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Abstract

The reformulation-linearization technique (RLT), introduced in [H.D. Sherali and W.P. Adams.

A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for
Zero-One Programming Problems, SIAM Journal on Discrete Mathematics, 3(3):411-430,
1990], provides a way to compute a hierarchy of linear programming bounds on the optimal
values of NP-hard combinatorial optimization problems. In this paper we show that, in the
presence of suitable algebraic symmetry in the original problem data, it is sometimes possible
to compute level two RLT bounds with additional linear matrix inequality constraints. As
an illustration of our methodology, we compute the best-known bounds for certain graph
partitioning problems on strongly regular graphs.

Keywords: reformulation-linearization technique, Sherali-Adams hierarchy, quadratic assign-
ment problem, standard quadratic optimization, semidefinite programming.
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1 Introduction

The term reformulation-linearization technique (RLT) was coined by Sherali and Adams in the
seminal paper [40] (see also [41]). Thus a hierarchy of linear programming relaxations was
introduced, based on a linearization technique studied earlier by these authors in [3] (see also
[4]); the subsequent development of the RLT-technique is contained in their monograph [42].

The main idea is the following: if there are two valid linear inequalities for a given set
S C R, for example if [; < v{x and Iy < vJz for all z € S, then their product also yields the
valid inequality:

(v]z)(vgx) — lov] & — lvgx > —lly Yz € S.

Introducing new variables X;; corresponding to x;x;, we can linearize the last inequality:

Z'Ulz'UQinj - Z(lzvlz‘ + o) xy > —lils. (1)
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An inequality of this type is known as a first-level RLT cut in the variables x and X. This
process may be repeated to obtain level two RLT cuts, etc. This type of method has become
known as a lift-and-project strategy: the ‘lifting’ refers to the addition of new variables, and the
‘projection’ to projecting the optimal values of the new variables to a feasible point in R™ of the
original problem; see Laurent [28] for a comparison of the RLT with related schemes.

In this paper we will study the RLT for two specific problems, namely the standard quadratic
program and the quadratic assignment problem (QAP). The first level RLT formulation of
the QAP was previously studied in [2] and [21]. Adams, Guignard, Hahn and Hightower [1]
considered the second level RLT formulation of the QAP. Numerical results presented in [1] show
that the second level RLT relaxation of the QAP often provides significantly better bounds than
the first level RLT relaxation, but that it is computationally very expensive to solve. Recently,
the third level RLT relaxation of the QAP was also investigated in [19]. The numerical results
show that this relaxation empirically provides tight bounds for medium-sized instances (where
it is still possible to solve the third level relaxation).

In this paper, we show how one may solve the second level RLT relaxation with additional
semidefinite programming (SDP) constraints in the presence of suitable algebraic symmetry in
the problem data. As a result we are able to compute the best known bounds for certain graph
partitioning problems involving strongly regular graphs. (These graph partitioning problems
have QAP reformulations.) Our results are in the spirit of the recent papers [39, 29, 16, 26,
27] where improved semidefinite programming bounds were obtained for various combinatorial
problems by exploiting algebraic symmetry. Our results may also be seen as an extension of
recent results by Ostrowski [34], who studied symmetry in (pure) linear programming RLT
relaxations of symmetric binary integer programs.

Scope and organization of this paper

We start by describing RLT relaxations of the standard quadratic optimization problem in
Section 2, and of the QAP in Section 3. In these sections we also present new results on how the
resulting RLT relaxations relate to known relaxations from the literature. This is followed by
background material on exploiting algebraic symmetry in the data of SDP problems in Section
4. We apply this methodology to the standard quadratic programming problem in Section 5,
and to the QAP in Section 6. Finally, we present numerical results to illustrate the complete
approach in Section 7. Throughout, the main (computational) focus is on the QAP, and our
treatment of the standard quadratic program serves as a relatively easy introduction to the more
complicated analysis of the QAP.

2 RLT cuts for the standard quadratic programming problem

We will use the notation from Sherali and Adams [42, §7.1] (see also [44] for RLT in the context
of continuous polynomial programs):

H.TZ] :Xj,
L

eJ

where 7 is an index set with elements from {1,...,n} where repetition of elements is allowed.
Thus, for example, [z2z2];, = X{1,1,2y or X112, for short. In other words, [.]1 is a “linearization



operator” that maps a monomial to a new variable. This operator may be extended to a
linear map from general polynomials to linear ones by simply replacing each monomial by its
linearization.

The standard quadratic program (stQP) is defined as

T
élélilx Qx

where A = {z € R" | ., 2; = 1, x > 0} is the standard simplez in R", and Q = QT € R™™" is
given.

It is easy to verify (see e.g. [43] or §8.3 in [42]) that the first level RLT relaxation of (stQP)
takes the form

i XY (LX) =1, X >0
in - {(Q,X) [ (], X) }

where (Q, X) = trace(QX), [ziz;]r = X4 (4,5 = 1,...,n), and J is the all-ones matrix. Since
X corresponds to the positive semidefinite matrix za T, we may also add the constraint that X
should be symmetric positive semidefinite, denoted by X > 0, to obtain the stronger relaxation:

Xnéi[r)ln{@’X) | (J,X) =1}, (stQPspp+RLT-1)

where D,, C R"*" is the doubly nonnegative cone, i.e. the cone of n X n symmetric positive
semidefinite matrices that are also entrywise nonnegative.

Note that we have removed the original variable z from the formulation; it is worth noting
that this will not be possible for the quadratic assignment problem studied in Section 3. The
second level RLT relaxation involves the new matrix variables

. k .
Since ng ) corresponds to x;x;xy, one has the relations

vyWoy® _yU) k=1, 0
In other words, Ylgk)

is invariant under all permutations of 1, j, k.
The second level RLT relaxation with SDP constraints becomes

(i,j,k = 1,...,n) may be viewed as a fully symmetric 3-tensor, i.e. ngk)

n
min (Q,X) ] (J,X) = I,ZY(k) =X, Yi(-k) fully symmetric » .
Y . Y(eD, XeRnxn — J

(stQPspp+RrLT—2)
Note that X € D,, is implied by Y, ..., Y(® € D,, and 37, Y*) = X
The (¢ — 1)-level RLT relaxation is

n n
min Z Qiyis Ziy iy Z Ziy.i, = 1,2 >0, 7 is fully symmetric
i1,enii=1 i1,eie=1

n

Since the variable Z;, ;, corresponds to the product z;, ...x;,, the matrix (Zil...it)ir =1

corresponds to the matrix (Htjl mij> zz”, and we can require its positive semidefiniteness.
In other words, any matrix obtained from the tensor Z by fixing (¢t — 2) coordinates has to be

positive semidefinite. Therefore it is natural to define (stQPspp+rrr—t) by adding these linear
matrix inequality constraints to the level ¢t RLT relaxation of (stQP).



