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ABSTRACT. Valid inequalities or cutting planes for (mixed-) integer program-
ming problems are an essential theoretical tool for studying combinatorial
properties of polyhedra. They are also of utmost importance for solving op-
timization problems in practice; in fact any modern solver relies on several
families of cutting planes. The Chvátal-Gomory procedure, one such ap-
proach, has a peculiarity that differentiates it essentially from all other known
cutting-plane operators. There exists a family of polytopes in the 0/1 cube
for which more than n rounds of Chvátal-Gomory cuts are needed to derive
the integral hull where n is the dimension of the polytope. All other known
operators achieve this in at most n rounds. We will prove that this behavior
is not an inherent weakness of the Chvátal-Gomory operator but rather a
consequence of deriving new inequalities solely from a single inequality (not
to confuse with single row cuts). We will first introduce a generalization of
the Chvátal-Gomory closure which is significantly stronger than the classical
Chvátal-Gomory procedure. We will then provide a new bounding technique
for rank lower bounds for operators that essentially derive new inequalities
from examining a single inequality only. A construction of a family of poly-
topes whose rank exceeds n follows. Contrasting these results we will show
that as soon as the operator can use at least two inequalities for its derivations
the rank in 0/1 cube is bounded by n from above and we will construct a new
cutting-plane operator, the transient closure that combines a strengthening of
lift-and-project cuts and generalized Chvátal-Gomory cuts. We obtain several
rank lower bounds for specific families of polytopes in the process.

1. INTRODUCTION

Deriving valid inequalities from polyhedral descriptions is an essential tool
to approximate the integral hull of a polyhedron. In particular, the success of
today’s mixed-integer programming solver is largely due to the availability of
strong general-purpose valid inequalities (also refereed to as cutting planes). The
Chvátal-Gomory procedure (see Gomory [1958, 1960, 1963], Chvátal [1973]) is
one such approach to derive new valid inequalities. It essentially takes positive
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combinations of valid inequalities and rounds (-down) left- and right-hand sides.
Any feasible integral solution will satisfy this new inequality. However fractional
solutions might be cut-off. The aim is to obtain strong valid inequalities in as
few applications of this operation as possible. The number of applications of
such a procedure, needed to derive a certain inequality valid for the integral
hull is usually referred to as rank or depth of an inequality (with respect to some
cutting-plane operator) and the rank of a polyhedron (denoted by: rk(·)) is the
maximum rank over all facets of the integral hull.

While the Chvátal-Gomory cutting-plane operator is one of the most studied
operators (see e.g., Schrijver [1986]) many theoretical questions remain unan-
swered. One of the most striking differences of the Chvátal-Gomory operator
in contrast to any other known operator is that there exists a family of poly-
topes Pn ⊆ [0,1]n such that rk(Pn)> n (see Eisenbrand and Schulz [2003] or
Pokutta and Stauffer [2011]); all other operators satisfy rk(P) ≤ n whenever
P ⊆ [0,1]n. The currently best known upper bound for the Chvátal-Gomory
operator is O(n2 log n) in the ambient dimension n of the polytope which was
established in Eisenbrand and Schulz [2003]. However a large gap between the
two bounds remains.

Recently, several people proposed strengthenings of cutting-plane operators
when applied to polytopes in the [0, 1]n-cube by restricting them to 0/1 feasible
solutions (see e.g., Dunkel and Schulz [2010], Fischetti and Lodi [2010], Lodi
et al. [2011]). Partially with the aim to resolve some of the aforementioned
rank questions, partially with the aim to obtain stronger operators tailored to
0/1 programming, these strengthenings try to exploit the information that the
solution are 0/1 vectors. For example in the case of the Chvátal-Gomory operator,
a close inspection of the Chvátal-Gomory procedure reveals that it pushes valid
inequalities towards the integral hull until they touch any integral point (not
necessarily contained in the integral hull). In this sense, the Chvátal-Gomory
operator rounds inequalities to the next point on the Zn-grid. However often we
deal with polytopes stemming from combinatorial optimization problems so that
the polytopes are contained in the [0, 1]n-cube. Therefore we would like to use
this additional information to further push inequalities inside, until a 0/1 point
is touched. In the process of deciding whether a cutting plane generated in this
way is valid, we have to test whether certain hyperplanes contain 0/1 points
which is a hard problem. By allowing the operator to solve harder problems,
we hope for strengthened procedures that derive stronger inequalities in fewer
rounds. (This is in particular of practical interest since, while hard in general,
many practical separation problem might be easy to solve.) We will prove that
this is not the case for the canonical 0/1 strengthening of the Chvátal-Gomory
operator. For P ⊆ [0, 1]n and {0, 1}n ⊆ S ⊆ Zn we will consider the generalized
Chvátal-Gomory operator defined as

GCGS(P) :=
⋂

(c,δ)∈Qn+1,
P⊆{cx≤δ}

{x ∈ [0, 1]n | cx ≤max {cx | cx ≤ δ, x ∈ S}} .

We will show that already relatively simple polytopes need a large number of
applications to derive the integral hull. In fact, we prove that the generalized
Chvátal-Gomory cutting-plane operators suffers from the same weaknesses (in
terms of rank) as the classical Chvátal-Gomory operator.
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Contribution. We will introduce a generalization of the Chvátal-Gomory clo-
sure (Definition 2.2) and establish a new lower bounding technique that can
be used for operators that derive new valid inequalities by solely examining
single inequalities valid for the original polytope (Proposition 3.1). The proposed
technique, in its core, is based on invariant scalar products. However for the
purpose of a more streamlined exposition and being self-contained it has been
brought into a more explicit form, removing all links to representation theory
and the essential idea has been captured in a remark after Proposition 3.1. It
is inspired by the lower bounding techniques presented in the seminal work
of Chvátal et al. [1989]. In contrast to Chvátal et al. [1989] where explicit
knowledge about the cutting-plane procedure (in this case the Chvátal-Gomory
procedure) has been used, our technique only relies on some local knowledge
assumption that is satisfied by the Chvátal-Gomory-operator and the considered
strengthenings. While also being based on some type of local knowledge as-
sumption, the framework for establishing lower bounds on the rank in Pokutta
and Schulz [2010a] is only partially applicable. In particular, it cannot be used
for almost integral polytopes, our main building block.

