are), they are still very useful as cuts.

2

3

4

5

1

6

2 3 4 5 6

Figure 3: Example of a 4-cycle constraint: x1
1,2 ≤ x2

2,4 + x2
2,5 + x2

2,6 + x3
3,5 +

x3
3,6 + x4

4,5 + x4
4,6.

4 Lifted Subtour Elimination Constraints

The classical Subtour Elimination Constraints (SECs) [5] are known to define
facets of the STSP polytope [12] and also of the ATSP polytope [13]. SEC
inequalities can be expressed in terms of the TDTSP variables as follows:

∑

j∈S

x0
0,j +

n−1∑

t=1

∑

i/∈S

∑

j∈S

xt
i,j ≥ 1, S ⊂ N, |S| > 1. (6)

Eliminating the variables of arcs not in G(n), we obtain the equivalent inequal-
ities:

∑

i∈S

∑

j∈N\j

x1
i,j +

n−1∑

t=1

∑

i/∈S

∑

j∈S

xt
i,j ≥ 1, S ⊂ N, |S| > 1. (7)

11

2

3

4

5

1

6

2 3 4 5 6

Figure 4: Example of a unitary AFC constraint: x1
1,2 ≤ x2

2,5 + x2
2,6 + x3

3,5 +
x3

3,6 + x3
4,3 + x3

4,5 + x3
4,6 + x4

4,5 + x4
4,6.

2

3

4

5

1

6

2 3 4 5 6

Figure 5: Example of a general AFC constraint: x1
1,2 +x1

3,2 +x1
4,2 +x1

5,2 +x1
6,2 ≤

x2
2,1 +x2

2,5 +x2
2,6 +x3

3,1 +x3
3,5 +x3

3,6 ++x3
3,1 +x3

4,1 +x3
4,5 +x3

4,6 +x4
4,1 +x4

4,5 +x4
4,6.

Even though SECs define facets of the ATSP polytope, (7) may define quite low-
dimensional faces of the TDTSP polytope. In fact, our next class of inequalities
is a much stronger family of valid TDTSP inequalities that we call Lifted Subtour
Elimination Constraints (LSECs):

∑

i∈S

∑

j∈N\j

x1
i,j +

n−|S|∑

t=1

∑

i/∈S

∑

j∈S

xt
i,j ≥ 1, S ⊂ N, |S| > 1. (8)

Figure 6 depicts the support graph of a LSEC over a set S of size 3.
The above inequality states that an s-path {vt : t ∈ N} must satisfy v1 ∈ S

or {vk, vk+1 : vk 6∈ S, vk+1 ∈ S, 1 ≤ k ≤ n−|S|}. That is, an s-path either starts
at a vertex in S or it must enter S no later than layer n − |S|. This constraint
is valid because an s-path entering S for the first time after layer n − |S| will
not be able to cover all elements of the set S. Similarly, the inequality below
states that an s-path either ends at a vertex in S or leaves S at layers greater

12

or equal to |S|. This is a valid constraint because an s-path that exits the set S
before arc layer |S| will not have covered the set S completely and, thus, must
return to it.

n−1∑

t=|S|

∑

i∈S

∑

j /∈S

xt
i,j +

∑

j∈S

∑

i∈N\j

xn−1
i,j ≥ 1, S ⊂ N, |S| > 1. (9)

Let Ḡ(n) be the graph obtained from G(n) by reversing all its arcs and the
order of the node layers. Clearly, each s-path in G(n) corresponds to a unique
s-path in Ḡ(n). Note that constraint (9) can be viewed as a constraint of type
(8) for the s-paths of the graph Ḡ(n), using the same set S in both inequalities.
We can conclude that inequality (8) for a fixed set S defines a facet of P (n) if
and only if inequality (9), for the same set S, defines a facet of P (n).

Lemma 8 Inequality (8) defines a facet of P (n) if and only if inequality (9)
also does.

Our main result for this section establishes that lifted subtour elimination
constraints define a family of distinct facets. The proof of Theorem 9 is left to
the Appendix.

Theorem 9 If n ≥ 6, and 3 ≤ |S| ≤ n − 3, then each constraint (8) and (9)
defines a distinct facet of P (n).

2

3

4

5

1

6

2 3 4 5 6

Figure 6: Support of a lifted subtour elimination constraint for set S = {1, 2, 3}.

As a final result on this section, we show that the facets defined by the
lifted subtour inequalities are different than the ones defined by the two-cycle
inequalities (4).

Lemma 10 Assume that n ≥ 6. Let S ⊂ N be such that 3 ≤ |S| ≤ n−3 and let
(i, j, t) be an arc of G(n) such that t ≤ n − 2. Then, the two-cycle elimination
constraint (4) defines a facet of P (n) that is different from the facets defined by
the lifted subtour inequalities (8) and (9).

13

Proof Regardless of whether j ∈ S or not, it easy to find an s-path that does
not pass by node (j, t + 1) and that enters the set S exactly twice before arc
layer n − |S| + 1, say firstly at layer 1 and secondly at layer 3. Such an s-path
satisfies the lifted subtour inequality (8) as strict inequality (2 > 1) and the
two-cycle elimination constraint (4) as equality (0 = 0). Similarly, we can find
an s-path that avoids node (j, t + 1) and that exits the set S exactly twice after
arc layer |S|−1, say firstly at layer |S| and secondly at layer |S|+2. Again, such
an s-path satisfies the lifted subtour inequality (9) as strict inequality (2 > 1)
and the two-cycle elimination constraint (4) as equality (0 = 0).

5 Triangle Clique Constraints

A well-known way of deriving strong cuts for binary integer programs is by an-
alyzing the incompatibility graph of the variables. This graph has a vertex for
each binary variable and an edge for each pair of variables that are incompati-
ble, i.e., they can not have both value 1 in any solution. As each solution must
induce an independent set in this graph, known facets of the independent set
polytope, like clique and odd-hole inequalities [22], yield potentially strong cuts.
This approach can not be used on the STSP, since any pair of edge variables
can appear in some tour. However, the arc variables in the ATSP define an
interesting incompatibility graph. While no clique cuts exist, in fact they are
dominated by degree constraints or SECs, the facet-defining Odd Closed Alter-
nating Trail Constraints correspond to odd-holes in the incompatibility graph.
The arc-time variables in the TDTSP provide an even richer incompatibility
graph, where even simple cliques provide new families of facet-defining cuts.

