Forbidding extreme points from the 0 − 1 hypercube

Gustavo Angulo, Shabbir Ahmed, Santanu S. Dey
H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA, USA.
765 Ferst Drive NW, GA, USA
gangulo@gatech.edu, sahmed@isye.gatech.edu, sdey@isye.gatech.edu

May 10, 2012

Abstract

Let B be the set of n-dimensional binary vectors and let V be a subset of m of its elements. We give an extended formulation of the convex hull of $B \setminus V$ which is polynomial in n and m. In developing this result, we give a two-sided extension of the result in [3] for knapsack sets with superincreasing coefficients.

1 Introduction

We consider the following problem. Let $B := \{0, 1\}^n$ and let $V \subseteq B$ contain m elements which are given as a list. Is it possible to give a description of $\text{conv}(B \setminus V)$ which is polynomial in n and m? We give a positive answer to this question by presenting an extended formulation involving $O(mn)$ variables and constraints. Our approach relies on being able to give the convex hull of binary knapsack sets having a superincreasing weight. This generalizes a result due to [3].

2 Binary expansion

Let $N := \{1, \ldots, n\}$ and $N := \{0, \ldots, 2^n - 1\}$. There exists a bijection between B and N given by the mapping $\sigma(v) := \sum_{i \in N} 2^{i-1}v_i$ for all $v \in B$. Therefore, we can write $B = \{v^0, \ldots, v^{2^n-1}\}$, where v^k gives the binary expansion of k for each $k \in N$, that is, $v^k = \sigma^{-1}(k)$. Let $V = \{v^{k_1}, \ldots, v^{k_m}\}$, where without loss of generality we assume $k_l < k_{l+1}$ for all $l = 1, \ldots, m-1$. Also, let $N_V := \{k \in N : v^k \in V\}$. Then we have

$$B \setminus V = \left\{ x \in B : \sum_{i \in N} 2^{i-1}x_i \notin N_V \right\}.$$

Now, for integers a and b, let

$$K(a, b) = \left\{ x \in B : a \leq \sum_{i \in N} 2^{i-1}x_i \leq b \right\}.$$

\(^1\text{After completion of this note, it was brought to our attention that recently Muldoon et al. [4] independently provided a convex hull description of two-sided binary knapsack sets with superincreasing weights.}\)
If \(b < a \), then \(K(a, b) \) is empty. Set \(k_0 = -1 \) and \(k_{m+1} = 2^n \). Then we can write

\[
B \setminus V = \bigcup_{l=0}^{m} K(k_l + 1, k_{l+1} - 1).
\]

Thus

\[
\text{conv}(B \setminus V) = \text{conv} \left(\bigcup_{l=0}^{m} K(k_l + 1, k_{l+1} - 1) \right) = \text{conv} \left(\bigcup_{l=0}^{m} \text{conv}(K(k_l + 1, k_{l+1} - 1)) \right). \tag{1}
\]

Therefore, if we have a polynomial description of \(\text{conv}(K(a, b)) \) for any \(a, b \in \mathcal{N} \), then we have a compact extended formulation for \(\text{conv}(B \setminus V) \) as the convex hull of the union of \(m + 1 \) polytopes as given in [1].

3 Superincreasing two-sided knapsack sets

Definition 1. A vector \(w \in \mathbb{Z}_+^n \) is a superincreasing sequence if \(\sum_{j<i} w_j \leq w_i \) for all \(i \in \mathcal{N} \).

A prime example of a superincreasing sequence is given by \(w = w^* \), where \(w_i^* := 2^{i-1} \) for all \(i \in \mathcal{N} \).