In a first step we will use this technique to construct a family of almost integral
polytopes with non-constant rank (Theorem 3.2). The actual family of polytopes
used for the lower bounds is the one that has been presented in Pokutta and
Stauffer [2011]. It is quite surprising that this weakness of the Chvátal-Gomory
operator carries over to the generalized Chvátal-Gomory operators considered
here (recall that any other operator derives the integral hull of almost integral
polytopes within one round via an elementary split.) We will use this family in
turn to construct of a very basic family of polytopes Pn ⊆ [0, 1]n that exhibits a
rank of at least n+ log n−2> n (Theorem 5.1). It turns out that the reason why
the classical Chvátal-Gomory procedure exhibits super-n rank is not due to its
actual design but it is an inherent lack of information about the integral hull. In
fact we will show that while typical operators are not limited by information but
rather computational power, for the generalized Chvátal-Gomory operators the
opposite is true: while having unlimited computational power they are limited
by the information they can use. We will also make the difference to single-row
cuts explicit showing that those in fact use more information than just a single
inequality (Example 3.4). For example the Gomory-Mixed-Integer cuts (GMI
cuts) (cf. Gomory [1958, 1960, 1963]) are single-row cuts, however they do
rely on a disjunction and information of a larger number of inequalities as we
will see.

To contrast the existence of this family of polytopes that exhibits super-n rank
with respect to the generalized Chvátal-Gomory operators, we will construct
a new cutting-plane operator, the transient closure, that can deduce new in-
equalities from at most two inequalities. We show that this operator refines the
classical lift-and-project operator N0 (see Lovász and Schrijver [1991]) as well as
the generalized Chvátal-Gomory operators (Corollary 6.3) and as a consequence
it can derive the integral hull of any polytope P ⊆ [0, 1]n in at most n rounds.

In the process we will also prove that the classical lift-and-project operator
N0 is incompatible with the considered strengthening of the Chvátal-Gomory-
operator and briefly sketch how the lower bound result for the subtour elimina-
tion polytope given in Chvátal et al. [1989] for the Chvátal-Gomory procedure
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and in Cook and Dash [2001] for the lift-and-project related procedures can be
carried over to the generalized Chvátal-Gomory operators.

Outline. We begin with some preliminaries and definitions in Section 2. In
particular we define the generalizations of the Chvátal-Gomory operator and
we establish some basic properties. In Section 3 we show that there exists a
family of almost integral polytopes Pn ⊆ [0, 1]n with rank at least log n−1. This
family will be of crucial importance for constructing a family of polytopes with
super-n rank. In Section 4 we consider the classical example An which has been
used so far for cutting-plane operators with polynomial verification of validity
to provide a rank lower bound of n. We will show that this bound even holds
for the generalized Chvátal-Gomory operators. In Section 5 we establish the
super-n lower bound and in Section 6 we define the transient closure operator
which can deduce new inequalities from two valid inequalities. We conclude
with some final remarks in Section 7.

2. GENERALIZED CHVÁTAL-GOMORY OPERATORS

We introduce necessary notions and notation as well as we establish basic
properties of the generalized Chvátal-Gomory operators. For convenience, let
[n] := {1, . . . , n} for n ∈ N. We will use {cx ≤ δ} as a shorthand for the half-
space {x ∈ [0,1]n | cx ≤ δ}. All polytopes considered here are contained in
[0,1]n. For a polytope P ⊆ [0,1]n let PI := conv (P ∩Zn) denote the integral
hull of P and

P ′ :=
⋂

c∈Zn ,δ∈Q,
P⊆{cx≤δ}

{cx ≤ bδc}

denote the Chvátal-Gomory-closure of P. In the following let log(·) denote the
logarithm to the basis of 2.

We will now introduce a generalized rounding operation.

Definition 2.1. Let S ⊆ Rn and let cx ≤ δ with (c,δ) ∈ Qn+1. Then the
S-optimizing operator is defined as

[[ c,δ ]] S :=max {cx | cx ≤ δ, x ∈ S} .

We set [[ c,δ ]] S =∞ if the maximum does not exist.

Observe that the actual optimization problem solved by the S-optimizing
operator might be NP-hard. A cutting-plane operator is a map from polytopes
to closed convex sets. It is defined by assigning every polytope P ⊆ [0,1]n its
closure. We say that a cutting-plane operator M deduces from single inequalities
if whenever cx ≤ δ is valid for M(P) then there exists a inequality πx ≤ π0 such
that P ⊆ [0,1]n ∩

�

πx ≤ π0
	

and cx ≤ δ is valid for M([0,1]n ∩
�

πx ≤ π0
	

).
Put informally, the cutting-plane operator M uses only information contained
in the single inequality cx ≤ δ (and the bounding cube). It is exactly this
restricted use of information that characterizes the Chvátal-Gomory-operator.
Using [[ ·, · ]] S we can define a generalization of the Chvátal-Gomory operator. In
the following we will confine ourselves to the more interesting case S ⊆ Zn.
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Definition 2.2. Let P ⊆ [0, 1]n be a polytope and S ⊆ Zn. Then the generalized
Chvátal-Gomory closure with respect to S is defined as

GCGS(P) :=
⋂

(c,δ)∈Qn+1,
P⊆{cx≤δ}

�

cx ≤ [[ c,δ ]] S
	

.