Let S ⊂ N satisfy |S| = 3 and consider two arcs (i, j, t), (i′, j′, t′) of G(n)
such that (i, j), (i′, j′) ∈ A(S). Note that these two arcs are compatible if and
only if they are adjacent and do not form a 2-cycle. Since few such pairs of
arcs are compatible, it is more convenient to work over the compatibility graph,
the complement of the incompatibility graph. Given S = {i, j, k} ⊂ N , let
G(S) = (V, E) be the compatibility graph associated to S, where each vertex of
V is an arc (i, j, t) of G(n) with (i, j) ∈ A(S) and each edge of E is a compatible
pair {(i, j, t), (j, k, t + 1)} (for ease of notation, we omit the dependence on S
from V and E). An independent set I(S) ⊂ V is a maximal set of vertices in
G(S) which are all pairwise incompatible. It is clear that the following inequality
is valid for any S and any I(S) ⊂ V:

∑

(i,j,t)∈I(S)

xt
i,j ≤ 1 (10)

These constraints were proposed in [24] for a more general setting and were
named Triangle Clique Constraints. We prove here that constraints (10) de-
fine facets of the TDTSP polytope when I has a certain regular structure, and
conjecture that this result remains true for all triangle clique inequalities.

The independence sets we consider here induce bipartite subgraphs on alter-
nating layers of G(n). Let A(S, t) = {(i, j, t) : (i, j) ∈ A(S)}. Let p ∈ {0, 1}. We

14

define the set I(S, p) :=
⌊n−p

2 ⌋⋃
k=1

A(S, 2k − 1 + p) as an alternating independence

set. Note that p defines the parity of the alternating layers of I(S, p).
The following Lemma will only be used to prove that (10) defines a facet

of P (n) if I is an alternating independence set. It will be useful in showing
that one can construct by induction, in a manner similar to what was done in
Theorem 3, enough linearly independent points satisfying (10) at equality. We
state it here for a complete presentation of all results.

Lemma 11 Let n ≥ 7. Let S ⊂ N with |S| = 3 and I(S, p) be an alternating
independence set. Let a = (i, j, s) and b = (k, l, t) be two compatible arcs such
that k, l 6∈ S and either |t − s| = 1 or {s, t} = {1, n − 1}. Then there exists an
s-path containing a = (i, j, s) and b = (k, l, t) which also contains exactly one
arc in I(S, p).

The following theorem will show the desired result that (10) defines a facet
for alternating independence sets. The proof that it defines a facet is left for
the appendix. We only prove here that the facets are distinct.

Theorem 12 If n ≥ 7, then (10) defines a distinct facet of P (n) for every
distinct alternating independence set, I(S, p) ⊂ V.

Proof Consider two distinct alternating independence sets I(S, p) and I(S′, p′).
Assume without loss of generality (by potentially relabeling vertices) that

S = {1, 2, 3} and that 7 /∈ S ∪ S′.
If S = S′, then we may assume that p = 0 and p′ = 1, so pick an s-path that

goes through vertices (1, 1), (2, 2) and (4, 3). Such s-path cannot use any other
arcs in A(S, t) for any t > 1. Therefore it satisfies (10) for S at equality and for
S′ as a strict inequality.

If S 6= S′, then we may assume that 2 /∈ S′ and 4 ∈ S′. Assume, in addition
that p = 0 (the proof for p = 1 is similar). If |S ∩ S′| ≤ 1, we may assume
3 /∈ S′ and 5 ∈ S′. If |S ∩ S′| = 2, then S′ = {1, 3, 4}. Either way, we can pick
i, j ∈ {3, 5} with i 6= j such that i /∈ S′, j ∈ S′. So pick an s-path that goes
through vertices (1, 1), (2, 2), (4, 3), (i, 4), (j, 5), (7, 6). Such an s-path satisfies
(10) for S at equality and for S′ as a strict inequality since it cannot use any
arcs of A(S′, t) for any t.

We next show that the facets defined by (10) are not the same as the ones
defined by (8) and (9).

Lemma 13 Assume that n ≥ 7. Let I(S, p) be an alternating independent set
and S′ ⊆ N such that 3 ≤ |S′| ≤ n − 3. Then the facet defined by inequality
(10) for I(S, p) and the facets defined by inequality (8) and (9) for S′ are not
the same.

Proof Assume without loss of generality that S = {1, 2, 3}. We consider only
the cases where p = 0 and of (8). (the proof for p = 1 and (9) will be similar).

15

2

3

4

5

1

6

2 3 4 5 6

Figure 7: Support of an alternating triangle clique constraint.

If 1 ≤ |S ∩ S′| ≤ 2, we can assume that 2 /∈ S′, 1 ∈ S′ and 4 ∈ S′. So we
can pick an s-path going through vertices (1, 1), (2, 2), (4, 3).

If S ∩ S′ = ∅, then we can assume {4, 5, 6} ⊆ S′, so pick an s-path going
through vertices (4, 1), (1, 2), (5, 3), (6, 4), (2, 5), (3, 6).

If S = S′, then pick an s-path going through vertices (1, 1), (2, 2), (4, 3),
(3, 4).

If S 6= S′ and S ⊂ S′, then we may assume that 4 ∈ S′ and 5, 6, 7 /∈ S′. So
pick an s-path going through vertices (1, 1), (5, 2), (4, 3), (6, 4), (2, 5), (3, 6).

Since |S′| ≤ n−3 we have n−|S′| ≥ 3 so all the s-paths constructed enter S′

twice before n− |S′|. Hence, all the s-paths constructed satisfy (10) at equality
and (8) as strict inequality.

We also show that the facets defined by (10) are not the same as the ones
defined by 2-cycle inequalities.

Lemma 14 Assume that n ≥ 7. Let I(S, p) be an alternating independent set
and (i, j, t) ∈ A with 1 ≤ t ≤ n − 2. Then the facet defined by inequality (10)
for I(S, p) and the facet defined by inequality (4) for (i, j, t) are not the same.

Proof Assume without loss of generality that S = {1, 2, 3}.
If i, j /∈ S, then construct an s-path that goes through nodes (1, 1 + k),

(i, 2 + k), (2, 3 + k), (j, 4 + k), (3, 5 + k) which does not satisfy (10) at equality
and satisfies (4) at equality for some value of k ∈ {0, 1} since it does not go
through node (j, t + 1).

If i /∈ S, j ∈ S, then assume j = 3 and construct an s-path that goes through
nodes (1, 2−p+2k), (i, 3−p+2k), (2, 4−p+2k), (3, 5−p+2k) which does not
satisfy (10) at equality since it goes through arc (2, 3, t) at the incorrect parity
and satisfies (4) at equality for some value of k ∈ {0, 1} since it does not go
through node (j, t + 1).

Similar constructions cover the remaining cases.

