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Abstract

It has been long conjectured that the crossing numbers of the complete bipartite
graph Km,n and of the complete graph Kn equal Z(m,n) :=
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, respectively. In a 2-page drawing of a graph, the

vertices are drawn on a straight line (the spine), and each edge is contained in one of the
half-planes of the spine. The 2-page crossing number ν2(G) of a graph G is the minimum
number of crossings in a 2-page drawing of G. Somewhat surprisingly, there are 2-page
drawings of Km,n (respectively, Kn) with exactly Z(m,n) (respectively, Z(n)) crossings,

thus yielding the conjectures (I) ν2(Km,n) ?= Z(m,n) and (II) ν2(Kn) ?= Z(n). It is
known that (I) holds for min{m,n} ≤ 6, and that (II) holds for n ≤ 14. In this paper
we prove that (I) holds asymptotically (that is, limn→∞ ν2(Km,n)/Z(m,n) = 1) for
m = 7 and 8. We also prove (II) for 15 ≤ n ≤ 18 and n ∈ {20, 24}, and establish the
asymptotic estimate

lim
n→∞

ν2(Kn)/Z(n) ≥ 0.9253.

The previous best-known lower bound involved the constant 0.8594.

Keywords: 2-page crossing number, book crossing number, semidefinite programming,
maximum cut, Goemans-Williamson max-cut bound
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1 Introduction

We recall that the crossing number cr(G) of a graph G is the minimum number of pairwise
intersections of edges (at a point other than a vertex) in a drawing of G in the plane. Besides
their natural interest in topological graph theory, crossing number problems are of interest
because of their applications, most notably in VLSI design [25].
∗Department of Econometrics and OR, Tilburg University, The Netherlands.
†School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore.
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Also motivated by applications to VLSI design, Chung, Leighton and Rosenberg [5] studied
embeddings of graphs in books: the vertices are placed along a line (the spine) and the edges
are placed in the pages of the book. In a book drawing (equivalently, k-page drawing, if the
book has k pages), crossings among edges are allowed. The k-page crossing number νk(G)
of a graph G is the minimum number of crossings of edges in a k-page drawing of G.

Clearly, a graph G has ν1(G) = 0 if and only if it is outerplanar. Closely related to 1-page
drawings are circular drawings, in which the vertices are placed on a circle and all edges
are drawn in its interior. It is easy to see the one-to-one correspondence between 1-page
drawings and circular drawings.

In a similar vein, 2-page drawings can be alternatively modelled by drawing the vertices of
the graph on a circle, and imposing the condition that every edge lies either in the interior
or in the exterior of the circle (see Figure 1). In this paper we shall often use this equivalent
circular model for 2-page drawings, as well as the usual spine model. It is known that the
family of graphs G with ν2(G) = 0 is precisely the family of subgraphs of Hamiltonian planar
graphs [3]. As a consequence, there exist planar graphs G with ν2(G) > 0, in contrast to
the case of the normal crossing number. In fact, it was shown that all planar graphs may
be embedded without crossings in 4-page books, and that four pages are necessary [40].

(a) (b)

Figure 1: A 2-page drawing of K5: (a) in the spine model; and (b) in the circular model.

Masuda et al. [28, 29] proved that the decision problems for ν1 and ν2 are NP-complete.
Shahrokhi et al. [34] gave an approximation algorithm for νk(G), as well as applications to
the rectilinear crossing number. A more recent, additional motivation for studying k-page
crossing numbers comes from Quantum Dot Cellular Automata [36].

Several interesting algorithms and heuristics have been proposed for producing 1- and 2-
page drawings (see for instance [6, 7, 18, 19, 20, 21]). As with the usual crossing number,
the exact computation of νk(G) (for any integer k) is a very challenging problem, even
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for restricted families of graphs. In this direction, Fulek, He, Sýkora, and Vrt’o [9], He,
Sǎlǎgean, and Mäkinen [17], and Riskin [33] have computed the exact 1-page and 2-page
crossing numbers of several interesting families of graphs.

1.1 Drawings of Km,n and Kn

Turán asked in the 1940’s: what is the crossing number of the complete bipartite graph
Km,n? There is a natural drawing of Km,n with exactly Z(m,n) :=
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⌋
crossings (see Figure 2), and so cr(Km,n) ≤ Z(m,n).

Figure 2: A drawing of K5,6 with Z(5, 6) = 24 crossings. By performing a homeomorphism
from the plane to itself that takes the dotted curve to a straight line, the result is a 2-page
drawing of K5,6 with the same number of crossings.

Perhaps the foremost open crossing number problem is Zarankiewicz’s Conjecture, dating
back to the early 1950’s [41]:

cr(Km,n) ?= Z(m,n). (1)

This conjecture has been verified only for min{m,n} ≤ 6 [22], and for the special cases
(m,n) ∈ {(7, 7), (7, 8), (7, 9), (7, 10), (8, 8), (8, 9), (8, 10)} [39].

