The Second Order Directional Derivative of Symmetric Matrix-valued Functions

Liwei Zhang†, Ning Zhang‡ and Xiantao Xiao§

April 24, 2011

Abstract. This paper focuses on the study of the second-order directional derivative of a symmetric matrix-valued function of the form

\[F(X) = P \text{diag}[f(\lambda_1(X)), \cdots, f(\lambda_n(X))]P^T. \]

For this purpose, we first adopt a direct way to derive the formula for the second-order directional derivative of any eigenvalue of a matrix in Torki [13]; Second, we establish a formula for the (parabolic) second-order directional derivative of the symmetric matrix-valued function. Finally, as an application, the second-order derivative for the projection operator over the SDP cone is used to derive the formula for the second-order tangent set of the SDP cone in Bonnans and Shapiro [3], which is the key for the Sigma term in the second-order optimality conditions of nonlinear SDP problems.

Key words. the SDP cone; symmetric matrix-valued function; second-order directional derivative; second-order tangent set.

1 Introduction

Löwner [6] initiated the work on symmetric matrix-valued functions of the form

\[F(X) = P \text{diag}[f(\lambda_1(X)), \cdots, f(\lambda_n(X))]P^T, \]

where \(f : \mathbb{R} \rightarrow \mathbb{R} \) is a real-valued function, \(X \in \mathcal{S}^n \) is a symmetric matrix with the spectral decomposition

\[X = P \text{diag}[\lambda_1(X), \cdots, \lambda_n(X)]P^T. \]

Realizing the importance of matrix-valued functions in the study of semidefinite programming, Sun and Sun [12] discussed some important differential properties of matrix-valued functions. In particular, they gave the formula for the directional derivative of the
projection operator over the SDP cone and demonstrated the strong semi-smoothness of this operator.

Pang, Sun and Sun [7] established the formula for the B-subdifferential of the projection operator over the SDP cone and gave a different way to derive the formula for the directional derivative of the projection operator.

Recently, Ding, Sun and Toh [2] gave a throughout study of the first order differential properties of matrix-valued functions, including the directional derivative, B-subdifferential, (G-)semismoothness and the counterparts of smoothing matrix-valued functions.

It is well known that the second-order tangent set of the SDP cone can be expressed by the second-order directional derivative of the maximum eigenvalue of a symmetric matrix (denoted \(\lambda_{\text{max}}(\cdot) \)), which is the key to describe the second-order optimality conditions, see [10] and [3]. The second-order directional derivative of \(\lambda_{\text{max}}(\cdot) \) can be derived from the classical paper of Lancaster [5], or the perturbation theory of optimization of Shapiro [9]. Importantly, based on the matrix perturbation theory of Stewart and Sun [11], Torki [13] obtained the formula for the second-order directional derivative of any eigenvalue of a symmetric matrix.

Although the formulas for the second-order directional derivative of any eigenvalue and the first-order derivative of the symmetric matrix-valued function, are available, the formula for second-order derivative of the symmetric matrix-valued function is still unknown. The main purpose of this paper is to establish the second-order derivative of matrix-valued functions and discuss its applications.

The paper is organized as follows. First, in the next section, we use a direct way, different from that of Torki [13], to derive the second-order directional derivative of any eigenvalue of a matrix-valued function whose implications will be used in studying the second-order derivative of matrix-valued functions. In Section 3, we present the formula for second-order derivative of symmetric matrix-valued functions. In Section 4, as an application, the second-order derivative for the projection operator over the SDP cone is used to derive the second-order tangent set of the SDP cone.

We introduce some notations to end this section. Let \(S^n \) be the space of all \(n \) by \(n \) symmetric and real matrices. For any \(X \in S^n \), we use \(\lambda_1(X) \geq \lambda_2(X) \geq \ldots \geq \lambda_n(X) \) to denote the real eigenvalues of \(X \). Let \(\Lambda(X) \in S^n \) be the diagonal matrix whose \(i \)-th diagonal entry is given by \(\lambda_i(X) \), \(i = 1, \ldots, n \), i.e., \(\Lambda(X) = \text{diag}(\lambda(X)) \). Denote by \(O^n \) the set of all \(n \times n \) orthogonal matrices in \(\mathbb{R}^{n \times n} \).

Let \(X \in S^n \) be given. Then, there exists an orthogonal matrix \(P \in O^n \) such that

\[
X = P \, \text{diag}(\lambda(X)) \, P^T.
\]

(1.1)

The set of such matrices \(P \) in the eigenvalue decomposition (1.1) is denoted by \(O^n(X) \). Let \(\mu_1 > \mu_2 > \ldots > \mu_r \) be the distinct eigenvalues of \(X \). Define the following subsets of \(\{1, \ldots, n\} \)

\[
\alpha_k := \{ i \mid \lambda_i(X) = \mu_k \}, \quad k = 1, \ldots, r.
\]

(1.2)

Partition \(P \) as \(P = [P_{\alpha_1} \ P_{\alpha_2} \ldots \ P_{\alpha_r}] \) with \(P_{\alpha_k} = (p_i : i \in \alpha_k) \), where \(P_{\alpha_k} \in \mathbb{R}^{n \times |\alpha_k|} \) for \(k = 1, \ldots, r \). For \(k \in \{1, \ldots, r\} \), assume that \(P_{\alpha_k}^T H P_{\alpha_k} \in \mathbb{R}^{|\alpha_k| \times |\alpha_k|} \) admits the following spectral decomposition

\[
(Q^k)^T (P_{\alpha_k}^T H P_{\alpha_k}) Q^k = \text{diag}(\xi_1^k, \ldots, \xi_{|\alpha_k|}^k).
\]
where $Q^k \in \mathcal{O}^{\alpha_k}(P^T\alpha_k HP_{\alpha_k})$ and $\xi^k_i = \lambda_i(P^T\alpha_k HP_{\alpha_k}), \ i = 1, \ldots, |\alpha_k|$. Denote the distinct eigenvalues of $P^T\alpha_k HP_{\alpha_k}$ by $\eta^k_1, \ldots, \eta^k_{N_k}$. Define the following subsets of $\{1, \ldots, |\alpha_k|\}$

$$\beta^k_i := \{i | \xi^k_i = \eta^k_i, \ i = 1, \ldots, |\alpha_k|\}. \quad (1.3)$$

Let $\kappa_i := \sum_{j=1}^i |\alpha_j|$ and $\kappa^{(k)}_i = \sum_{j=1}^i |\beta^k_j|$, for notation simplicity, we define the following mappings:

$$m_a : \{1, \ldots, n\} \rightarrow \{1, \ldots, r\}, \ m_a(i) = k, \ if \ i \in \alpha_k$$

$$l : \{1, \ldots, n\} \rightarrow \mathbb{N}, \ \ l(i) = i - \kappa_{m_a(i)} - 1,$$

$$m_b : \{1, \ldots, n\} \rightarrow \mathbb{N}, \ m_b(i) = p, \ if \ l(i) \in \beta^m_{\eta(i)},$$

$$l' : \{1, \ldots, n\} \rightarrow \mathbb{N}, \ \ l'(i) = l(i) - \kappa_{m_b(i)} - 1.$$

For $i' \in \beta^k_p$, the corresponding index in $\{1, \ldots, n\}$ is $i = \kappa^{(k)}_{p-1} + i' + \kappa_{k-1}$.

2 Second order directional derivatives of eigenvalues

For a mapping $G : \mathcal{X} \rightarrow \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} are two finite dimensional Hilbert spaces, we say G is second-order directionally differentiable at $\mathbf{x} \in \mathcal{X}$ (see [8] or [3]), if G is directionally differentiable at \mathbf{x} and for any $h \in \mathcal{X}, w \in \mathcal{X}$ the limit

$$\lim_{t \searrow 0} \frac{G(\mathbf{x} + th + \frac{1}{2}t^2w) - G(\mathbf{x}) - tG'(\mathbf{x}; h)}{t^2}$$

exists; and the above limit is the (parabolic) second-order directional derivative, denoted by $G''(\mathbf{x}; h, w)$.

In this section, we discuss the second-order directional derivative of the matrix function $\lambda_i(\cdot)$, where $\lambda_i(X)$ is the i-th eigenvalue of the symmetric matrix $X \in \mathcal{S}^n$. For $X, H, W \in \mathcal{S}^n$, define $Y(t) := X + th + \frac{t^2}{2}W$. Let $Y(t)$ admit the following spectral decomposition

$$Y(t) = U(t)\Xi(t)U(t)^T, \quad U(t) \in \mathcal{O}^n(Y(t)),$$

(2.1)

where $\Xi(t) := \Lambda(Y(t))$.