The last polyhedral results in this paper are intended to show some pitfalls
that would arise if one works with the monotonized TDTSP polytopes. We

16

define another family of clique constraints. Let i be a vertex in N . Let I be
a maximal set of incompatible arcs of G(n) having one endpoint in i. The
constraint

∑
(i,j,t)∈I xt

i,j ≤ 1 is called a star-clique. Many star-cliques do define

facets of P (n), but they are not interesting because the facets are the same
already defined by 2-cycle constraints. For example, Figure 8 depicts the support
graph of a star-clique that is equivalent to the 2-cycle shown in Figure 2. The
following result for the monotonized TDTSP polytope is easily obtained:

Theorem 15 The clique constraints corresponding to any maximal set of in-
compatible arcs of G(n) (including all triangle-cliques and all star-cliques) define
distinct facets of Pmon(n).

2

3

4

5

1

6

2 3 4 5 6

Figure 8: Support of a star-clique constraint equivalent to the 2-cycle in Fig. 2.

Consider again the star-clique constraint illustrated in Figure 8. By subtract-
ing the equality from (2b) corresponding to vertex (2, 2), one obtains another
star-clique (the arcs entering (2, 2) are flipped into arcs leaving (2, 2)). Com-
bining similar flipping operations over vertices (2, 4) and (2, 5) one obtains 23

star-clique constraints, all defining the same facet of P (6). A similar construc-
tion for general n proves Lemma 4.

We remark that Lemma 4 has no counterpart in the monotonization of the
STSP and ATSP polytopes. For example, there are only pairs of subtour elim-
ination constraints (

∑
(i,j)∈S xi,j ≤ |S| − 1 and

∑
(i,j)∈V \S xi,j ≤ |V | − |S| − 1)

that define distinct facets of the monotonized STSP polytope, but define the
same facet of the original STSP polytope.

6 Branch-Cut-and-Price Algorithm

The new cuts could be possibly applied in a branch-and-cut algorithm over
the PQ formulation. However, tigther and more practical formulations can be
obtained by using a Dantzig-Wolfe decomposition, described as follows. Define
qt,l
i,j as a binary coefficient indicating whether arc (i, j, t) appears in the l-th 0−T

17

path, and λl as the positive variable associated to that path.

Minimize
p∑

l=1

(
∑

(i,j,t)∈A

qt,l
i,jc

t
i,j)λl (11a)

S.t.
p∑

l=1

(
∑

(i,j,t)∈A

qt,l
i,j)λl = 1, j = 1, . . . , n (11b)

λ ≥ 0 and integer (11c)

The linear relaxation of this reformulation can be efficiently solved by column
generation, since the pricing subproblem consists in finding shortest 0−T paths
in (V,A). This can be done in O(n3) time by dynamic programming. More-
over, significantly stronger linear relaxations can be obtained by only pricing
paths without r-cycles, for small values of r. Changing the dynamic program-
ming procedure in order to avoid paths with 2-cycles is simple and only adds
a small factor to the pricing time. On the other hand, pricing paths without
larger r-cycles is much more complex and only practical for quite small values
of r. Anyway, a fractional solution λ̄ of (11) can be translated into a fractional
solution x̄ of (1) using the following identities:

x̄t
i,j =

p∑

l=1

qt,l
i,j λ̄l, (i, j, t) ∈ A. (12)

Cuts, like those presented in the previous sections, can then be separated, trans-
lated back to the space of the λ variables and added to the linear relaxation of
(11). Embedding this column and cut generation scheme within a branch-and-
bound method yields a Branch-Cut-and-Price (BCP) algorithm.

Bigras, Gamache and Savard [4] recently implemented a BCP algorithm for
the TDTSP that also uses formulation (11), pricing paths without 4-cycles.
They separate families of TSP cuts (using procedures from Concorde [1]) and
also non-structured clique cuts obtained by explicitly building the incompatibil-
ity graph and looking for maximum weighted cliques in it (using the CLIQUER
package [21]). In contrast, our BCP separates only the specific TDTSP cuts
presented in this paper. The main elements of our BCP are described in the
next subsections.

6.1 Separation Procedures

Five separation procedures were implemented:

• r-cycle elimination AFCs. The proposed separation procedure is based
on the flow decomposition of a fractional solution into 0 − T paths. In a
BCP context this decomposition comes directly from the fractional solu-
tion of (11). For each path in the decomposition, all minimal r-cycles are
identified and the corresponding inequality (definition 4) is checked.

18

• Unitary AFCs. The procedure first performs exact separation of a family
of inequalities that are a weakening of the unitary AFCs. For every arc
(i, j, t), 1 ≤ t < n, and for every set X containing node (j, t + 1), the
following inequality is valid:

xt
i,j ≤

∑

(k,l,t′)∈δ+(X),l 6=i,l 6=j

xt′

k,l. (13)

For example, if n = 6 and arc (1, 2, 1) and X = {(2, 2), (3, 3), (4, 3), (4, 4)}
are taken, the valid inequality is x1

1,2 ≤ x2
2,5 + x2

2,6 + x3
3,5 + x3

3,6 + x3
4,3 +

x3
4,5 + x3

4,6 + x4
4,3 + x4

4,5 + x4
4,6. This is a weakening of the unitary AFC

depicted in Fig. 4, the coefficient of variable x4
4,3 is zero in that facet-

defining inequality. Inequalities (13) can be separated in polynomial time:
for a given arc (i, j, t) the best set X can be determined by finding a
minimum cut separating (j, t+1) from T in a graph that does not contain
vertices (i, t′) and (j, t′) for t > t + 1. The arc capacities are set as equal
to the fractional value of the corresponding variables. After the best X
for a certain E = {(i, j, t)} is found, inequality (5) is checked.

• General AFCs. For a fixed X we can find the set E ⊆ δ−(X) leading
to the most violated inequality (5) or show that no AFC is violated by
solving a max-flow min-cut problem. This is done by setting a bipartite
network where one side has one vertex for each arc in δ−(X) and the
other side has one vertex for each arc in δ+(X). There is an arc joining
each e ∈ δ−(X) to each arc in C(X,E). All those arcs receive infinity
capacity. An additional source vertex s is linked to vertices e ∈ δ−(X) by
arcs with capacity equal to the fractional value of e. In a similar way, arcs
f ∈ δ+(X) are linked to a target vertex t by arcs with capacity equal to
the fractional value of f . A violated AFC over X exists if and only if the
max s − t flow in that network has value strictly less than one.

The heuristic separation of general AFCs applies that procedure on a
number of rectangular candidate sets X. A rectangular set is defined by a
set S ⊂ N as X(S) = {(i, t) : i ∈ S, 1 ≤ t ≤ n}. We found that rectangular
sets containing a number of r-cycles (for r ≤ 10) in the flow decomposition
of a fractional solution into 0−T paths are good candidates. The heuristic
is also applied on the non-retangular sets X corresponding to the r-cycles
found in the procedure that separated of r-cycle constraints.