On a parallel front, there are drawings of the complete graph Kn with exactly Z(n) :=
1
4
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crossings (for every n), and so cr(Kn) ≤ Z(n). These drawings

inspired the still open, long-standing Harary-Hill Conjecture [15]:

cr(Kn) ?= Z(n). (2)

This conjecture has been verified for n ≤ 12 [30].

For a detailed account on the history of (1) and (2), we refer the reader to the lively survey
by Beineke and Wilson [2].
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1.2 2-page drawings of Km,n and Kn

The drawing in Figure 2 is easily generalized to yield a drawing of Km,n with Z(m,n)
crossings. As mentioned in the caption of this figure, such a drawing is easily transformed
into a 2-page drawing of Km,n with the same number of crossings. Thus, there exist 2-page
drawings of Km,n with Z(m,n) crossings.

On the other hand, it is somewhat surprising that there exist 2-page drawings of Kn with
exactly Z(n) crossings, for every positive integer n ([14]; see also [16]).

These observations imply that ν2(Km,n) ≤ Z(m,n) and ν2(Kn) ≤ Z(n). Since obviously
cr(G) ≤ ν2(G) for every graph G, (1) and (2) immediately imply the following conjectures:

ν2(Km,n) ?= Z(m,n). (3)

ν2(Kn) ?= Z(n). (4)

Even though (3) and (4) are (at least in principle) weaker than the corresponding (1) and
(2), and even though the 2-page crossing number problem can be naturally formulated in
purely combinatorial terms, our current knowledge (prior to this paper) on (3) and (4) is
not substantially better than our knowledge on (1) and (2). Indeed, the only step ahead is
the proof by Buchheim and Zheng [4] that ν2(K13) = Z(13) (from which a routine counting
argument yields that ν2(K14) = Z(14)). The best general lower bounds known for ν2(Km,n)
and ν2(Kn) are the same as those known for cr(Km,n) and cr(Kn), and the same is true for
the asymptotic ratio limn→∞ ν2(Kn)/Z(n), whose best current estimate is exactly the same
as the asymptotic ratio limn→∞ cr(Kn)/Z(n), namely 0.859 [23].

1.3 Main results

Our main results in this paper offer a substantial improvement on our knowledge of ν2(Km,n)
and ν2(Kn) over our knowledge of cr(Km,n) and cr(Kn).

Theorem 1. The 2-page Harary-Hill Conjecture holds for all m ≤ 18 and for m = 20 and
24:

ν2(Km) = Z(m) for all m ≤ 18 and for m ∈ {20, 24}. (A)

Moreover, the asymptotic ratio between the 2-page crossing number of Kn and its conjec-
tured value satisfies:

lim
n→∞

ν2(Kn)
Z(n)

≥ 0.9253. (B)

Theorem 2. The 2-page Zarankiewicz’s Conjecture holds in the asymptotically relevant
term for m = 7 and 8. That is:

ν2(K7,n) = (9/4)n2 +O(n) = Z(7, n) +O(n), and

ν2(K8,n) = 3n2 +O(n) = Z(8, n) +O(n).
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Therefore,

lim
n→∞

cr(K7,n)
Z(7, n)

= 1 and lim
n→∞

cr(K8,n)
Z(8, n)

= 1.

Outline of this paper

The rest of this paper is structured as follows. In Section 2, we review the reformulation
(first unveiled by Buchheim and Zheng [4]) in which the problem of calculating ν2(Kn) is
shown to be equivalent to a maximum cut problem on an associated graph Gn. In Section 3
we invoke a result by Goemans and Williamson that provides an upper bound on the size of
the maximum cut of a graph; this bound may be computed via semidefinite programming.
Using these ingredients, in Section 4 we present the numerical computations that establish
Theorem 1. In Section 5 we formulate a quadratic program whose solution yields a lower
bound on ν2(Km,n). In Section 6 we analyze the semidefinite programming relaxation of
this quadratic program, and in Section 7 we give the numerical computations that prove
Theorem 2. In Section 8 we present some concluding remarks.

2 Formulating ν2(Kn) as a maximum cut problem

Buchheim and Zheng [4] unveiled a natural reformulation of the fixed linear crossing number
problem (FLCNP) as a maximum cut problem. Their results imply, in particular, that
ν2(Kn) can be obtained by computing the maximum cut size in a certain graph Gn =
(Vn, En), with Vn and En defined as follows.

Consider a Hamiltonian cycle with vertices v1, v2, . . . , vn. Let Vn be the set of chords of the
cycle, that is, the edges vivj with vi and vj at cyclic distance at least 2. Now to define En,
let two chords vivj and vkv` be adjacent if they intersect. This construction is illustrated
in Figure 3 for n = 5.

v1

v5

v4

v3

v2

Figure 3: The chords v1v3 and v2v5 form adjacent vertices in the graph G5.