For simplicity, we first consider the case that $X = \Lambda(X)$, i.e., X is a diagonal matrix in \mathcal{S}^n. Obviously, $I \in \mathcal{O}^n(X)$. Without loss generality, we assume that $P = I$, then $P_{\alpha_i} = E_{\alpha_i} = (e_{\kappa_i-1+1} \cdots e_m) \in \mathbb{R}^{n \times |\alpha_i|}$, where e_j is the j-th unit vector of \mathbb{R}^n. Thus, one has that $P^T_{\alpha_k} HP_{\alpha_i} = H_{\alpha_i \alpha_i}$.

Lemma 2.1 [2, Proposition 2.3] For any $H \in \mathcal{S}^n$, let U be an orthogonal matrix such that

$$U^T(\Lambda(X) + H)U = \Lambda(\Lambda(X) + H).$$
Then, for any \(H \to 0 \), we have
\[
\begin{align*}
U_{\alpha_k \alpha_l} = & \ O(\|H\|), \quad k, l = 1, \ldots, r, k \neq l; \\
U_{\alpha_k \alpha_l} U_{\alpha_k \alpha_k}^T = & \ I_{\alpha_k} + O(\|H\|^2), \quad k = 1, \ldots, r; \\
\mathrm{dist}(U_{\alpha_k \alpha_k}, O^{\alpha_k}) = & \ O(\|H\|^2), \quad k = 1, \ldots, r,
\end{align*}
\]
and
\[
\lambda_i(\Lambda(X) + H) - \lambda_i(X) - \lambda_i(H_{\alpha_k \alpha_k}) = O(\|H\|^2), \quad i \in \alpha_k, \quad k = 1, \ldots, r.
\]
Hence, for any given direction \(H \in S^n \), the eigenvalue function \(\lambda_i(\cdot) \) is directionally differentiable at \(X \) with \(\lambda_i'(\Lambda(X); H) = \lambda_i(H_{\alpha_k \alpha_k}), i \in \alpha_k, k = 1, \ldots, r. \)

Directly from Lemma 2.1, we know that there exists \(Q^k(t) \in O^{\alpha_k} \) such that \(U_{\alpha_k \alpha_k}(t) = Q^k(t) + O(t^2) \), and
\[
(\Xi_{\alpha_k}(t) - \mu_I_{\alpha_k})^{-1} = \frac{1}{\mu_k - \mu_t} I_{\alpha_k} + \mathrm{diag}(O(t), \ldots, O(t)), \quad l \neq k. \tag{2.2}
\]

Lemma 2.2 Let \(Y(t) \in S^n \) have the eigenvalue decomposition (2.1). For \(k, l \in \{1, \ldots, r\} \) with \(k \neq l \), there exists \(Q^l(t) \in O^{\alpha_l} \) such that
\[
\begin{align*}
U_{\alpha_k \alpha_l}(t) = & \ t \frac{H_{\alpha_k \alpha_l} Q^l(t)}{\mu_l - \mu_k} + O(t^2), \tag{2.3} \\
U_{\alpha_k \alpha_l}^T(t) U_{\alpha_k \alpha_k}(t) = & \ I_{\alpha_k} - t^2 \sum_{j \neq l} \frac{(Q^j(t))^T H_{\alpha_k \alpha_l}^T H_{\alpha_j \alpha_l} Q^j(t)}{(\mu_j - \mu_l)^2} + O(t^3). \tag{2.4}
\end{align*}
\]

Proof. From (2.1), we have \(Y(t) U(t) = U(t) \Xi(t) \), i.e.,
\[
\begin{pmatrix}
\mu_1 I_{\alpha_1} \\
\vdots \\
\mu_r I_{\alpha_r}
\end{pmatrix} + tH + \frac{t^2}{2} W =
\begin{pmatrix}
U_{\alpha_1 \alpha_1}(t) & \cdots & U_{\alpha_1 \alpha_k}(t) \\
\vdots & & \vdots \\
U_{\alpha_k \alpha_1}(t) & \cdots & U_{\alpha_k \alpha_k}(t)
\end{pmatrix}
\begin{pmatrix}
\Xi_1(t) \\
\vdots \\
\Xi_r(t)
\end{pmatrix}.
\]
Multiplying \(E_{\alpha_k}^T \) and \(E_{\alpha_l} \) to the left side and the right side of the above equation, respectively, yields that
\[
\mu_k U_{\alpha_k \alpha_l}(t) + t E_{\alpha_k}^T H U(t) E_{\alpha_l} + \frac{t^2}{2} E_{\alpha_k}^T W U(t) E_{\alpha_l} = U_{\alpha_k \alpha_l}(t) \Xi_{\alpha_l}(t).
\]
By the definition of \(E_{\alpha_k} \), we have
\[
E_{\alpha_k}^T H = [H_{\alpha_k \alpha_1} \cdots H_{\alpha_k \alpha_1} \cdots H_{\alpha_k \alpha_r}] \quad \text{and} \quad U(t) E_{\alpha_l} = \begin{pmatrix}
U_{\alpha_1 \alpha_l}(t) \\
\vdots \\
U_{\alpha_r \alpha_l}(t)
\end{pmatrix},
\]

4
and in turn,

$$\mu_k U_{\alpha_k\alpha_l}(t) + t \sum_{j=1}^{r} H_{\alpha_k\alpha_j} U_{\alpha_j\alpha_l}(t) + \frac{t^2}{2} E_{\alpha_k}^T W U(t) E_{\alpha_l} = U_{\alpha_k\alpha_l}(t) \Xi_{\alpha_l}(t).$$

This, together with Lemma 2.1 and (2.2) shows that

$$U_{\alpha_k\alpha_l}(t) = (t \sum_{j=1}^{r} H_{\alpha_k\alpha_j} U_{\alpha_j\alpha_l}(t) + \frac{t^2}{2} E_{\alpha_k}^T W U(t) E_{\alpha_l}) \Xi_{\alpha_l}(t) - \mu_k I_{|\alpha_l|}^{-1}$$

which proves (2.3). By using the equality $U_{\alpha_l}^T(t) U_{\alpha_l}(t) = I_{|\alpha_l|}$, we obtain (2.4) directly from (2.3).

Proposition 2.1 For any $H, W \in S^n$, define

$$V_k(H, W) = E_{\alpha_k}^T [W - 2H(X - \mu_k I)^\top] E_{\alpha_k},$$

then, for any $i \in \alpha_k$, $k = 1, \ldots, r$,

$$\lambda_i(Y(t)) = \lambda_i(X) + t \lambda_i(H_{\alpha_k\alpha_k}) + \frac{t^2}{2} \lambda_{\nu(i)}((Q^k)^T V_k(H, W) Q^k_m(i)) + O(t^3),$$

(2.5)

where $Q^k \in \mathcal{O}^{\alpha_k}(P^T_{\alpha_k} H P_{\alpha_k})$. Namely,

$$\lambda_i(X; H) = \lambda_i(H_{\alpha_k\alpha_k})$$

(2.6)

and

$$\lambda''(X; H, W) = \lambda_{\nu(i)}((Q^k)^T V_k(H, W) Q^k_m(i)).$$

(2.7)
Proof. By Lemma 2.2, we have

\[U_{\alpha_k}^T(t)A(X)U_{\alpha_k}(t) = \sum_{j=1}^{r} \mu_j U_{\alpha_j\alpha_k}^T(t)U_{\alpha_j\alpha_k}(t) \]

\[= \mu_k U_{\alpha_k\alpha_k}^T(t)U_{\alpha_k\alpha_k}(t) + \sum_{j \neq k} \mu_j U_{\alpha_j\alpha_k}^T(t)U_{\alpha_j\alpha_k}(t) \]

\[= \mu_k I_{|\alpha_k|} - t^2 \mu_k \sum_{j \neq k}^{r} \frac{(Q^k(t))^T H_{\alpha_j\alpha_k}^T H_{\alpha_j\alpha_k} Q^k(t)}{(\mu_j - \mu_k)^2} \]

\[+ t^2 \sum_{j \neq k}^{r} \mu_j \frac{(Q^k(t))^T H_{\alpha_j\alpha_k}^T H_{\alpha_j\alpha_k} Q^k(t)}{(\mu_j - \mu_k)^2} + O(t^3) \]

\[= \mu_k I_{|\alpha_k|} + t^2 \sum_{j \neq k}^{r} \frac{(Q^k(t))^T H_{\alpha_j\alpha_k}^T H_{\alpha_j\alpha_k} Q^k(t)}{\mu_j - \mu_k} + O(t^3) \] (2.8)

and

\[U_{\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) = \sum_{j \neq k}^{r} U_{\alpha_j\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) + \sum_{j=1, l \neq k}^{r} U_{\alpha_k\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) \]

\[+ \sum_{l=1}^{r} U_{\alpha_k\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) + U_{\alpha_k\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t). \] (2.9)