The GCGS operator is the map P 7→ GCGS(P). The definition readily generalizes
to P being an arbitrary, closed convex set C ⊆ [0,1]n.

It will turn out later that GCGZn(P) = P ′ (see Proposition 2.7) which trivially
implies the polyhedrality of GCGZn(P). The polyhedrality of GCGS with S =
{0, 1}n has been established in Dunkel and Schulz [2010] (in Dunkel and Schulz
[2010] the closure is called M -closure). It is open whether GCGS is polyhedral
for general S in the case of P being a closed convex set; it is known to be true
for S = Zn as shown in Dadush et al. [2010]. We will drop S if it is clear from
the context. The following properties are immediate.

Remark 2.3. Let P ⊆ [0,1]n be a polytope. Then the following hold

(1) PI ⊆ GCGS(P)⊆ P for all polytopes P ⊆ [0, 1]n and PI ∩ {0,1}n ⊆ S;
(2) GCGS(P)⊆ GCGS̃(P) whenever S ⊆ S̃;
(3) GCGS(P)⊆ GCGS(Q) for any S ⊆ Zn and P ⊆Q ⊆ [0,1]n polytopes.

Observe that [[ ., . ]] S is invariant under scaling:

Observation 2.4. Let S ⊆ Zn and let cx ≤ δ with (c,δ) ∈ Rn+1. For α ∈ R+ it
holds

α [[ c,δ ]] S = [[ αc,αδ ]] S .

Proof.

α [[ c,δ ]] S =αmax {cx | cx ≤ δ, x ∈ S}
=max {αcx | cx ≤ δ, x ∈ S}
=max {αcx | αcx ≤ αδ, x ∈ S}= [[ αc,αδ ]] S .

�

We obtain the classical Chvátal-Gomory operator in a natural way; actually
we derive a slightly more general result. For this we will use the following
lemma (see Dadush et al. [2010] for a similar result) and observation:

Lemma 2.5. ([Dey and Pokutta, 2011, Lemma 2]) Let P,Q ⊆ Rn be compact
convex sets and let σP(c)≤ σQ(c) for all c ∈ Zn with σM (c) := sup {cx | x ∈ M}.
Then P ⊆Q.

In general it is not true that λ bδc ≥ bλδc when δ ∈ R and λ ∈ [0,1].
For example consider λ = 2/3 and δ = 3/2. Then 2/3 b3/2c = 2/3 whereas
b2/3 · 3/2c = 1. However it holds 1

k
bδc ≥

�

1
k
δ
�

, i.e., the case where λ is chosen
as λ= 1/k with k ∈ N.

Observation 2.6. Let δ ∈ R and k ∈ N. Then
1

k
bδc ≥

�

1

k
δ

�

.
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We will now use the above to recover the classical Chvátal-Gomory operator
from the generalized Chvátal-Gomory operators. While this was already indi-
cated for integral (and in consequence rational normals) in Schrijver [1986]
one does not need to restrict the coefficients. In fact we prove a slightly stronger
result, i.e., that P ′ = GCGZn(P) even when the considered normals for GCG
could take coefficients in R. The reason for this is that the integrality condition
is already incorporated implicitly into [[ ·, · ]] S .

Proposition 2.7. Let P ⊆ [0, 1]n be a polytope then

P ′ = GCGZn(P) =
⋂

(c,δ)∈Rn+1,
P⊆{cx≤δ}

�

cx ≤ [[ c,δ ]]Zn
	

.

Proof. Observe that both P ′ and
⋂

(c,δ)∈Rn+1,
P⊆{cx≤δ}

�

cx ≤ [[ c,δ ]]Zn
	

are compact convex sets. Therefore we can confine ourselves to normals c ∈ Zn

by Lemma 2.5
We first show that P ′ ⊆

⋂

(c,δ)∈Rn+1,
P⊆{cx≤δ}

�

cx ≤ [[ c,δ ]]Zn
	

. Let cx ≤ δ be valid for P

with c ∈ Zn. Then cx ≤ bδc is a CG-cut. We can further assume that cx ≤ bδc is
an undominated CG-cut and in particular that gcd(c) = 1; otherwise there exists
k ∈ N so that 1

k
c is integral, gcd(1

k
c) = 1, and we have 1

k
cx ≤

�

1
k
δ
�

≤ 1
k
bδc

by Observation 2.6. As gcd(c) = 1 there exists z ∈ Zn such that cz = bδc and
so [[ c,δ ]] ≥ bδc. On the other hand we trivially have [[ c,δ ]] ≤ bδc so that
[[ c,δ ]] = bδc follows.

For the converse let c ∈ Zn and consider cx ≤ [[ c,δ ]] for some δ ∈ R so that
cx ≤ δ is valid for P. By Observation 2.4 we can rescale c and assume without
loss of generality that gcd(c) = 1. Set z := argmax {cx | x ∈ Zn, cx ≤ δ} and
observe that cz ≥ bδc since there exists (as before) z′ ∈ Zn with cz′ = bδc ≤ δ.
Together with cz ≤ bδc it follows cz = bδc, i.e., [[ c,δ ]] = bδc. �

We can iterate the GCG operator in the usual fashion by putting GCG i+1
S (P) :

= GCGS(GCG i
S(P)); for consistency we put GCG0

S(P) := P. We define the rank
of P with respect to S as

rkS(P) :=min
¦

i ∈ N | GCG i
S(P) = PI

©

.

Note that the rank is finite whenever PI ∩ {0,1}n ⊆ S since GCGS(P) ⊆
GCGZn(P) = P ′. In the following we will consider the rank always with re-
spect to GCG if not stated otherwise.

Remark 2.8. We have the following rank inequalities:

(1) Let P ⊆ [0, 1]n be a polytope and {0,1}n ⊆ S ⊆ S̃ ⊆ Zn, then

rkS(P)≤ rkS̃(P).