2.1 Related semidefinite programming relaxations

We may rewrite problem (stQPsppyrrr—2) as the conic linear program
i X J,X)=1}= t —tJel* 2
min {(Q, X) [ (J, X) =1} =max {t|Q —tJ € "}, (2)

where C is the following convex cone:

C:= {X eRM | X =>"v® y®ep, vV =y =v? 1<ijk< n)} . (3)
k=1

C* is its dual cone, and the equality in (2) is due to the conic duality theorem. In a similar
way, one may define RLT relaxations of any order, by generalizing the definition of the cone
C. We will argue that these generalized cones coincide with a hierarchy of cones introduced by
Dong [14]. In Dong’s notation, M;, denotes the set of tensors of order r and dimension n, and
S’ is the set of fully symmetric tensors. Furthermore, for > 0,3 € {1,...,n}" and T € M"*+2,
T[B,:,:] denotes the ordinary matrix obtained by fixing the first r indices of T" to 3, and the set
of such matrices is Slice(7"). The operator Collapse(T’) is defined as the sum of the slices of the
tensor T, that is

Collapse(T)|[s, j] = Z T(B,i,j] = Z Pij-

Be{L,...,n}" peSlice(T)
Now one may define the following cones:
TD ={X: 3Y € 82 Slice(Y) C D,, X = Collapse(Y)}, (4)

where D,, is the cone of doubly nonnegative n x n matrices, as before. Dong [14] proved that
the cones TD], are dual to cones defined earlier by Pena et al. [36] (called Q] there). The cones

TD;, are precisely the generalization of the cone C in (3). In particular, the values Yj(ki) in (3)

correspond to a fully symmetric 3-tensor, and the Y (%) to slices of this tensor. This leads us to
the following theorem.

Theorem 1. The level t RLT bound with semidefinite constraints (stQPspp+rrr—t) for the
standard quadratic program is given by

min  {(Q, X) [ (J,X) =1} =max{t|Q—tJ € Q, '} (t=1,2,...), (5)
XeTDi !

where the cones TDL L are defined in (4), and Q' are the corresponding dual cones (t =
1,2,...).

Proof. The proof is by induction, and is omitted since it is straightforward. [ |

We conclude this section with a brief comparison of the (stQPspp+rrr—t) bound to other
bounds from the literature. These bounds are related to sufficient conditions for matrix coposi-
tivity due to Parrilo [35] (recall that a matrix M is copositive if 7 Mz > 0 for all nonnegative
vectors ).



To explain these bounds, note that
mig 2'Qr = max{t|z'Qr>t, VreAl
S
= max{t|z"(Q—tJ)z >0, VreA}

= max{t | Q —tJ is a copositive matrix}.

Parrilo [35] introduced the following hierarchy of sufficient conditions for a matrix M to be
copositive, namely

n T
g szznfxg ( E :Ef) is a sum of squared polynomials,
i,j i=1

for some integer r > 0.
The cone of matrices that satisfy this sufficient condition for a given r is denoted by IC&LT).
Bomze and De Klerk [9] studied the following lower bounds for the standard quadratic opti-

mization problem:

P i=max{t | Q —tJ e KDY= min {(Q,X)|(J,X)=1} (r=0,1,...) (6)
xXerci™

Since it is known that Q] C ICgLT) (r =0,1,...) and equality (only) holds for » = 0,1 [36], we
have the following result.

Theorem 2. The bound pt=1) in (6) is at least as tight as the bound from (stQPspp+rrrT—t)
in (5) fort=1,2,..., and the two bounds (only) coincide fort = 1,2.

3 RLT cuts for the quadratic assignment problem

Given two symmetric n X n matrices A and B, the quadratic assignment problem (QAP) is
defined as:

n

. . T
i ) AijBr(i) r() = min trace(AP' BP), (QAP)
4,j=1
where S, is the symmetric group on {1,...,n}, and II,, is the set of n X n permutation matrices.

The QAP may be rewritten as

min E aikbﬂxijmkl
i’j’k’l

n
st Y mj=1, j=1,...,n,
=1

n
E rij =1 i=1,...,n,
j=1

iL'Z‘jE{O,l}, ,j=1,...,n.



Writing the integrality constraints as xfj zij (1,7 =1,...,n), and introducing new variables

Xijk = [wijoem]rn (4,5,k,0 = 1,...,n) as before, the first-level RLT relaxation of QAP is the
following linear program:

min E aixbji Xijr
7:7j7k7l

n

st. Y wy=1, j=1,...,n
=1
n
inj::l? izl,...,n,
j=1

n
j (QAPgr7T-1)

> Xijw =am, jikl=1,...n,

=1

ZXz‘jkl =T, i,kl=1,...,n,

j=1
x>0,
Xijij =i, 1,j=1,...,n,

Xijki = Xy >0, 4,5,k l=1,...,n.

3.1 Related semidefinite programming relaxations

Povh and Rendl [37] studied a semidefinite programming (SDP) relaxation for the QAP problem
(the resulting lower bound coincides with an earlier bound studied in [48]). We will show
that this relaxation may be viewed as a first level RLT relaxation of the QAP with positive
semidefiniteness constraints added.

In stating and analyzing this SDP relaxation, we will need several properties of the Kronecker
product. Recall that the Kronecker product A® B of matrices A = (a;;) € R™*™ and B = (b;;) €
R"™* is the mr x ns block matrix with block (4, j) given by a;;B (i =1,...,m, j =1,...,n).
We will often use the properties that, for A, B,C,D € R™*" (A® B)(C® D) = AC ® BD, and
trace(A ® B) = trace(A) trace(B).

The Povh-Rendl [37] relaxation takes the form:

min (A® B,Y)
(I ®EY)=1, (Eyz®1,,Y)=1, i=1,...,n,
(In @ (Jn = In) + (Jn — In) ® I, Y) = 0, (QAPspp)
(Jn @ Jn,Y) = 712’
Y eD,:,

where I, and J,, are the identity and all-ones matrices of order n respectively, and F;; is the
n x n diagonal matrix with 1 in position (7,7) and zeros elsewhere.

If we define vec(-) as the operator that maps an n x n matrix to an n2-vector by stacking its
columns, then we may view the matrix variable Y as a relaxation of vec(X)vec(X)T for X € II,,.