• Lifted Subtour Elimination Constraints. For a fixed cardinality s,
the set S with |S| = s leading to the most violated LSEC (8) can be found
by solving a Minimum Cut with Fixed Cardinality Problem, which is NP-
hard. Nevertheless, we were able to build a quite practical separation of
LSECS by solving a sequence of MIP models, one for each cardinality, for
that problem. In order to avoid spending an excessive amount of time on
those MIPs, a node limit is set. Therefore, the separation is not always
exact.

19

• Triangle Clique Constraints.. An exact separation procedure with
O(n4) time complexity (much faster in practice) was already proposed in
[24].

Each round of cuts (a call to all the five separation procedures) introduces at
most 350 violated cuts into (11). The first rounds are usually quite effective in
improving the lower bounds, subsequent rounds being less effective. Therefore,
we decided to perform at most 9 rounds of cuts in the root node and a single
cut round in the remaining nodes.

6.2 Pricing Procedures

As already mentioned in [4], there is a significant improvement in the lower
bounds provided by the relaxation of the basic formulation (11) when one only
prices paths without r-cycles; the larger the r, the better. However, the best
known algorithm for such a pricing has a worst case complexity of Ω(r!r2n3)
[16]. The explosive increase in the complexity is directly related to the fact that
the dynamic programming algorithm must keep up to r! alternative suboptimal
subpaths in its states, that may be used when a possible extension would create
an r-cycle with better subpaths. As a BCP algorithm may need to perform
thousands of calls to its pricing procedure in each node of the enumeration tree,
taking r > 4 can make the code unbearably slow.

In order to efficiently use 5-cycle elimination in our pricing, a pricing heuristic
was used. It consists in limiting the number of suboptimal subpaths kept in each
state, so some valid extensions may be missed. The exact pricing is only called
when the heuristic fails to find a path without 5-cycle with negative reduced
cost or when one wants to determine a valid Lagrangean lower bound. The
heuristic is quite effective. In most of the calls (90% being typical) it actually
finds the same optimal path without 5-cycle that would be found by the exact
pricing, but only taking a small fraction of time (5% being typical).

6.3 Fixing by Reduced Costs

We use the same dynamic programming procedure described in [26] to fix xt
i,j

variables by reduced costs. The procedure is very effective. Even on the hardest
instances it is typical to have more than 80% of the variables fixed to zero in
the end of the root node. The fixing impacts directly in the complexity of the
pricing, which is actually O(r!r2m), where m is the number of non-fixed arcs.
The fixing may also yield some improvement on the lower bounds.

6.4 Dual Stabilization

The solution of the relaxation of formulation (11) by column generation is very
prone to convergence problems. Some stabilization mechanism is absolutely
necessary to mitigate that problem. We used the same dual stabilization de-
scribed in [26]. The pricing is not performed with the current values of the dual

20

variables directly provided by the LPs, since they may oscillate wildly for many
iterations before settling on meaningful values. The pricing is performed with
the stabilized values that come from a linear combination of the current dual
variables with the dual solution that provided the best Lagrangean lower bound
so far. It is proved in [26] that this mechanism is sound: if a column with the
most negative reduced cost with respect to the stabilized dual does not have
a negative reduced cost with respect to the current dual, then the stabilized
solution must yield a significantly better new Lagrangean bound.

In order to hot-start that stabilization, we perform a number of iterations
of the Volume algorithm before performing the column generation in the root
node. The Volume algorithm is calibrated in order to converge quickly to a
reasonable dual solution, good enough for guiding the first iterations of the
column generation, until it begins to “self-stabilize”.

6.5 Branch Rule

Branching over individual variables xt
i,j would lead to highly unbalanced search

trees. We preferred to branch over aggregated variables xi,j =
∑

t xt
i,j , choosing

fractional values close to 0.6.

6.6 Primal Heuristic

We start the BCP by calling an iterated local search primal heuristic. The search
performs moves (remove a vertex from the route and insert it in other place),
swaps (swap pairs of vertices) and reversals (reverses the vertices in a subroute)
until a local minimum is found. Then the current solution is perturbed and
another search begins. This is repeated by n2 iterations. This is not a state-
of-the-art heuristic, but it is enough to find a good solution (often an optimal
one) for helping the fixing by reduced costs. A few iterations of the local search
are also performed along the BCP, starting from solutions obtained by rounding
the current fractional solution at the end of each column generation.

7 Computational Results

The BCP algorithm was coded in C++ over the Coin-Bcp framework, version
1.2.3 [27], CPLEX 12.0 was the LP solver. All experiments were conducted on a
single core of an Intel i5 CPU M430@2.27GHz. The machine has 8GB of RAM
and uses a 64-bit version of the Linux OS.

Even though the proposed algorithm is devised for general TDTSPs, all our
tests were performed in TDP instances derived from original TSP instances. In
those instances, the cost of an arc (i, j, t) is defined as (n− t + 1) · d(i, j), where
d(i, j) is taken from the original distance matrix. This allows direct comparisons
with a larger literature, as there are relatively few articles providing computa-
tional results for non-TDP instances. Those TDP instances are much harder

21

than their TSP counterparts - as far as we know, the only algorithm that was re-
ported as solving instances with n > 50 is the combinatorial branch-and-bound
proposed in 1993 by Fischetti, Laporte and Martello [6]. Comparisons with
the results published in that paper would be meaningless, due to the disparity
between machines after almost two decades. Happily, those authors kindly pro-
vided us with that code, so we could compare its performance with that of the
proposed BCP on the same machine and on the same instances.

Table 1 presents computational results on the 22 instances from the TSPLIB
ranging from 42 to 107 vertices. The columns Gap CG show the percent
integrality gaps for only performing column generation with 3-cycle, 4-cycle
and 5-cycle elimination, while columns Gap +cuts are the gaps after up to
9 rounds of cuts. It can be seen that the cuts are indeed effective, with 5-
cycle elimination the average gap is reduced from 2.26% to 0.60%. As already
mentioned, we decided to use 5-cycle elimination as the default option in the
BCP. Column Rem Arcs gives the number of arcs that were not fixed by
reduced costs in the end of the root node. Column BCP Time is the total
time in seconds spent by the complete BCP algorithm, including the time took
by primal heuristics. We set a time limit of 172,800 seconds (= 48 hours) of
computing time; instances rat99, kroD100 and eil101 could not be solved by
the BCP within that limit. Columns Nds and Max Dep are the total number
of nodes explored and the maximum depth reached in the enumeration tree.
Column BB Time is the total time in seconds spent by the branch-and-bound
code by Fischetti et al. That code crashed on instances pr76, gr96 and pr107

due to numerical overflow. Instance brazil58 could not be finished in 48 hours.
For instances larger than 96 vertices we set a time limit of 24 hours, no such
instance could be solved. Column UB gives the best known upper bounds,
values in bold are proved to be optimal. The best known upper bounds for
instances rat99 and eil101, marked with a star, were obtained by other authors
[19]. The upper bounds found by our BCP were 58,288 and 27,519, respectivelly.