(2) Let P,Q ⊆ [0,1]n be polytopes with P ⊆ Q and PI = Q I . Further let
{0,1}n ⊆ S ⊆ Zn, then

rkS(P)≤ rkS(Q).
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Proof. For (1) observe that we have GCGS(P)⊆ GCGS̃(P) by Remark 2.3. And
so iterating the operators we have GCG i

S(P) ⊆ GCG i
S̃
(P) for all i ∈ N. If now

PI 6= GCG i
S(P) for some i, then PI 6= GCG i

S̃
(P). The first inequality follows.

Statement (2) follows in a similar fashion from Remark 2.3. Again we have
GCG i

S(P) ⊆ GCG i
S(Q) for all i ∈ N. Thus, if PI 6= GCG i

S(P) then Q I = PI (
GCG i

S(P)⊆ GCG i
S(Q). �

For c ∈ Qn let A[c] := 1
n
ce denote the average value of c with e being the

all-1 vector. Using Observation 2.4 we obtain a simplified characterization of
GCGS(P).

Lemma 2.9. Let P ⊆ [0,1]n be a polytope and S ⊆ Zn. Then

GCGS(P) =
⋂

(c,δ)∈Qn+1,A[c]∈{−1,0,1},
P⊆{cx≤δ}

�

cx ≤ [[ c,δ ]] S
	

,

i.e., it suffices to consider normalized normals.

Proof. Clearly, GCGS(P) ⊆
⋂

(c,δ)∈Qn+1,A[c]∈{−1,0,1},
P⊆{cx≤δ}

�

cx ≤ [[ c,δ ]] S
	

. For the con-

verse let cx ≤ δ be valid for P. In case A[c] = 0 there is nothing to be shown.
Therefore let |A[c]|> 0. We have that 1/|A[c]| · cx ≤ 1/|A[c]| ·δ is valid for P
which is equivalent to cx ≤ δ. Now cx ≤ [[ c,δ ]] S is valid for GCGS(P). This is
equivalent to 1/|A[c]| · cx ≤ 1/|A[c]| [[ c,δ ]] S = [[ 1/|A[c]| · c, 1/|A[c]| ·δ ]] S by
Observation 2.4. Therefore we have an inequality 1/|A[c]| · cx ≤ 1/|A[c]| · δ
with A(·)-value ±1 that induces the same valid inequality. �

3. AN ALMOST INTEGRAL FAMILY OF POLYTOPE WITH NON-CONSTANT RANK

We will now prove that there exists a family of polytopes Pn ⊆ [0, 1]n such that
rkS(Pn) ∈ Ω(log n) whenever {0,1}n ⊆ S. By Remark 2.8 it suffices to consider
the case S = {0,1}n for establishing lower bounds that are unconditional on S.

Let Pλ := conv ({x ∈ [0,1]n | ex ≤ 1} ∪ {λe}) with λ ∈ (0,1). In a first step
we will show that P1

2
λ ⊆ GCG(Pλ) whenever λ > 1/n.

Proposition 3.1. Let λ ∈ (0,1) and λ > 1/n where n is the dimension of Pλ.
Then

P1
2
λ ⊆ GCGS(Pλ)

for {0,1}n ⊆ S ⊆ Zn.

Proof. With Remark 2.8 it suffices to consider S = {0,1}n; we drop the index
throughout the proof. In a first step we will consider GCG(Pλ) and we will
argue that it is sufficient to consider normals c with A[c]> 0. Clearly, it suffices
to consider inequalities cx ≤ δ with δ =maxx∈Pλ cx . Moreover, if there exists
x I ∈ PI so that cx I = δ then we obtain δ = [[ c,δ ]] . Thus it suffices to consider
normals c so that there exists no such integral vertex, and, in particular, the
maximum δ is solely taken at the fractional vertex λe (note that Pλ has only
one fractional vertex). Observe that cλe = A[c]λn. If now A[c] < 0, then
cλe = λA[c]n < 0 however 0 ∈ Pλ and so cλe < c0 = 0; a contradiction. If
A[c] = 0 and c 6= 0 then there is at least one coordinate i of c such that ci > 0.
Now cλe = λA[c]n= 0< cei = ci where ei denotes the i-th unit vector and so
λe is not the (unique) maximizer. Therefore, in the following we will confine
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ourselves to normals c with A[c] > 0. In view of Lemma 2.9 we can further
restrict ourselves to normals c ∈Qn with A[c] = 1. As c is (uniquely) maximized
at λe (by assumption from above) we have ci < λn for all i ∈ [n]. Moreover can
assume that ci ≥ ci+1 as P is symmetric with respect to coordinate permutations
and that c1 ≥ 1 holds; otherwise A[c]< 1.

Let c be a normal with the properties as described above, i.e.,
(1) A[c] = 1;
(2) ci ≥ ci+1 for all i ∈ [n− 1];
(3) ci < λn for all i ∈ [n] and c1 ≥ 1.

Choose ` maximal so that
∑

i∈[ j] ci < λn for all j ≤ ` and define x̃ with the first
` entries being equal to 1 and 0 else. We claim that

1

2
λn≤ c x̃ < λn.

