
Robust Decision Making using a General Utility Set

Jian Hu
Department of Industrial and Manufacturing Systems Engineering

University of Michigan - Dearborn
Dearborn, MI 48128
jianhu@umich.edu

Manish Bansal, Sanjay Mehrotra
Department of Industrial Engineering and Management Sciences

Northwestern University
Evanston, IL 60208

manish.bansal@northwestern.edu, mehrotra@iems.northwestern.edu

September 23, 2015

Abstract

Elicitation of an exact utility function of a decision maker is challenging. In this paper, we address
the problem of ambiguity and inconsistency in utility assessments by studying a robust utility-based
decision making model where the utility function belongs to a set of general increasing utility func-
tions. We build a robust framework in which the utility function belongs to a set. This set on the
utility function is described by boundary and auxiliary conditions. We consider a maximin problem
that maximizes the worst-case expected utility of random outcome over the set, thereby hedging
the risk arising from uncertainty of the utility function. We study the implications of the uncertain
utility on the objective function value of this robust decision model and show that under suitable
conditions the Sample Average Approximation (SAA) of a Lagrangian function associated with this
model can be solved using a mixed integer linear program. We show that the optimum objective
value of the SAA converges to its true counterpart at an exponential rate and we harness this
convergence property to present a heuristic which provides a feasible solution for the SAA problem.
We illustrate model properties using a portfolio investment problem where investment gains and
losses are valued using different uncertain decision (dis)utilities. We also provide computational in-
sights by solving the SAA of this problem as a mixed integer linear program and using our heuristic.

Key Words: Expected Utility Maximization, Utility Function, Distributionally Robust Optimiza-
tion, Random Target, Portfolio Optimization



1 Introduction

In economics, utility is a measure of satisfaction gained from a good or service and according to
the expected utility theory (von Neumann and Morgenstern (1947)), the satisfaction of a decision
maker (DM) from a random outcome ξ1 over a random outcome ξ2 is given by

E[u(ξ1)] ≥ E[u(ξ2)], (1.1)

where u is a von Neumann-Morgenstern utility function which characterizes the DM’s satisfac-
tion level or risk attitude. Utility functions in decision making can be interpreted as cumulative
distribution functions (cdf) (Borch (1968); Berhold (1973)) where a bounded utility function u is
normalized to take values in [0, 1] (Castagnoli and LiCalzi (1996); Bordley and LiCalzi (2000)).
However, uncertainty of utility function is a major concern in decision science and the lack of
accurate description of human behavior is a basic assumption for random utility theory (Thur-
stone (1927)). Karmarkar (1978) and Weber (1987) ascribed the inaccuracy to cognitive difficulty
and incomplete information. Parametric and non-parametric methods have been proposed in the
literature for assessing a DM’s utility. These include discrete choice models (Train (2009)), para-
metric estimations using constant absolute risk aversion (CARA) and relative risk aversion (CRRA)
utility functions (Pratt (1964) and Arrow (1965)), standard and paired gamble (non-parametric)
approaches using preference comparison, probability equivalence, value equivalence, and certainty
equivalence (Farquhar (1984), Wakker and Deneffe (1996)). However, despite extensive research in
utility assessment, resolving ambiguity that remains after the use of these utility assessment meth-
ods is still difficult to solve (Hershey and Schoemaker (1985); Fromberg and Kane (1989); Nord
(1992); Chajewska et al. (2000)). Moreover, predetermined forms of utility function in parametric
estimations need to be presumed. In view of these difficulties Jacquet-Lagrèze and Siskos (1982)
developed a ranking based method, referred to as the UTA method, which considers a disaggre-
gation paradigm. But, unless an exhaustive approach is used, the UTA method is also unable to
specify a unique utility function.

In this paper, we study a robust utility-based decision making model which is complementary
to the aforementioned utility assessment methods and also handles the ambiguity and inconsistency
in utility elicitation by assuming that the utility function u belongs to a set U of general increasing
utility functions. More specifically, we resolve the ambiguity issue using a robust approach by
considering the following decision model (proposed by Armbruster and Delage (2015) and Hu and
Mehrotra (2015)):

max
x∈X

min
u∈U

E[u(ξ(x))] (RVM)

where the random outcome ξ is a function of (continuous and/or discrete) decision variables x ∈
X ⊆ Rn, and it is assumed that ξ(x) has a finite support. Model (RVM) is a maximin problem
that maximizes the worst-case expected utility of random outcome over the utility set U, thereby
hedging the risk arising from the uncertainty of utility function. This setting is also applicable
to deterministic decision making where ξ is a deterministic function. It is important to note
that in this paper we study model (RVM) where the set U consists of general increasing utility
functions. In contrast, Armbruster and Delage (2015) and Hu and Mehrotra (2015) were restricted.
The set U in Armbruster and Delage (2015) consists of increasing concave, S-shaped, or prudent
utilities. For individualizing U to meet a DM’s risk attitude, they use a paired gamble method
which designs a number of lottery pairs and requests the DM to compare each pair. As a result,
the set U consists of the all possible cases describing preference orders given by the DM. Hu and
Mehrotra (2015) focused on the problem with increasing concave utilities. The increasing concavity
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assumption gives a linear programming formulation of the approximation problems. However, it is
limited because it is not able to model risk/loss preferences differently. Hu and Mehrotra (2015)
specified boundary conditions on utility and the marginal utility, and construct auxiliary conditions
using both standard and paired game methods. Likewise, we also specify boundary and auxiliary
conditions to combine utility-based robust optimization and parametric and nonparametric utility
assessments (See Section 3 for an illustration of these conditions using an example).

This paper makes the following contributions: (i) we study the implications of the uncertain
utility (or target) on the objective function value of the general robust utility-based decision making
model (RVM) and we define the concept of “cost of target uncertainty”; (ii) we show that under
suitable conditions the sample average approximation (SAA) of a Lagrangian function associated
with (RVM) can be solved using a mixed integer linear program; (iii) we show that the objective
function of this SAA has asymptotic exponential convergence rate; (iv) we harness this convergence
property to present a heuristic which provides a feasible solution for the SAA problem; (v) we use
a portfolio investment example to discuss the concept of utility (or target) robustness and cost of
target uncertainty.

The normalized utility function u ∈ U can be interpreted as the cdf of a random variable ζ, i.e.,
for a given t ∈ R, u(t) = Pr {ζ ≤ t} (Castagnoli and LiCalzi (1996)), and U is regarded as a set of
distributions. We now rewrite model (RVM) as

max
x∈X

min
u∈U

∫
Pr {ξ(x) ≥ t} du(t) (P-RVM)

because

E[u(ω)] = E[Pr {ω ≥ ζ|ω}] = E[E[1{ω ≥ ζ}|ω]] = E[1{ω ≥ ζ}] = Pr {ω ≥ ζ} , (1.2)

where ω = ξ(x).

1.1 Literature Review on Distributionally Robust Optimization

In general, model (P-RVM) with U as the set of cdf’s can be interpreted as a distributionally robust
optimization problem, i.e. a decision problem where the distribution of random parameter ζ is
partially specified. The idea of formulating robust optimization problems with unknown parameter
distributions originated in Scarf (1958), where in the context of news vendor model the distribution
was specified using the first two moments. Dupacová (1987), Prékopa (1995), Bertsimas and
Popescu (2005), Bertsimas et al. (2010), and Delage and Ye (2010) use linear or conic constraints to
describe the set of distributions with moments. Shapiro and Ahmed (2004) define the distribution
uncertainty set with measure bounds and general moment constraints. Calafiore (2007) defines
the distribution uncertainty set using the Kullback-Leibler distance from a reference probability
measure. By comparison, Pflug and Wozabal (2007), Pflug et al. (2012), and Wozabal (2012) use
the Kantorovich or Wasserstein distance to specify the distribution uncertainty set. Bertsimas
et al. (2010) use a piecewise linear utility with first and second moment equality constraints and
showed that the corresponding problem has semidefinite programming reformulations. Delage and
Ye (2010) give general conditions for polynomial time solvability of a distributionally robust model
with constraints on first and second moments. Analogous to the price of robustness introduced by
Bertsimas and Sim (2004), Li and Kwon (2013) further consider a penalty incurred by the norm-
based distance of the first and second moments from references values. In this paper the specification
of the distribution set U is similar to the definition given by Shapiro and Ahmed (2004). However,
the objective function in Model (P-RVM) is a probability measure. The nonconcavity of this
objective function (maximization problem) violates the convexity assumption for the minimization
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problem considered in Shapiro and Ahmed (2004). A more general model allowing bounds on
higher order moments was recently studied in Mehrotra and Papp (2014).