22

Table 1: Results over all TSPLIB instances ranging from 42 to 107 vertices and comparison with the B&B by Fischetti et al.
3-cycle el. 4-cycle el. BCP with 5-cycle el. B&B [6]

Instance Gap Gap Gap Gap Gap Gap Rem BCP Nds Max BB Nds UB
CG +cuts CG +cuts CG +cuts Arcs Time Dep Time

dantzig42 2.47 0.18 1.37 0.00 0.49 0.00 0 28 1 0 3.6 20325 12528

swiss42 1.33 0.00 0.00 0.40 0.00 0.00 0 20 1 0 1.2 3945 22327

att48 2.61 0.00 1.99 0.00 1.62 0.00 0 103 1 0 4062 101M 209320

gr48 4.04 1.62 1.78 0.27 0.97 0.00 0 76 1 0 13.6 57249 102378

hk48 1.03 0.45 1.05 0.40 1.06 0.39 1535 124 3 0 16.5 91009 247926

eil51 1.19 0.00 0.28 0.00 0.00 0.00 0 33 1 0 92 526111 10178

berlin52 2.11 0.73 1.71 0.18 1.19 0.00 0 104 1 0 411 585347 143721

brazil58 11.07 0.95 8.17 0.36 5.32 0.00 0 633 1 0 >48hs >537M 512361

st70 3.81 1.11 2.82 0.72 1.99 0.32 8339 2895 3 1 153 616223 20557

eil76 0.61 0.07 0.16 0.00 0.00 0.00 0 223 1 0 4327 11M 17976

pr76 3.92 2.47 2.66 1.85 2.00 1.51 48K 58045 221 10 - - 3455242

gr96 6.87 2.78 4.36 1.76 2.64 1.03 70K 160250 392 11 - - 2097170

rat99 2.35 1.71 1.69 1.33 1.60 1.31 163K >48hs >369 ≥ 18 >24hs >156M 57986∗

kroA100 6.56 3.15 3.49 1.55 1.58 0.97 94K 106336 411 10 >24hs >82M 983128

kroB100 3.44 0.59 2.24 0.24 2.01 0.10 15K 7684 5 2 >24hs >106M 986008

kroC100 7.83 2.63 4.09 1.10 3.15 0.66 63K 39559 73 6 >24hs >181M 961324

kroD100 8.54 4.41 7.82 3.71 7.82 3.75 402K >48hs >172 ≥ 18 >24hs >33M 976965
kroE100 5.94 2.56 2.70 1.09 2.30 0.84 69K 117965 217 9 >24hs >138M 971266

rd100 5.18 1.51 5.18 0.45 1.00 0.35 0 18582 19 4 >24hs >324M 340047

eil101 3.43 2.56 2.94 2.16 2.80 2.00 267K >48hs >76 ≥ 21 >24hs >137M 27513∗

lin105 5.11 0.48 3.35 0.00 2.84 0.00 0 6317 1 0 >24hs >125M 603910

pr107 7.92 0.00 7.33 0.00 7.33 0.00 0 9947 1 0 - - 2026626

Avg. 4.42 1.36 3.05 0.80 2.26 0.60

23

Some remarks about those results:

• The fast computation of reasonably good lower bounds (gaps of 10% are
typical in the root node) used in the branch-and-bound of Fischetti et al.
makes it very effective on smaller instances. However, as instances get
larger, the much slower computation of stronger lower bounds by cut and
column generation pays, and gives our code a clear advantage.

• While the aggressive 5-cycle elimination used in the pricing is usually
helpful for the BCP performance, cut separation is essential. For example,
instance brazil58 can be solved by a BCP with only 3-cycle elimination
in a few hours. However, a code with 5-cycle elimination but no cuts (so
the BCP is reduced to a branch-and-price algorithm) can not solve that
instance in reasonable time, the enumeration tree goes below depth 23.

• Cut separation accounts for less than 10% of the computation time in all
instances, the bulk of the time is spent by the pricing and by LP solving.

Méndez-Dı́az et al. [18], Bigras et al. [4], Miranda Bront et al. [20], God-
inho et al. [9] are recent works providing good computational results on TDP
instances. This last work presents interesting extended formulations with Θ(n4)
variables and Θ(n3) constraints that obtained very small gaps (usually zero) on
several TDP instances with up to 50 vertices. However, the large size of the for-
mulations makes the approach too time-consuming. We compare our proposed
BCP with the BCP described in [4], that still has the best published results
for an LP based method. Table 2 reports the comparison for all the TDP in-
stances used in [4]. Their times were obtained in an Intel Pentium 4 3.4 GHz
machine. It can be seen that our BCP takes much less nodes than the BCP
by Bigras et al. This is a clear indication that the new facet-defining TDTSP
cuts perform significantly better than cuts borrowed from the TSP or from the
independent set problem. We also run the code by Fischetti et al., which solved
almost all those instances in a few seconds but could not solve the small instance
rbg031a within 24 hours. This peculiar behavior can be explained by the fact
that the rbg instances are very different from the other instances: their distance
matrices are asymmetric, do not satisfy the triangle inequality and have many
zero entries. In those cases, the combinatorial bounds are very poor and the
branch-and-bound approach fails.

The TDTSP families of cuts proposed in this article, strong from a polyhe-
dral point of view, appear to be also strong in practice. They are able to reduce
significantly the integrality gaps, allowing the solution of several TDP instances
with up to 107 vertices. However, solving some harder instances by a BCP
approach may require further work, perhaps by finding new families of cuts,
perhaps by improving the separation of some known families of cuts. Anyway,
we believe that the polyhedral theory can play an important role in improving
algorithms for the TDTSP, as already happened on the classical TSP.

24

Table 2: Results over the TDP instances used by Bigras et al.
BCP with 5-cycle el. BCP [4] B&B [6]

Instance Gap Gap BCP Nds BCP Nds BB Nds UB
CG +cuts Time Time Time

gr17 0.00 0.00 2.1 1 3 1 0.03 446 12994

gr21 0.00 0.00 4.3 1 10 1 0.03 394 24435

gr24 0.00 0.00 4.6 1 15 1 0.05 873 13795

bayg29 0.87 0.00 15 1 76 16 0.62 5535 22230

bays29 0.36 0.00 7.7 1 191 51 0.64 5194 26862

rbg016a 0.00 0.00 2.8 1 15 1 1.0 43210 744

rbg031a 0.00 0.00 23 1 90 1 >24hs >1121M 2476

rbg050b 0.35 0.22 2068 61 37342 390 >24hs >399M 5497

dTSP40.0 2.66 0.82 670 13 6473 377 3.9 27978 10311

dTSP40.1 2.71 0.00 82 1 1452 50 0.96 3696 9807

dTSP40.2 1.53 0.00 75 1 1068 28 5.2 22947 9525

dTSP40.3 0.00 0.00 36 1 629 24 6.8 18378 9156

dTSP40.4 0.00 0.00 31 1 299 4 0.71 3396 9079

dTSP50.0 0.00 0.00 61 1 1364 5 88 276630 12680

dTSP50.1 1.03 0.00 275 1 56240 571 16 52571 12853

dTSP50.2 0.17 0.00 78 1 3668 8 11 32906 12357

dTSP50.3 1.61 0.00 138 1 47771 541 24 48744 12722

dTSP50.4 2.30 0.00 819 1 109586 1514 22 40094 13289

Avg. 0.75 0.06 244.0 5.0 14794 199.1

References

[1] Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On The Solution Of
Traveling Salesman Problems. Documenta Mathematica, Extra Volume ICM
3, 645-646 (1998)