Thus |Vn| =
(
n
2

)
− n, and it is easy to check that |En| =

(
n
4

)
. The automorphism group of
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Gn is isomorphic to the dihedral group Dn, and there are d − 1 orbits of vertices, where
d = bn/2c. The equivalency classes of vertices (i.e. vertices belonging to the same orbit) may
be described as follows: since vertices correspond to chords in Pn, the chords that connect
vertices of Pn at the same cyclic distance belong to the same equivalency class. The vertices
corresponding to chords with cyclic distance i have valency i(i− 1) + 2(i− 1)(d− i), as is
easy to check.

Now for a graph G = (V,E) and a subset W ⊂ V , cutW (G) denotes the number of edges
with precisely one endpoint in W , and maxcut(G) is the maximum value of cutW (G) taken
over all subsets W ⊂ V .

The next lemma follows immediately from Theorem 1 in [4]. We sketch the proof for the
sake of completeness.

Lemma 3.
ν2(Kn) = |En| −maxcut(Gn).

Proof. Given a two page (circle) drawing of Kn, define W ⊂ Vn as the chords that are
drawn inside the circle. The edges of En with precisely one endpoint in W now correspond
to edges of Kn that do not cross in the drawing.

As a consequence of this lemma, one may calculate ν2(Kn) for fixed (in practice, sufficiently
small) values of n by solving a maximum cut problem. This was done by Buchheim and
Zheng [4] for n ≤ 13, by solving the maximum cut problem with a branch-and-bound
algorithm (Bucheim and Zheng applied the technique to many other graphs as well). Using
the BiqMac solver [31], we have computed the exact value of ν2(Kn) for n ≤ 18 and for
n ∈ {20, 24} (statement (A) in Theorem 1; see Section 4).

3 The Goemans-Williamson max-cut bound

We follow the standard practice to use Rp×q (respectively, Cp×q) to denote the space of
p × q matrices over R (respectively, C). For A ∈ Rp×p, the notation A � 0 means that
A is symmetric positive semidefinite, whereas for A ∈ Cp×p, it means that A is Hermitian
positive semidefinite.

Let G be a graph with p vertices, and let L be its Laplacian matrix. Goemans and
Williamson [11] introduced the following semidefinite programming-based upper bound on
maxcut(G):

maxcut(G) ≤ GW(G) := max
{

1
4

trace(LX)
∣∣∣∣ X � 0, Xii = 1 (1 ≤ i ≤ p)

}
. (5)

It was shown in [11] that 0.878GW(G) ≤ maxcut(G) ≤ GW(G) holds for all graphs G.
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The associated dual semidefinite program takes the form:

GW(G) = min
w∈Rp

{∑
i

wi

∣∣∣∣ Diag(w)− 1
4
L � 0

}
, (6)

where Diag is the operator that maps a p-vector to a p× p diagonal matrix in the obvious
way.

3.1 The Goemans-Williamson bound for Gn

Using the technique of symmetry reduction for semidefinite programming (see e.g. [10]),
one can simplify the dual problem (6) for the graphs Gn defined in Section 2, by using the
dihedral automorphism group of Gn. We state the final expression as the following lemma.

Lemma 4. Let n > 0 be an odd integer and d = bn/2c. One has

GW(Gn) = min
y∈Rd−1

{
n

d∑
i=2

yi

∣∣∣∣ Diag
(
y − 1

4
val

)
+ Λ(m) � 0 (0 ≤ m ≤ d)

}
,

where

vali = i(i− 1) + 2(i− 1)(d− i), 2 ≤ i ≤ d,

Λ(m)
ij =

1
4

 i−1∑
k=1

e
−2πmk

√
−1

n +
n−j+i−1∑
k=n−j+1

e
−2πmk

√
−1

n

 , 2 ≤ i ≤ j ≤ d, (7)

Λ(m) = Λ(m)∗ ∈ Cd−1×d−1.

For the proof, we recall that the Kronecker product A ⊗ B of matrices A ∈ Rp×q and
B ∈ Rr×s is defined as the pr × qs matrix composed of pq blocks of size r × s, with block
ij given by aijB where 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Proof. We first label the vertices Gn as follows. Consider the cycle Cn with vertices num-
bered {0, 1, . . . , n− 1} in the usual way. The vertices of Gn that correspond to chords con-
necting points at cyclic distance i are now given consecutive labels (0, i), (1, i+ 1), . . . (n−
1, i− 1). Thus the adjacency matrix of Gn is partitioned into a block structure, where each
row of blocks is indexed by a cyclic distance i ∈ {2, . . . , d}, and each block has size n× n.