It follows from Lemma 2.2 again that

\[\sum_{j \neq k, l \neq k}^{r} U_{\alpha_j\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) = O(t^2), \] (2.10)

\[\sum_{j=1}^{r} \sum_{j \neq k}^{r} U_{\alpha_j\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) = [Q^k(t) + O(t^2)]^T \sum_{j=1}^{r} H_{\alpha_j\alpha_j} (t) \frac{H_{\alpha_j\alpha_k} Q^k(t) + O(t^2)}{\mu_k - \mu_j} \]

\[= t \sum_{j=1}^{r} \sum_{j \neq k}^{r} \frac{(Q^k(t))^T H_{\alpha_j\alpha_k}^T H_{\alpha_j\alpha_k} Q^k(t)}{\mu_k - \mu_j} + O(t^2). \] (2.11)

Similarly, the following relations hold:

\[\sum_{l=1}^{r} \sum_{l \neq k}^{r} U_{\alpha_l\alpha_k}^T(t)H_{\alpha_k} U_{\alpha_k}(t) = t \sum_{l=1}^{r} \sum_{l \neq k}^{r} \frac{(Q^k(t))^T H_{\alpha_l\alpha_k}^T H_{\alpha_l\alpha_k} Q^k(t)}{\mu_k - \mu_l} + O(t^2), \] (2.12)

\[U_{\alpha_k\alpha_k}^T(t)H_{\alpha_k\alpha_k} U_{\alpha_k\alpha_k}(t) = (Q^k(t) + O(t^2))^T H_{\alpha_k\alpha_k} (Q^k(t) + O(t^2)) \]

\[= (Q^k(t))^T H_{\alpha_k\alpha_k} Q^k(t) + O(t^2). \] (2.13)
Combining (2.8) (2.9) (2.10) (2.11), (2.12) with (2.13), we get

\[U_{\alpha_k}^T(t) H U_{\alpha_k}(t) = (Q^k(t))^T H_{\alpha_k,\alpha_k} Q^k(t) + 2 t \sum_{\substack{l=1 \atop l \neq k}}^r \frac{(Q^k(t))^T H_{\alpha_l,\alpha_k} H_{\alpha_l,\alpha_k} Q^k(t)}{\mu_l - \mu_k} + O(t^2). \]

This, together with

\[U_{\alpha_k}^T(t) W U_{\alpha_k}(t) = (Q^k(t))^T W_{\alpha_k,\alpha_k} Q^k(t) + O(t) \]

implies that

\[\Xi_{\alpha_k}(t) = \mu_k I_{[\alpha_k]} + \frac{t^2}{2} (Q^k(t))^T [W_{\alpha_k,\alpha_k} - 2 \sum_{l \neq k} \frac{H_{\alpha_l,\alpha_k} H_{\alpha_l,\alpha_k}}{\mu_l - \mu_k}] Q^k(t) \]

\[+ t (Q^k(t))^T H_{\alpha_k,\alpha_k} Q^k(t) + O(t^3) \]

\[= \mu_k I_{[\alpha_k]} + t (Q^k(t))^T H_{\alpha_k,\alpha_k} Q^k(t) + \frac{t^2}{2} (Q^k(t))^T V_k(H, W) Q^k(t) + O(t^3). \]

(2.15)

It follows from (2.15) that

\[H_{\alpha_k,\alpha_k} = \frac{1}{t} Q^k(t) [\Xi_{\alpha_k}(t) - \mu_k I_{[\alpha_k]}](Q^k(t))^T + O(t). \]

(2.16)

Since for any \(t > 0 \), \(Q^k(t) \) is uniformly bounded, we may assume when \(t \searrow 0 \), \(\{Q^k(t)\} \) converges to an orthogonal matrix \(Q^k \). Then we have

\[H_{\alpha_k,\alpha_k} = Q^k \text{ diag } (\lambda_i^k(X, H) : i \in \alpha_k)(Q^k)^T \]

\[= Q^k \text{ diag } (\eta_1^k I_{[\beta_1]}^k, \ldots, \eta_N^k N_{N_k} I_{[\beta_N]}^k)(Q^k)^T. \]

(2.17)

In fact, any cluster point \(Q^k \) of \(\{Q^k(t)\} \) when \(t \searrow 0 \) satisfies (2.17), or in other words, \(Q^k \in \mathcal{O}^{[\alpha_k]}(H_{\alpha_k,\alpha_k}). \) By (2.15), we have

\[(Q^k)^T Q^k(t) [\Xi_{\alpha_k}(t)](Q^k(t))^T Q^k - \mu_k I_{[\alpha_k]} - t \text{ diag } (\eta_1^k I_{[\beta_1]}^k, \ldots, \eta_N^k I_{[\beta_N]}^k) \]

\[= \frac{t^2}{2} (Q^k)^T V_k(H, W) Q^k + O(t^3). \]

(2.18)

Then one has that

\[\Lambda_{\alpha_k}(Y(t)) = \mu_k I_{[\alpha_k]} + t \Lambda(\text{ diag } (\eta_1^k I_{[\beta_1]}^k, \ldots, \eta_N^k I_{[\beta_N]}^k)) \]

\[+ \frac{t}{2} (Q^k)^T V_k(H, W) Q^k + O(t^3). \]

(2.19)

Since the eigenvalue mapping \(\lambda(\cdot) \) is Lipschitz continuous, we obtain from (2.19) that, for any \(i \in \alpha_k, \)

\[\lambda_i(Y(t)) = \lambda_i(X) + t \lambda_{i(i)}(H_{\alpha_k,\alpha_k}) + \frac{t^2}{2} \lambda_{i(i)}((Q^k_{m_0(i)})^T V_k(H, W) Q^k_{m_0(i)}) + O(t^3). \]
The proof is completed.

Now we consider the general case in which X is not necessary a diagonal matrix. Notice that, in this case $Y(t)$ can be expressed as

$$ Y(t) = P[\Lambda(X) + t\tilde{H} + \frac{1}{2}t^2\tilde{W}]P^T, \quad (2.20) $$

where

$$ \tilde{H} = P^T HP, \quad \tilde{W} = P^T WP, \quad (2.21) $$

we can easily obtain, from Proposition 2.1, the following formula of the second-order directional derivative of $\lambda_i(\cdot)$ at X along (H,W).

Theorem 2.1 For any $H, W \in S^n$, define

$$ \tilde{V}_k(H, W) = P_{\alpha_k}^T[W - 2H(X - \mu_k I)^{\dagger}H]P_{\alpha_k}, \quad (2.22) $$

then, for any $i \in \alpha_k$, $k = 1, \ldots, r$,

$$ \lambda_i(Y(t)) = \lambda_i(X) + t\lambda_{l(i)}(\tilde{H}_{\alpha_k}) + \frac{t^2}{2}\lambda_{l(i)}((Q_{\alpha_k}^k(i))^{\dagger}\tilde{V}_k(H, W)Q_{\alpha_k}^k(i)) + O(t^3), \quad (2.23) $$

where $Q_k \in \mathcal{O}^{\alpha_k}(\tilde{H}_{\alpha_k})$. Namely,

$$ \lambda_i'(X; H) = \lambda_{l(i)}(\tilde{H}_{\alpha_k}) \quad (2.24) $$

and

$$ \lambda_i''(X; H, W) = \lambda_{l(i)}((Q_{\alpha_k}^k(i))^{\dagger}\tilde{V}_k(H, W)Q_{\alpha_k}^k(i)). \quad (2.25) $$

Proof. It is easy to check that

$$ V_k(\tilde{H}, \tilde{W}) = \tilde{V}_k(H, W), $$

and we obtain the conclusion from Proposition 2.1.

Remark 2.1 Formula (2.24) is derived in a similar way to [2]. Both (2.24) and (2.25) have been obtained by [13] by using the matrix perturbation theory of Stewart and Sun [11].

3 Second order directional derivative of the symmetric matrix-valued function

As the main part of the paper, this section is devoted to developing the formula for the second-order directional derivative of the symmetric matrix-valued function F associated with a scalar function $f : \mathbb{R} \rightarrow \mathbb{R}$. Since F is second-order directional derivative at $X \in S^n$ if and only if f is second order directionally differentiable at each $\lambda_i(X)$ for $i = 1, \ldots, n$, we assume that f is second-order directionally differentiable at each $\lambda_i(X)$ for $i = 1, \ldots, n$ through this section.
As in the previous section, we first consider the case that \(X \) is a diagonal matrix, namely, \(X = \Lambda(X) \). We choose \(P = I \in \mathcal{O}^n(X) \). Then \(P_{\alpha_k} = E_{\alpha_k} \) for \(k = 1, \ldots, r \), and \(P_{\alpha_k}^T H P_{\alpha_l} = H_{\alpha_k \alpha_l} \) for \(k, l = 1, \ldots, r \).

For a given \(Y \in \mathcal{S}^n \) near to \(X \), let \(Y \) admit the following eigenvalue decomposition,

\[
Y = U \Lambda(Y) U^T, \quad U \in \mathcal{O}^n(Y),
\]

define \(\mathcal{P}_k(Y) := \sum_{i \in \alpha_k} u_i u_i^T \).