[2] Balas, E., Carr, R., Fischetti, M., Simonetti, N.: New Facets of the STS
Polytope Generated from Known Facets of the ATS Polytope. Discrete Op-
timization 3, 3–19 (2006)

[3] Balas, E., Fischetti M.: Polyhedral theory for the ATSP. In Gutin, G.,
Punnen, A. (eds.) The Traveling Salesman Problem and Its Variations, pp.
117–168. Kluwer, (2002)

[4] Bigras, L.-Ph., Gamache, M., Savard, G.: The Time-Dependent Traveling
Salesman Problem and Single Machine Scheduling Problems with Sequence
Dependent Setup Time. Discrete Optimization 5, 685–699 (2008)

[5] Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale
Traveling Salesman Problem. Operations Research 2, 393–410 (1954)

[6] Fischetti, M., Laporte, G., Martello, S.: The Delivery Man Problem and
Cumulative Matroids. Operations Research 41, 1055–1064 (1993)

25

[7] Fox, K., Gavish, B., Graves, S.: An n-Constraint Formulation of the (Time
Dependent) Traveling Salesman Problem. Operations Research 28, 1018–102
(1980)

[8] Gale, D.: A theorem of flows in networks. Pacific Journal of Mathematics 7,
1073–1082 (1957)

[9] Godinho, M.T., Gouveia, L., Pesneau, P.: Natural and Extended formu-
lations for the Time- Dependent Travelling Salesman Problem, CIO Re-
port8/2010, Lisbon (2010)

[10] Gouveia, L., Voss, S.: A Classification of formulations for the (time-
dependent) traveling salesman problem. European Journal of Operations
Research 83, 69–82 (1995)

[11] Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and
diameter-constrained minimum spanning tree problems as Steiner tree prob-
lems over layered graphs. Mathematical Programming, Online first (2009)

[12] Groetschel, M., Padberg, M.: On the Symmetric Traveling Salesman Prob-
lem II: Lifing Theorems and Facets. Mathematical Programming 16, 281–302
(1979)

[13] Groetschel, M., Padberg, M.: Polyhedral theory. In Lawler, E.L., Lenstra,
J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman
Problem, pp. 251–305. Wiley (1985)

[14] Hall, P.,: On representatives of subsets. Journal of London Mathematical
Society 10, 26–30 (1935)

[15] Hoffman, A.: Some recent applications of the theory of linear inequalities
to extremal combinatorial analysis. Proceedings of Symposium in Applied
Mathematics 10, 113–128 (1960)

[16] Irnich, S., Villeneuve, D.: The shortest path problem with resource con-
straints and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing
18, 391–406 (2006)

[17] Lucena, A.: Time-Dependent Traveling Salesman Problem - The Delivery-
man Case. Networks 20, 753–763 (1990)

[18] Méndez-Dı́az, I., Zabala, P., Lucena, A.: A New Formulation for the Trav-
eling Deliveryman Problem. Discrete Applied Mathematics 156, 3233–3237
(2008)

[19] Melo, M., Subramanian, A,: Personal communication (2010)

[20] Miranda Bront, J.J., Méndez-Dı́az, I., Zabala, P.: An Integer Programming
Approach for the Time Dependent Traveling Saleman Problem, Electronic
Notes in Discrete Mathematics 36, 351–358 (2010).

26

[21] Niskanen, S., Ostergard, P.R.J.: Cliquer users guide. Helsinki University of
Technology, Communications Laboratory, Technical report 48 (2003)

[22] Padberg, M.: On the facial structure of set packing polyhedra. Mathemat-
ical Programming 5, 199–215 (1973)

[23] Picard, J., Queyranne, M.: The time-dependent traveling salesman prob-
lem and its application to the tardiness problem in one-machine scheduling.
Operations Research 26, 86-110 (1978)

[24] Pessoa, A., Poggi de Aragão, M., Uchoa, E.: Robust Branch-Cut-and-
Price Algorithms for Vehicle Routing Problems. In Golden, B., Raghavan,
S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New
Challenges, pp. 297–326. Springer, New York (2008)

[25] Pessoa, A., Uchoa, E., Poggi de Aragão, M.: A robust branch-cut-and-price
algorithm for the heterogeneous fleet vehicle routing problem. Networks 54,
167-177 (2009)

[26] Pessoa, A., Uchoa, E. , Poggi de Aragão, M., Freitas, R.: Exact algorithm
over an arc-time indexed formulations for parallel machine scheduling prob-
lems. Mathematical Programming Computation 2, 259–290 (2010)

[27] Ralphs, T.K., Ladányi, L.: COIN/BCP User’s Manual. Available at
www.coin-or.org/Presentations/bcp-man.pdf (2001)

[28] Vajda, S.: Mathematical Programming, Addison-Wesley, (1961)

[29] Vander Wiel, R.J., Sahinidis, N.V.: An Exact Solution Approach for the
time-dependent traveling salesman problem. Naval Research Logistics 43,
797–820 (1996)

Appendix

Proof of Theorem 9

Proof that (9) defines a facet of P (n)
We prove by induction on n and on |S| that there are n(n−1)(n−2) linearly

independent (LI) s-paths that satisfy (9) as equality. We first establish that (9)
defines a facet of P (n) for |S| = 3 and n ≥ 6. We can assume without loss of
generality that S = {1, 2, 3}. The induction basis is obtained computationally
for n = 6 and |S| = 3.

The induction asserts there are n(n − 1)(n − 2) LI s-paths in G(n) that
satisfy (9) as equality. We show below how to construct (n + 1)n(n − 1) LI
paths in G(n + 1) that satisfy (9) as equality. We divide the set of LI paths to
be constructed into 5 cases.