Model (RVM) in our approach also inherits the feature of the first order stochastic dominance in
that a class of increasing utility functions is used to address ambiguity and inconsistency in utility
assessments (see e.g., Müller and Stoyan (2002) and references therein). Optimization problems
with stochastic dominance requirements have been studied in Dentcheva and Ruszczyński (2004,
2008, 2009) for the univariate case, and in Homem-de-Mello and Mehrotra (2009) and Hu et al.
(2012, 2013) for the multivariate case. When viewed from the perspective of stochastic dominance,
our approach gives a further characterization of the DM’s risk preference beyond a general classifi-
cation of risk attitude by stochastic dominance. This further characterization is done by imposing
additional requirements on a DM’s utility.

1.2 Organization of this paper

The specification and properties of the utility-based robust decision model (RVM) (or robust target-
based model (P-RVM)) are addressed in Section 2. The properties of U under boundary and
auxiliary conditions are studied in Section 2.1. In Section 2.2, we show that the cost of uncertainty
in utility assessment is an increasing concave function in the size of the set U. In Section 3, we
discuss about the constraints defining the uncertainty set in the robust utility-based model (RVM)
with the help of an investment decision problem. In Section 4 we study the Lagrangian dual of
model (RVM), and reformulate the SAA of the Lagrangian dual problem to be a mixed integer
linear program. Section 5 gives results on the asymptotic convergence and the rate of convergence
properties of SAA under suitable assumptions. More specifically, it is shown that the optimal value
of the SAA problem converges to the optimum value of its true counterpart at an exponential
rate. We harness this convergence property to present a heuristic which provides a feasible solution
for the problem with large sample size by utilizing the optimal solution of the small sample size
problem. We illustrate the properties of the decision model (RVM) with the help of a numerical
example in Section 6. We computationally evaluate the effectiveness of our heuristic and the mixed
integer linear program in solving the SAA of the portfolio optimization problem in Section 6.1, and
make concluding remarks in Section 6.2.

2 Utility Set: Assumptions and Properties

In this section, we discuss the specification of the utility set U in model (RVM). Let U be a subset of
all increasing utility functions u, defined on Θ, which are right-continuous with left limits (RCLL)
and satisfy the boundary condition:

u(θ1) = 0, u(θ2) = 1. (2.1)

Conditions (2.1) are commonly used for the normalization of utility functions that does not change
the preference ranking of any two alternatives (Keeney and Raiffa, 1976, Theorem 4.1). We assume
throughout this paper that, for every x ∈ X , ξ(x) has a finite support in Θ = [θ1, θ2] ⊆ R. Let

Pr {ξ(x) = ξk(x)} = pk, k = 1, . . . ,K, (2.2)

where K is the number of scenarios, and

ϕ0
x(t) := Pr {ξ(x) ≥ t} =

K∑
k=1

pk1{ξk(x) ≥ t}. (2.3)
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Let G1, G2 be two increasing positive functions which are right-continuous with left limits (RCLL)
defined on Θ. The function G2 is said to be preferred to G1 (written G1 � G2) if, for any interval
(t1, t2] ⊆ Θ,

G2(t2)−G2(t1) ≥ G1(t2)−G1(t1). (2.4)

If the left-hand-side of inequality (2.4) is strictly greater than the right-hand-side for all t1, t2, we
write G1 ≺ G2.

Denote by BΘ the collection of all Borel subsets of Θ, and by M the set of all finite positive
signed measure on (Θ,BΘ). In this setting, for a given x ∈ X , the inner minimization problem of
model (P-RVM) is given as

min
u∈M

∫
Θ
ϕ0
x(t)du(t) (2.5a)

s.t.

∫
Θ
du(t) = 1, (2.5b)

G1 � u � G2, (2.5c)∫
Θ
ϕi(t)du(t) ≤ ci, i = 1, . . . ,M. (2.5d)

The problem (2.5a)–(2.5d) is specified in a measure spaceM. Condition (2.5b) ensures that u ∈M
is a cdf. Condition (2.5c) constructs a region of the utility (cdf) of ζ bounded by functions G1 and
G2. Note that the functions G1 and G2 in (2.5c) are not necessarily cdf functions. The functions
ϕi(·), i = 1, . . . ,M , are assumed to be Lebesgue-integrable functions defined on Θ, and M is the
number of constraints. Note that ϕi(·) is not dependent on ξ(x). Also, in a special case, when
ϕi(t) = tk is the kth monomial, inequality (2.5d) represents a bound on the kth moment of a
distribution function. Inequalities (2.5d), however, are quite general. This will become useful in
the example of Section 3. Based on the formulation of problem (2.5), we specify the distribution
set U in model (P-RVM) as

U := {u ∈M | u satisfies conditions (2.5b), (2.5c), and (2.5d) }. (2.6)

Note that, by the definition of this preference relationship, (2.5c) is equivalent to

G1 + c1 � u � G2 + c2

for any constants c1, c2 ∈ R. Hence, in this paper, we assume that G1(θ1) = G2(θ1) = 0. The
constraint (2.5c), as a special case, allows us to specify the lower and upper bounds using a reference
u# on (Θ,BΘ) as follows:

ρ1u# � u � ρ2u#, (2.7)

where ρ1 ∈ [0, 1] and ρ2 ∈ [1,∞) are two given constants controlling the size of uncertainty region.

2.1 Properties of the Utility Set

We now give some basic continuity properties of the functions satisfying the boundary condition
(2.5c). These properties, under suitable assumptions, allow us to specify bounds on the cdf of ζ.

Proposition 2.1 If G2 is continuous, then all u ∈M satisfying condition (2.5c) are continuous.
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Proof: Suppose that there exists u ∈ M which satisfies condition (2.5c) and is discontinuous at
a point t ∈ Θ. Since u satisfies RCLL, we have t > θ1. For any ε ∈ (θ1, t), we can assume
u(t) − u(t − ε) > δ > 0. On the other hand, by the continuity of G2, it follows that there exists
ε̂ ∈ (θ1, t) such that G2(t)−G2(t− ε̂) < δ. It implies that

G2(t)−G2(t− ε̂) < u(t)− u(t− ε̂),

which contradicts u � G2 on the interval [t− ε̂, t]. �
We next discuss the absolute continuity of u ∈ M. The next proposition shows that to ensure

the absolute continuity of all u ∈ M satisfying (2.5c), it is sufficient to assume that the upper
bounding function G2 in the boundary conditions (2.5c) is absolute continuous.

Proposition 2.2 If G2 is absolute continuous on Θ (with respect to Lebesgue measure), then all
u ∈M satisfying condition (2.5c) are absolute continuous on Θ.

Proof: By the definition of absolute continuity, we know that for any ε > 0, there exists δ > 0 such
that whenever a finite sequence of pairwise disjoint sub-intervals (ak, bk] of Θ satisfies∑

k

|bk − ak| < δ,

then ∑
k

|u(bk)− u(ak)| ≤
∑
k

|G2(bk)−G2(ak)| < ε.