Consequently, we may view Y as having the following block structure:

yay o y(@n)

Y = ) (8)

yh o y(m)
where V(i) ¢ Rnxn (1 <i,7 <n). Thus Yléﬂ) = 42w, and Y;gf” therefore corresponds to
the variable Xijkl in (QAPRLT—l)'

Theorem 3 ([37]). A doubly nonnegative matriz Y is feasible for (QAPspp) if and only if Y
satisfies

(i) (I, ® (Jy — I,) + (Jo — I,) @ I, Y) = 0,

(ii) trace(Y () =1 Vi, S diag(Y®)) = e,
(iii) Y De = diag(Y ) Vi, j,

(iv) iy YW = ediag(Y V)T v,

where e denotes the all-ones vector, and the diag(-) operator maps the diagonal entries of a
matriz to a vector in the obvious way.

We may use Theorem 3 to show that the Povh-Rendl relaxation (QAPspp) coincides with
the first-level RLT relaxation (QAPgrrr—1) with positive semidefiniteness constraints added.

Theorem 4. IfY is feasible for (QAPspp), then X = ng ) and Tij = Y(”) (1<i,j,k,1<n)
is feasible for (QAPgpr—1) with the same objective value. Conversely, if a feaszble solution X
of (QAPRrrr—1) corresponds to a positive definite matriz 'Y of the form (8) where Y;ggl) .
(1 <1i,j,k,l <n), then the matriz Y is feasible for (QAPspp) with the same objective value.

Proof. By Theorem 3, for every feasible solution Y of (QAPspp) one has:

Y(]l)e — dlag(Y(ll)) e Z Y JZ) Yk]il \V/], k? l?

SYU = ediagy®™T = S v =y} vikL
J J
Recalling that iﬁgl) correspondslto Xijw in (QAPRpr—1), it is now straightforward to verify
that X, = Yiggl) and z;; = Y;EM) satisfy all the constraints of (QAPrr7r-1), and that the two

objective values are the same. The converse proof is similar and therefore omitted. ]

[27](lg)

For the second-level RLT reformulation we introduce the new variable Z ) = (T3 Cp1Tpg -



Thus we obtain the second level RLT relaxation:
min (A® B,Y)
s.t. <In®Equ> =1, <Eu®In7Y> =1:=1,...,n,
<In ® (Jn - In) + (Jn - In) & Inv Y) - 0:
(Jo @ Jn,Y) =n?,

i3] — =
ZZ Y j=1,...,n, (QAPsppyRLT-2)

(A
Y Zil=y i=1,...n,
j

ZilepD, i j=1,...,n,
[)a) _ k)(Ga) _ [palGD) _
Z(k:p) —Z(Z.p) _Z(ik) i, 7,k L,p,g=1,...,n.
As before, note that Y € D,» is implied by Zl7 € D, > and > Z lis] =y,
Since the level 2 RLT bound is stronger that the level 1 bound, we have the following corollary
of Theorem 4.

Corollary 5. The bound from (QAPsppyrrr—2) is at least as tight as the Povh-Rendl bound
(QAPspp).

4 Background on symmetry-induced reduction

In what follows we will show how the RLT relaxations may be reduced in size if the data of
the underlying optimization problem exhibits suitable algebraic symmetry. This approach is
called symmetry-induced reduction, or symmetry reduction, for short. We will review some basic
concepts first.

Let S,, denote the symmetric group on {1,...,n}. We consider a fixed permutation group
G C S,,. With each permutation m € G, we associate an n X n permutation matrix P, € II,,,
defined by
1 ifn(y) =1 .
Pr)ii = =1,...
i ={ o e (ij=1.....m)

Thus 7(j) =i if and only if Pre; = e; if e; denotes the ith standard unit vector in R™. Moreover,
for any X € R"*™ one has

<P7-erP7r>ij: w(2),7(5) (i7j:17--~an)'
We call {P; | # € G} the permutation matrix representation of G.
The centralizer ring (or commutant) of G is the set

Ag:={X eCV" | PTXP, = X Y1 € G}.

In words, Ag is the set of matrices that are invariant under the row and column permutations
in G. The centralizer ring Ag is a matrix *-algebra, i.e. a linear subspace of C™*™ that is also
closed under matrix multiplication and under taking the complex conjugate transpose.



A centralizer ring Ag C C"*™ has a basis of 0-1 matrices, say Ay,..., Ag € {0,1}"*", where
d = dim(Ag). In addition, one may assume that Z?:l A; = J, and that Ag contains the identity.
The basis Aq, ..., Ag corresponds to the orbits of pairs (also called 2-orbits or orbitals) of indices
under the action of G, and forms a coherent configuration; see [11] for the formal definition of,
and more information on, coherent configurations. In particular, the basis Aq,..., A4 is given
by the set of 0-1 matrices with support

{(m(i),7(7)) | m € G}

for some 4,5 € {1,...,n}.
The orthogonal projection of a matrix X € C™*" onto Ag is given by

d
(45, X)
Pas(X) = Z A2 A;

1= 1

= PIXP,,
ax
Teg

where [|A;||? = (A, A;) = trace(A?) = (A;, J), i.e. the norm in question is the Frobenius norm.
The projection operator is known as the Reynolds operator of G and the projection is also
called the barycenter of the orbit.
For an integer k, the stabilizer subgroup G[k] C G is defined as the group

Gkl ={mr e G |m(k) =k},

and we will denote the centralizer ring of G[k] by Agx-
If A and A’ are two matrix *-algebras, then a linear map ¢ : A — A’ is called an algebra
*_isomorphism if it is one-to-one,

P(XY) =o(X)o(Y) VX, Y €A

and
B(X*) = (6(X))" VX € A

Each matrix *-algebra that contains the identity is isomorphic to a direct sum of full matrix

algebras, in the following sense.

Theorem 6 (Wedderburn, cf. [47]). Let A C C™ " be a matriz *-algebra that contains the
identity. Then there exists an algebra *-isomorphism ¢ such that

for some integers n; that satisfy >, n? = dim(A).

The image of A under the isomorphism ¢ is called the Wedderburn (or canonical) decomposi-
tion of A, or the (canonical) block-diagonalization of .A. An accessible proof of the Wedderburn
decomposition theorem is given in [15, Chapter 2]. Moreover, this proof is constructive, and
shows how to obtain ¢.

The following result relates matrix *-isomorphisms to symmetry reduction for SDP.



Theorem 7 (see e.g. Theorem 4 in [24]). Assume that A and A’ are two matriz *-algebras and
¢ A— A" a matriz *-isomorphism. Moreover assume that symmetric matrices My, ..., My € A
and a vector y € R¥ are given. One now has

k

k
Mo+ yiM; = 0 <= ¢(Mo) + > vip(M;) = 0,
=1 =1

where = 0’ means "Hermitian positive semidefinite’.
In practice, this means that we may often replace the matrices M; by block diagonal matrices
¢(M;) with block sizes much smaller than the size of M;. This block-diagonal structure may in

turn be exploited by interior point solvers.
The following example illustrates the definitions above, and will be used later on.