By the choice of ` we have c x̃ < λn. Now for showing 1
2
λn≤ c x̃ , observe that

λn = c x̃ + αc`+1 with α ∈ [0,1). Such an α indeed exists since A[c] = 1 and
therefore ce = n> λn and we also have c`+1 > 0 if α 6= 0 as c x̃ < λn. Moreover
c1 < λn so that `≥ 1. We conclude

λn≤ c`+1+ c x̃ ≤ 2c x̃ ,

and so 1
2
λn ≤ c x̃ . It follows [[ c,λn ]] ≥ 1

2
λn and therefore 1

2
λe ∈ Pλ satisfies

cx ≤ [[ c,λn ]] . As the choice of c was arbitrary it follows that 1
2
λe ∈ GCG(Pλ)

and so we obtain P1
2
λ ⊆ GCG(Pλ) as claimed. �

While hidden in the actual proof, what we did is to exploit symmetry of
Pλ in the following way. Let Sn denote the symmetric group on n elements,
here, acting by permuting coordinates. For a vector c ∈ Qn let c[Sn] denote
the Sn-average of c, i.e., c[Sn] =

1
|Sn|
∑

π∈Sn
πc and observe that c[Sn] = e if

A[c] = 1. Suppose that cx ≤ [[ c,δ ]] is valid for GCG(Pλ) with A[c] = 1.
Then by symmetry πcx ≤ [[ c,δ ]] is valid for GCG(Pλ) for all π ∈ Sn. Thus
c[Sn]x = ex ≤ [[ c,δ ]] is valid for GCG(Pλ).

We obtain the main theorem of this section.

Theorem 3.2. Let P = conv
�

{x ∈ [0,1]n | ex ≤ 1} ∪
¦

1
2
e
©�

with n ≥ 3 and
{0,1}n ⊆ S ⊆ Zn. Then rkS(P)≥ log(n)− 1.

Proof. Clearly P = Pλ with λ = 1/2. As before, we consider the case S = {0, 1}n.
By applying Proposition 3.1 repeatedly we obtain a chain

P( 1
2
)i+1 ⊆ GCG(P( 1

2
)i ),

with i ∈ N and therefore, as long as P( 1
2
)i+1 6⊆ PI we have PI 6= GCG(P( 1

2
)i ) ⊆

GCG i(P1
2
) for all i ∈ N: Clearly this is true for i = 0; suppose that P( 1

2
)i+1 ⊆

GCG(P( 1
2
)i )⊆ GCG i(P1

2
) holds, then

GCG(P( 1
2
)i+1)⊆ GCG2(P( 1

2
)i )⊆ GCG i+1(P1

2
).

A necessary condition for P( 1
2
)i ⊆ PI is that e((1

2
)ie) = (1

2
)in ≤ 1 and so i ≥

log(n). With P( 1
2
)i ⊆ GCG i−1(P1

2
) we conclude GCG i(P) 6= PI as long as i ≤

log(n)− 2. Thus rk{0,1}n(P)≥ log(n)− 1. �
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A polytope P ⊆ [0,1]n is almost integral if P ∩
�

x i = `
	

is integral for all
(i,`) ∈ [n]× {0,1}. We have seen in Theorem 3.2 that there exists an almost
integral family of polytopes with non-constant rank. While at first this might not
sound surprising, in fact it is very unexpected. All known cutting-plane operators
except for the classical Chvátal-Gomory operator do derive the integral hull
of an almost integral polytope within one application; the reason is that any
elementary split over any x i derives the integral hull. In fact it will turn out that
exactly this property is the one that allows us to construct a family of polytopes
with rank > n for the generalized Chvátal-Gomory operators (see Section 5). It
can be easily shown that the existence of a family of almost integral polytopes
with non-constant rank is necessary for the existence of a family of polytopes
with rank > n. Let Pn ⊆ [0,1]n denote the polytope P1/2 from Proposition 3.1
in dimension n. In Section 5 we will show that Pn having non-constant rank
is also sufficient for the existence of a family of polytopes with rank > n. The
following corollary is immediate:

Corollary 3.3. Let Kn be the clique on n vertices and let

FSTAB(Kn) :=
�

x ∈ [0,1]n | xu+ xv ≤ 1 ∀ u< v ∈ [n]
	

denote the fractional stable set polytope of Kn. Then rkS(FSTAB(Kn))≥ log(n)−1
for all {0,1}n ⊆ S ⊆ Zn.

Proof. As before it suffices to consider the case S = {0,1}n by Remark 2.8.
Consider G = Kn, the complete graph on n vertices. Then Pn ⊆ FSTAB(G) with
Pn as given above. We conclude that it takes at least log(n)− 1 applications of
GCGS to derive the clique inequality ex ≤ 1. �

As mentioned before Pλ is almost integral. Therefore we can optimize over Pλ
in polynomial time (by fixing, say, x1 ∈ {0, 1}, solving the two LPs, and choosing
the better solution), however it takes at least log(n)− 1 rounds of the GCG-
operators to derive the integral hull although GCG solves a hard separation
problem (actually even verifying the validity of a cut is hard). Moreover Pλ can
be described by a linear number of inequalities as already shown in Pokutta and
Stauffer [2011]. The lift-and-project rank of Pλ is 1. This immediately follows
from the definition of the lift-and-project closure as

N0(P) :=
⋂

i∈[n]

conv
�

(P ∩
�

x i = 0
	

)∪ (P ∩
�

x i = 1
	

)
�

and the fact that Pλ ∩
�

x i = `
	

= (Pλ)I ∩
�

x i = `
	

for all (i,`) ∈ [n]× {0,1}.
The reason why the lift-and-project operator (and almost any other operator) is
able to derive (Pλ)I within a single application is the following. Reinterpreted
in our framework the lift-and-project operator uses more information about the
integral hull. In fact it does not work with a static set {0,1}n ⊆ S ⊆ Zn and a
single inequality.

To make the difference even more apparent we can (re-)interpret any cutting-
plane operator M as one that optimizes right-hand sides. In its most naïve form
we can formally write

M(P) =
⋂

(c,δ)∈Rn+1

cx ≤ f (c,δ, P),
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with
f (c,δ, P) :=max {cx | x ∈ S(c,δ, P, M)} ,

where S is chosen depending on c,δ, P, and M . In the case of the lift-and-project
closure N0 we have

S(c,δ, P, N0) =
⋂

i∈[n]

conv
�

(P ∩
�

x i = 0
	

)∪ (P ∩
�

x i = 1
	

)
�

.