Moreover, block (i, j) (i, j ∈ {2, . . . , d}, i ≤ j) is given by the n × n circulant matrix with
first row

[0 1Ti−1 0Tn−i−j+1 1Ti−1 0Tj−i],

where 1k and 0k denote the all-ones and all-zeroes vectors in Rk, respectively.
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The eigenvalues of this block are

λm =
i−1∑
k=1

e
−2πmk

√
−1

n +
n−j+i−1∑
k=n−j+1

e
−2πmk

√
−1

n (0 ≤ m ≤ n− 1); (8)

see e.g. [13].

Now let an optimal solution w of the semidefinite program (6) be given for G = Gn. If we
project the matrix

Diag(w) +
1
4
L

onto the centralizer ring of Aut(Gn), then we again obtain an optimal solution. Indeed, this
projection simply averages the components of w over the d−1 orbits of Aut(Gn). Moreover,
the projection is also a symmetric positive semidefinite matrix, since any projection of a
Hermitian positive semidefinite matrix onto a matrix ∗-algebra is again positive semidefinite
(see e.g. [12]).

Denoting the average of the w components in orbit i by yi, we obtain an optimal solution
of the form

GW(Gn) = min
y∈Rd−1

n

d∑
i=2

yi

such that
d∑
i=2

yi
(
ei−1eTi−1

)
⊗ In −

1
4
L � 0, (9)

where ei denotes the i-th standard unit vector in Rd−1, and In denotes the identity matrix
of order n.

Let Q denote the (unitary) discrete Fourier transform matrix of order n. Condition (9) is
equivalent to

(In ⊗Q)

(
d∑
i=2

yi
(
ei−1eTi−1

)
⊗ In −

1
4
L

)
(In ⊗Q)∗ � 0. (10)

Since the unitary transform involving Q diagonalizes any circulant matrix (see e.g. [13]),
the matrix (In⊗Q)L(In×Q)∗ becomes a block matrix where each n×n block is diagonal,
with diagonal entries of block (i, j) given by the eigenvalues in (8).

Finally, the rows and columns of the left hand side of (10) may now be re-ordered to form a
block diagonal matrix with n× n diagonal blocks given by the right hand side of (7) (only
d+ 1 of these blocks are distinct). This completes the proof.

A few remarks on the semidefinite programming reformulation in Lemma 4:

• The constraints involve Hermitian (complex) linear matrix inequalities, as opposed to
the real symmetric linear matrix inequalities in (6).
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• The reduced problem has d + 1 linear matrix inequalities involving (d − 1) × (d −
1) matrices. By comparison, the original problem had one linear matrix inequality
involving (

(
n
2

)
− n) × (

(
n
2

)
− n) matrices. As a result, the reformulation of GW(Gn)

may be solved for much larger values of n than the original formulation (6) (see next
section).

• Although we have only done the symmetry reduction of problem (6) for Gn with n
odd, the case for even n is similar, but omitted, since we will not use it later.

• Any feasible point y ∈ Rd−1 of the reduced problem in Lemma 4 provides a certificate
of an upper bound on GW(Gn), and consequently a certificate of a lower bound on
ν2(Kn), since ν2(Kn) ≥

(
n
4

)
− GW(Gn).

4 Numerical computations: proof of Theorem 1

Theorem 1 (A) follows by an exact computation of the related maxcut problem of Gn
for certain values of n, while Theorem 1 (B) follows by a calculation of GW(G899) and a
standard counting argument.

4.1 Proof of (A)

First we observe that if n < 5 then Z(n) = 0, and the assertion ν2(Kn) = Z(n) is easily
verified.

We computed the exact value maxcut(Gn) for n = 5, 7, 9, 11, 13, 15, 17, 20, and 24, using
the solver BiqMac [31], available from http://biqmac.uni-klu.ac.at/. Computation was
done on a quad-core 2.0 GHz Intel PC with 10 GB of RAM memory, running Linux. We
used a cut-off time of 60 hours for the computation for each value of n. As a consequence,
the BiqMac solver failed to terminate successfully in a few cases, namely n = 19, 21, 22, and
23.