For each \(k \in \{1, \ldots, r\} \), there exists \(\delta_k > 0 \) such that \(|\mu_l - \mu_k| > \delta_k, \forall l \neq k\). Define a continuously scalar function \(g_k(\cdot) : \mathbb{R} \rightarrow \mathbb{R} \) by (see for instance [2])

\[
g_k(t) = \begin{cases}
-\frac{1}{6 \delta_k} (t - \mu_k - \frac{\delta_k}{2}) & t \in [\mu_k + \frac{\delta_k}{3}, \mu_k + \frac{\delta_k}{2}], \\
1 & t \in [\mu_k - \frac{\delta_k}{3}, \mu_k + \frac{\delta_k}{3}], \\
\frac{1}{6 \delta_k} (t - \mu_k + \frac{\delta_k}{2}) & t \in [\mu_k - \frac{\delta_k}{2}, \mu_k - \frac{\delta_k}{3}], \\
0 & \text{otherwise},
\end{cases}
\]

then, there exists \(\varepsilon > 0 \) such that

\[
\mathcal{P}_k(Y) = G_k(Y) \equiv \sum_{i=1}^n g_k(\lambda_i(Y)) u_i u_i^T, \quad \forall Y \in \mathcal{B}_\varepsilon(X).
\]

From [1, Exercise V3.9], we know that for any \(H, W \in \mathcal{S}^n \),

\[
\mathcal{P}_k^2(X)(H, W) = \sum_{1 \leq i,j,l \leq n} g_{k}^{[2]}(\lambda_i, \lambda_j, \lambda_l)(p_ip_i^T H p_j p_j^T W p_l p_l^T + p_l p_l^T W p_j p_j^T H p_i p_i^T), \quad (3.1)
\]

where \(g_k^{[2]}(\lambda_i, \lambda_j, \lambda_l) \) is the second divided differences (see e.g. [1]).

By the definition of the second divided differences , we get

\[
g_{k}^{[2]}(\lambda_i, \lambda_j, \lambda_l) = \begin{cases}
\frac{1}{(\mu_k - \mu_p)(\mu_k - \mu_q)}, & i \in \mathcal{J}_k, j \in \mathcal{J}_p, l \in \mathcal{J}_q, k \neq p \neq q, \\
\frac{1}{(\mu_q - \mu_k)^2}, & i \in \mathcal{J}_k, j \in \mathcal{J}_q, l \in \mathcal{J}_q, k \neq q, \\
-\frac{1}{(\mu_q - \mu_k)^2}, & i \in \mathcal{J}_k, j \in \mathcal{J}_k, l \in \mathcal{J}_q, k \neq q, \\
0, & \text{otherwise},
\end{cases}
\]

where \(\mathcal{J}_i = \alpha_i, i = 1, \ldots, r \).

For each \(k \in \{1, \ldots, r\} \), \(\mathcal{P}_k(\cdot) \) is twice continuously differentiable and the second order derivative of \(\mathcal{P}_k(\cdot) \) is given by

\[
\mathcal{P}_k''(X; H, W) = \mathcal{P}_k'(X)W + \mathcal{P}_k''(X)(H, H),
\]

9
where

\[P_k^r(X)W = \sum_{\substack{l=1 \atop l \neq k}}^r \frac{1}{\mu_k - \mu_l} (P_k(X)WP_l(X) + P_l(X)WP_k(X)), \quad k = 1, \ldots, r, \]

\[P_k^r(X)(H, H) = 2 \sum_{\substack{l=1 \atop l \neq k}}^r \frac{1}{(\mu_k - \mu_l)^2} [\hat{H}_{kl} \hat{H}_{lk} + \hat{H}_{kl} \hat{H}_{kl} + \hat{H}_{kl} \hat{H}_{kl}] \]

\[-2 \sum_{\substack{l=1 \atop l \neq k}}^r \frac{1}{(\mu_k - \mu_l)^2} [\hat{H}_{kk} \hat{H}_{kl} + \hat{H}_{kl} \hat{H}_{lk} + \hat{H}_{kl} \hat{H}_{kk}] \]

\[+2 \sum_{\substack{l \leq j \leq r \atop l \neq k, j \neq k}}^r \frac{1}{(\mu_k - \mu_l)(\mu_k - \mu_j)} [\hat{H}_{kl} \hat{H}_{lj} + \hat{H}_{lk} \hat{H}_{lk} + \hat{H}_{lj} \hat{H}_{jl}]. \]

where \(\hat{P}_k = P_k(X)H_P(X) = P_{\alpha \kappa} P_{\alpha \kappa}^T H P_{\alpha \ell} P_{\alpha \ell}^T. \)

Lemma 3.1 For \(l, k \in \{1, 2, \ldots, r\} \) and \(l \neq k \), it holds that

(i) \((\Xi_{\alpha l}(t) - \mu_k I_{|\alpha l|})^{-1} = \frac{I_{|\alpha l|}}{\mu_l - \mu_k} - \frac{t}{(\mu_l - \mu_k)^2} \left(Q^1(t) H_{\alpha l \alpha l} Q^1(t) \right) + O(t^2), \)

(ii) \(U_{\alpha l \alpha l}(t) = \frac{1}{\mu_l - \mu_k} \left[t H_{\alpha l \alpha l} - \frac{t^2}{(\mu_l - \mu_k)^2} \frac{H_{\alpha l \alpha l} H_{\alpha l \alpha l}}{\mu_l - \mu_k} - \sum_{j=1}^{r} H_{\alpha l \alpha j} H_{\alpha j \alpha l} - \frac{1}{2} W_{\alpha l \alpha l} \right] Q^1(t) + O(t^3). \)

Proof. From (2.16), we know that

\[\Xi_{\alpha l}(t) = \mu_l I_{|\alpha l|} + t Q^1(t) P_{\alpha l \alpha l} Q^1(t) + O(t^2), \]

then

\[(\Xi_{\alpha l}(t) - \mu_k I_{|\alpha l|})^{-1} = \frac{1}{\mu_l - \mu_k} (Q^1(t) J_{|\alpha l|} + \frac{t H_{\alpha l \alpha l}}{\mu_l - \mu_k})^{-1} Q^1(t) + O(t^2) \]

\[= \frac{1}{\mu_l - \mu_k} (Q^1(t) J_{|\alpha l|} - \frac{t H_{\alpha l \alpha l}}{\mu_l - \mu_k} + \frac{t^2 H_{\alpha l \alpha l}^2}{(\mu_l - \mu_k)^2} + O(t^3)) Q^1(t) + O(t^2) \]

\[= \frac{1}{\mu_l - \mu_k} I_{|\alpha l|} - \frac{t (Q^1(t) J_{|\alpha l|} Q^1(t))}{(\mu_l - \mu_k)^2} + O(t^2), \quad (3.2) \]

which proves (i).

Since \(E_{\alpha k}^T (X + tH + \frac{t^2}{2} W) E_{\alpha l} = U_{\alpha k \alpha l}(t) \Xi_{\alpha l}(t) U_{\alpha l \alpha l}^T(t) \), we get

\[\mu_k U_{\alpha k \alpha l}(t) + t H_{\alpha k \alpha l} U_{\alpha l \alpha l} + t \sum_{j \neq l} H_{\alpha k \alpha j} U_{\alpha j \alpha l}(t) + \frac{t^2}{2} E_{\alpha k} W U_{\alpha l}(t) = U_{\alpha k \alpha l}(t) \Xi_{\alpha l}(t), \]

which together with the fact that \(U_{\alpha k \alpha l}(t) = O(t) \ (k \neq l) \), implies that

\[U_{\alpha k \alpha l}(t) = (t H_{\alpha k \alpha l} U_{\alpha l \alpha l} + t \sum_{j \neq l} H_{\alpha k \alpha j} U_{\alpha j \alpha l}(t) + \frac{t^2}{2} E_{\alpha k} W U_{\alpha l}(t)) (\Xi_{\alpha l}(t) - \mu_k I_{|\alpha l|})^{-1} + O(t^3). \]
By Lemma 2.2 and (i), we have

\[U_{\alpha \alpha_l}(t) = \left(\frac{t H_{\alpha_l \alpha_l}}{\mu_l - \mu_k} - \frac{t^2 H_{\alpha_l \alpha_l} H_{\alpha_l \alpha_l}}{(\mu_l - \mu_k)^2} + t^2 \sum_{j \neq l} \frac{H_{\alpha_l \alpha_j} H_{\alpha_l \alpha_j}}{(\mu_l - \mu_k)(\mu_l - \mu_j)} + \frac{t^2 W_{\alpha \alpha_l}}{2(\mu_k - \mu_l)} \right) Q^l(t) + O(t^3). \]

The proof is completed. \(\square \)

Before presenting the main result which is about the second order directional derivative of the symmetric matrix-valued function, some analysis is given in advance.