The role of the additional information becomes clear: In the case of GCGS
we have S(c,δ, P, GCGS) = S ∩ {cx ≤ δ}, i.e., we do not use information about
P except for the single valid inequality, whereas in the case of the lift-and-
project closure, S(c,δ, P, N0) includes many additional inequalities and their
information about the integral hull. This is also the difference between cutting-
plane operators using only a single inequality vs. those that use a single row; the
latter uses additional information (e.g., implicitly derived from the tableau). We
elicit this difference in view of Pλ in the following example.

Example 3.4 (N0 uses more than one inequality). Let Pλ be the polytope as
defined before and let N0 denote the lift-and-project closure. Consider the
normal e. We have that ex ≤ 1 is valid for N0(Pλ) because

S(c,δ, Pλ, N0) =
⋂

i∈[n]

conv
�

Pλ ∩
�

x i = 0
	

)∪ Pλ ∩
�

x i = 1
	

)
�

= [0,1]n∩{ex ≤ 1} .

We say that two cutting-plane operators M and N are incompatible if there
exist two polytopes P and Q, so that M(P) 6⊆ N(P) and N(Q) 6⊆ M(Q), i.e., non
refines the other. From the previous discussion and Example 3.4 we obtain:

Corollary 3.5. N0 is incompatible to GCGS for all {0,1}n ⊆ S ⊆ Zn.

Proof. First consider the polytope Pλ with λ = 1
2
. Then rkS(Pλ)≥ log(n)−1 and

we have rkN0
(Pλ) = 1. Therefore GCGS * N0.

For the converse consider the polytope P := [0,1]n ∩
¦

ex ≤ n− 1
2

©

. Then
rkS(P) = 1 as already its classical Chvátal-Gomory rank is 1, however we have
rkN0
(P) = n (see [Cook and Dash, 2001, Theorem 3.1]). �

The natural question that now arises is how the incompatibility shown in
Corollary 3.5 goes together with the preceding discussion about N0 having
access to more information. However everything fits naturally together. While
the N0-operator is using more information in principle, it cannot exploit all
information as it is polynomial time bounded; it solves a linear program. In
contrast to this, a close inspection of the GCG operators show that even if they
have unbounded computational power there is not enough information contained
in the single inequality to be exploited. So in some sense N0 is computationally
bounded whereas GCG uses bounded information.

4. THE RANK OF An IS n

In this section we will show that the polytope An defined as

An :=

(

x ∈ [0, 1]n |
∑

i∈I

x i +
∑

i /∈I

(1− x i)≥
1

2
∀I ⊆ [n]

)

,
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has rank n for all operators GCGS with {0,1}n ⊆ S ⊆ Zn. A similar result was
indicated in Dunkel and Schulz [2010] using a different approach. Note that
(An)I = ;. The upper bound of n follows immediately from the fact that GCGS
refines the classical Chvátal-Gomory operator (as shown in Proposition 2.7).
The latter is known to derive the integral hull of integer-empty polytopes in at
most n rounds (see Bockmayr et al. [1999]). Thus it suffices to establish the
lower bound.

Let F n
`

:=
�

x ∈ {0,1/2, 1}n | exactly ` entries equal to 1/2
	

. It is easy to see
that An = conv

�

F n
1

�

(see e.g., Chvátal et al. [1989] or Pokutta and Schulz
[2010b]); we drop the index n if it is clear from the context. We will follow the
classical route of establishing the lower bound on the rank of An as outlined in
Chvátal et al. [1989].

Lemma 4.1. Let P ⊆ [0,1]n be a polytope such that F n
`
⊆ P with ` ∈ [n− 1].

Then F n
`+1 ⊆ GCGS(P).

Proof. As before we consider the case S = {0,1}n. Let cx ≤ δ be a valid
inequality for P. We have to show that c x̄ ≤ [[ c,δ ]] for all x̄ ∈ F n

`+1 which is
equivalent to

(4.1) max
x∈F`+1

cx ≤ [[ c,δ ]] .

By Remark 2.3, without loss of generality we can assume P = conv
�

F n
`

�

. As P
is symmetric with respect to coordinate flips and permutations, we can further
assume that c ≥ 0 and ci ≥ ci+1 for all i ∈ [n− 1]. Therefore the maximizing
element in (4.1) is given by x`+1 = (1, . . . , 1, 1

2
, . . . 1

2
) with n− (`+ 1) entries

being equal to 1 and `+ 1 entries being equal to 1
2
. Similarly, as cx ≤ δ is valid

for P = conv
�

F n
`

�

we have that x` = (1, . . . , 1, 1
2
, . . . 1

2
) with n− ` entries being

equal to 1 and ` entries being equal to 1
2

maximizes cx over P.
We will now derive two integral points x0, x1 ∈ {0,1}n from x` so that

cx0 ≤ δ and cx1 ≤ δ and x`+1 = 1
2

x0 + 1
2

x1. As x0, x1 satisfy cx ≤ δ it follows
cx0 ≤ [[ c,δ ]] and cx1 ≤ [[ c,δ ]] . We obtain that cx`+1 ≤ [[ c,δ ]] . This finishes
the proof.