The results are presented in the second column of Table 4.1. The exact value of ν2(Kn)
(fourth column) follows from the second and third columns (using Lemma 3). The fifth
column is given for reference, to verify that ν2(Kn) = Z(n) for all these values of n. Thus
(A) follows for n = 5, 7, 9, 11, 13, 15, 17, 20, and 24. The last two columns show the
CPU time required, and the number of nodes evaluated in the branch an bound tree by
the solver BiqMac. Finally, an elementary, well-known counting argument shows that if
ν2(K2m+1) = Z(2m + 1) for some positive integer m, then ν2(K2m+2) = Z(2m + 2). This
proves (A) for the remaining cases n = 6, 8, 10, 12, 14, 16, and 18.
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n maxcut(Gn) |En| =
(
n
4

)
ν2(Kn) Z(n) CPU time (s) Branch & bound nodes

5 4 5 1 1 0.001 1

7 26 35 9 9 0.01 1

9 90 126 36 36 0.22 3

11 230 330 100 100 4.01 17

13 490 715 225 225 73.27 151

15 924 1,365 441 441 906.61 841

17 1,596 2,380 784 784 15,542 6,837

20 3,225 4,845 1,620 1,620 58,784 9,479

24 6,996 10,626 3,630 3,630 5,616 65

Table 1: The second column gives the exact values of maxcut(Gn) that we computed.
The fourth column gives the corresponding exact values of ν2(Kn) (using that ν2(Kn) =
|En| −maxcut(Gn)). For all these values of n, the conjecture ν2(Kn) = Z(n) is verified.

4.2 Proof of (B)

The first ingredient in the proof of (B) is a lower bound for ν2(K899). We obtained this bound
via the approximate calculation of GW(G899), which we achieved by using the semidefi-
nite programming reformulation in Lemma 4. Computation was done on a Dell Precision
T7500 workstation with 92GB of RAM memory, using the semidefinite programming solver
SDPT3 [35, 37] under Matlab 7 together with the Matlab package YALMIP [26]. The total
running time was 12, 602 seconds. SDPT3 was chosen since it can deal with Hermitian
matrix variables. We obtained GW(G899) ≤ 1.76537474× 1010. Using Lemma 3 and (5), it
follows immediately that

ν2(K899) ≥ 9, 381, 181, 976. (11)

The second ingredient to prove (B) is to establish a lower bound on the asymptotic ratio
limn→∞ ν2(Kn)/Z(n) that can be guaranteed from a lower bound on ν2(Km) for some
m > 3.

Claim 5. For any integer m > 3,

lim
n→∞

ν2(Kn)
Z(n)

≥ 64
m(m− 1)(m− 2)(m− 3)

ν2(Km).

Proof. Let m,n be integers with 3 < m < n. Consider a 2-page drawing D of Kn with
ν2(Kn) edge crossings. Let G denote the set of subgraphs of Kn that are isomorphic to Km,
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i.e. |G| =
(
n
m

)
. Any two disjoint edges in Kn occur in

(
n−4
m−4

)
of the graphs in G. Thus, every

crossing in D appears in the induced drawings of
(
n−4
m−4

)
graphs in G. Consequently,

ν2(Kn) ≥
ν2(Km)

(
n
m

)(
n−4
m−4

) =
ν2(Km)n(n− 1)(n− 2)(n− 3)
m(m− 1)(m− 2)(m− 3)

.

The claim follows immediately from this inequality and the definition of Z(n).

It only remains to observe that (B) is an immediate consequence of (11) and Claim 5.

5 A quadratic programming lower bound for ν2(Km,n)

Throughout this section, assume that m is fixed, and consider 2-page drawings of Km,n,
where n is any positive integer. Thus, all vertices lie on the x-axis, and each edge is contained
either in the upper or in the lower half-plane. We assume, without any loss of generality,
that the m degree-n blue vertices b1, b2, . . . , bm appear on the x-axis in this order, from left
to right. The n degree-m vertices are red. The star of a red vertex r (which we shall denote
star(r)) is the subgraph induced by r and its incident edges. Thus, for every red vertex r,
star(r) is isomorphic to Km,1.

5.1 The type of a red vertex

In our quest for lower bounding the number of crossings in any 2-page drawing D of Km,n,
the strategy is to consider any two red vertices r, r′, and find a lower bound for the number
×D(star(r), star(r′)) of crossings in D that involve one edge in star(r) and one edge in
star(r′). The bound we establish is in terms of the types of r and r′. The type (formally
defined shortly) of a red vertex is determined by its position relative to the blue vertices,
and by which edges incident with it lie on each half-plane.

We start by noting that we may focus our interest in drawings in which no red vertex lies to
the left of b1. Indeed, if the leftmost red vertex lies to the left of b1 (and so it is the leftmost
vertex overall), it is easy to see that it may be moved so that it becomes the rightmost
(overall) vertex, without increasing the number of crossings. By repeating this procedure
we get a drawing with the same number of crossings, and with no red vertex to the left of b1.
Thus there is no loss of generality in dealing only with drawings that satisfy this property,
and it follows that each red vertex r has a position p(r) relative to the blue points: p(r) is
the largest j ∈ {1, 2, . . . ,m} such that r is to the right of bj .