Example 8. Consider the complete k-partite graph Ky, ., withn = mk, and let G = Aut(Kp, .. m)
be the automorphism group of Ky, . m. The centralizer ring of G[1] is a 12-dimensional sub-
space of C"*™ and has the following basis. (The matrices Ag, ..., A12 all have the same block
structure, and subscripts that indicate size are therefore only indicated in full for Ay to Ag.)

1 O1xn—1 0 Tixm—1 O1x(k—1)m
A = Ay = = Al
! <On—1><1 0n—1xn-1>’ 2 (On—lxl On—1xm-1 On—1x(k—1)m

A4 — <O 0 01xm—1 11><(k71)m > :AT,

n—1x1 On—1xm-1 On_ix(k—1)m

0 lemfl Ole
AGZ Om71><1 Im 1 Om 1xm 5
O¢

k—Dmx1 Ok—Dmxm-1 Ok—1)mx(k-1)m

0 0
A7:<0 J—1 0) ( e ®J>:AT,
0 0 0
0
0
J—

00 0 0 0 0
Am:(oo 0>,A11:<00 ) A12_<00 0 >
00 Il 00 I®(J—1I) 00 (J-DJ

The centralizer ring Ag is isomorphic to C & C & C @ C3*3, and the associated algebra
x-1somorphism ¢ satisfies:

0 0
0 0
¢(A1) = ¢ o o of> ¢(A2) =vm-—1 0 o 0o of = ¢(A3)T7
0 0 o0 0 0 o0
0o 0 1 1 0 o0
0 1
0 0
¢(Ag) =/ (k= 1)m 0 o o o] =0(45)", ¢(As) 0 1 0 o>
0 0 o0 0 0 o0
0 -1 o0 0 0 o0
—1 0
0 0
¢(A7) = 0 m—-2 0 0> Qb(AS) = \/(k - 1) ( - 1) ° o -1 o] = ¢(A9)T7
0 0o o 0o o o
0 0o o 0o 0o o

10



¢(A10)— ' 0 0 0 a¢(A11)— mol 0 0 o>
0 1 0 0 m—-1 0
0 0 o0 0 0 0
0
0
¢(A12):m - 0 0 0

0 k-2 0
0 0 0

Finally, the following lemma will be crucial for the symmetry reduction in the following
section. We supply a proof, since we could not find this result in the required form in the
literature.

Lemma 9. Assume that the permutation group G C S, acts transitively on {1,...,n}, and
that its centralizer ring Ag has a 0-1 basis Ay, ..., Aq. Assume, moreover, that the centralizer
ring of the stabilizer subgroup G[1] has a 0-1 basis A}, ..., Al,. Finally, let 7, € G be such that
(k) =1 (k=1,...,n). Then, for any t € {1,...,d'}, there exists an f(t) € {1,...,d} such
that

- T n<A/7 J>
> P AiPr, = %Am-

Moreover, f(t) € {1,...,d} is the unique value such that
support(Az) C support(Ay()). (9)
Proof. If we define the following subsets of G,
G={reg|n(i)=1} (i=1,...,n),
g, =

)
then we have that m; € G; (i = 1,...,n). Moreover, G; = G[1],
where ‘o’ denotes the composition operation, and

g[l]om (’L = 1,...,n),

G=g, Gng =0ifi#;. (10)

i=1
Fix t € {1,...,d'}, and consider the projection of A} onto Ag:

Pag(4)) = Z PTALP,
‘g’ weg

= T Z > PTAP, (by (10))

i=1 o0€g;

= |g|ZZ (PyPr,) TA'PP (since G; = Gy om;)
i=1 peGy

1 n
= @ZP; > PIAP,| P, (since G = G[1])

pEG(1]

- ‘Q‘Q”ZPTA/ v (since A} € Agpy)

— EZPWTZ_AQPW (since |G| = n|G[1]]).
=1

11



On the other hand, since {A;/||A1ll,- .., A4q/||A4ll} is an orthonormal basis of Ag, one has

d

(A}, A
Pag(4p) = Z ;1 2 Ai
— [l
(AQ,J>
— M)y
(Afy, J) fe):

if f(t) € {1,...,d} is the unique value such that (9) holds. (The uniqueness of f(t) follows
from the fact that G[1] is a subgroup of G, and therefore each orbital of G[1] is a subset of some
(unique) orbital of G.) This completes the proof. ]

5 Symmetry reduction of (stQPsppirrr—2)

We may eliminate the matrix variable X =}, Y®) from the second level RLT relaxation of
(stQP) with SDP constraints to obtain:

n n
i (k) (K)\ _ (k) .
Y“),..I.g}gl)epn {;<Q,Y ) | ;(J,Y )y =1, Y fully symmetrlc} . (stQPsppyrrT—2)

Let G be the automorphism group of the matrix @), i.e.
G =Aut(Q) = {7 €8 | Qij = Quii) () Visd €{1,...,n}}. (11)

Lemma 10. Assume that Y %) (k=1,...,n) are optimal for (stQPspp+rrr—2). Then

k) T _
y %) MZPY (k=1,...,n)
Teg

are also optimal.

Proof. Assume that Y*) and Y (g =1,...,n) are as in the statement of the lemma.
It is trivial to verify that Y 7_,(J, Y ®)) = 1, and that the matrices Y¥) (k = 1,...,n) are
doubly nonnegative, by construction.

To show the complete symmetry of ng ), consider, for fixed 4,5,k € {1,...,n},

}7( ) ’f
ij |g’ 7% )oT J)

_ Z l))

‘g] = (J (ke

: k) _ v _ )
where the second equality follows from the complete symmetry Y Y] P szj .

12



Finally, since PTQP, = Q for all 7 € G, one has

n

D QRYM) = |g|ZZ (PrQP, v ()

k=1 TeG k=1
n
= PY®pT
> {emsrrer)
TeG
n
= > (@Y")
k=1
This completes the proof. [ |

The next useful observation is that an optimal Y¥) may be assumed to belong to the cen-
tralizer ring of the stabilizer subgroup GIk].

Lemma 11. There exists an optimal solution of (stQPspp+rrr—2) that satisfies
v e Agyy (k=1,...,n).
Proof. By the last lemma, we may assume that an optimal solution satisfies
y ) = |Q|ZPTY (k=1,...,n).
TeG

Now fix 4,5,k € {1,...,n}, and o € G[k]. One now has
(k) _ylok) ﬂ(o(k
Yot = Yotat = [ Z ~(o(i))m(o())
Setting 7 = 7 o g, this yields

R
Yot = 19] 2 Yrrt) = Yis

TEG

Thus Y% ¢ Agi), as required. [

Finally, if G is transitive, we may assume that the matrices Y®) (k = 1,... ,m) are not
independent, but may all be written in terms of Y (1), as the next lemma shows.