This implies that u is absolute continuous. �
The boundary conditions (2.5c) describes a preference (ordering) of the cdf of ζ in comparison

with reference functions G1 and G2. This preference can also be interpreted using the pdf of ζ as
shown in the following proposition.

Proposition 2.3 If functions u1, u2 ∈ M are absolute continuous in Θ, then u1 � u2 if and only
if u′1 ≤ u′2 a.e., where u′1, u

′
2 are derivatives of u1 and u2.

Proof: The absolute continuity of u1 and u2 implies the existence of their derivatives u′1 and u′2,
a.e., i.e., for any (t1, t2] ⊆ Θ,

u1(t2)− u1(t1) =

∫ t2

t1

u′1(s)ds and u2(t2)− u2(t1) =

∫ t2

t1

u′2(s)ds.

If u′1 ≤ u′2 a.e. on Θ, then it follows that

u1(t2)− u1(t1) ≤ u2(t2)− u2(t1),

and consequently u1 � u2, by definition. On the other hand, if u1 � u2, at any given interval
(t, t+ h] ⊂ Θ, we have

u1(t+ h)− u1(t) ≤ u2(t+ h)− u2(t),

which implies that, if u1, u2 are differentiable at t, then

u′1(t) = lim
h→0

u1(t+ h)− u1(t)

h
≤ lim

h→0

u2(t+ h)− u2(t)

h
= u′2(t).

�
Assume that G1 and G2 are both absolutely continuous, and let g1 and g2 be derivatives of G1

and G2. Using Proposition 2.3, we rewrite the boundary conditions (2.5c) as

g1 ≤ u′ ≤ g2, a.e., (2.8)

which shows an equivalent representation in the form of the pdf u′ of ζ. In the context of utility,
condition (2.8) specifies the pointwise lower and upper bounds of the marginal utility function u′.
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2.2 Cost of Increased Ambiguity and Parametric Properties of the Decision
Model

The ambiguity in the utility may result in sub-optimal decision making. Intuitively, the larger
the uncertainty set U, the higher would be the cost of uncertainty. The goal of this section is to
provide a parametric construction that can be used to study the effect of uncertainty in our ability
to specify ζ. Assume that U1 ⊆ U2. Then, we may view the difference in the objective function
value of the decision model (P-RVM) as the cost of increased (value of reducing) ambiguity from
set U1 to U2. This is more formally stated in Theorem 2.6. Let

C(U) :=

{
−maxx∈X minu∈U

∫
Θ ϕ

0
x(t)du(t), if U is nonempty,

−∞ otherwise.
(2.9)

In Theorem 2.6 we show that the cost function C(U) is increasing and concave. The results are
proved in Appendix C–E. We first show that the set U defined in (2.6) is convex.

Proposition 2.4 U given by (2.6) is a convex set.

Let κU = {κu | u ∈ U} and denote the Minkowski sum of two sets as U1 ⊕ U2 = {u1 + u2 | u1 ∈
U1, u2 ∈ U2}. Also for given convex sets U1 ⊆ U2, let

U(κ) := (1− κ)U1 ⊕ κU2

for some κ ∈ [0, 1].

Lemma 2.5 For 0 ≤ κ1 ≤ κ2 ≤ 1, U(κ1) ⊆ U(κ2).

Theorem 2.6 The function C(U(κ)) is an increasing concave function of κ.

The increasing property of C(U) is consistent with the common experience that the decision
may become increasingly suboptimal with our inability to specify the target precisely. The risk
averse nature of the decision framework (P-RVM) ensures that the incremental inefficiency added
to the decision making resulting from an increase in the uncertainty is diminishing.

3 Application in Portfolio Optimization with Ambiguous Utility

In this section we develop an example application to illustrate the usefulness of our model. Specif-
ically, we apply the the robust utility based decision model (RVM) for specifying a robust version
of a portfolio optimization problem where the decisions are based on a DM’s expected utilities. As
mentioned before, the boundary conditions (2.5c) describe an uncertainty region of utility functions
and the auxiliary conditions (2.5d) allow us to model additional conditions that narrow the choice
of a DM’s utility. Such conditions can be used to incorporate information generated from the utility
assessment methods mentioned in the introduction. We illustrate the use of these boundary and
auxiliary conditions in the following subsections.

3.1 Specifying Boundary Conditions Using Marginal and Reference Utility Func-
tions

We first use a portfolio investment problem to illustrate the construction of the boundary conditions
(2.5c) for a DM’s utility. John would like to invest $1 into the index fund market. His best hope
is a 200% return, while he understands that it is possible for him to lose all investment. John’s
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attitude follows the Prospect theory, i.e., John prefers a loss aversion on interval [0, 1] for a possible
loss of his investment, while he has risk aversion on [1, 2] for a gain. An example of a normalized
smooth S-shaped utility function is

û#(α, β)(t) :=


0 t < 0,
−α(1−eπ(α,β)(t−1))+α(1−e−π(α,β))

(1+α)(1−e−π(α,β)) 0 ≤ t < 1,

1−e−β(t−1)+α(1−e−β)
(1+α)(1−e−β)

1 ≤ t ≤ 2,

1 t > 2.

(3.1)

The constant α is the ratio of the slope on the loss side over that on the gains side. The risk
seeking part of the S-shaped utility function is completely decided for the given α and β to satisfy
the property of smoothness. We denote this risk seeking coefficient by π(α, β). The continuity of
û′#(α, β)(t) at t = 1 implies

α(1− e−β)π(α, β) + βe−π(α,β) = β. (3.2)

A reasonable range of α suggested by Tversky and Kahneman (1992) is between 2.0 and 2.25, and
John chooses α = 2. The constant β is the constant-absolute-risk-averse (CARA) coefficient of the
exponential utility function on [1, 2]. Further analysis shows that β = 3 best describes John’s risk
preference. Solving equation (3.2), we obtain π(2, 3) = 0.9949. Observe that û#(2, β)(1) = 2/3 for
all values of β, i.e., the utility of no investment is 2/3. The reference marginal utility is given as

û′#(α, β)(t) =


απ(α,β)eπ(α,β)(t−1)

(1+α)(1−e−π(α,β)) 0 ≤ t < 1,

βe−β(t−1)

(1+α)(1−e−β)
1 ≤ t ≤ 2,

0 otherwise.

(3.3)

These reference utility and marginal utility functions are drawn in Figure 1a and Figure 1b respec-
tively.

(a) û#(α, β)(t) (b) û′#(α, β)(t)

Figure 1: Reference Utility and Marginal Utility Functions for α = 2, β = 3

Similar to the use of a reference cdf of a random target to specify the boundary conditions (2.7),
with respect to this reference utility function u#(2, 3), John constructs the boundary conditions as

ρ1û#(2, 3) � u � ρ2û#(2, 3). (3.4)
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Furthermore, the reference utility û#(α, β)(t) is an absolute continuous function. Hence, the bound-
ary condition (3.4) is equivalent to

ρ1û
′
#(2, 3) ≤ u′ ≤ ρ2û

′
#(2, 3), (3.5)

where u′, the derivative of u, is the marginal utility function. We will adjust ρ1 and ρ2 in our case
study in Section 6. We will then discuss the effect of these parameters on the optimal value and
solution of (P-RVM).

3.2 Using Utility Assessment Methods to Specify Auxiliary Conditions

A DM’s utility can be assessed by various methods such as the standard or paired gamble methods,
the probability equivalence method, the value equivalence method, and the certainty equivalence
method.

3.2.1 Utility Assessment using Gamble and Certainty Equivalent Methods.

We briefly discuss about the standard or paired gamble method and the certainty equivalence
method for the utility assessment and the construction of auxiliary condition (2.5d) (for details
refer to Hu and Mehrotra (2015), Farquhar (1984), Wakker and Deneffe (1996) and references
therein). The preference comparison in the paired gamble method Farquhar (1984) uses the pairwise
comparison of two random outcomes to assess the utility. On the other hand, instead of point
estimation, the certainty equivalent method uses a range for each certainty equivalent of a random
event. Hu and Mehrotra (2015) provide numerical examples to illustrate the constructions of the
auxiliary condition (2.5d) using the preference comparison method and the certainty equivalent
method.