Also, to each red vertex r we can naturally assign a partition {U(r), L(r)} of {1, 2, . . . ,m},
the distribution of r, defined by the rule that j ∈ {1, 2, . . . ,m} is in U(r) (respectively,
L(r)) if the edge rbj lies in the upper (respectively, lower) half-plane. We call the triple
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(p(r), U(r), L(r)) the type of r, and denote it by type(r). Since p(r) can be any integer
in {1, 2, . . . ,m}, and U(r) any subset of {1, 2, . . . ,m} (and L(r) = {1, 2, . . . ,m} \ U(r) is
determined by U(r)), it follows that there are m2m possible types for a red vertex. We use
Types(m) to denote the collection of all m2m possible types.

5.2 Guaranteeing crossings between red stars using types

The motivation for introducing the concept of type is that knowing the types of two red
vertices r and r′ in a drawing D of Km,n yields a lower bound on ×D(star(r), star(r′)). We
illustrate this with an example. Suppose that m = 5, and that type(r) = (2, {1, 2, 3, 5}, {4})
and type(r′) = (3, {1, 3, 4, 5}, {2}). The situation is thus as illustrated in Figure 4.

b3b2b1 r b4 b5
xr′

Figure 4: The types of the red vertices r and r′ are (2, {1, 2, 3, 5}, {4}) and type(r′) =
(3, {1, 3, 4, 5}, {2}), respectively. Thus, r is in position 2 (that is, between b2 and b3), and
the edges joining r to b1, b2, b3 and b5 are in the upper half-plane and the edge joining r to
b4 is in the lower half-plane. Both crossings in this drawing can be easily predicted from
type(r) and type(r′).

Both crossings between star(r) and star(r′) in this example are easily detected from type(r)
and type(r′). Indeed, since b1, r, r′, b5 occur in this order from left to right (this follows
since r and r′ are in positions 2 and 3, respectively), and b1r′ and rb5 are both on the upper
half-plane (this follows since 1 ∈ U(r′) and 5 ∈ U(r)), it follows that b1r′ and rb5 must
cross. We remark that the key pieces of information are that (i) the endpoints b1, r, r′, b5 of
b1r
′ and rb5 alternate on the x-axis (that is, they are all distinct and occur in the x-axis so

that the ends of one edge are in first and third place and the ends of the other edge are in
second and fourth place); and (ii) both edges are drawn on the same half-plane.

Using this simple criterion (if two edges are on the same half-plane and their endpoints
alternate, then they must cross each other), given two red points r, r′ in a drawing D of
Km,n, it is easy to derive a lower bound for ×D(star(r), star(r′)) in terms of type(r) and
type(r′). This bound (Proposition 6 below) is given in terms of a quantity we now proceed
to define.
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First, for σ = (p, U, L) and τ = (p′, U ′, L′) ∈ Types(m), we let

[σ, τ ] :=
∣∣∣∣{(i, j)

∣∣ ((i ∈ U and j ∈ U ′
)

or
(
i ∈ L and j ∈ L′

))
and((

i < j ≤ p
)

or
(
j ≤ p and p′ < i

)
or
(
i < j and p′ < i

)
or
(
p < j < i ≤ p′

) )}∣∣∣∣,
and

Qστ :=


[σ, τ ], if p < p′,
[τ, σ], if p > p′,
min

{
[σ, τ ], [τ, σ]

}
, if p = p′.

The nonnegative integers Qστ can be naturally regarded as the entries of a m2m ×m2m-
matrix Q indexed (both by rows and columns) by the elements of Types(m). It is easy to
check that the matrix Q is symmetric, and its entries provide the lower bounds we have
been aiming for.

Proposition 6. Let σ, τ ∈ Types(m), and suppose that rσ, rτ are red points in a drawing
D of Km,n, such that type(rσ) = σ and type(rτ ) = τ . Then

×D(star(rσ), star(rτ )) ≥ Qστ .

Proof. Suppose first that rσ occurs to the left of rτ . It is easy to verify that if i, j are
integers such that either (i) i < j ≤ p; (ii) j ≤ p and p′ < i; or (iii) i < j and p′ < i; or
(iv) p < j < i ≤ p′, then the endpoints of rbi and r′bj alternate. Therefore, if either i ∈ U
and j ∈ U ′, or i ∈ L and j ∈ L′, then rbi and r′bj cross each other. Therefore there is an
injection from the set of all pairs (i, j) of integers that satisfy the condition in the definition
of [σ, τ ], to the set of crossings that involve an edge in star(rσ) and an edge in star(rτ ); that
is, ×D(star(rσ), star(rτ )) ≥ [σ, τ ].

Similarly, if rσ occurs to the right of rτ , then ×D(star(rσ), star(rτ )) ≥ [τ, σ].