Let \(w \in \mathbb{Z}_+^n \). For integers \(0 \leq a \leq b \leq \sum_{i \in \mathcal{N}} w_i \), let

\[
K^\geq_w(a) := \left\{ x \in \{0, 1\}^n : a \leq \sum_{i \in \mathcal{N}} w_i x_i \right\},
\]

\[
K^\leq_w(b) := \left\{ x \in \{0, 1\}^n : \sum_{i \in \mathcal{N}} w_i x_i \leq b \right\},
\]

\[
K_w(a, b) := \left\{ x \in \{0, 1\}^n : a \leq \sum_{i \in \mathcal{N}} w_i x_i \leq b \right\} = K^\geq_w(a) \cap K^\leq(b).
\]

We say that \(C \subseteq \mathcal{N} \) is a minimal cover of \(b \) with respect to \(w \) if \(\sum_{i \in C} w_i > b \) and \(\sum_{i \in C'} w_i \leq b \) for all \(C' \subseteq C \). In [3] it is shown that if \(w \in \mathbb{Z}_+^n \) is a superincreasing sequence, then the non-trivial facets of the convex hull of \(K^\leq_w(b) \) are all minimal cover inequalities, that is

\[
\text{conv}(K^\leq_w(b)) = \left\{ x \in [0, 1]^n : \sum_{i \in C} x_i \leq |C| - 1 \forall C \in \mathcal{C}_w(b) \right\},
\]

where \(\mathcal{C}_w(b) \subseteq 2^\mathcal{N} \) is the set of all minimal covers of \(b \) with respect to \(w \). It is not hard to verify that an analogous result holds for the convex hull of \(K^\geq_w(a) \). We say that \(R \subseteq \mathcal{N} \) is a minimal reverse cover of \(a \) with respect to \(w \) if \(\sum_{i \in \mathcal{N} \setminus R} w_i < a \) and \(\sum_{i \in \mathcal{N} \setminus R'} w_i \geq a \) for all \(R' \subseteq R \). Then we have

\[
\text{conv}(K^\geq_w(a)) = \left\{ x \in [0, 1]^n : \sum_{i \in R} x_i \geq 1 \forall R \in \mathcal{R}_w(a) \right\},
\]

where \(\mathcal{R}_w(a) \subseteq 2^\mathcal{N} \) is the set of all minimal reverse covers of \(a \) with respect to \(w \). We show that

\[
\text{conv}(K_w(a, b)) = \text{conv} \left(K^\geq_w(a) \right) \cap \text{conv} \left(K^\leq_w(b) \right).
\]
Theorem 2. If \(w \in \mathbb{Z}_+^n \) is a superincreasing sequence, then for all integers \(0 \leq a \leq b \leq \sum_{i \in N} w_i \), we have

\[
\text{conv}(K_w(a, b)) = \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \quad \forall \bar{R} \in \mathcal{R}_w(a) \right\}
\]

Proof. We prove the result by induction on \(n \). When \(n = 1 \), the result is trivial. Fix \(n > 1 \) and assume the result is true for \(n - 1 \). Let \(w \in \mathbb{Z}_+^n \) be a superincreasing sequence, and let \(0 \leq a \leq b \leq \sum_{i \in N} w_i \). Consider the set

\[
K_w(a, b) = \left\{ x \in \{0, 1\}^n : a \leq \sum_{i < n} w_i x_i \leq b, \quad x_n = 0 \right\} = K_w(a, b) \times \{0\}.
\]

Let \(\bar{w} \in \mathbb{Z}_+^{n-1} \) be the vector obtained by removing the last component from \(w \). Clearly, \(\bar{w} \) is a superincreasing sequence.

Case 1: \(w_n > b \).