The integral points will be constructed by fractionally shifting coefficients
to the right. We iteratively construct x1 from x`: Let i ∈ [n] be the smallest
coefficient of x` being equal to 1

2
(in the first iteration i = n− `). Then replace

the i-th coefficient with 0 and the (i + 1)-th coefficient with 1, where the latter
replacement is done for i ≤ n−1. We repeat these replacements until we obtain
an integral vector. Observe that for the next iteration i increases by two. Let the
integral vector be x1 which is of the form

x1 = (1, . . . , 1; 1, 0, 1,0, . . . ),

where the block of consecutive 1’s is of length n− `. Observe that cx1 ≤ δ as x1

arose from x` with changes i of the form 1
2
(ei+1− ei) and c(ei+1− ei)≤ 0 as c

was in non-increasing order. Let x0 be defined as

x0 :=
∑

i∈[n−(`+1)]

x1
i ei +

∑

n−`≤i≤n−1

x1
i (i)ei+1,
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i.e., x0 arises from x1 by keeping the first n− (`+ 1) entries and shifting the
remaining ones to the right by 1 (without wrapping). Therefore x0 is of the
form

x0 = (1, . . . , 1; 0, 1, 0,1, . . . ),
where the block of consecutive 1’s is of length n − (` + 1). With a similar
argument as before we obtain that cx0 ≤ cx1 ≤ δ; again we shift entries in x1

in the direction of smaller entries in c. Due to the alternation on the last `+ 1
coordinates we obtain x`+1 = 1

2
x0+ 1

2
x1. This completes the proof. �

Using Lemma 4.1 we obtain:

Theorem 4.2. Let n ∈ N and {0,1}n ⊆ S ⊆ Zn. Then

rkS(An) = n.

Proof. Let S = {0,1}n. Iterating Lemma 4.1 we obtain

F`+1 ⊆ GCG`(An).

As Fn =
1
2
e we have ; 6= GCGn−1(An). Therefore rk{0,1}n(An)≥ n. As GCGn(An)⊆

GCGn
Zn(An) = ; we obtain rk{0,1}n(An) = n. �

Let Hn denote the subtour elimination polytope on the complete graph with n
vertices given by the inequalities

x(δ({v})) = 2 ∀ v ∈ [n]
x(δ(W ))≥ 2 ∀ ;(W ( [n]

x i ∈ [0, 1]n ∀ i ∈ [
1

2
n(n− 1)].

With the arguments in Chvátal et al. [1989] or [Cook and Dash, 2001, Section
4] we immediately obtain rkS(Hn) ∈ Ω(n) for {0,1}n ⊆ S ⊆ Zn. Note that for
S being ‘asymmetric’ we do not necessarily obtain that GCG commutes with
coordinate flips, coordinate duplications, and embeddings, so that the arguments
in Chvátal et al. [1989] or [Cook and Dash, 2001, Section 4] might not apply.
However by Remark 2.8 it suffices to establish the result for S = {0,1}n for
which we can easily check that GCG commutes with the above operations.

5. SUPER-n LOWER BOUNDS ON THE RANK

We will now combine Theorem 3.2 and Theorem 4.2 to construct a class
of polytopes Qn ⊆ [0,1]n such that rkS(Qn) > n for all {0,1}n ⊆ S ⊆ Zn. The
construction is analogous to Eisenbrand and Schulz [2003] and Pokutta and
Stauffer [2011]. Let Pλ,n denote the polytope Pλ ⊆ [0,1]n in dimension n as
defined in Section 3. We define Qn := conv

�

An ∪ {ex ≤ 1}
�

⊆ [0,1]n.

Theorem 5.1. Let n ∈ N with n≥ 8 and {0,1}n ⊆ S ⊆ Zn. Then

rkS(Qn)≥ n+ log(n)− 2> n.

Proof. Let S = {0,1}n. Observe that 1
2
e ∈ GCGn−1(An) as GCGn−1(An) 6= ; by

Theorem 4.2 and GCGn−1(An) is symmetric with respect to coordinate flips and
permutations. By Remark 2.3 we have that 1

2
e ∈ GCGn−1(Qn). We can conclude

that P1
2

,n ⊆ GCGn−1(Qn). Therefore, by Theorem 3.2, we need at least log(n)−1

more applications of GCG to derive (Qn)I . Thus rk(Qn)≥ n+ log(n)− 2. �
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6. OPERATORS USING MORE THAN ONE INEQUALITY

As a consequence of the discussion in Section 3 and having seen that deduc-
tions from a single inequality might lead to super-n rank, one might wonder
whether this is true in general for any fixed number of inequalities used in the
derivation. The answer is in the negative: as soon as the operator can use (at
least) two inequalities it can simulate elementary splits and so it refines the N0
closure.

More precisely, we say that a cutting-plane operator M deduces from two
inequalities if whenever cx ≤ δ is valid for M(P) then there exist inequalities
π1 x ≤ π1

0 and π2 x ≤ π2
0 such that P ⊆ [0, 1]n∩

¦

π1 x ≤ π1
0

©

∩
¦

π2 x ≤ π2
0

©

and

cx ≤ δ is valid for M([0, 1]n ∩
¦

π1 x ≤ π1
0

©

∩
¦

π2 x ≤ π2
0

©

).
We define a simply cutting-plane operator M that deduces from two inequali-

ties.

Definition 6.1. Let P ⊆ [0,1]n be a polytope. Then the transient closure i(P)
is defined as

i(P) :=
⋂

(c,δ,τ,δ,i)∈Qn+1×R2
+×N,

P⊆{cx−τxi≤δ}∩{cx−λ(1−xi )≤δ}

n

cx ≤ [[ c,δ,τ,λ, i ]]
o

where

[[ c,δ,τ,λ, i ]] :=max
�

cx | cx −τx i ≤ δ, cx −λ(1− x i)≤ δ, x ∈ {0,1}n
	

.

This operator is similar to GCG{0,1}n however now it can optimize over the
intersection of two half spaces, i.e., it deduces from two inequalities. Moreover,
these two inequalities are not arbitrary but related to each other by rotation.

Theorem 6.2. Let i be transient closure operator, then i refines N0, i.e., for any
polytope P ⊆ [0, 1]n we have

i(P)⊆ N0(P).