Define \(\hat{U}^k(t) := (Q^k)^T Q^k(t) \), then \(\hat{U}^k(t) \in \mathcal{O}[\alpha_k] \). By (2.18), we get

\[
\begin{align*}
&\text{diag} \left(\eta^k_I \eta^k_I, \ldots, \eta^k_{N_k} \eta^k_{N_k} \right) + \frac{t}{2} (Q^k)^T V_k(H, W) Q^k + O(t) \\
&= \hat{U}^k(t) \Lambda \left(\text{diag} \left(\eta^k_I \eta^k_I, \ldots, \eta^k_{N_k} \eta^k_{N_k} \right) + \frac{t}{2} [(Q^k)^T V_k(H, W) Q^k + O(t)] \right) (\hat{U}^k(t))^T.
\end{align*}
\]

Similar to Lemma 2.2, there exists \(\hat{Q}^k_{\beta_i \beta_j}(t) \in \mathcal{O}[\alpha_k] \) such that

\[
\hat{U}^k_{\beta_i \beta_j}(t) = \begin{cases}
\hat{Q}^k_{\beta_i \beta_i}(t) + O(t^2), & \text{if } i = j; \\
\frac{t}{2(\eta^k_i - \eta^k_j)} (Q^k)^T V_k(H, W) Q^k \hat{Q}^k_{\beta_i \beta_j}(t) + O(t^2), & \text{if } i \neq j.
\end{cases}
\]

Define \(\hat{Q}^k(t) \in \mathbb{R}[\alpha_k \times \alpha_k] \),

\[
[\hat{Q}^k(t)]_{\beta_i \beta_j} = \begin{cases}
\hat{Q}^k_{\beta_i \beta_i}(t), & \text{if } i = j; \\
\frac{t}{2(\eta^k_i - \eta^k_j)} (Q^k)^T V_k(H, W) Q^k \hat{Q}^k_{\beta_i \beta_j}(t), & \text{if } i \neq j.
\end{cases}
\]

It follows that

\[Q^k(t) = Q^k \hat{U}^k(t) = Q^k \hat{Q}^k(t) + O(t^2). \]

Lemma 3.1 implies that

\[U_{\alpha_l \alpha_k}(t) = \frac{1}{\mu_k - \mu_l} \left(t H_{\alpha_l \alpha_k} + \frac{t^2}{2} \Delta_{lk} \right) Q^k(t) + O(t^3), \quad l \neq k, \]

where

\[\Delta_{lk} := W_{\alpha_l \alpha_k} + 2 \sum_{j \neq k} \frac{H_{\alpha_l \alpha_j} H_{\alpha_j \alpha_k}}{\mu_k - \mu_j} - 2 \frac{H_{\alpha_l \alpha_k} H_{\alpha_k \alpha_k}}{\mu_k - \mu_l}. \]

To simplify the notation, we use \(U_{\alpha_l \beta_k}(t) \) instead of \(U_{\alpha_l \alpha_k}(t) \), then

\[
\begin{align*}
U_{\alpha_l \beta_k}(t) &= \frac{1}{\mu_k - \mu_l} \left(t H_{\alpha_l \alpha_k} + \frac{t^2}{2} \Delta_{lk} \right) Q^k \hat{Q}^k_{\beta_k \beta_k}(t) + O(t^3) \\
&= \frac{1}{\mu_k - \mu_l} \left(t H_{\alpha_l \alpha_k} + \frac{t^2}{2} \Delta_{lk} \right) \left(Q^k \hat{Q}^k_{\beta_k \beta_k}(t) + \frac{t}{2} \sum_{j \neq k} Q^k \hat{Q}^k_{\beta_j \beta_j}(Q^k)^T V_k(H, W) Q^k \hat{Q}^k_{\beta_j \beta_j}(t) \right) + O(t^3) \\
&= \frac{1}{\mu_k - \mu_l} t H_{\alpha_l \alpha_k} Q^k \hat{Q}^k_{\beta_k \beta_k}(t) + O(t^2).
\end{align*}
\]
Therefore, we have

\[
Q^k_{\beta^i} (t) = \frac{Q^k_{\beta^i} (t) + O(t^2)}{\eta_t^k - \eta_j^k}
\]

Consequently, for each \(i \in \{1, \ldots, N_k\}\),

\[
U_{\beta^i} (t) = \left[\frac{tH_{\alpha_i \alpha_k}}{\mu_k - \mu_1} \right]^{T} V_k (H, W) Q^k_{\beta^i} (t) + O(t^2).
\]

Define

\[
g(t) = \sum_{k=1}^{r} g_k(t) f(\mu_k).
\]

For any \(k, l \in \{1, \ldots, r\}\), careful calculation yields that

\[
\left(\sum_{i=1}^{r} f(\mu_i) P''(X)(H, H) \right)_{\alpha_k \alpha_l} = P^T_{\alpha_k} \left(\sum_{i=1}^{r} f(\mu_i) P''(X)(H, H) \right) P_{\alpha_l}
\]

\[
= \begin{cases}
P^T_{\alpha_k} \left(\sum_{j \neq k} \frac{f(\mu_j) - f(\mu_k)}{(\mu_j - \mu_k)^2} \hat{H}_{kj} \hat{H}_{jk} \right) P_{\alpha_l}, & \text{if } l = k, \\
\sum_{j \neq k \neq l} g^{[2]}(\mu_k, \mu_j, \mu_l) \hat{H}_{kj} \hat{H}_{jl} + \frac{f(\mu_j) - f(\mu_k)}{(\mu_j - \mu_k)^2} [\hat{H}_{kl} \hat{H}_{il} - \hat{H}_{kk} \hat{H}_{kl}] P_{\alpha_l}, & \text{if } k > l.
\end{cases}
\]

Therefore, we have

\[
\left(\sum_{i=1}^{r} f(\mu_i) P''(X)(H, H) \right)_{\alpha_k \alpha_l} = P^T_{\alpha_k} \left(\sum_{j=1}^{r} g^{[2]}(\mu_k, \mu_j, \mu_l) \hat{H}_{kj} \hat{H}_{jl} \right) P_{\alpha_l}
\]

\[
= \sum_{j=1}^{r} g^{[2]}(\mu_k, \mu_j, \mu_l) P^T_{\alpha_k} H P_{\alpha_j} P^T_{\alpha_j} H P_{\alpha_l}
\]

\[
= P^T_{\alpha_k} H G_{kl}^{[2]} (X) H P_{\alpha_l}
\]
and
\[\sum_{i=1}^{r} f(\mu_i)P_{ii}(X)(H, H) = \sum_{k=1}^{r} \sum_{l=1}^{r} P_{\alpha_k} P_{\alpha_l} H G_{kl}^{[2]}(X) P_{\alpha_l} P_{\alpha_l}^{T}, \]

where \(G_{kl}^{[2]}(X) := \sum_{j=1}^{r} g^{[2]}(\mu_k, \mu_j, \mu_l) P_{\alpha_j} P_{\alpha_l}^{T} \) is the Löwner operator defined by the function \(g_{kl}^{[2]}(\cdot) := g^{[2]}(\mu_k, \cdot, \mu_l). \)

From the above formulas, we have
\[
\sum_{i=1}^{n} f(\lambda_i(X))u_i(t)u_i^{T}(t) = \sum_{k=1}^{r} f(\mu_k)P_{k}(Y(t)) \\
= \sum_{k=1}^{r} f(\mu_k)[P_{k}(X) + tP_{k}(X)H + t^2(\frac{1}{2}P_{k}(X)W + P_{k}(X)(H, H)))] + O(t^3) \\
= F(X) + tP[\sigma](\Lambda(X)) \circ P^{T}HPP^{T} + t^2 \frac{1}{2} P[\sigma](\Lambda(X)) \circ P^{T}WP^{T} \\
+ t^2 \sum_{k=1}^{r} \sum_{l=1}^{r} P_{\alpha_k} P_{\alpha_l}^{T} H G_{kl}^{[2]}(X) H P_{\alpha_l} P_{\alpha_l}^{T} + O(t^3). \tag{3.5}
\]