If \(w_n > b \), then \(x_n = 0 \) for all \(x \in K_w(a, b) \). Thus

\[
K_w(a, b) = \left\{ x \in \{0, 1\}^n : a \leq \sum_{i < n} w_i x_i \leq b, \quad x_n = 0 \right\} = K_{\bar{w}}(a, b) \times \{0\}.
\]

Notice that \(\bar{C} := \{n\} \) is a minimal cover of \(b \) with respect to \(w \), and therefore \(n \) cannot be contained in any other cover in \(\mathcal{C}_{\bar{w}}(b) \). Then we have \(\mathcal{C}_w(b) = \mathcal{C}_{\bar{w}}(b) \cup \{\bar{C}\} \). We also have \(\bar{R} \cup \{n\} \in \mathcal{R}_{\bar{w}}(a) \) for all \(\bar{R} \in \mathcal{R}_{\bar{w}}(a) \). On the other hand, if \(R \in \mathcal{R}_{\bar{w}}(a) \) and \(n \notin R \), then \(a > \sum_{N \setminus R} w_i \geq w_n \geq b \), a contradiction. Furthermore, if \(\bar{R} \subseteq N \setminus \{n\} \) and \(\bar{R} \notin \mathcal{R}_{\bar{w}}(a) \), then \(\bar{R} \cup \{n\} \notin \mathcal{R}_{\bar{w}}(a) \). Thus \(\mathcal{R}_w(a) = \{\bar{R} \cup \{n\} : \bar{R} \in \mathcal{R}_{\bar{w}}(a)\} \). Hence, by the inductive hypothesis, we have

\[
\text{conv}(K_w(a, b)) = \text{conv}(K_{\bar{w}}(a, b) \times \{0\})
\]

\[
= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \quad \forall \bar{R} \in \mathcal{R}_{\bar{w}}(a) \right\}
\]

\[
= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \leq |\bar{C}| - 1 \quad \forall \bar{C} \in \mathcal{C}_{\bar{w}}(b) \right\}
\]

\[
= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \quad \forall \bar{R} \in \mathcal{R}_{\bar{w}}(a) \right\}
\]

\[
= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \leq |\bar{C}| - 1 \quad \forall \bar{C} \in \mathcal{C}_{\bar{w}}(b) \right\}
\]

Since the result holds for \(w_n > b \), we may assume \(w_n \leq b \). Notice that this implies \(n \in C \) for all \(C \in \mathcal{C}_{\bar{w}}(b) \).

Case 2: \(a > \sum_{i < n} w_i \), \(w_n \leq b \).
If $a > \sum_{i<n} w_i$, then $x_n = 1$ for all $x \in K_w(a, b)$. Thus

$$K_w(a, b) = \left\{ x \in \{0, 1\}^n : a - w_n \leq \sum_{i<n} w_i x_i \leq b - w_n, \ x_n = 1 \right\} = K_w(a - w_n, b - w_n) \times \{1\}.$$

It is not hard to verify that $C_w(b) = \{\bar{C} \cup \{n\} : \bar{C} \in C_w(b - w_n)\}$. Also, since $\sum_{i<n} w_i < a$ and $\sum_{i\in N} w_i \geq a$, we have that $\bar{R} := \{n\}$ is a minimal reverse cover of a with respect to w. Therefore n cannot be contained in any other reverse cover in $R_w(a)$. Then it is straightforward to verify that $R_w(a) = R_w(a - w_n) \cup \{\bar{R}\}$. Hence, by the inductive hypothesis, we have

$$\text{conv}(K_w(a, b)) = \text{conv}(K_w(a - w_n, b - w_n) \times \{1\})$$

$$= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \ \forall \bar{R} \in R_w(a - w_n) \right\}$$

$$= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i + x_n \leq |\bar{C} \cup \{n\}| - 1 \ \forall \bar{C} \in C_w(b - w_n) \right\}$$

$$= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \ \forall \bar{R} \in R_w(a) \right\}$$

$$= \left\{ x \in [0, 1]^n : \sum_{i \in \bar{C}} x_i \leq |C| - 1 \ \forall C \in C_w(b) \right\}.$$

Since the result holds for $a > \sum_{i<n} w_i$, we may assume $a \leq \sum_{i<n} w_i$. Notice that this implies $n \in R$ for all $R \in R_w(a)$.

Let $w_0 := \sum_{i<n} w_i$. We have $w_0 \leq w_n$.

Case 3: $a \leq w_0 \leq w_n \leq b$.