Proof. Let P ⊆ [0,1]n be a polytope and let cx ≤ δ be valid for N0. By the
definition of N0 therefore there exists i ∈ [n] so that

(P ∩
�

x i = 0
	

)∪ (P ∩
�

x i = 1
	

)⊆ {cx ≤ δ} .

If P ∩
�

x i = `
	

= ; for some ` ∈ {0,1}, then i(P) ⊆
�

x i = 1− `
	

∩ P and so
cx ≤ δ is valid for i(P). Thus suppose P ∩

�

x i = `
	

6= ; for all ` ∈ {0, 1}. Then,
by Farkas’ lemma, there exist τ,λ≥ 0, so that

cx −τx i ≤ δ and cx −λ(1− x i)≤ δ

are valid for P. Now consider [[ c,δ,τ,λ, i ]] and a potential 0/1 point x̃ ∈ {0, 1}n
so that c x̃−τ x̃ i ≤ δ and c x̃−λ(1− x̃ i)≤ δ. We have x̃ i ∈ {0, 1} and so c x̃ ≤ δ
holds. Therefore

cx ≤ [[ c,δ,τ,λ, i ]] ≤ δ

is valid for i(P) which completes the proof. �

Clearly i also refines GCG{0,1} (choosing τ= λ = 0 and i ∈ [n] arbitrary) so
that we obtain:
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Corollary 6.3. Let i be the transient closure. Then i refines GCG{0,1}n and N0,
i.e.,

i(P)⊆ GCG{0,1}n(P)∩ N0(P)

for any polytope P ⊆ [0, 1]n. Moreover rki(P)≤ n for all polytopes P ⊆ [0,1]n.

If we relax the integrality condition in the definition of [[ ·, ·, ·, ·, · ]] we obtain
the classical N0 closure. We therefore obtain a nicer hierarchy in the presence
of 0/1 conditions: whereas CG and N0 are incompatible, their 0/1 extended
counterparts GCG{0,1}n and i are actually compatible.

7. CONCLUSIONS

We have seen that even the generalized Chvátal-Gomory operators suffer
from the same inherent weakness as the classical Chvátal-Gomory operator. What
might be surprising is the fact that this is the case, although the verification
of the validity of an inequality is already hard, i.e., the actual operator is
solving significantly harder problems and is much more powerful (in terms of
computational complexity). In contrast, for all other known operators we can
easily verify the validity in polynomial time.

So what does this imply? First of all, one does not automatically gain a
significantly stronger operator by solving harder separation problems. It also
seems that the actual geometry and the information available to an operator (i.e.,
whether the provided inequalities do allow to decide membership over PI with
unlimited computational power) might be crucial. Moreover it also highlights
that the notion of rank cannot be a good measure for the complexity of the
integral hull in general. After all, the family Pn from Theorem 3.2 exhibits
rank in Θ(log n) for the generalized Chvátal-Gomory operators whereas the
actual optimization problem is in P. The lower bound on An for the generalized
Chvátal-Gomory operators naturally carries over to verification schemes (see
Dey and Pokutta [2011]), i.e., we obtain rk∂ GCGS

(An) ∈ Ω(n).
We would also like to point out that a further generalization to an analogous

lower bounding technique as the one in Pokutta and Stauffer [2011] is unlikely,
as our construction depends on the symmetry of Pλ, whereas in Pokutta and
Stauffer [2011] it is mostly the integrality gap and the protection derived from
the integral hull that is important. In fact we do not believe that it is possible to
reduce the speed of the geometric progression by adding more protection via a
larger integral hull.

A natural question is whether the lower bound is tight for the generalized
Chvátal-Gomory operator. We believe that some crucial insights of Proposi-
tion 3.1 might allow for providing at least new, stronger upper bounds on the
rank.

We have seen that as soon as we allow deductions from at least two inequal-
ities, then there exists a cutting-plane operator, the transient closure, which
refines N0 and therefore we have rki(P) ≤ n whenever P ⊆ [0,1]n. However
it is not clear how strong i is. We conjecture that GSC ( i should hold. The
inclusion is clear, however we do not know about any separating family of
polytopes.

One gap still remains. We considered generalized Chvátal-Gomory operators
on the one hand and operators deducing from two inequalities on the other
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hand. However it is not clear whether the generalized Chvátal-Gomory operators
capture the whole class of operators deducing from a single inequality. Provided
a single inequality cx ≤ δ such an operator can virtually generate all valid
inequalities of the knapsack polytope [0,1]n ∩ {cx ≤ δ} (see Fischetti and
Lodi [2010] for a formal definition of the knapsack closure). We believe that
essentially the same proof of Proposition 3.1 should work to establish the
existence of a family of almost integral polytopes with non-contant rank. The
only difference seems to be, that now we would work with a weighted knapsack
problem rather than an unweighted one. We still get the same approximation
guarantees using the density of elements. Similarly it should be possible to carry
over Theorem 4.2.

It would be also worthwhile to consider 0/1 strengthenings of other operators,
for example the split cut operator. Given P ⊆ [0,1]n and cx ≤ δ let P(c,δ)+ :
= P ∩ {cx ≤ δ} and similarly P(c,δ)− := P ∩ {cx ≥ δ}. We can define the
generalized split closure of a polytope P ⊆ [0, 1]n with respect to {0, 1}n ⊆ S ⊆ Zn

as

GSCS(P) :=
⋂

(π,π0,δ)∈Zn+2

S=S(π,π0)+∪S(π,π0+δ)−

conv
�

P(π,π0)
+ ∪ P(π,π0+δ)

−
�

.

Thus in the case of this 0/1 strengthening, we allow wider disjunctions as long
as they partition S. Is this operator significantly stronger than the classical split
operator in terms of rank? If so, can we obtain an advantage in the order for,
e.g., the rank?
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