3.2.2 Utility Assessment using a Moment based Approach.

We now discuss a moment based approach to construct the auxiliary condition (2.5d). Our primary
motivation is to illustrate the use of moments in modeling random targets. However, we point out
that Abbas (2007) discusses properties and applications of the moments of the random target, and
provides a method to identify a utility function satisfying moment assessments. The DM suggests
a range, denoted by [γ

k
, γk], of the kth moment of the random target ζ to allow for uncertainty in

parameter estimate, i.e.,

γ
k
≤ E[ζk] ≤ γk.

By letting

ϕi(t) := tk, ci := γk,
ϕi+1(t) := −tk, ci+1 := −γ

k
,

(3.6)

the condition (3.6) now describes bounds on the moments of ζ. In the following proposition we
give an approach for the estimation of the moments of ζ.

Proposition 3.1 Let ϑk be a random variable with p.d.f. k(θ2 − θ1)−k(t− θ1)k−11{t ∈ Θ}. Then,
the kth moment of ζ with c.d.f. u ∈ U is

E[ζk] = (θ2 − θ1)k(1− E[u(ϑk)]). (3.7)
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We assume that John provides estimates of expected utilities of an outcome that is uniformly
distributed on [0, 2] and an outcome that follows a triangle distribution with the lower limit 0, the
upper limit 2, and the mode 2. Following Proposition 3.1, this gives auxiliary constraints

2(1− τ1) =: γ
1
≤
∫ 2

0
tdu = 2(1− E[u(ϑ1)] ≤ γ1 := 2(1− τ1), (3.8)

4(1− τ2) =: γ
2
≤
∫ 2

0
t2du = 4(1− E[u(ϑ2)] ≤ γ2 := 4(1− τ2), (3.9)

where [τ j , τ j ] (j = 1 and 2) quantifies the lower and upper bounds of the expected utilities of
ϑj . We take E[u(ϑ1)] ∈ [0.5, 0.55] and E[u(ϑ2)] ∈ [0.75, 0.8]. Correspondingly, γ

1
= 0.9, γ1 = 1,

γ
2

= 0.8, and γ2 = 1.

4 Lagrangian Dual Problem and its Sample Average Approxima-
tion

We now develop an approach for solving (P-RVM) with the inner minimization problem reformu-
lated as (2.5). Note that the objective function in our problem is non-convex, due to the indicator
function ϕ0

x in the objective function (2.3). However, recall from Proposition 2.4 that the set U is
convex, and for a fixed x the inner problem (2.5) is a convex optimization problem in u ∈ U . We
take advantage of this convexity to develop our solution approach for (P-RVM). Specifically, we
study the Lagrangian dual problem of the inner problem (2.5) and its sample average approxima-
tion. The following assumptions are selectively used for the duality and convergence results proved
in this paper.

(A1). The set U has an interior point, i.e., there is a u ∈ U such that G1 ≺ u ≺ G2 and∫
Θ ϕ

i(t)du(t) < ci for all i = 1, . . . ,M .

(A2). The functions G1, G2 are absolute continuous.

(A3). The set X is a nonempty compact set.

(A4). The function ξk(x) is continuous in X for k = 1, . . . ,K.

(A5). The functions G1, G2 are Lipschitz continuous on Θ, and ϕi, i = 1, . . . ,M , are bounded on
Θ.

Assumption (A1) is the Slater condition needed to ensure that (see Theorem 4.1 below) there is no
duality gap between the primal problem (2.5) and its Lagrangian dual problem. Under Assumption
(A2), we provide a SAA of the Lagrangian dual problem. The asymptotic convergence of this SAA
is ensured in Theorem 5.2 under Assumptions (A1) - (A4). Furthermore, using Assumptions (A1)–
(A5), we will show an exponential convergence rate in Theorem 5.3.

For x ∈ X and λ ∈ <M+1, we denote

L(x, λ) := ϕ0
x + λ0 +

M∑
i=1

λiϕ
i, and (4.1)

h(λ) := −λ0 −
M∑
i=1

ciλi. (4.2)

Note that, for given x and λ, L(x, λ) is a function mapping Θ to R. In the later statement we
denote by L(x, λ)(t) the value of the function L(x, λ) at some t. The Lagrangian of problem (2.5)
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is

L(x, u, λ) :=

∫
Θ
L(x, λ)(t)du(t) + h(λ), (4.3)

and the Lagrangian dual problem of (2.5) is given as

max
λ

{
ψ(x, λ) := inf

u∈D
L(x, u, λ)

}
s.t. λi ≥ 0, i = 1, . . . ,M,

(4.4)

where the set

D := {u ∈M | G1 � u � G2} (4.5)

consists of the boundary condition (2.5c). For a given x and λ, on a measurable region {t ∈
Θ | L(x, λ)(t) > 0} the minimum of L(x, u, λ) over the set D is obtained at G1. Similarly, on a
measurable region {t ∈ Θ | L(x, λ)(t) < 0} the minimum of L(x, u, λ) is obtained at G2. Hence, we
have

ψ(x, λ) =

∫
Θ

[L(x, λ)(t)]+dG1(t)−
∫

Θ
[L(x, λ)(t)]−dG2(t) + h(λ), (4.6)

where [a]+ := max{a, 0} and [a]− := max{−a, 0}.
We now present the weak and strong duality relationship of the primal problem (2.5) and the

dual problem (4.4) in the following theorem. Note that our problem is in a functional space, hence a
formal proof (which we could not find in the literature) of weak and strong duality is required. The
proof of Theorem 4.1 follows the steps in the proof of Theorem 6.2.4 in Bazaraa et al. (2006), where
the finite dimensional case is considered. We provide the proof in Appendix F for completeness.

Theorem 4.1 At any given x ∈ X , we have that

1. (the weak duality) the optimal value of the primal problem (2.5) is greater than or equal to
that of the dual problem (4.4),

2. (the strong duality) under Assumption (A1), there is no duality gap between (2.5) and (4.4).

Theorem 4.1 shows that, under Assumption (A1), there is no duality gap between (2.5) and (4.4).
Hence, we can rewrite problem (P-RVM) as

max
x,λ

ψ(x, λ)

s.t. λi ≥ 0, i = 1, . . . ,M,

x ∈ X .

(4.7)

We now study the SAA of problem (4.7). Assumption (A2) ensures the existence of the derivatives
of G1, and G2. These derivatives are denoted by g1 and g2, a.e. Hence, by (4.6) we have

ψ(x, λ) =

∫
Θ

[L(x, λ)(t)]+g1(t)dt−
∫

Θ
[L(x, λ)(t)]−g2(t)dt+ h(λ). (4.8)

Let ζ1, . . . , ζN be iid samples following the uniform distribution on Θ. We approximate problem
(4.7) by

max
x,λ

ψN (x, λ) :=
1

N

N∑
j=1

g1(ζj)[L(x, λ)(ζj)]+ − g2(ζj)[L(x, λ)(ζj)]− + h(λ)


s.t. λi ≥ 0, i = 1, . . . ,M,

x ∈ X .

(4.9)
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The SAA problem (4.9) is non-convex because the objective ψN has the indicator function (2.3).
We now give an equivalent mixed-integer reformulation of (4.9) by introducing intermediate 2N
continuous variables s1

j and s2
j ; and KN binary variables rk,j .