Lemma 12. If G acts transitively on {1,...,n}, then there exists an optimal solution of

(stQPsppyrrT—2) that satisfies
y® = pTyWp
k )

for any 7, € G such that m(k) =1 (k=1,...,n).

Proof. By Lemma 10, we may assume that optimal Y*) (k = 1,... n) satisfy

k) T —
y k) |g|ZPY (k=1,...,n).
TeG
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Fix 7, € G such that m(k) =1 (k=1,... n) One now has

plyWp, = ZPT Ply™Wp. P,

T~ T k
’g| TeG

T T
= |g|ZPP7rk y*™Mp P,
TeG

Denoting oy = 7 o 7y so that o (k) = 7(1), this becomes

T (o
pryWp, _|Q|Z W) p, =y ®)
oLEG

as required. [ |
We may now simplify problem (stQPspp+rrr—2) by using the results of the last three

lemmas. To this end, let Ay,..., Ag denote a 0-1 basis of Ag; given by the 2-orbits of G[1].
By the results of this section, we may assume that an optimal solution takes the form

d d
YW =3 "gd;, YO =PIYOp, =N "y,PT AP, (k=2,...,n),
for some nonnegative scalar variables y1, ..., yq, if G is transitive. Thus,

pEA S (J, YWy 4+ Z (J,PT YW P, )
k=1 k=2
= n(J, YWy,

so that the constraint 3.7, (J,Y®)) = 1 becomes (J, Y (V) = 1/n.

The complete symmetry conditions Ylgk) = Y](]z) = lg) imply that some of the y; variables

are equal. To make this precise, note that:

(k) _

Yij = Zyu rrk(z Tk (5)

vl = Zyv RCEAC)

Y;(]z) = Zyt(At)m(j)vﬂi(k)'
t=1

If we fix (i,7,k) € {1,...,n}3, then there are unique (u,v,t) € {1,...,d}3 such that

1= (Aw)ry ()i () = (Ao (i),m; (k) = (A ()i (k)

and it must hold that y, = y, = y. Note that one always get the same triple (u,v,t) for
a fixed (7,7, k) independently from the choice of permutations 7;, 7j, 7. Indeed, if m; and 7;
are in G and both map i to 1, then there is a permutation p from G[1] such that pm; = 7;.
But A, is in the algebra Ag;, that is, it is invariant under the permutation p. Therefore

(Au) () mse) = (), () 73 (k) -

14



Definition 13. We will write u ~ v if there exists a triple (i, j, k) such that 1 = (Aw)r, (i), m(j) =
(Av)a; (3) (k)

Thus the total symmetry condition becomes y, = ¥, if u ~ v.

In summary, we may write problem (stQPspp+rrr—2) in the following form.

Theorem 14. Consider problem (stQPspp+rrr—2) and assume that G = Aut(Q) is transitive.
Let Ay, ..., Aq denote the 0-1 basis of Agpy. Then the optimal value is given by:

d

d
1
iAiy = u:v. ~ U, ZAZE ’
> i )=,y o ifur~v, >y 0}

i=1 i=1

d
min {n;yi<Aia Q)

where the ‘~’-relation is from Definition 13.

It is important to remember that the linear matrix inequality Z;‘i:l yiA; = 0 may be replaced
by Zle yi¢(A;) = 0 for any algebra *-isomorphism ¢ with domain Agjy;.

6 Symmetry reduction of (QAPsppirrr—2)

We now consider the symmetry reduction of (QAPsppyrrr—2) for the QAP
min trace(APTBP)

Pell,

in the case when the n x n symmetric matrices A and B have large automorphism groups.
First of all, we may eliminate the matrix variable Y from (QAPspp+rrr—2), by using
Y=1/n3, 74l to obtain the formulation:

min % z": <A®B,Z[m>

=1
n . n .
Y <In ®Ek,€,Z[U]> —n, Y <Ekk @In,z[”1> —n, k=1,...,n,
i,j=1 4,j=1

Iy ® (Ju = In) + (Jn = In) ® In, 217 =0,
(QAPspp+rLT-2)

ij=1
ZZ[kJ}:ZZ[Zk]7 Zaj:17 > 1,
k=1 k=1

Zile D, ij=1,...,n,

[i5](lq) _ kNG9 _ lpdGD) —
Z(kp) —Z(ip) _Z(ik) , Ui,k p,g=1,...,n.
To describe the symmetry, we define G4 := Aut(A), Gp := Aut(B) and G4p := Aut(A® B)
as in (11).

The following results are analogous to the results for the symmetry reduction of the standard
quadratic program. Where possible, we therefore omit the proofs.
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Lemma 15. Let Z[U (i,5 = 1,...,n) be an optimal solution of (QAPspp+rir—2), and let
ma € Ga and g € Gg. Then

2 = (Pr, @ Pry) 20O 0N (P, @ Pry) (1§ =1,....m)
s also optimal.
Proof. One has

(I, ® Egy, Z[ij]> =({I,® Pﬂ'BEkkPT Z[WA(i),WB(j)]> = (I, ® Eﬂgl(k),wgl(k)’ Z[TFA(i),WB(j)}%

TR
so that
Zn: <I" ® E’“’“’Em> - z”: <I" © B gt (k) m57 (k) memuw
i,j=1 i,j=1
- .Zl <I" OBt )5y Z M> -
i,j=

In the same way, one may show that

5 (Bu [, 29 —n.

ij=1
The matrices I, J — I are invariant under all row and column permutations, so that the
constraints

S L@ (Jn = In) + (Jo — L) @ L, 20y = 0, Y~ (J @ Ty, Z7)) = n?
i,j=1 i,j=1

are satisfied by Z [ij] = Zlidl,
The matrices Z[] (i, = 1,...,n) are doubly nonnegative, by construction. Moreover, for
fixed j € {1,...,n},

Z Zlial — Z(PWA ® Py, T Zra@ms0N(p @ P,)
i=1 i=1
= (Pry®Pry)T (Z Z[’“BU”) (Pra ® Pry). (12)
k=1
Similarly, for fixed i € {1,...,n},
Z Zlil = Z(pm ® Ppy)TZma@ms0ON(pP. @ P,)
j=1 J=1
= (Pr, ® Pry)’ (Z ZW“)’“) (Pry ® Pry). (13)
k=1
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Since 3=, ZKl =S~ 7kl for all i, j, the expressions in (12) and (13) are equal. Consequently,
the constraint S_p_, ZF] = S0 ZUH is satisfied for all 4, j.
The tensor Z is also fully symmetric, since

Slidla) _ s ms( s Omp@) _ et s O)rs@)ms@) _ kG
Zi = 2 Wmas) = Za(i)ma(p) =Zp

etc. Finally, the objective value at AZIRE

n

- Zl <A ® B Z[%J]> - znjl <P7TTAAP,TA ® Pl BP,,, Z[m(z’)ms(j)]> = % ~Z1 <A ® B, Z[ij]>.
i, b= 5o
This completes the proof. .