It follows from (3.3) that
\[
t \sum_{i=1}^{n} f'(\lambda_i(X); X'(X; H))u_i(t)u_i^{T}(t) = t \sum_{k=1}^{r} \sum_{i=1}^{N_k} f'(\mu_k; \eta^k_i)U_{\beta_i}^{T}(t)U_{\beta_i}^{T}(t) = t \sum_{k=1}^{r} \Omega^k + O(t^3),
\]

where \(\Omega^k \in \mathbb{R}^{a_k \times |a_k|} \) with
\[
\Omega_{lk}^{k} = (\Omega_{kl}^{k})^{T} = \frac{tH_{\alpha_k \alpha_l}}{\mu_k - \mu_l} \sum_{i=1}^{N_k} f'(\mu_k, \eta^k_i)Q_{\beta_i}^{k} (Q_{\beta_i}^{k})^{T}, \quad l \neq k,
\]
\[
\Omega_{kk}^{k} = \sum_{i=1}^{N_k} f'(\mu_k, \eta^k_i)Q_{\beta_i}^{k} (Q_{\beta_i}^{k})^{T} + \frac{t}{2} \sum_{i=1}^{N_k} \sum_{j \neq i} Q_{\beta_i}^{k} (Q_{\beta_j}^{k})^{T} \frac{V_k(H, W)}{\eta^k_i - \eta^k_j} f'(\mu_k, \eta^k_i)Q_{\beta_i}^{k} (Q_{\beta_j}^{k})^{T} \\
+ \frac{t}{2} \sum_{i=1}^{N_k} \sum_{j \neq i} Q_{\beta_j}^{k} (Q_{\beta_j}^{k})^{T} \frac{V_k(H, W)}{\eta^k_i - \eta^k_j} f'(\mu_k, \eta^k_i)Q_{\beta_j}^{k} (Q_{\beta_j}^{k})^{T} + O(t^2),
\]
\[
\Omega_{lj}^{k} = O(t^2), \quad l, j \neq k.
\]

For each \(k \in \{1, \ldots, r\}, j = 1, \ldots, N_k \), there exists \(\delta^k_j > 0 \) such that \(|\eta^k_j - \eta^k_l| > \delta^k_j \), for \(l \neq j, l \in \{1, \ldots, N_k\} \). Define a continuously scalar function \(\phi^k_j(\cdot) : \mathbb{R} \rightarrow \mathbb{R} \) by
\[
\phi^k_j(t) = \begin{cases}
-\frac{1}{6\delta^k_j}(t - \eta^k_j + \frac{\delta^k_j}{2}) & t \in [\eta^k_j + \frac{\delta^k_j}{3}, \eta^k_j + \frac{\delta^k_j}{2}], \\
1 & t \in [\eta^k_j - \frac{\delta^k_j}{3}, \eta^k_j + \frac{\delta^k_j}{3}], \\
\frac{1}{6\delta^k_j}(t - \eta^k_j + \frac{\delta^k_j}{2}) & t \in [\eta^k_j - \frac{\delta^k_j}{2}, \eta^k_j - \frac{\delta^k_j}{3}], \\
0 & \text{otherwise},
\end{cases}
\]
Define $\phi_k(t) := \sum_{j=1}^{N_k} f'(\mu_k, \eta_j^k) \phi_j^k(t)$, then we have from

$$H_{\alpha_k \alpha_k} = Q^k \begin{bmatrix} \eta_1^k I_{[\beta_1]} \\ \vdots \\ \eta_{N_k}^k I_{[\beta_{N_k}]} \end{bmatrix} (Q^k)^T$$

that

$$\sum_{i=1}^{N_k} f'(\mu_k, \eta_i^k) Q_{\beta_i^k}^k (Q_{\beta_i^k}^k)^T = Q^k \begin{bmatrix} \phi_k(\eta_1^k) I_{[\beta_1]} \\ \vdots \\ \phi_k(\eta_{N_k}^k) I_{[\beta_{N_k}]} \end{bmatrix} (Q^k)^T := \Phi_k(H_{\alpha_k \alpha_k}),$$

where $Q^k \in \mathcal{O}^{[\alpha_k]}(H_{\alpha_k \alpha_k})$. This together with the fact that

$$\sum_{i=1}^{N_k} \sum_{j \neq i} \left\{ Q_{\beta_i^k}^k (Q_{\beta_i^k}^k)^T \frac{\phi_k(\eta_i^k)}{\eta_i^k - \eta_j^k} V_k(H, W) Q_{\beta_i^k}^k (Q_{\beta_i^k}^k)^T + Q_{\beta_i^k}^k (Q_{\beta_i^k}^k)^T \frac{V_k(H, W) \phi_k(\eta_i^k)}{\eta_i^k - \eta_j^k} Q_{\beta_i^k}^k (Q_{\beta_i^k}^k)^T \right\}$$

implies that

$$t \sum_{k=1}^{r} \sum_{i=1}^{N_k} f'(\mu_k; \eta_i^k) U_{\beta_i^k}(t) U_{\beta_i^k}^T(t)$$

$$= t \begin{bmatrix} \Phi_1(H_{\alpha_1 \alpha_1}) \\ \Phi_2(H_{\alpha_2 \alpha_2}) \\ \vdots \\ \Phi_r(H_{\alpha_r \alpha_r}) \end{bmatrix} + \frac{t^2}{2} \Theta + O(t^3),$$

where, for $k, l = 1, \ldots, r$,

$$\Theta_{\alpha_i \alpha_k} = \begin{cases} \frac{2H_{\alpha_i \alpha_k}}{\mu_k - \mu_l} \Phi_k(H_{\alpha_i \alpha_k}) + \Phi_l(H_{\alpha_i \alpha_i}) \frac{2H_{\alpha_i \alpha_k}}{\mu_l - \mu_k}, & \text{if } l \neq k, \\
Q^k[\phi_l^k](\Lambda(H_{\alpha_i \alpha_k})) \circ (Q^k)^T V_k(H, W) Q^k(Q^k)^T, & \text{if } l = k, \end{cases}$$

and $h^{[1]}(\cdot)$ is the first divided difference matrix for any differentiable scalar function h (see e.g. [1]).

From the definition $\hat{U}^k(t) = (Q^k)^T Q^k(t)$, (2.18) can be rewritten as

$$\hat{U}^k(t) \Xi_{\alpha_k}(k) (\hat{U}^k(t))^T - \mu_k I_{[\alpha_k]} - t \text{ diag } (\eta_1^k I_{[\beta_1]}, \ldots, \eta_{N_k}^k I_{[\beta_{N_k}]}),$$

$$= \frac{t^2}{2} (Q^k)^T V_k(H, W) Q^k + O(t^3),$$

(3.8)
and consequently,

\[
(Q_k^{(k)})^T V_k(H, W) Q_k^{(k)} = \frac{2}{t^2} ((\tilde{U}^k(t)\Xi_{\alpha_k}(t)\tilde{U}^k(t))^T \beta_i^k \beta_i^k - \mu_k I_{[\beta_i^k]} - t\eta_k I_{[\beta_i^k]}) + O(t). \tag{3.9}
\]

Let \(B_k(t) := \tilde{U}^k(t)\Xi_{\alpha_k}(t)(\tilde{U}^k(t))^T \), since for any \(i, j, l \in \{1, \ldots, N_k\} \),

\[
\tilde{U}^k_{\beta_i^k \beta_i^k}(t) = O(t), \quad i \neq j;
\]

\[
\tilde{U}^k_{\beta_i^k \beta_i^k}(t)^T \tilde{U}^k_{\beta_i^k \beta_i^k}(t) = I_{[\beta_i^k]} + O(t^2),
\]

and

\[
[\Xi_{\alpha_k}(t)]_{\beta_i^k} = \mu_k I_{[\beta_i^k]} + t\eta_k I_{[\beta_i^k]} + \frac{t^2}{2} (\Lambda_{\alpha_k})_{\beta_i^k}''(X; H, W) + O(t^3),
\]

we have

\[
(B_k(t))_{\beta_i^k \beta_i^k} = \tilde{U}^k_{\beta_i^k \beta_i^k}(t)\Xi_{\alpha_k}(t)_{\beta_i^k} (\tilde{U}^k_{\beta_i^k \beta_i^k}(t))^T + \sum_{j \neq i} \tilde{U}^k_{\beta_i^k \beta_j^k}(t)\Xi_{\alpha_k}(t)_{\beta_j^k} (\tilde{U}^k_{\beta_i^k \beta_j^k}(t))^T
\]

\[
= \mu_k I_{[\beta_i^k]} + t\eta_k I_{[\beta_i^k]} + \frac{t^2}{2} \tilde{U}^k_{\beta_i^k \beta_i^k}(t)(\Lambda_{\alpha_k})_{\beta_i^k}''(X; H, W)(\tilde{U}^k_{\beta_i^k \beta_i^k}(t))^T + O(t^3).
\]

Consequently,

\[
(Q_k^{(k)})^T V_k(H, W) Q_k^{(k)} = \tilde{U}^k_{\beta_i^k \beta_i^k}(t)(\Lambda_{\alpha_k})_{\beta_i^k}''(X; H, W)(\tilde{U}^k_{\beta_i^k \beta_i^k}(t))^T + O(t).
\]

Let \(\tilde{Q}_k^{(k)} \) be the cluster of \(\tilde{U}^k_{\beta_i^k \beta_i^k}(t) \) as \(t \downarrow 0 \), then \(\tilde{Q}_k^{(k)} \in O[\beta_i^k] \) and

\[
(Q_k^{(k)})^T V_k(H, W) Q_k^{(k)} = \tilde{Q}_k^{(k)} (\Lambda_{\alpha_k})_{\beta_i^k}''(X; H, W)(\tilde{Q}_k^{(k)})^T \beta_i^k \beta_i^k ,
\]

i.e., \(\tilde{Q}_k^{(k)}(t) \in O[\beta_i^k]((Q_k^{(k)})^T V_k(H, W) Q_k^{(k)}), \Lambda((Q_k^{(k)})^T V_k(H, W) Q_k^{(k)}) = (\Lambda_{\alpha_k})_{\beta_i^k}''(X; H, W).\)