Now if p < p′ (respectively, p > p′), then rσ necessarily occurs to the left (respectively,
to the right) of rτ , and so it follows that ×D(star(rσ), star(rτ )) ≥ [σ, τ ] = Qστ (respec-
tively, ≥ [τ, σ] = Qστ ), as required. Finally, If p = p′, then rσ can be either to the
right or to the left of rτ . In the first case, ×D(star(rσ), star(rτ )) ≥ [σ, τ ], while in the
second case ×D(star(rσ), star(rτ )) ≥ [τ, σ]. Thus, in this case, ×D(star(rσ), star(rτ )) ≥
min{[σ, τ ], [τ, σ]} = Qστ , as required.

5.3 The quadratic program

Consider now any fixed 2-page drawing D of Km,n. For each type σ ∈ Types(m), let nσ
denote the number of red vertices whose type in D is σ, let pσ := nσ/n, and let p be the

13



vector (pσ)σ∈Types(m). It follows immediately from Proposition 6 that the number ν2(D) of
crossings in D satisfies

ν2(D) ≥ 1
2

∑
σ,τ∈Types(m)

σ 6=τ

Qστnσnτ +
∑

σ∈Types(m)

Qσσ

(
nσ
2

)

=
1
2

∑
σ,τ∈Types(m)

Qστnσnτ −
1
2

∑
σ∈Types(m)

Qσσnσ

=
n2

2
pTQp− n

2

∑
σ∈Types(m)

Qσσpσ

≥ n2

2
pTQp− n

2
max

σ∈Types(m)
Qσσ

≥ n2

2
pTQp− m(m− 1)n

4
,

where for the last inequality we use that Σσ∈Types(m)pσ = 1 and that Qσσ = [σ, σ] ≤
(
m
2

)
.

The derived inequality holds for every 2-page drawing D of Km,n, and so in particular for
a crossing-minimal drawing. Thus, if we let

∆ =

{
x = (x1, x2, . . . , xm2m)T ∈ Rm2m

∣∣∣∣ ∑
i

xi = 1, xi ≥ 0

}

denote the standard simplex in Rm2m , then we obtain

ν2(Km,n) ≥ n2

2

(
min
x∈∆

xTQx
)
− m(m− 1)n

4
. (12)

We may therefore obtain a lower bound on ν2(Km,n) for some fixedm (we will be particularly
interested in the case m = 7), by solving the standard quadratic programming problem

lb(m) = min
x∈∆

xTQx. (13)

The standard quadratic programming problem is NP-hard in general, and we will only
compute a lower bound on the minimum via semidefinite programming, as explained in the
next section.
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6 A semidefinite programming lower bound on ν2(Km,n)

The usual semidefinite programming relaxation of problem (13) takes the form

lb(m) ≥ min
{

trace(QX)
∣∣ trace(JX) = 1, X � 0, X ≥ 0

}
= max

{
t
∣∣ Q− tJ = S1 + S2, S1 � 0, S2 ≥ 0

}
:= SDPbound(m), (14)

where J is the all-ones matrix, and X ≥ 0 means that X is entrywise nonnegative. We
observe that the first equality is due to the duality theory of semidefinite programming.

Due to the special structure of Q, we may again use symmetry reduction to reduce the
size of these problems. To this end, for odd m, we may order the rows and columns of
Q to obtain a block matrix consisting of circulant blocks of order 2m. (Thus there are
2m−1 rows/columns of blocks). The ordering of rows works as follows: we first define a
group action on the set Types(m). For ease of notation we now represent the elements of
Types(m) as (p, U), with p ∈ {0, . . . ,m − 1} and U ⊆ {0, . . . ,m − 1}, i.e. we now number
the m vertices from 0 to m− 1, and omit the set L (which is redundant in the description
since it is the complement of U).

The group in question is generated by the following two elements, a ’flip’:

g1 : (p, U) 7→ (p, {0, . . . ,m− 1} \ U),

and a ’cyclic shift’:

g2 : (p, U) 7→ (p+ 1 mod m, {u+ 1 mod m | u ∈ U}).

Note that g1 and g2 commute and therefore generate an Abelian group of order 2m. If m
is odd, then g := g1 ◦ g2 generates the entire group, i.e. in this case we obtain the cyclic
group of order 2m. Indeed, the order of g equals the least common multiple of the orders
of g1 and g2, namely 2m if m is odd.

Also note that
Qσ,τ = Qgi(σ),gi(τ) ∀σ, τ ∈ Types(m), i ∈ {1, 2},

i.e. the crossing number of a 2-page drawing does not change if we ’flip’ the drawing along
its spine, or, in the circular model, rotate the drawing.

Finally, we group together the 2m elements of Types(m) that belong to a given orbit of the
group, to obtain 2m× 2m circulant blocks. In what follows, we denote the first row of the
2m× 2m circulant block (i, j) by q(i,j) ∈ Z2m.