Corollary 16. If Zl7] (i,j =1,... n) denotes an optimal solution of (QAPsppyriT—2), then

*[ig](lq) _ [ﬂ'A 7(N(rs1),7B(q))
ka |gAB‘ Z Z k),ma(p)

TA€GA TBEGB

s also optimal.
Proof. The result follows immediately from the fact that the optimal set of (QAPspp+rLT—2)
is convex. [ |

The next result is similar to Lemma 11, and its proof is therefore omitted.

Lemma 17. Problem (QAPspp+rrr—2) has an optimal solution that satisfies AZINS Agslig)
where Gagli, j| C S,2 is the group with permutation matriz representation

{Pﬂ‘A ®P7FB | TA € gA[i]v B € gB[J]}

The next lemma is similar to Lemma 12, and shows that — under suitable symmetry as-
sumptions — we may write all the Zl) in terms of Z1'Y. Once again, we omit the proof, since
it is similar to that of Lemma 12.

Lemma 18. Assume that Ga and Gp act transitively on {1,...,n}. Let W,‘;‘ € Gy and Wf €0p
map k to 1 (k =1,...,n). Then there exists an optimal solution of (QAPspp+rrT—2) that
satisfies -

Zlidl — (Pw;“ ®P7TJB)T2[11}(PWZA ®P7T]B) (i,7=1,...,n).

In what follows we let {A1,..., Aq, } and {Bj, ..., Bg, } denote the 0-1 bases of the centralizer
rings of G4 and Gp respectively. Moreover, we let {A],..., A/, } denote the 0-1 basis of the
A

centralizer ring of G4[1], and define {Bj, ..., B}, } similarly. By the last lemma, we may now
B

write the Zl¥] in terms of these bases as follows:

dy
20 =3 > ek, © By,

p=1q=1

17



and, consequently,

dy dp
Z[Z]] = ZZZPCI(PW;A®P7T;3)TA;J®BZ](PW;4®PW;3)
p=1q=1
&, dy
T T
= XX (PLAPs) @ (PlaBiPys). (14)
p=14=

Next, we consider the total symmetry conditions for the Z[]. Recalling that Z([g]ﬁ()w) =

[ZijTayxas|L, the total symmetry conditions are

209 _ Zleo@)

S1(4
o5 — Z[B 1G7) (15)

(16}

together with Z[U] = (z [ij])T, where all indices range from 1 to n.
Clearly, the total symmetry conditions will translate to certain variables z,, being equal. In
particular, for every index set (i, J, o, 3,7, ) there is exactly one pair (p, ¢) such that Zgg (9)

Zpg- In particular, one has

200 — oyt (PLALPA) =1land (PLByPs) =1.
7 T J

af o7

To proceed, we require some notation analogous to that of Definition 13.

Definition 19. We define two relations ~14 and ~24 that partition {1,...,d,} as follows

) ‘ ' T _ T 4/ _
pria = 3, B) : (PﬂprPmA)ag —1 and (PﬂéAﬁP,ré)Bi =1,

proab = 3a8) ¢ (PLAPA) =1and (PLApPy) =1,

aB e}

where 1 < p,p<dy, and 1 <i,a,8 < n.
Similarly, we define two relations ~1p and ~op that partition {1,...,dg} as follows

g ~1p G <= 3(j,7,0) (P;BBZIPW;_B»)WS — 1 and (P%;B(%Pﬂ?)&j —1,

q ~2p ¢ = 3(j,7,9) : (P%BBQPWJB> =1 and (P%B:ipﬂf) =1

o v
where 1 < q,q¢ < d'y, and 1 < j,86,7 < n.

We now state the final form of the total symmetry conditions. The proof is an easy conse-
quence of (14) and (15).

Lemma 20. Using the notation in Definition 19, the total symmetry conditions (15) become:

Zpg = 2pg == (D ~14 P and ¢ ~1B G) or (p ~24 D and q ~2B q). (16)

18



The final step in the symmetry reduction of problem (QAPsppirrr—2) is to rewrite the

constraints: n n
Nzl =N 20 (=1, ). (17)
k=1 k=1

Using (14), the left-hand-side may be written as

sz — Zzzpq (ZP AP A> ® (P%BB;PKJB) : (18)

p=1 q=1

By Lemma 9,
n(A’,J)
prlL = —2 4
Z p ﬂk (AfA(p)7J> fa(p)

where fa(p) € {1,...,d4} is the unique value such that support(Aj;) C support(Ay, ). More-
over, we have By = Ean(s) By, for some index set Ip(s) C {1,...,dg}. In particular, if we

define fp analogously to fa, then Ig(s) = {q| fB(q) = s}.
Using these relations, equation (18) becomes

- CR )
300555 (T ) o ().
k=1

p=1q¢=1
In a similar way, one may show that

d/ /

S n(B,J)
;Z[ Y= ZZzpq (P AP, A) (WBJ‘B@)) :

p=1g=1

Equating coefficients of A, ® Bs (1 <r <dg, 1 < s <dp) in the last two expressions, we find
that (17) will hold if and only if

AL J BL J
Z (45 ;zpq: Z <BqJ;qu Vpela(r), g€ lp(s)(1<r<dy 1<s<dp).
pfa@)=r " gfe@=s "

We end this section by stating the final reformulation of the relaxation (QAPspp+rrr—2)
as a theorem.

Theorem 21. Consider the QAP problem minpeyy, trace APT BP and assume that Aut(A) and
Aut(B) act transitively on {1,...,n}. Let {A1,...,Aq,} and {Bi,...,Bg,} denote the 0-1
bases of the centralizer rings of G4 = Aut(A) and Gp = Aut(B) respectively. Moreover, let
{A’,...,Afi,A} denote the 0-1 basis of the centralizer ring of Ga[l], and define {Bj,... 7B£llB}
stmilarly.

Assume that 7{} € Ga are given such that 7 (k) =1 (k= 1,...,n), and define 72 € Gp in
the same way.

Then the optimal value of problem (QAPsppyrrr—2) is given by

dy dp
minn Z Z zrs<A7 A;><B7 B;)

r=1s=1
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subject to

dy dp

Z Z 2rs trace(AL) (BL) i =

r=1s=1

S

dy dp
Zsz trace(BL)(AL)y = - (t=1,...,n),

r=1 s=1

dy dp

Z sz (trace(A;)(J — I, B,) + trace(B,)(J — I, A})) =0,

r=1s=1
dy dp

DNz AN, BY) =,

r=1s=1

2

p:fa(p)=r
dy dp
DD A, © By =0,

p=1q=1

Zpq = 255 f (P ~14D and g ~1p q) or (p ~24 P and q ~2B q),
z >0,

—_

(A3, J)
G 2

7:fB(D)=s

where

)

o the relations '~14° etc. are defined in Definition 19,

e fa and fp correspond to f in Lemma 9 for the groups Aut(A) and Aut(B) respectively,

o forre{l...,da} and s € {l,...,dg}, Ia(r) ={p| falp) =r}, and Ig(s) ={q | fB(q) =
s}.