Theorem 4.2 Suppose ζ1 > · · · > ζN . Let ζN+1 := θ1 and g1, g2 be the derivatives of G1, G2.
Then problem (4.9) is equivalent to a mixed-integer program

max
x,λ,s1,s2,r

1

N

N∑
j=1

g1(ζj)s
1
j − g2(ζj)s

2
j + h(λ) (4.10a)

s.t. ξk(x) +
N∑
j=1

(ζj − ζj+1)rk,j ≥ ζ1, k = 1, . . . ,K, (4.10b)

rk,j ≥ rk,j+1, k = 1, . . . ,K, j = 1, . . . , N − 1, (4.10c)

s1
j − s2

j ≤
K∑
k=1

pk(1− rk,j) + λ0 +

M∑
i=1

λiϕ
i(ζj), (4.10d)

rk,j ∈ {0, 1}, k = 1, . . . ,K, j = 1, . . . , N, (4.10e)

s1
j , s

2
j ≥ 0, j = 1, . . . , N, (4.10f)

λi ≥ 0, i = 1, . . . ,M, (4.10g)

x ∈ X . (4.10h)

The following technical lemma needed in the proof of Theorem 4.2 gives an intermediate mixed-
integer formulation of problem (4.9).

Lemma 4.3 Problem (4.9) can be equivalently represented as

max
x,λ,s1,s2,r

1

N

N∑
j=1

g1(ζj)s
1
j − g2(ζj)s

2
j + h(λ) (4.11a)

s.t. ξk(x) + (ζj − θ1)rk,j ≥ ζj , k = 1, . . . ,K, j = 1, . . . , N, (4.11b)

(x, λ, s1, s2, r) satisfies conditions (4.10d) — (4.10h). (4.11c)

Proof: We first claim that problem (4.9) is equivalent to

max
x,λ,s1,s2

1

N

N∑
j=1

g1(ζj)s
1
j − g2(ζj)s

2
j + h(λ) where (4.12a)

s.t. s1
j − s2

j ≤ L(x, λ)(ζj), (4.12b)

(x, λ, s1, s2) satisfies conditions (4.10f) — (4.10h). (4.12c)

Problems (4.9) and (4.12) are equivalent if and only if the optimal solution (ŝ1, ŝ2, x̂, λ̂) of (4.12)
satisfies

ŝ1
j = [L(x̂, λ̂)(ζj)]+, ŝ2

j = [L(x̂, λ̂)(ζj)]−, j = 1, . . . , N,

where ŝi = (ŝi1, . . . , ŝ
i
N ) for i = 1, 2. Suppose that there exists j ∈ {1, . . . , N} such that ŝ1

j − ŝ2
j ≤

L(x̂, λ̂)(ζj)−δj for some δj > 0. Let ej denote the vector whose jth element is 1 and other elements
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are 0. The solution (ŝ1 +δjej , ŝ
2, x̂, λ̂) is a feasible solution of problem (4.12) at which the objective

value is larger than the optimal value. Therefore, ŝ1
j − ŝ2

j = L(x̂, λ̂)(ζj), which implies

ŝ1
j ≥ [L(x̂, λ̂)(ζj)]+, ŝ2

j ≥ [L(x̂, λ̂)(ζj)]−.

Now assume ŝ1
j = [L(x̂, λ̂)(ζj)]+ +σj for some σj > 0. It then follows that ŝ2

j = [L(x̂, λ̂)(ζj)]−+σj .

(ŝ1 − σjej , ŝ2 − σjej , x̂, λ̂) is a feasible solution with a larger objective value.
Introducing the intermediate binary variables rk,j , we finally replace condition (4.12b) by con-

ditions (4.11b) and (4.10d). �

Proof: (Theorem 4.2) By condition (4.11b), rk,j is forced to be 1 if γ := ξk(x) < ζj for given x ∈ X
and k ∈ {1, . . . ,K}. Since ζ1 > · · · > ζN is a decreasing sequence, rk,1 ≥ · · · ≥ rk,N described in
condition (4.10c) can be generated as cuts in problem (4.11) without changing its optimal value.

We complete the proof by using Lemma 4.3 and showing that the following two sets G and G′,
described by conditions (4.10b), (4.10c), and (4.11b), are equivalent. Let

G :=

r ∈ [0, 1]N

∣∣∣∣∣ γ +
N∑
j=1

(ζj − ζj+1)rj ≥ ζ1, r1 ≥ · · · ≥ rN


and

G′ :=
{
r ∈ [0, 1]N | γ + (ζj − θ1)rj ≥ ζj , j = 1, . . . , N, r1 ≥ · · · ≥ rN

}
.

Note that, by definition, we have θ1 ≤ γ ≤ θ2. Choose ζ0 > θ2. There exists some j ∈ {1, . . . , N+1}
such that ζj−1 > γ ≥ ζj . If j = 1, G = G′ =

{
r ∈ [0, 1]N | r1 ≥ · · · ≥ rN

}
. We next assume j ≥ 2.

If r ∈ G′, then ri = 1 for i ≥ j − 1, and rj ≥ · · · ≥ rN . It is easy to check that r ∈ G, and thus
G′ ⊆ G.

On the other hand, for r ∈ G, we also have ri = 1 for all i ≤ j−1 and rj ≥ · · · ≥ rN . Otherwise,
there exists s ∈ {1, . . . , j − 1} such as ri = 0 for i ≥ s and ri = 1 for i < s. At this r, the first
condition γ +

∑N
j=1(ζj − ζj+1)rj ≥ ζ1 in G implies that γ ≥ ζs > ζj−1. It is contradictory to the

previous assumption that ζj−1 > γ ≥ ζj . It follows that r ∈ G′, and hence, G ⊆ G′. �

Remark 4.4 If we construct the perturbation region (2.7) around a preferred (normalized) refer-
ence cdf u#, N iid samples ζ1, . . . , ζN can be taken under u#. In this case the reformulation (4.10)
of problem (4.9) is given by

max
x,λ,s1,s2,r

1

N

N∑
j=1

ρ1s
1
j − ρ2s

2
j + h(λ) (4.13a)

s.t. (x, λ, s1, s2, r) satisfies conditions (4.10b) - (4.10h). (4.13b)

Remark 4.5 Luedtke et al. (2010) present the following valid-inequalities for G′:

γ +
n∑
l=1

(
ζtl − ζtl+1

)
rtl ≥ ζt1 ∀T = {t1, . . . , tn} ⊆ {1, . . . , N}, (4.14)

where t1 < . . . < tn and ζtn+1 = θ1, and prove that these inequalities are facet-defining for conv(G′)
if and only if t1 = 1. Notice that for T = {1, . . . , N}, inequality (4.14) is same as a defining
inequality of G. Similar to Luedtke et al. (2010), we observe that the addition of inequalities (4.14),
where γ = ξk(x) and rj = rk,j, to (4.10) has not effect on the optimal objective value of its LP
relaxation.
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5 Asymptotic Convergence and Exponential Rate of Convergence
for the Approximated Problem

The SAA approach (4.9) is developed to approximate problem (4.7). In this section we discuss the
asymptotic convergence of the optimal value and solutions of the SAA problem (4.9). The converge
of the optimal solutions is ensured for the deviation of the sets of the optimal solutions of the SAA
problem from the sets of the optimal solutions of the true counterpart decreases to 0 as the sample
size increases. Here, the deviation of two sets A and B is denoted as

D(A,B) := sup
a∈A

inf
b∈B
‖a− b‖.

We also show that the optimal value of the SAA problem (4.9) converges to the true counterpart
of problem (4.7) with an exponential rate. The novel aspect of the analysis in this section is that
SAA is taken for a set in the functional (infinite) dimensional space.

We first present Lemma 5.1 which shows the boundedness of the sets of optimal solutions of
the true problem (4.7) and its SAA (4.9). Then, Theorem 5.2 ensures the asymptotic convergence
of the approximation problem (4.9).