Lemma 7. For odd m, the semidefinite programming bound (14) may be reformulated as

SDPbound(m) = max t
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subject to

q
(i,j)
k − t− x(i,j)

k ≥ 0, 0 ≤ k ≤ 2m− 1, 1 ≤ i, j ≤ 2m−1,

X
(t)
ij = x

(i,j)
0 +

2m−1∑
k=1

x
(i,j)
k e−π

√
−1tk/m, 1 ≤ i ≤ j ≤ 2m−1, 0 ≤ t ≤ 2m− 1,

X(t) = (X(t))∗ � 0, 0 ≤ t ≤ 2m− 1,

x
(i,i)
k − x(i,i)

2m+1−k = 0, 1 ≤ k ≤ m− 1, 1 ≤ i ≤ 2m−1,

x(i,j) ∈ R2m, 1 ≤ i, j ≤ 2m−1.

Proof. The proof is similar to that of Lemma 4 and is therefore omitted.

A few remarks on the semidefinite programming reformulation in Lemma 7:

• As in Lemma 4, the constraints involve Hermitian (complex) linear matrix inequalities.

• The reduced problem has 2m linear matrix inequalities involving (2m−1)×(2m−1) ma-
trices. By comparison, the original problem had one linear matrix inequality involving
a (m2m) × (m2m) nonnegative matrix. As a result, the reformulation in Lemma 7
may be solved for larger values of m than the original formulation (see next section).

• Similarly to Lemma 4, every feasible point x(i,j) ∈ R2m (1 ≤ i, j ≤ 2m−1) yields a
certificate of lower bound on SDPbound(m), and consequently a certificate of a lower
bound on ν2(Km,n), by (12).

7 Numerical computations: proof of Theorem 2

Using the reformulation in Lemma 7, we showed numerically that SDPbound(7) = 9
2 . Com-

putation was done on a Dell Precision T7500 workstation with 92GB of RAM memory,
using the semidefinite programming solver SDPT3 [35, 37] under Matlab 7 together with
the Matlab package YALMIP [26]. The running time was 23, 774 seconds. SDPT3 was
chosen since it can deal with Hermitian matrix variables.

Using that SDPbound(7) = 9/2, it follows from (12), (13), and (14) that

ν2(K7,n) ≥ (9/4)n2 − (21/2)n. (15)

We recall that Z(7, n) = 9bn/2cb(n− 1)/2c = (9/4)n2 +O(n), and that ν2(K7,n) ≤ Z(7, n)
(since there are 2-page drawings of K7,n with exactly Z(7, n) crossings). Using these obser-
vations and (15), Theorem 2 follows for m = 7.

Now an elementary counting argument shows that ν2(K8,n) ≥ 8ν2(K7,n)/6, and so using
(15) and simplifying we obtain ν2(K8,n) ≥ 3n2−14n. Since Z(8, n) = 3n2 +O(n), Theorem
1 follows for m = 8.
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8 Concluding remarks

The Goemans-Williamson bound (Section 3) empirically yields better lower bounds on
ν2(Kn) as n grows; see Figure 8.

600100 500400300200

0.922

0.925

0.924

0.926

0.927

0.923

700 800 900

Figure 5: The ratio (n4)−GW(Gn)

Z(n) for n = 99, 199, 299, 399, 499, 599, 699, 799, and 899.

Based on this empirical evidence, it seems reasonable to expect that the constant 0.9253
would be improved if GW(Gm) were computed for larger values of m. Having said that,
the figure also shows a trend of diminishing returns — by extrapolating the curve in the
figure, it seems that it may not be possible to improve the constant to more than 0.929,
say, through computation of GW(Gm), if m ≤ 2, 000.

Another possibility to improve the constant is to compute ν2(Km) for larger values of m
than m = 24, by solving the maximum cut problem in Lemma 3. If, for example, one
could verify in this way that ν2(K30) = Z(30), then this would yield the constant 0.9297,
by Claim 5.

Regarding the computational lower bound on ν2(Km,n): It is interesting to note that the
SDP bound SDPbound(m) provided a tight asymptotic bound on ν2(Km,n) for m = 3, 5 and
7. A similar SDP bound used in [24] and [23] did not provide a tight asymptotic bound on
the usual crossing number cr(Km,n), not even for m = 5. Our results therefore suggest that
one may be able to prove computationally that limn→∞

ν2(Km,n)
Z(m,n) = 1 for (fixed) odd values

of m ≥ 9. Having said that, for m = 9, the resulting semidefinite program was too large
for us to compute SDPbound(9). This problem therefore provides a good future challenge to
the computational SDP community.
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[26] J. Löfberg, YALMIP: A Toolbox for Modeling and Optimization in MATLAB. Pro-
ceedings of the CACSD Conference, Taipei, Taiwan, 2004,
http://control.ee.ethz.ch/~joloef/yalmip.php

19
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