Consider the sets

$$K_w^0(a, b) := K_w(a, b) \cap \{ x \in \mathbb{R}^n : x_n = 0 \} = K_w(a, w_0) \cap \{ x \in \mathbb{R}^n : x_n = 0 \} = K_w(a, w_0) \times \{0\},$$

$$K_w^1(a, b) := K_w(a, b) \cap \{ x \in \mathbb{R}^n : x_n = 1 \} = K_w(w_n, b) \cap \{ x \in \mathbb{R}^n : x_n = 1 \} = K_w(0, b - w_n) \times \{1\},$$

which are nonempty. Notice that $C_w(w_0) = \emptyset$ and $R_w(0) = \emptyset$. By the inductive hypothesis, we have

$$\text{conv}(K_w^0(a, b)) = \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \ \forall \bar{R} \in R_w(a) \right\},$$

$$\text{conv}(K_w^1(a, b)) = \left\{ x \in [0, 1]^n : \sum_{i \in \bar{C}} x_i \leq |\bar{C}| - 1 \ \forall \bar{C} \in C_w(b - w_n) \right\}.$$

Furthermore, by arguments similar to that of Cases 1 and 2, we obtain

$$\text{conv}(K_w^0(a, b)) = \left\{ x \in [0, 1]^n : \sum_{i \in \bar{R}} x_i \geq 1 \ \forall \bar{R} \in R_w(a) \right\},$$

$$\text{conv}(K_w^1(a, b)) = \left\{ x \in [0, 1]^n : \sum_{i \in \bar{C}} x_i \leq |\bar{C}| - 1 \ \forall \bar{C} \in C_w(b - w_n) \right\}.$$
\[
\text{conv}(K_w^1(a, b)) = \left\{ x \in [0,1]^n : \sum_{i \in C} x_i \leq |C| - 1 \quad \forall C \in \mathcal{C}_w(b) \right\}.
\]

Clearly,
\[
\text{conv}(K_w(a, b)) = \text{conv} \left(\text{conv}(K_w^0(a, b)) \cup \text{conv}(K_w^1(a, b)) \right).
\]

Let \(Q \subseteq \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \) be the polyhedron given by
\[
\begin{align*}
x_i &= y_i + z_i \quad \forall i \\
\sum_{i \in R} y_i &\geq \lambda \quad \forall R \in \mathcal{R}_w(a) \\
y_i &\geq 0 \quad \forall i \leq n - 1 \\
y_i &\leq \lambda \quad \forall i \leq n - 1 \\
y_n &= 0 \\
\sum_{i \in C} z_i &\leq (|C| - 1)(1 - \lambda) \quad \forall C \in \mathcal{C}_w(b) \\
z_i &\geq 0 \quad \forall i \leq n - 1 \\
z_i &\leq 1 - \lambda \quad \forall i \leq n - 1 \\
z_n &= 1 - \lambda \\
\lambda &\geq 0 \\
\lambda &\leq 1.
\end{align*}
\]