1. s-paths contained in G(n) except for the last arc incident to node (n +
1, n + 1);

27

2. s-paths that begin at node (n + 1, 1) and whose last arc (i, j, n) is not of
the form i 6∈ S and j ∈ S;

3. s-paths that contain node (n+1, t), where 1 < t ≤ |S|, and whose last arc
(i, j, n) does not satisfy i 6∈ S and j ∈ S;

4. s-paths that contain node (n+1, t), where |S| < t ≤ n, and whose last arc
(i, j, n) does not satisfy i 6∈ S and j ∈ S;

5. s-paths whose last arc (i, j, n) satisfies i 6∈ S and j ∈ S.

For case 1, we note that the n(n − 1)(n − 2) LI s-paths in G(n) can be
extended in the same way as in the proof of Theorem 3. If an s-path in G(n)
ends at an arc (i, j, n−1), with j ∈ S, then this arc contributes to the left-hand
side of 9 for G(n) but not for G(n+1). In this case, the arc (j, n+1, n) appended
to the s-path replaces (i, j, n) in the left-hand side of (9). On the other hand, if
an s-path in G(n) ends at an arc (i, j, n− 1), with j 6∈ S, then this arc does not
contribute to the left-hand side of (9) for G(n). In this case, the arc (j, n+1, n)
appended to the s-path also does not contribute to the left-hand side of (9).
Hence, all these LI paths in G(n + 1) satisfy (9) as equality. Like in the proof
of Theorem 3, we need to find an additional set of 3n2 − 3n LI paths and there
are still 3n2 − 2n unused new arcs (so we have n “spare” arcs left).

For case 2, there are n2 − (n − |S|)|S| new arcs that can be used. We will
construct n2 − (n− |S|)|S| − 1 s-paths, each one using one arc not used before,
thus consuming one “spare” arc. To proceed, we choose n2 − (n − |S|)|S| − 1
pairs of arcs, each pair containing one arc in layer 1 and one arc in layer n.
These arc pairs are chosen in the same way as in the proof of Theorem 3, but
leaving out the pairs that contain a forbidden arc (i, j, n) with i 6∈ S and j ∈ S.
Next, for each selected pair of arcs, we build an s-path that contains these two
arcs and satisfies (9) with equality. We do as follows: if k 6∈ S and i ∈ S (and
the arcs (n + 1, k, 1) and (i, j, n) are used), then complete the s-path in such a
way that it enters the set S only once (either in layer n− 2 or n− 3 depending
whether j ∈ S or not). If i, j, k 6∈ S, then complete the s-path in such a way
that it enters and leaves the set S only once, between the layers 1 and n. If
k ∈ S and i ∈ S, then complete the s-path in such a way that it leaves the set
S in the layer 2 and enters it only once more (either in layer n − 1 or n − 2
depending whether j ∈ S or not). If k ∈ S and i, j 6∈ S, then complete the
s-path in such a way that it leaves the set S only in the layer 4, after all node
indices of S have been used.

For case 3, for any pair of node indices i, j, with i 6= j, one can always find
an s-path that uses the arcs (i, n+1, t−1) and (n+1, j, t) and satisfies (9) with
equality as follows. Before the layer t, complete the s-path in any valid way.
After the layer t, complete the s-path in such a way that it enters the set S only
once and before the layer n. For that, it must leave the set S only after all its
node indices have already been visited. Then, one can choose the pairs of arcs
(i, n + 1, t − 1) and (n + 1, j, t) in the same way as in the proof of Theorem 3.

28

For case 4, we choose arc pairs (i, n + 1, t − 1) and (n + 1, j, t) in a similar
way as in the proof of Theorem 3. We first fix the incoming arc (n, n+1, t− 1).
This arc can be combined with an outgoing arc of the form (n + 1, j, t) for
j = 1, . . . , n − 1 to be part of an s-path of G(n + 1). Similarly, outgoing arc
(n + 1, n− 1, t) can be combined with incoming arcs of the form (i, n + 1, t− 1)
for i = 1, . . . , n − 2 to produce n − 2 s-paths. Pairing arc (1, n + 1, t − 1) with
(n + 1, n, t) yields one more path. Finally, we combine arcs (n − 1, n + 1, t − 1)
and (n + 1, 1, t) to obtain the last s-path. Note that we never combine a pair of
arcs where both endpoints i, j ∈ S. For each chosen pair of arcs, we build an
LI s-path that use both arcs (i, n + 1, t− 1) and (n + 1, j, t) and satisfy (9) with
equality as follows. If j 6∈ S and either i ∈ S or t = n, then complete the s-path
before the layer t in such a way that all node indices of S are visited. Then,
after the layer t, complete the s-path in any valid way (e.g. without entering S
again). If j ∈ S or both i 6∈ S and t < n, then complete the s-path before the
layer t in such a way that exactly |S| − 1 node indices of S are visited in the
layers 1, . . . , |S| − 1. In this case, leave the set S in the layer |S| − 1 and enter
it only after visiting the node (n + 1, t), to visit the only remaining node index
in S.

For case 5, we build the remaining (n−|S|)|S| LI s-paths by visiting exactly
|S| − 1 node indices of S in the layers 1, . . . , |S| − 1, leaving the set S in the
layer |S| − 1, and entering it only in the arc layer n, through each chosen arc
(i, j, n + 1), to visit the only remaining node index in S.

Having established that (9) defines a facet for |S| = 3 and n ≥ 6, we now
prove by induction that the result also holds for |S| ≥ 3. Assume without loss
of generality that S = {n − |S| + 1, . . . , n}. Now, by Lemma 8 it is equivalent
to consider instead constraint (8).

Let n ≥ 6 and |S| ≥ 3. By induction, there are n(n − 1)(n − 2) LI s-paths
in G(n) that satisfy (8) as equality. We show how to construct (n + 1)n(n − 1)
LI paths in G(n + 1) that satisfy (8) as equality, where S is replaced by S′ =
S ∪ {n + 1}.

We divide the set of LI paths we construct into 4 cases.

1. s-paths contained in G(n) except for the last arc incident to node (n +
1, n + 1);

2. s-paths that begin at node (n + 1, 1);

3. s-paths that contain node (n + 1, t), where 1 < t ≤ n − |S|;

4. s-paths that contain node (n + 1, t), where n − |S| < t ≤ n.

For case 1, we note that the n(n − 1)(n − 2) LI s-paths in G(n) can be
extended in the same way as in the proof of Theorem 3. This is true because
the coefficients of all arcs of G(n) in (8) do not change when extending the graph
to G(n + 1) and replacing the set S by S′. Moreover, all arcs incident to node
(n + 1, n + 1) have null coefficients in (8).

For case 2, we note that for each pair of arcs (n+1, j, 1) and (k, l, n), we can
always find an s-path that does not enter the set S before the arc layer n − 1.

29

For that, one must complete the s-path that starts with the arc (n + 1, j, 1) by
visiting all the vertices in S (except k and l) before leaving this set. Such s-path
satisfies (8) as equality. Hence, the pairs of arcs can be chosen as in proof of
Theorem 3. This generates n2 − 1 s-paths.