If we have algebra *-isomorphisms ¢4 and ¢p defined on Ag, ;) and Ag, ;) respectively, then

we may replace the linear matrix inequality Zzlil Zjlil zqu; ®Bl’1 >~ 0 in the above formulation

by Zziil ijl 2pgPa(A}) ® ¢p(B,) = 0. As before, this may lead to smaller, block diagonal
matrices in practice.

7 Numerical examples

In this section we will show how the symmetry reduction works for some specific (stQP) and
(QAP) problems.

We will first consider maximum stable set problems on symmetric graphs formulated as
(stQP) problems, followed by QAP formulations of certain graph partition problems on sym-
metric graphs.
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7.1 Results for (stQP)

An important application of (stQP) is the mazimum stable set problem in combinatorial opti-
mization. Recall that a stable set of a graph G = (V, E) is a subset of V' C V such that no two
vertices in V' are adjacent. The stability number «(G) of G is the cardinality of a maximum
stable set in G. By the Motzkin-Straus theorem [32], one has

1 :
oG = gélila:T(A—i-I)x (19)

where A is the adjacency matrix of G.
The so-called ¥ (G) upper bound on «(G) is defined as

a(G) <V(G) :==max{(J, X) | (A+1,X) =1, X € Dy},

where Dy is the doubly nonnegative cone in RIVIXIVI as before. The ¢ (G) bound corresponds
to our (stQPspp+rrr—1) bound when applied to problem (19) in the following sense.

Theorem 22 (see Lemma 5.2 in [23]). Let G = (V, E) be a graph with adjacency matriz A,
and let val(G) denote the optimal value of (stQPspp+rrr—1) with @ = A+ 1. Then one has

1
val(G) — ﬁl(G)
A similar results holds for the (stQPspp+rrr—2) bound, since it coincides with the bound
p(V, defined in (6), if @ = A + I. The reciprocal of this bound was first studied by De Klerk
and Pasechnik [23], and was called (1) there. To be precise:

a(G) < 9N(G) = max{(J, X) | (A+1,X) =1, X e K1V}, (20)

where the cone IC|*‘51|) is defined in Section 2.1.

Theorem 23. Let G = (V, E) be a graph with adjacency matriz A, and let val(G) denote the
optimal value of (stQPspp+rrr—2) with @ = A+ 1. Then one has ﬁ(G) =9(@), where (V)
is defined in (20).

Proof. The proof is an immediate consequence of Theorem 2. [ |

The Hamming graph

Consider now the special case where G is the Hamming graph H,, 4 defined as follows: the vertex
set is {0, 1}" (viewed as binary words of length n), and two vertices are adjacent if their Hamming
distance is less than d. The stability number of H, 4 is mostly denoted by A(n,d), and is of
fundamental importance in coding theory. Possibly the most famous upper bound on A(n,d)
is the linear programming bound of Delsarte [12], which coincides with ¥/ (H,, 4), as was shown
by Schrijver [38]. By Theorem 22, the reciprocal of the (stQPspp+rrr—1) bound therefore
also coincides with the Delsarte bound. Consequently, the reciprocal of the (stQPspp+rrr—2)
bound (i.e. the 9™ (H,, 4) bound) is at least as strong as the Delsarte bound (and sometimes
stronger; cf Table 1).

Stronger semidefinite programming bounds were introduced by Schrijver [39], and this has
led to further improvements in [29] and [16].

21



The algebraic symmetry of the Hamming graph H,, 4 is well-understood. For our purposes
it is important to note that A 4, H,,) is the Bose-Mesner algebra of the Hamming scheme, and
Aput(H, o is the Terwilliger algebra of the Hamming scheme. Thus one has dim( Ay (s, ,)) =

n+ 1, and dim(Aaui(m, ) = (”;’3), and bases for these algebras are known in closed form;
see e.g., Chapter 3 in [15]. Moreover, the Wedderburn decompositions of both algebras are also
known in closed form; see [39] and [15] for details.

We were therefore able to compute the bound (stQPspp+rrr—2) for problem (19) for the
graph H, 4, and the reciprocal of the bound (= 9(1)(H,, 4)) is shown in Table 1 for some values
of (n,d). Our purpose was to show the difference between the bounds obtained by level 1 RLT
cuts (the Delsarte bound) and level 2 RLT cuts (the 9™ (H,, 4) bound). Note that a few values of
9 (H, 4) were already reported in the paper [17], namely (n,d) € {(17,4), (17,6), (17,8)}, but
no details were given there on the symmetry reduction. Our goal here is therefore to compare
the bounds for more (and larger) values of (n,d), and also to give details on the symmetry
reduction via Theorem 14.

Computation was done on a Dell Precision T7500 workstation with 32GB of RAM memory,
using the semidefinite programming solver SDPA-GMP [33].

The column A(n,d) in Table 1 contains the best known upper and lower bounds on A(n, d) as
taken from the table maintained by Andries Brouwer at http://www.win.tue.nl/~aeb/codes/
binary-1.html for n < 28. This table is an update of the table published in [8]; see also [6].
For n > 28 the bounds were taken from [31, Appendix A].

n d A(n, d) 1/(3tQPSDP7RLT2) CPU time (sec) 1/(StQPSDp,RLT1)
=9 (H, 4) = Delsarte bound

9 4 20 21 1.05 25

13| 4 256 278 6.9 292

13| 6 32 33 7.37 40

17| 8 36 42 39.93 50

221 6 4096-6941 7672 243.69 7,723

22 110 64—-84 92 314.65 95

23 1 10 80-150 151 375.96 151

251 10 192-466 525 865.65 9951

26 | 10 384-836 983 1214.5 1040

25 | 12 952-55 63 1004.66 75

26 | 12 64-96 105 1259.57 113

27 | 12 128-169 170 1251.75 170

28 | 12 178-288 288 1622.36 288

30 | 8 | 216 - 114,398 114,398 3027.44 114,816

30 | 12| 512 -1,076 1,076 3706.00 1,131

30 | 14 64 — 117 117 3892.09 129

Table 1: Upper bounds on A(n,d) via RLT level 1 and level 2 cuts. All upper bounds have been
rounded down to the nearest integer.