From [1], we have that \(\text{conv}(K_w(a, b)) = \text{proj}_x(Q) \). Eliminating \(z \) from \(Q \) using \(z_i = x_i - y_i \) for all \(i \in N \), we obtain \(\text{proj}_{x,y,\lambda}(Q) \) as
\[
\begin{align*}
\sum_{i \in R} y_i &\geq \lambda \quad \forall R \in \mathcal{R}_w(a) \\
y_i &\geq 0 \quad \forall i \leq n - 1 \\
y_i &\leq \lambda \quad \forall i \leq n - 1 \\
y_n &= 0 \\
\sum_{i \in C} (x_i - y_i) &\leq (|C| - 1)(1 - \lambda) \quad \forall C \in \mathcal{C}_w(b) \\
x_i - y_i &\geq 0 \quad \forall i \leq n - 1 \\
x_i - y_i &\leq 1 - \lambda \quad \forall i \leq n - 1 \\
x_n - y_n &= 1 - \lambda \\
\lambda &\geq 0 \\
\lambda &\leq 1.
\end{align*}
\]
Eliminating \(\lambda \) from \(\text{proj}_{x,y,\lambda}(Q) \) using \(\lambda = 1 - x_n + y_n \), we obtain \(\text{proj}_{x,y}(Q) \) as
\[
\sum_{i \in R} y_i \geq 1 - x_n + y_n \quad \forall R \in R_w(a)
\]
\[
y_i \geq 0 \quad \forall i \leq n - 1
\]
\[
y_i \leq 1 - x_n + y_n \quad \forall i \leq n - 1
\]
\[
y_n = 0
\]
\[
\sum_{i \in C} (x_i - y_i) \leq (|C| - 1)(x_n - y_n) \quad \forall C \in C_w(b)
\]
\[
x_i - y_i \geq 0 \quad \forall i \leq n - 1
\]
\[
x_i - y_i \leq x_n - y_n \quad \forall i \leq n - 1
\]
\[
1 - x_n + y_n \geq 0
\]
\[
1 - x_n + y_n \leq 1.
\]
Let \(P^n := \text{proj}_{x,y}(Q) \). For each \(k \in \{n - 1, \ldots, 0\} \), let \(P^k \) be the polyhedron obtained after projecting out \(y_{k+1} \) from \(P^{k+1} \). Also, for each \(C \in C_w(b) \) and \(k \in \{n - 1, \ldots, 0\} \), let \(C^k := \{i \in C : i > k\} \).

Claim: For each \(k \in \{n - 1, \ldots, 0\} \), \(P^k \) is given by
\[
\sum_{i \in R: i \leq k} y_i + \sum_{i \in R: i > k} x_i \geq 1 \quad \forall R \in R_w(a) \quad (2)
\]
\[
y_i \geq 0 \quad \forall i \leq k \quad (3)
\]
\[
y_i \leq 1 - x_n \quad \forall i \leq k \quad (4)
\]
\[
\sum_{i \in C: i \leq k} (x_i - y_i) + \sum_{i \in C: i > k} x_i \leq |C^k| - 1 + (|C| - |C^k|)x_n \quad \forall C \in C_w(b) \quad (5)
\]
\[
x_i - y_i \geq 0 \quad \forall i \leq k \quad (6)
\]
\[
x_i - y_i \leq x_n \quad \forall i \leq k \quad (7)
\]
\[
x_i \geq 0 \quad \forall i > k
\]
\[
x_i \leq 1 \quad \forall i > k.
\]
We verify the claim for \(k = n - 1 \). Following Assumptions 1 and 2, \(n \in C \) for all \(C \in C_w(b) \) and \(n \in R \) for all \(R \in R_w(a) \). Given that \(y_n = 0 \) and \(C^{n-1} = \{n\} \) for all \(C \in C_w(b) \), we obtain \(P^{n-1} \) as
\[
\sum_{i \in R: i \leq n-1} y_i + \sum_{i \in R: i > n-1} x_i \geq 1 \quad \forall R \in R_w(a)
\]
\[
y_i \geq 0 \quad \forall i \leq n - 1
\]
\[
y_i \leq 1 - x_n \quad \forall i \leq n - 1
\]
\[
\sum_{i \in C: i \leq n-1} (x_i - y_i) + \sum_{i \in C: i > n-1} x_i \leq (|C| - 1)x_n \quad \forall C \in C_w(b)
\]
\[
x_i - y_i \geq 0 \quad \forall i \leq n - 1
\]
\[
x_i - y_i \leq x_n \quad \forall i \leq n - 1
\]
\[
x_n \geq 0
\]
\[
x_n \leq 1.
\]
Now, fix \(1 \leq k < n \) and assume the claim holds for \(k \). We want to show that after projecting out \(y_k \) from \(P^k \) we obtain \(P^{k-1} \) having the desired form. We check the inequalities obtained by appropriately combining \([2] - [7]\). We begin combining \([3], [4], [5], \) and \([7]\) for \(i = k \).
(3), (4) gives \(x_n \leq 1 \), which is redundant.