Define \(\psi_{k,p}() := f''(\mu_k; \eta_{k-p}; \cdot) \) and \(j' := \kappa_{k-1} + \kappa_{p-1} + j \), then by Theorem 2.1,

\[
\frac{t^2}{2} \sum_{i=1}^{n} f''(\lambda_i(X); \lambda_i'(X, H), \lambda_i''(X, H, W))u_i(t)u_i^T(t)
\]

\[
= \frac{t^2}{2} \sum_{k=1}^{r} \sum_{p=1}^{N_k} \sum_{j' \in \beta_p} \psi_{k,p}(\lambda_j((Q_k^{(k)})^T V_k(H, W) Q_k^{(k)})) u_{j'}(t)u_{j'}^T(t). \tag{3.11}
\]

Observing that

\[
\sum_{p=1}^{N_k} \sum_{j' \in \beta_p} \psi_{k,p}(\lambda_j((Q_k^{(k)})^T V_k(H, W) Q_k^{(k)})) u_{j'}(t)u_{j'}^T(t) = \begin{bmatrix} O(t^2) & O(t) & O(t^2) \\
O(t) & R & O(t) \\
O(t^2) & O(t) & O(t^2) \end{bmatrix},
\]

15
with
\[
R = \sum_{p=1}^{N_k} Q_{\beta_p}^k \left[\sum_{j \in \beta_p} \psi_{k,p}(\lambda_j [(Q_{\beta_p}^k)^T V_k(H,W)Q_{\beta_p}^k]) (\tilde{Q}_{\beta_p}^k)^T (Q_{\beta_p}^k)^T \right] + o(1)
\]
\[
= \sum_{p=1}^{N_k} Q_{\beta_p}^k \tilde{\Psi}_{k,p} ((Q_{\beta_p}^k)^T V_k(H,W)Q_{\beta_p}^k) (Q_{\beta_p}^k)^T + o(1)
\]
\[
= Q^k \text{diag} \left(\tilde{\Psi}_{k,1} ((Q_{\beta_p}^k)^T V_k(H,W)Q_{\beta_p}^k), \ldots, \tilde{\Psi}_{k,N_k} ((Q_{\beta_p}^k)^T V_k(H,W)Q_{\beta_p}^k) \right) (Q^k)^T + o(1),
\]
we get
\[
\frac{t^2}{2} \sum_{i=1}^{n} f''(t) = \frac{t^2}{2} A + o(t^2), \quad (3.12)
\]
where
\[
A_{\alpha \lambda \alpha \lambda} = \begin{cases}
0, & \text{if } k \neq l, \\
Q^k \text{diag} \left(\tilde{\Psi}_{k,1} ((H,W), \ldots, \tilde{\Psi}_{k,N_k} ((H,W)) \right) (Q^k)^T, & \text{if } k = l.
\end{cases}
\]
with \(\tilde{\Psi}_{k}^i (H,W) := (Q_{\beta_p}^k)^T V_k(H,W)Q_{\beta_p}^k, i = 1, \ldots, |N_k| \).

For any \(X \in \mathbb{R}^{m \times n} \) which is not necessary a diagonal matrix, in this case \(Y(t) \) can be expressed as (2.20), where \(\bar{H} \) and \(\bar{W} \) are defined by (2.21), namely \(\bar{H} = P^T HP \) and \(\bar{W} = P^T WP \). Based on the above analysis for the case that \(X \) is a diagonal matrix, we are able to establish the following formula of the second-order directional derivative of \(F(\cdot) \) at \(X \) along \((H,W) \).

Theorem 3.1 Let \(X \in \mathbb{S}^n \) be given (it is not necessary a diagonal matrix) and have the eigenvalue decomposition (1.1). The matrix valued function \(F(\cdot) \) is second order directionally differentiable at \(X \) if and only if the corresponding Löwner operator \(f(\cdot) \) is second order directionally differentiable at every point \(\lambda_i(X), i = 1, \ldots, n \). In this case, the first and the second order directional derivative of \(F(\cdot) \) at \(X \) along \(H \) is

\[
F'(X,H) = P \begin{bmatrix}
\Phi_1(\bar{H}_{\alpha_1 \alpha_2}) & f[1](\mu_1, \mu_2) \bar{H}_{\alpha_1 \alpha_2} & \cdots & f[1](\mu_1, \mu_r) \bar{H}_{\alpha_1 \alpha_r} \\
\vdots & \ddots & \ddots & \vdots \\
f[1](\mu_r, \mu_1) \bar{H}_{\alpha_r \alpha_1} & f[1](\mu_r, \mu_2) \bar{H}_{\alpha_r \alpha_2} & \cdots & \Phi_r(\bar{H}_{\alpha_r \alpha_r})
\end{bmatrix} P^T. \quad (3.13)
\]

And the second order directional derivative of \(F(\cdot) \) at \(X \) along \((H,W) \) is

\[
F''(X;H,W) = PBP^T, \quad (3.14)
\]
where
\[B_{\alpha k\alpha k} = Q^k[\partial^1_k(\Lambda(\tilde{H}_{\alpha k\alpha k})) \circ (Q^k)^T \tilde{V}_k(H, W)Q^k](Q^k)^T \]
\[+ Q^k \text{diag} (\Psi_{k, 1}((Q^k)^T \tilde{V}_k(H, W)Q^k_{\beta \beta}), \ldots, \Psi_{k, N_k((Q^k)^T \tilde{V}_k(H, W)Q^k_{\beta \beta})))(Q^k)^T, \]
\[B_{\alpha k\alpha l} = g^{[1]}(\Lambda(X))_{\alpha k\alpha l} \circ \tilde{W}_{\alpha k\alpha l} + P_{\alpha k} \tilde{H} G_{\kappa}^{[2]}(X) \tilde{H} P_{\alpha l} \]
\[+ \frac{2\tilde{H}_{\alpha k\alpha l} \Phi_1(\tilde{H}_{\alpha k\alpha l})}{\mu_k - \mu_l} + \frac{2\Phi_k(\tilde{H}_{\alpha k\alpha l})\tilde{H}_{\alpha k\alpha l}}{\mu_k - \mu_l}, \text{ for } k, l = 1, \ldots, r \text{ and } k \neq l, \]
and \(\tilde{V}_k(H, W) \) is defined by (2.22) for \(k = 1, \ldots, r \).

Proof. "\(\Leftarrow \)" For any \(H, W \in S^n \) and \(t > 0 \), let \(Z(t) = X + tH + \frac{t^2}{2}W \) and \(Y(t) = P^T Z(t) P \). Then \(Y(t) = \Lambda(X) + t\tilde{H} + \frac{t^2}{2}\tilde{W} \) and \(F(Z(t)) = PF(Y(t))P^T \). Let \(Y(t) \) have the eigenvalue decomposition \(Y(t) = U(t) \text{diag}(\lambda(Y(t)))U(t)^T \), then \(Y(t) = U(t) \text{diag}(\lambda(Z(t)))U(t)^T \). Since \(f \) is second order directionally differentiable at every point \(\lambda_i(X) \), noting that \(\lambda'_i(\Lambda(X); \tilde{H}) = \lambda'_i(X; H) \) and \(\lambda''_i(\Lambda(X); \tilde{H}, \tilde{W}) = \lambda''_i(X; H, W) \), we have
\[
F(Y(t)) = \sum_{i=1}^{n} f(\lambda_i(Y(t)))u_i(t)u_i^T(t)
\]
\[= \sum_{i=1}^{n} f(\lambda_i(X) + t\lambda'_i(\Lambda(X); \tilde{H}) + \frac{t^2}{2}\lambda''_i(\Lambda(X); \tilde{H}, \tilde{W}) + O(t^3))u_i(t)u_i^T(t)
\]
\[= \sum_{i=1}^{n} f(\lambda_i(X))u_i(t)u_i^T(t) + t \sum_{i=1}^{n} f'(\lambda_i(X); \lambda'_i(\Lambda(X); \tilde{H}))u_i(t)u_i^T(t)
\]
\[+ \frac{t^2}{2} \sum_{i=1}^{n} f''(\lambda_i(X); \lambda'_i(\Lambda(X); \tilde{H}); \lambda''_i(\Lambda(X); \tilde{H}, \tilde{W}))u_i(t)u_i^T(t) + O(t^3).\]
From this expression, (3.5), (3.7) and (3.12), we get the conclusions.