Lemma 5.1 Let Z∗ be the set of optimal solutions of problem (4.7), and ZN be that of problem
(4.9). If Assumption (A1) - (A3) holds, then Z∗ is bounded and ZN is bounded a.s. for large
enough N . In particular, Z∗ ⊆ X × Λ̂, where

Λ̂ := {λ ∈ RM+1 | ψ(x, λ) ≥ 0, x ∈ X , λi ≥ 0, i = 1, . . . ,M}

is a nonempty compact set.

Theorem 5.2 Let y∗ and Z∗ be the optimal value and the set of optimal solutions of problem (4.7),
and yN and ZN be those of problem (4.9). If Assumptions (A1) - (A4) hold, then yN → y∗ and
D(ZN ,Z∗)→ 0 a.s. as N →∞.

Proof: By Lemma 5.1, Z∗ is bounded and ZN is bounded a.s.. for large enough N under Assump-
tions (A1) - (A3). There exists a compact set C ⊆ X × Λ(:= {λ ∈ RM+1 | λi ≥ 0, i = 1, . . . ,M})
such that Z∗ ⊆ C and ZN ⊂ C a.s. for large enough N . Problem (4.7) is equivalent to

max
(x,λ)∈C

ψ(x, λ), (5.1)

and for large enough N , the SAA problem (4.9) is equivalent to

max
(x,λ)∈C

ψN (x, λ), a.s.. (5.2)

We now claim that ψ(x, λ) is continuous on C and ψN (x, λ) converges to ψ(x, λ) a.s. uniformly
on C. Let ζ be the random variable with uniformly distribution Ū on Θ, and

Ψ(x, λ, ζ) := g1(ζ)[L(x, λ)(ζ)]+ − g2(ζ)[L(x, λ)(ζ)]− + h(λ),

be the integrand of ψ(x, λ), i.e., ψ(x, λ) = Eζ [Ψ(x, λ, ζ)]. In order to apply Theorem 7.48 in
Shapiro et al. (2009) (restated in Theorem B.4) to verify our claim, we need to show that Ψ(·, ·, ζ)
is continuous on C a.s. and is dominated by a function integrable under the uniform distribution
Ū .
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It is easy to check that Ψ(x, λ, ζ) is continuous for λ a.s.. Since the continuity of Ū implies that,
for a fixed x ∈ X , Pr {ζ = ξk(x)} = 0 for k = 1, . . . ,K, and all ξk(x) are continuous on X under
Assumption (A4), ϕ0

x(ζ) =
∑K

k=1 pk1{ξk(x) ≥ ζ} and Ψ(x, λ, ζ) are continuous for x ∈ X a.s..
We next build an Ū -integrable function dominating Ψ(·, ·, ζ). Since C is compact, there exists

B > 0 such that −B ≤ λ0 ≤ B and λi ≤ B, i = 1, . . . ,M , for (x, λ) ∈ C. Then,

|Ψ(x, λ, ζ)| ≤ (g1(ζ) + g2(ζ))|L(x, λ)(ζ)|+ |h(λ)|

≤ 2g2(ζ)θ2 − θ1

(
|ϕ0
x(ζ)|+ |λ0|+

M∑
i=1

|λi||ϕi(ζ)|

)
+ |λ0|+

M∑
i=1

|λi||ci|

≤ 2(1 +B)g2(ζ) + 2B
M∑
i=1

|ϕi(ζ)|g2(ζ) + 1 +B
M∑
i=1

|ci|

=: Φ(ζ).

The absolute continuity of G2 under Assumption (A2) implies the boundedness of G2 on θ, i.e., b :=
G2(θ2) < ∞. Since all ϕi are Lebesgue-integral, we thus have

∫
Θ |ϕ

i|dG2/b < ∞ for i = 1, . . . ,M .
It follows that∫

Θ
Φ(t)dŪ(t) = 2(1 +B)(G2(θ2)−G2(θ1)) + 2bB

M∑
i=1

∫
Θ
|ϕi(t)|dG2(t)/b+ 1 +B

M∑
i=1

|ci| <∞,

which verifies that Φ(ζ) is integrable under the uniform distribution Ū . Hence, Ψ(x, λ, ζ) is domi-
nated by the Ū -integrable function Φ(ζ) for all (x, λ) ∈ C.

Recall that C is a nonempty compact set, Z ∈ C, ZN ∈ C a.s. for large enough N . Theorem 5.3
in Shapiro et al. (2009) (restated in Theorem B.2). implies that yN → y∗ and D(ZN ,Z∗)→ 0 a.s.
as N →∞. �

The following theorem shows that the optimal value of the SAA problem (4.9) converges to the
true counterpart of problem (4.7) with an exponential rate.

Theorem 5.3 Suppose Assumptions (A1) and (A3) - (A5) hold. Let (x, λ)∗ and (x, λ)∗N be optimal
solutions of problems (4.7) and (4.9). If (x, λ)∗ is unique, then, for any ε > 0, there are α > 0,
β > 0 such that

Pr {ψ((x, λ)∗N )− ψ((x, λ)∗) ≤ ε} ≤ αe−βN , N > 0.

Proof: The absolute continuity of G1 and G2 is implied by their Lipschitz continuity under As-
sumption (A5). Therefore, under Assumptions (A1) and (A3) - (A5), Theorem 5.2 indicates
(x, λ)∗N → (x, λ)∗ as N →∞ a.s.. Let K1 denote the Lipschitz coefficient, i.e.,

|G2(t2)−G2(t1)| ≤ K1|t2 − t1|, t1, t2 ∈ Θ.

Also according to the boundedness of ϕi(·) on Θ, we can assume that there exists K2 > 0 such
that |ϕi(t)| ≤ K2 for all t ∈ Θ and i = 1, . . . ,M . Furthermore, it follows by Lemma 5.1 that
(x, λ)∗ ∈ X × Λ̂, and also Λ̂ is a compact set. Then, there exists K3 > 0 such that Λ̂ ⊆ K := {λ ∈
<m+1 | ‖λ‖∞ ≤ K3}.

Let
Ψ(x, λ, ζ) := ρ1[L(x, λ)(ζ)]+ − ρ2[L(x, λ)(ζ)]− + h(λ).
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It follows that Ψ(·) is bounded over X × K×Θ, since we have, for any (x, λ, ζ) ∈ X × K×Θ,

|Ψ(x, λ, ζ)| ≤ (g1(ζ) + g2(ζ))|L(x, λ)(ζ)|+ |h(λ)|

≤ 2g2(ζ)

(
|ϕ0
x(ζ)|+ |λ0|+

M∑
i=1

λi|ϕi(ζ)|

)
+ |λ0|+

M∑
i=1

λi|ci|

≤ K1(1 +K3 +K2K3M) +K3 +K3

M∑
i=1

|ci|.

Because of the uniqueness of (x, λ)∗, asymptotic convergence of (x, λ)∗N , and boundedness of
Ψ(x, λ, ζ), we can complete the proof by applying Theorem 3.3 in Dai et al. (2000) (restated
in Theorem B.5).

5.1 Heuristic Algorithm

In this section, we harness the asymptotic convergence property of the SAA problem (Theorem 5.2)
to provide a feasible solution for problem (4.10) with large sample size. This is done by utilizing
the optimal solution of a problem with smaller sample size. We then use this feasible solution for
warm start while solving the large sample size problem (LSP) to optimality. Given a LSP instance
with sample size NL and the optimal solution of a small sample size problem (SSP) with NS(< NL)
samples, our heuristic solves the LSP as follows. Let the optimal solution of SSP be denoted by
(x̂, λ̂, ŝ, r̂). First, we solve (4.10) for N = NL by setting x = x̂ and obtain the optimal solution
(x̂, λ̃, s̃, r̃). Then, we resolve (4.10) for N = NL by setting r = r̃ and obtain a feasible solution for
LSP which provides a warm start for solving the LSP to optimality. Our computational results
in Section 6.1 show that for portfolio optimization problem (discussed in the next section), this
heuristic provides a high quality feasible solution, reducing the integrality gap to on average 0.18%
of the optimal solution value.