For cases 3 and 4, we note that for each pair of arcs (i, n + 1, t − 1) and
(n + 1, j, t), we can always find an s-path that satisfies (8) as equality. For case
3, the s-path can visit as many vertices out of S as possible before the node
layer t. After the node layer t, it must leave S as soon as possible, and enter
S again, if necessary, only after the arc layer n − |S|. For case 4, we have two
subcases: i ∈ S and i /∈ S. In both subcases, the s-path can leave the set S,
after the node layer t as soon as possible. Before the node layer t, If i ∈ S, the
s-path can enter the set S only once, exactly |S| arc layers before it leaves this
set. If i /∈ S, the s-path can visit in the first layers all vertices of S not visited
after the node layer t. Then, it can leave the set S and enter it again exactly
in the arc layer t − 1. In both cases 3 and 4, The pairs of arcs are chosen as in
proof of Theorem 3, which generates 2n − 1 s-paths for each t.

This gives the necessary (n + 1)n(n − 1) LI s-paths, completing this proof.

Proof that the facets defined by (8) and (9) are different

We start by showing that each facet defined by (8) is different. Let S 6= S′.
Assume without loss of generality that |S′| ≤ |S|. Notice that this implies that
S 6⊆ S′.

If |S′ ∩ S| ≥ 2 then, pick an s-path that goes through vertex (i, 1) for
i ∈ S′ ∩S then goes to vertex (j, 2) for j ∈ S \S′ and then goes to vertex (k, 3)
for k ∈ (S′ ∩ S) \ {i} and finally goes through all the remaining vertices in S
at positions 4, . . . , |S|. Such an s-path satisfies (8) for S at equality. Moreover
it enters S′ once at position 1 and once at position 3. Since |S′| ≤ n − 3, then
n − |S′| ≥ 3 and so this s-path does not satisfy (8) for S′ at equality.

So we may assume that |S′ ∩ S| ≤ 1. Then consider an s-path that goes
through vertex (k, 1) for k ∈ S′ (if there is a vertex in S′ ∩ S, then let k be
that vertex), then goes to vertex (j, 2) for j ∈ S \ S′ and then goes through
all vertices in S′ \ {k} from positions 3 to 3 + |S′| − |S ∩ S′| − 1. Notice that
at this point we have visited |S′ ∩ S| + 1 vertices in S and |S′| − |S ∩ S′|
vertices outside S. Therefore there are n − |S′| − 1 vertices remaining to be
visited, with |S| − (|S ∩ S′| + 1) of them in S. So then let the s-path go
through all remaining vertices in N \ S. Note that there are a total of t′ =
n−|S′|−1− (|S|− (|S∩S′|+1)) = n−|S′|− |S|+ |S∩S′| vertices not visited in
N \S. Therefore, these vertices will be visited from positions 3+ |S′|−|S∩S′| to
3+|S′|−|S∩S′|+t′−1 = 3+|S′|−|S∩S′|+n−|S′|−|S|+|S∩S′|−1 = n−|S|+2.
Finally, the s-path will visit all remaining vertices in S.

Notice that this s-path enters S′ at least twice before position 3, and since
|S′| ≤ n − 3, we have n − |S′| ≥ 3 so (8) is not satisfied at equality for S′.
Also, this s-path enters S exactly once from position 1 until position n−|S|+2.
Therefore, the next time it enters S it does so by using an arc in a layer t >
n − |S|. So this s-path satisfies (8) at equality.

30

The fact that each constraint (9) defines a distinct facet of P (n) follows
trivially. Now all that is left is to prove that (8) and (9) define distinct facets.

Consider (8) for a set S and (9) for a set S′.
Assume without loss of generality that {1, 2, 3} ⊆ S. We may also assume

that 4 /∈ S.
But then, consider an s-path that goes through node (1,1), (4,2), (2,3) and

then through all remaining nodes in S′\{1, 2, 4} at positions 4 to 3+|S′\{1, 2, 4}|.
This s-path does not satisfy (8) at equality. However, it leaves S′ only once at
positions t ≥ |S′| since 3+ |S′ \ {1, 2, 4}| ≥ 3+ |S′|− 3 = |S′| and hence satisfies
(9) at equality.

Proof of Lemma 11

Case |{i, j}∩S| ≤ 1. We can assume without loss of generality that s < t, thus
either t = s + 1 or s = 1 and t = n − 1. Since n ≥ 7 there are at least 3 layers
of G(n) with arcs in I(S, p). Thus, at least one of these layers has an index r
satisfying |r − s| > 1 and |r − t| > 1. Choose c = (q1, q2, r) ∈ I(S, p) such that
q1, q2 ∈ S \ {i, j}. Note that one can find an s-path containing arcs a, b and c.

Case i, j ∈ S. Note that in this case it must be that s = 1 and t = n − 1,
since otherwise either k ∈ S or l ∈ S, contradicting the hypothesis of this lemma.
If a ∈ I(S, p), we are done. Alternatively, a 6∈ I(S, p), which implies that p = 1,
and hence I(S, p) does not contain arcs from layer 1. Then, since I(S, p) is an
alternating independent set, it must contain the set of arcs A(S, 2) from layer 2.
Let k be the unique element in S \ {i, j} and let c = (j, k, 2) ∈ I(S, p). Again,
one can find an s-path containing arcs a, b and c.

Proof of Theorem 12

We need to find n(n − 1)(n − 2) linearly independent s-paths that satisfy (10)
as equality. Without loss of generality, we may assume S = {4, 5, 6}. Our proof
follows by induction and follows closely the proof of Theorem 3. For n = 7, the
two types of alternating independent sets to consider are cases 1 and 2, which by
symmetry are equivalent. To establish the basis for the induction, one can prove
computationally that inequality (10) for case 1 defines a facet by generating the
incidence vectors of all s-paths that satisfy it as equation and using Gaussian
elimination to verify that 210 LI paths can be chosen from this set.

Let n ≥ 7. By induction, there are n(n − 1)(n − 2) LI s-paths in G(n) that
satisfy (10) as equality. We show how to construct (n + 1)n(n − 1) LI paths
in G(n + 1) that satisfy (10) as equality. We divide the set of LI paths to be
generated into 3 cases.

1. s-paths contained in G(n) except for the last arc incident to node (n +
1, n + 1);

2. s-paths that begin at node (n + 1, 1);

3. s-paths that contain node (n + 1, t), for 2 ≤ t ≤ n.

31

Case 1. These paths are obtained by extending the n(n − 1)(n − 2) paths
in G(n) that satisfy (10) as equality by appending an arc incident to node
(n+1, n+1). Cases 2 and 3 are constructed in the same fashion as in Theorem
3. By Lemma 11, these s-paths can be constructed to satisfy (10) as equality.

32