Note that the 9™ (H,, 4) bound is stronger than the Delsarte bound [12] for all instances in
the table where the Delsarte bound is not tight, but not as strong as the best known bound for
n < 27. For the values (n,d) € {(28,12),(30,8), (30,12), (30, 14)}, 9V (H,, 4) coincides with the
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strongest known bound. (The sources of the strongest bounds for these cases are given in [6].)
Unfortunately, we were not able to find values of (n,d) where 9(1)(H,, 4) improves on the best
known upper bound on A(n,d).

Finally, we wish to emphasize that computing 19(1)(Hn,d) is intractable without the use of
symmetry reduction for all but the smallest values of n and d. This is because the number of
vertices in the Hamming graph H(n,d) equals 2", and the size of the SDP matrix variables in
the original formulation of ﬂ(l)(Hn,d) would therefore be of the order 2%,

7.2 Results for QAP

In this section we will present results for maximum and minimum k-section problems on graphs,
formulated as QAPs.

Recall that the maximum (resp. minimum) k-section problem, for a graph G = (V, E) on
n = |V| vertices and with adjacency matrix A, is to partition the vertices V into k sets of equal
cardinality m := n/k, such that the number of edges between partitions is a maximum (resp.
minimum).

The QAP reformulation of these problems works as follows: consider the adjacency matrix,
say B, of Ky, . m (with any fixed labeling of the vertices), e.g.

B = (Jy — I) @ Jp,. (21)

If P is a permutation matrix that defines a re-labeling of the vertices, then the adjacency matrix
after re-labeling is PT BP.
The QAP reformulation of max k-section is therefore given by:

1
3 Prgl%‘}‘(,‘ trace(APT BP), (22)

and min k-section is obtained by replacing ‘max’ by ‘min’.

An SDP bound for min/max k-section by Karisch and Rendl [22] is known to coincide with
the (QAPspp+rrr—1) bound considered here, as was shown in [13]; see also [45, Theorem 13].
Our goal here is to improve on this bound by computing the stronger (QAPspp+rrr—2) bound.

We will consider min/max k-section problem on strongly regular graphs. Recall that the
adjacency matrix A of a strongly regular graph has exactly two distinct eigenvalues associated
with eigenvectors orthogonal to the all-ones vector. These eigenvalues are called the restricted
eigenvalues, and are usually denoted by > 0 and s < 0. A strongly regular graph is completely
characterized by the values (n = |V, k,r, s), where k is the valency of the graph.

For strongly regular graphs, the Karisch and Rendl [22] bound has a closed form expression,
as shown in [25]. Since the closed form expression was only derived for the maximum k-section
bound in [25], we state the expression here for the minimum k-section bound as well. The proof
is similar to that of [25, Theorem 7], and is therefore omitted.

Theorem 24 (cf. Theorem 7 in [25]). Let G = (V, E) be a strongly regular graph with parameters
(n=|V|],k,r,s) wherer and s are the restricted eigenvalues, and k is the valency. Let an integer
k > 0 be given such that m = n/k is integer. The Karisch-Rendl bound on the minimum k-
section of G is now given by

IE| (1 ~ min {”_S(Z_lﬁ_(f)tl(fnj 5 Y (- 1)/m}> . (23)
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Similarly, the Karisch-Rendl bound on the maximum k-section of G is given by

1

5 min {(n —m)(k — s),kn}. (24)
Maximum k-section problems in strongly regular graphs are of interest, since they are related

to so-called Hoffman colorings and spreads of these graphs; see [18] for details and definitions.
We first present results for the Higman-Sims graph [20], where

(n = ’V|7 R, T, S) - (100, 22, 2, —8)

The max k-section problem on this graph was studied in [25], and the best known upper
bound of max 4-section was obtained there. In particular, it is known that the Higman-Sims
graph has a 4-section into four components of five 5-cycles each. Thus there is a 4-section of
weight 1000, but this is not known to be a maximum; for more information on this graph, see the
discussion on the web page maintained by Andries Brouwer: http://www.win.tue.nl/~aeb/
graphs/Higman-Sims.html

In Tables 2 and 3 we compare different bounds on various max k-section and min k-section
problems on the Higman-Sims graph respectively.

We computed the bound (QAPspptrrr—2) for the max/min k-section of the Higman-Sims
graph for several values of k. In order to do so, we used the symmetry of the Higman-Sims
graph described in [25]. Moreover, we used the symmetry of B as described in Example 8.

Computation was done on a PC with 8GB RAM memory and an Intel(R) Core(TM)2 Quad
CPU Q9550 processor, using the semidefinite programming solver SeDuMi [46] under Matlab 7
together with the Matlab package YALMIP [30].

k | (QAPspp+rrr—2) CPU time (s) | Karisch-Rendl | Bound | Lower bound
bound (24) | from [25]

2 750 0.1758 750 750 750
4 1048 0.2253 1100 1098 1006
5 1100 0.2161 1100 1100 1068

Table 2: Different bounds on the max k-section of the Higman-Sims graph.

The lower bounds in Table 2, and the upper bounds in Table 3 were obtained by using a
iterative local search QAP heuristic.

k | (QAPspp+rrr—2) CPU time (s) | Karisch-Rendl bound (23) | Upper bound
2 500 0.1623 500 500
4 750 0.2016 750 756
5 800 0.9491 800 800
10 900 0.1951 900 900
20 975 0.2746 950 980
25 1000 0.281 960 1000

Table 3: Different bounds on the min k-section of the Higman-Sims graph.
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The (QAPspp+rrT—2) bound gave improvements for max 4-section, min 20-section, and
min 25-section. Note that the upper and lower bounds for min 25-section coincide, proving
optimality.

Moreover, it is worth noting that the computational time required was less than a second
for each instance. (The computational time for the Karisch-Rendl bound is negligible, due
to its closed form expression in (23).) This shows that it is indeed possible to compute the
(QAPspp+rrT—2) bound when the QAP problem has suitable symmetry.

Similar results are shown in Table 4, for min/max 11-section on another strongly regular
graph, namely the Cameron graph [10] with parameters (n = |V, k,r, s) = (231, 30,9, —3); see
also http://www.win.tue.nl/~aeb/graphs/Cameron.html for more details on this graph. The
column ‘Heuristic’ gives the best heuristic solutions that were obtained with the iterative local
search heuristic (i.e. the heuristic solution provides a lower bound for the maximization problem
and an upper bound for minimization). For the min-11-section problem, the (QAPspp+rrr—2)

min/max | k | (QAPspp+rrr—2) CPU time (s) | Karisch-Rendl bound (23) | Heuristic
min 11 2349 1.7018 2205 2458
max 11 3465 0.8365 3465 3440

Table 4: Different bounds on the min/max 11-section of the Cameron graph.

bound is strictly better than the Karisch-Rendl bound (23). Once again, the computational time
required to compute the (QAPsppyrrr—2) bound is of the order of a second after symmetry
reduction.
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