6 Portfolio Optimization Problem Model and Data

The uncertainty set for John’s utility function is summarized as follows:

U(ρ1, ρ2) :=

u ∈ U

ρ1û#(2, 3) � u � ρ2û#(2, 3),

0.9 ≤
∫ 2

0 tdu ≤ 1,

0.8 ≤
∫ 2

0 t
2du ≤ 1

 .

To check the cost of ambiguous utility discussed in Section 2.2, we consider adjusting the pertur-
bation region around the reference utility as

Ũ(κ) := (1− κ)U(1, 1) + κU(0.5, 2),

where the parameter κ ∈ [0, 1] quantifies the size of a utility set. The cost of ambiguity is C(Ũ(κ))
by the definition (2.9). In this case, C(Ũ(κ)) can also be regarded as the sensitivity of the boundary
conditions on the reference utility function. Note that the set U(1, 1) is either empty or it contains
the reference utility function u#(2, 3) only. If the set U(1, 1) is empty, it means that the bound-
ary and auxiliary conditions give contradictory descriptions of John’s risk preference to provide a
feasible utility. Adjusting κ allows us to incorporate information from these two assessments.

We use data from the portfolio investment problem studied by Dentcheva and Ruszczyński
(2003). This example has J(= 8) assets which are widely used market indexes: U.S. three-month
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treasury bills, U.S. long-term government bonds, S&P 500, Willshire 5000, NASDAQ, Lehman
Brothers corporate bond index, EAFE foreign stock index, and gold. Dentcheva and Ruszczyński
(2003) use K(= 22) yearly returns of these assets as equally probable realizations (see Table 4 in
Appendix A).

Let ξ = (ξ1, . . . , ξJ) be a random vector of yearly returns, with equally likely realizations
ξk = (ξk1 , . . . , ξ

k
J), k = 1, . . . ,K, and pk = 1/K. The random outcome of $1 investment is given by

(1 + xT ξ). Here x ∈ X := {x ∈ RJ+ |
∑J

j=1 xj = 1} represents the portfolio investment. John’s
portfolio investment model is now given as

max
x∈X

min
u∈Ũ(κ)

K∑
k=1

pku(1 + xT ξk). (6.1)

6.1 Computational Experience

All computations are performed running Gurobi 6.0.0 on a PC which has Intel R©CoreTM2 Duo
E8400 3.0 GHz Processor and 8 GB of RAM. In view of Theorem 4.2 we reformulate model (6.1) by
(4.7), and solve its approximation problem (4.9) with the sample size 300. The optimal portfolios
for different κ′s are given in Table 1. This problem is infeasible for κ ≤ 0.3, which shows the
inconsistency in the utility assessments. The solution at κ = 0.4 is very unstable. Increasing κ to
0.5 results in a large change in the investment in Assets 4 and 5. In comparison, the solutions are
stable for κ ≥ 0.5. The optimal solution is unchanged for 0.5 ≤ κ ≤ 0.8, and also the changes are
small when further increasing κ to 0.9 and 1. Theorem 2.6 shows that the cost of ambiguous utility
C(Ũ(κ)) is an increasing concave function of κ. This is shown in Figure 2 for κ in [0.4, 1].

Table 1: Optimal Investment Portfolios (in %)

κ Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

0 - 0.3 - - - - - - - -
0.4 0 1.49 0.8 38.53 0 4.14 53.57 1.46
0.5 0 0 0.53 3.38 38.93 0 57.07 0.08
0.6 0 0 0.63 3.27 38.95 0 57.08 0.08
0.7 0 0 0.53 3.38 38.93 0 57.07 0.08
0.8 0 0 0.63 3.27 38.95 0 57.08 0.08
0.9 0.1 0 0 0 41.40 0 58.38 0.11
1 0 0 0 0.21 41.28 0 58.37 0.14

Each row of Table 2 gives the computational performance for solving the SAA of problem (6.1),
where κ = 1, using N samples. We obtain a feasible solution (or lower bound zS) for a problem
instance by utilizing the optimal solution of the problem with NS samples (refer to our heuristic in
Section 5.1 for details), and report the time taken to run the heuristic, denoted by TS . Note that
TS does not include the time taken to solve the problem with NS samples and in Table 2, NS = 0
implies that no SSP is solved to get a feasible solution for the LSP instance. We solve formulation
(4.10) corresponding to the instance using Gurobi 6.0.0 (default settings) with the feasible solution
obtained by our heuristic as a starting solution, and report the optimal solution zopt and initial
integrality gap G% := 100 × (zopt − zS)/zopt. We set a time limit of 10 hours (or 36000 seconds),
i.e. if the optimal solution is not found within 10 hours, the algorithm is terminated and the best
solution found within 10 hours is reported. The investment portfolios obtained from these runs are
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Figure 2: Cost of Ambiguous Utility

Table 2: Results of computational experiments

Sample Size Problem Size Heuristic MIP

(N) # BinVar # Cons NS TS zS T1 Node1 zopt Topt Node G%

150 3300 3451 0 - - 11 151 0.6522 57 19714 -

300 6600 6901
0 - - 39 143 0.6434 212 22099 -

150 4 0.6398 43 85 0.6434 224 21568 0.56

600 13200 13801

0 - - 413 3169 0.6466 802 26838 -

150 12 0.6348 306 667 0.6466 1156 31744 0.44

300 10 0.6461 233 567 0.6466 1070 31363 0.07

900 19800 20701

0 - - 7127 51876 0.6438 10279 97565 -

300 22 0.6434 66 0 0.6438 5423 83353 0.06

600 25 0.6435 1010 807 0.6438 6326 83281 0.04

1200 26400 27601

0 - - 3843 20948 0.6438 36000+ 61274+ -

300 64 0.6423 12896 18451 0.6438 36000+ 57011+ 0.23

600 62 0.6423 2073 1504 0.6438 36000+ 58046+ 0.23

1800 39600 41401

0 - - 15153 20948 0.6438 36000+ 58800+ -

300 115 0.6423 20548 20996 0.6438 36000+ 34543+ 0.22

600 103 0.6423 5962 1207 0.6438 36000+ 57538+ 0.23

given in Table 3. In Table 2, Topt and Node reveal the time (in seconds) taken and total number of
branching nodes explored in solving the instance to optimality. However, the solver finds a feasible
solution, that is later proved to be the optimal, in T1 time (seconds) after exploring Node1 nodes.

We make the following observations. The robust utility-based model (P-RVM) is rather chal-
lenging to solve. It is because this model is a probability maximization problem. We find that the
objective function value and the investment portfolio is accurate to about two decimal places with
a SAA of nearly 1000 samples. While the allocation to Assets 5 and 7 are stable, the small frac-
tional investment in Assets 1-3 and 8 change with the sample size. The running time Topt with and
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Table 3: Optimal Values and Solutions for Different Sample Sizes

Sample Optimal Optimal Solution (in %)
Size Value Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

150 0.6522 0.86 0 0 1.31 58.52 0 39.30 0
300 0.6434 0 0 0 0.21 41.28 0 58.37 0.14
600 0.6466 0 0.09 0 0 40.96 0 58.87 0.07
900 0.6438 0 0 0 0.34 41.27 0 58.39 0
1200 0.6438 0 0 0.38 0.88 57.57 0 41.17 0
1800 0.6438 0 0 0 1.04 57.50 0 41.45 0

without using our heuristic also shows a significant growth with the sample size N . However, it is
important to observe that for all instances, our heuristic gives a high quality feasible solution in less
than 1.8% of the total solution time Topt, resulting in a significant reduction in the integrality gap
G% (which is 0.18% on average). We also notice that for instances which are solved to optimality
within time limit, T1 is on average 27% of Topt and Node1 is on average 8% of Node. This implies
that a feasible solution, which is the optimal solution, is found very quickly and the remaining time
Topt − T1 is spent in proving the optimality. In addition, we compare the results for solving an
instance with (N,NS) ∈ {(600, 150), (600, 300), (900, 300), (900, 600), (1200, 600), (1800, 600)}, i.e.
N sample sized instance which utilizes the optimal solution of SSP with NS samples for warm
start, to the results for solving the N sample sized instance with no-warm start; and observe that
T1 and Node1 for the former instance are smaller than the ones for latter instance. In fact, for
instance with (N,NS) = (900, 300), the optimal solution is found at the root node with the help of
the feasible solution found by our heuristic. This demonstrates the importance of our heuristic.