"\(\Rightarrow \)" Suppose that \(F \) is second order differentially differentiable at \(X \). Fix any \(P \in O^n(X) \). For each \(i \in \{1, \ldots, n\} \), \(h_i \in \mathbb{R} \) and \(w_i \in \mathbb{R} \), let \(H = P \text{diag}(0, \ldots, h_i, \ldots, 0)P^T \) and \(W = P \text{diag}(0, \ldots, w_i, \ldots, 0)P^T \). It follows from Proposition 2.6 in [2] that \(f \) is directionally differentiable at \(\lambda_i(X) \) and
\[F'(X; H) = P \text{diag}(0, \ldots, f'(\lambda_i(X); h_i), \ldots, 0)P^T.\]
Consequently, we have
\[
F''(X; H, W) = \lim_{t \downarrow 0} \frac{F(Y(t)) - F(X) - tF'(X; H)}{t^2} \]
\[= P \text{diag}(0, \ldots, \lim_{t \downarrow 0} \frac{f(\lambda_i(Y(t))) - f(\lambda_i(X)) - tf'(\lambda_i(X); h_i)}{t^2} , \ldots, 0)P^T \]
\[= P \text{diag}(0, \ldots, \lim_{t \downarrow 0} \frac{f(\lambda_i(X) + th_i + \frac{1}{2}t^2w_i) - f(\lambda_i(X)) - tf'(\lambda_i(X); h_i)}{t^2} , \ldots, 0)P^T \]
\[= \frac{1}{2} \sum_{i=1}^{n} \frac{f''(\lambda_i(X); \lambda'_i(\Lambda(X); \tilde{H}); \lambda''_i(\Lambda(X); \tilde{H}, \tilde{W}))}{\mu_i - \mu_i}.\]
which implies that \(f''(\lambda_i(X); h_i, w_i) \) exists and

\[
f''(\lambda_i(X); h_i, w_i) = p_i^T F''(X; H, W)p_i.
\]

The proof is completed. \(\square \)

4 Applications

In this section, we apply Theorem 3.1 to metric project operator \(\Pi_{S^\alpha} \) and get the expressions of tangent cone \(T_{S^\alpha}(X) \) and second order tangent set \(T^2_{S^\alpha}(X, H) \) in a different way from that used in [3]. Without loss generality, we assume that \(X \in S^\alpha \) and \(X \) have the eigenvalue decomposition (1.1). Let \(\alpha_k, \beta_k, k = 1, \ldots, r, i = 1, \ldots, |\alpha_k|, \) be the corresponding subsets given by (1.2) and (1.3), respectively.

It follows from Moreau decomposition theorem that for any \(Y \in S^\alpha \),

\[
Y = \Pi_{S^\alpha}(Y) + \Pi_{S^\alpha}(Y).
\]

By the definition of tangent cone, we know that for any \(X \in S^\alpha \),

\[
T_{S^\alpha}(X) = \{ H \in S^\alpha : \text{dist}(X + tH, S^\alpha) = o(t) \}
= \{ H \in S^\alpha : ||\Pi_{S^\alpha}(X + tH) - (X + tH)|| = o(t) \}
= \{ H \in S^\alpha : \frac{||\Pi_{S^\alpha}(X + tH) - \Pi_{S^\alpha}(X)||}{t} = o(1) \}
= \{ H \in S^\alpha : \Pi'_{S^\alpha}(X; H) = 0 \}
\]

Assume that \(H \in T_{S^\alpha}(X) \), then

\[
T^2_{S^\alpha}(X; H) = \{ W \in S^\alpha : \text{dist}(X + tH + \frac{t^2}{2} W, S^\alpha) = o(t^2) \}
= \{ W \in S^\alpha : ||\Pi_{S^\alpha}(X + tH + \frac{t^2}{2} W) - (X + tH + \frac{t^2}{2} W)|| = o(t^2) \}
= \{ W \in S^\alpha : \frac{||\Pi_{S^\alpha}(X + tH + \frac{t^2}{2} W) - \Pi_{S^\alpha}(X) - \Pi_{S^\alpha}(X, H)||}{\frac{t^2}{2}} = o(1) \}
= \{ W \in S^\alpha : \Pi''_{S^\alpha}(X; H, W) = 0 \}.
\]

Let \(F(X) = \Pi_{S^\alpha}(X) \), the corresponding L"owner operator is \(f(x) = \max\{0, x\} \). An elementary calculation shows that

\[
f'(x; h) = \begin{cases} h, & \text{if } x > 0; \\ f(h), & \text{if } x = 0; \\ 0, & \text{if } x < 0, \end{cases}
\] and

\[
f''(x; y, z) = \begin{cases} z, & \text{if } x > 0 \text{ or } x = 0, y > 0; \\ 0, & \text{if } x < 0 \text{ or } x = 0, y < 0; \\ f(z), & \text{if } x = y = 0, \end{cases}
\]

and consequently, for \(k \in \{1, \ldots, r\}, i, j \in \{1, \ldots, |\alpha_k|\}, \)

\[
\phi_k(\eta^k; \mu^k) = \begin{cases} f(\eta^k), & \text{if } \mu^k = 0; \\ 0, & \text{if } \mu^k < 0, \end{cases}
\]
and

\[
\phi^{[1]}_k(\eta^k, j^k) = 0. \quad (4.1)
\]
We assume that \(\mu_1 = 0 \), then (4.1) and \(f^{[1]}(\mu_k, \mu_l) = 0 \) \((k \neq l)\) imply that \[
\Pi_{S^n_+}(X; H) = P \begin{bmatrix} Q^1 \Pi_{S^n_+}^{[1]}(\tilde{H}_{\alpha_1 \alpha_1})(Q^1)^T & 0 \\ 0 & 0 \end{bmatrix} P^T.
\]
This means that \(\Pi_{S^n_+}(X; H) = 0 \) is equivalent to \(\tilde{H}_{\alpha_1 \alpha_1} \leq 0 \). Obviously, the above conclusion also holds when \(\mu_1 < 0 \). Therefore,
\[
\mathcal{T}_{S^n_+}(X) = \{ H \in S^n : P^T_{\alpha_1} H P_{\alpha_1} \preceq 0 \}.
\]
Let \(\tilde{V}_k^p(H, W) := (Q^k_{\beta_p})^T \tilde{V}_k(H, W) Q^k_{\beta_p}, \) \(p = 1, \ldots, N_k \), then, for each \(i \in \{1, \ldots, |\beta_p^k|\} \)
\[
\psi_{k,p}(\lambda_i(\tilde{V}_k^p(H, W))) = \begin{cases} 0, & \text{if } \mu_k < 0 \text{ or } \mu_k = 0, \eta^k_p < 0; \\ f(\lambda_i(\tilde{V}_k^p(H, W))), & \text{if } \mu_k = \eta^k_p = 0, \end{cases}
\]
and
\[
\Psi_{k,p}(\tilde{V}_k^p(H, W)) = \tilde{Q}^k_{\beta_p \beta_p} \text{diag} \left(\psi_{k,p}(\lambda_1(\tilde{V}_k^p(H, W))), \ldots, \psi_{k,p}(\lambda_{|\beta_p^k|}(\tilde{V}_k^p(H, W))) \right) (\tilde{Q}^k_{\beta_p \beta_p})^T.
\]
The definition of \(g(t) \) and \(X \in S^n \) imply that
\[
g^{[1]}(\Lambda(X))_{\alpha_k \alpha_l} = 0, \quad \forall k, l = 1, \ldots, r; \\
g^{[2]}_{kl}(X) = 0, \quad \forall k \neq l.
\]
Assume that \(\mu_1 = 0 \), then
\[
\Pi_{S^n_+}^\prime(X; H, W) = P \begin{bmatrix} Q^1 M(Q^1)^T & 0 \\ 0 & 0 \end{bmatrix} P^T,
\]
where
\[
M = \begin{bmatrix} \tilde{Q}^1_{\beta_1 \beta_1} \Pi_{S^n_+}^{[1]}(\tilde{V}_1^1(H, W)) (\tilde{Q}^1_{\beta_1 \beta_1})^T & 0 \\ 0 & 0 \end{bmatrix}.
\]
This means that \(\Pi_{S^n_+}^\prime(X; H, W) = 0 \) is equivalent to \(\tilde{V}_1^1(H, W) \preceq 0 \). Obviously the above conclusion also holds when \(\mu_1 < 0 \). Therefore,
\[
\mathcal{T}_{S^n_+}^\prime(X) = \{ H \in S^n : \tilde{V}_1^1(H, W) \preceq 0 \},
\]
or equivalently,
\[
(Q^1_{\beta_1})^T P_{\alpha_1}^T W P_{\alpha_1} Q^1_{\beta_1} \preceq 2(Q^1_{\beta_1})^T P_{\alpha_1}^T H X^1 H P_{\alpha_1} Q^1_{\beta_1}, \tag{4.2}
\]
which is nothing but the formula for the second-order tangent set of \(S^n \) in (5.165) of [3].
References