(6), (7) gives \(x_n \geq 0 \), which is redundant.

(3), (6) gives \(x_k \geq 0 \).

(4), (7) gives \(x_k \leq 1 \).

Inequalities (3), (4), (6), and (7) remain for \(i < k \). Inequalities (2) and (5) remain if \(R \not\in \mathcal{R}_w(a) \) and \(C \not\in \mathcal{C}_w(b) \), respectively. Notice that (2) and (5) cannot be combined. The remaining cases are the following.

(2), (4) for \(R \in \mathcal{R}_w(a) \) such that \(k \in R \) gives
\[
\sum_{i \in R: i \leq k-1} y_i + \sum_{i \in R: i > k} x_i \geq 0,
\]
which is redundant since \(y_i \geq 0 \) for all \(i \leq k-1 \) and \(x_i \geq 0 \) for all \(i > k-1 \).

(2), (6) for \(R \in \mathcal{R}_w(a) \) such that \(k \in R \) gives
\[
\sum_{i \in R: i \leq k-1} y_i + \sum_{i \in R: i > k-1} x_i \geq 1,
\]

(5), (4) for \(C \in \mathcal{C}_w(b) \) such that \(k \in C \) gives
\[
\sum_{i \in C: i \leq k-1} (x_i - y_i) + \sum_{i \in C: i > k-1} x_i \leq |C^k| + (|C| - |C^k| - 1)x_n = |C^{k-1}| - 1 + (|C| - |C^{k-1}|)x_n,
\]
where we have used that \(k \in C \) implies \(k \notin C^k \) and \(C^{k-1} = C^k \cup \{k\} \).

(5), (6) for \(C \in \mathcal{C}_w(b) \) such that \(k \in C \) gives
\[
\sum_{i \in C: i \leq k-1} (x_i - y_i) + \sum_{i \in C: i > k} x_i \leq |C^k| - 1 + (|C| - |C^k|)x_n,
\]
which is redundant since \(x_i - y_i \leq x_n \) for all \(i \leq k-1 \) and \(x_i \leq 1 \) for all \(i > k-1 \).

Thus, \(P^{k-1} \) has the desired form, which completes the proof of the claim. \(\diamond \)

For \(k = 0 \), we have that \(P^0 = \text{proj}_e(Q) \) has the required form, which completes the proof of the proposition. \(\square \)

4 Description of \(\text{conv}(B \setminus V) \)

Recall the definition \(w^*_i := 2^{i-1} \) for all \(i \in \mathcal{N} \). For each \(k \in \mathcal{N} \), let \(N^k := \{i \in \mathcal{N} : v^k_i = 1\} \). From (2) and (3), we have
\[
\mathcal{C}_{w^*}(k) = \{\{i\} \cup \{j \in N^k : j > i\} : i \notin N^k\}.
\]

Similarly, we have
\[
\mathcal{R}_{w^*}(k) = \{\{i\} \cup \{j \notin N^k : j > i\} : i \in N^k\}.
\]
Thus, for $0 \leq a \leq b \leq 2^n - 1$, applying Theorem 2 yields

$$
\text{conv}(K(a, b)) = \text{conv}(K_w(a, b)) = \left\{ x \in [0, 1]^n : \begin{align*}
 x_i + \sum_{j \notin N_i, j > i} x_j &\geq 1 & \forall i \in N^a \\
 x_i + \sum_{j \in N_i, j > i} x_j &\leq c_i^b & \forall i \notin N^b
\end{align*} \right\},
$$

where $c_i^k := |\{j \in N^k : j > i\}|$ for each $k \in \mathcal{N}$ and $i \notin N^k$. Finally, from the above result and [1], we have that $\text{conv}(B \setminus V)$ can be described by an extended formulation having $O(m \cdot n)$ variables and constraints.

References