Remark 6.1 In a separate run for each problem instance, we add Gomory Mixed Integer (GMI)
cuts, derived from rows of the simplex tableau, at the root node. This is done as follows. Given
an instance and the optimal basis of its LP relaxation, we randomly select a row u in the tableau,
defined by

rBu +
∑
t∈NB

āutvt = āu0, (6.2)

such that the basic variable rBu ∈ {rk,j : k = 1, . . . ,K, j = 1, . . . , N} and āu0 /∈ {0, 1}, and
generate a GMI cut of Gomory (1963) for the row u that is violated by the LP relaxation optimal
solution (refer Page 129 of Wolsey (1998) for details), which is updated after adding each cut.
After considering N rows for cut generation, we remove the inactive cuts and solve the instance
using Gurobi 6.0.0 with its default settings. It is important to note that the GMI cuts are at least
as strong as the disjunctive cuts and intersection cuts defined by splits of Balas (1971). We found
that the addition of these cuts improve the LP relaxation gap on average from 7.32% to only 5.38%
but increased the size of the problem, resulting in an increase in the total solution time. As a topic
of future research, we may exploit more efficient methods for solving model 6.1.

6.2 Concluding Remarks

We studied a robust utility-based decision making model to address the issue of ambiguity and
inconsistency in utility assessments. In this model, we assumed that the utility function belongs
to a set which is described by boundary constraints, using a preference relationship, and auxiliary
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requirements, given by ‘linear’ inequalities. Interestingly, this model is equivalent to the model
obtained by using the distributionally robust approach to solve a random target based decision
making problem. Note that a target based decision making approach chooses the best policy under
which the random outcome meets a given target with the highest probability (e.g. Manski (1988)).
Borch (1968) further studied the case with a random target. However, we studied the random
target based decision making problem where the random outcome is a function of (continuous
or/and discrete) decision variables, the target is random, and only partial information is available
on the cdf of this random target.

In order to restrict the risk arising from the uncertainty of the utility function, we maximized
the worst-case expected utility of random outcome over the utility set. First, we studied the effect
of the uncertain utility on the objective function value of the aforementioned robust utility-based
decision making model and then studied the Lagrangian dual of this model by reformulating the
Sample Average Approximation (SAA) of the Lagrangian dual problem as a mixed integer linear
program. We showed that the optimal value of the SAA problem converges to the optimum value of
its true counterpart at an exponential rate. Moreover, we presented a heuristic to provide a feasible
solution of the SAA problem by harnessing its convergence property. Finally, we computationally
evaluated the effectiveness of our heuristic and the mixed integer linear program in solving the SAA
of a portfolio optimization problem.
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A Asset Return Data

The following table provides asset returns given in Dentcheva and Ruszczyński (2003).

B Known Results used in the paper

Lemma B.1 [Theorem 3.2 in Rockafellar (1970)] Let U be a convex set. For κ1, κ2 ≥ 0, we have
(κ1 + κ2)U = κ1U⊕ κ2U.

Let X be a convex set and ξi, i = 1, . . . , N , be iid samples of a random vector ξ with support
Ξ. Denote g(x) := E[G(x, ξ)] and gN (x) := 1

N

∑N
i=1G(x, ξi) where G(·) is a well-defined function

on X × Ξ. By these notions, two optimization problems are described as

y∗ := min
x∈X

g(x), yN := min
x∈X

gN (x).

Let Z∗ and ZN be the sets of optimal solutions x∗ and xN of these optimization problems respec-
tively.

Theorem B.2 (Theorem 5.3 in Shapiro et al. (2009)) Suppose that there exists a compact
set C ∈ X such that: (i) Z∗ is nonempty and is contained in C, (ii) the function g(x) is finite
valued and continuous on C, (iii) gN (x) converges to g(x) a.s. as N → ∞ uniformly in x ∈ C,
and (iv) ZN is nonempty and is contained in C for N large enough a.s.. Then yN → y∗ and
D(ZN , Z

∗)→ 0 a.s. as N →∞.

Theorem B.3 (Theorem 5.4 in Shapiro et al. (2009)) Suppose that: (i) the integrand func-
tion G is random lower semicontinuous, (ii) for almost every ξ ∈ Ξ the function G(·, ξ) is convex,
(iii) the set X is closed and convex, (iv) the expected value function g is lower semicontinuous and
there exists a point x̄ ∈ X such that g(x) < ∞ for all x in a neighborhood of x̄, (v) the set Z∗ of
optimal solutions of the true problem is nonempty and bounded, and (vi) the LLN holds pointwise.
Then yN → y∗ and D(ZN , Z

∗)→ 0 a.s. as N →∞.
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Table 4: Asset Returns (in %) in Dentcheva and Ruszczyński (2003)

Year Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

1 7.5 -5.8 -14.8 -18.5 -30.2 2.3 -14.9 67.7
2 8.4 2.0 -26.5 -28.4 -33.8 0.2 -23.2 72.2
3 6.1 5.6 37.1 38.5 31.8 12.3 35.4 -24.0
4 5.2 17.5 23.6 26.6 28.0 15.6 2.5 -4.0
5 5.5 0.2 -7.4 -2.6 9.3 3.0 18.1 20.0
6 7.7 -1.8 6.4 9.3 14.6 1.2 32.6 29.5
7 10.9 -2.2 18.4 25.6 30.7 2.3 4.8 21.2
8 12.7 -5.3 32.3 33.7 36.7 3.1 22.6 29.6
9 15.6 0.3 -5.1 -3.7 -1.0 7.3 -2.3 -31.2

10 11.7 46.5 21.5 18.7 21.3 31.1 -1.9 8.4
11 9.2 -1.5 22.4 23.5 21.7 8.0 23.7 -12.8
12 10.3 15.9 6.1 3.0 -9.7 15.0 7.4 -17.5
13 8.0 36.6 31.6 32.6 33.3 21.3 56.2 0.6
14 6.3 30.9 18.6 16.1 8.6 15.6 69.4 21.6
15 6.1 -7.5 5.2 2.3 -4.1 2.3 24.6 24.4
16 7.1 8.6 16.5 17.9 16.5 7.6 28.3 -13.9
17 8.7 21.2 31.6 29.2 20.4 14.2 10.5 -2.3
18 8.0 5.4 -3.2 -6.2 -17.0 8.3 -23.4 -7.8
19 5.7 19.3 30.4 34.2 59.4 16.1 12.1 -4.2
20 3.6 7.9 7.6 9.0 17.4 7.6 -12.2 -7.4
21 3.1 21.7 10.0 11.3 16.2 11.0 32.6 14.6
22 4.5 -11.1 1.2 -0.1 -3.2 -3.5 7.8 -1.0
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Theorem B.4 (Theorem 7.48 in Shapiro et al. (2009)) Let X be a nonempty compact set
and suppose that: (i) G(·, ξ) is continuous on X a.s. and (ii) G(x, ξ), x ∈ X , is dominated by an
integrable function. Then the expected value function g(x) is finite valued and continuous on X ,
and gN (x) converges to g(x) a.s. uniformly on X .

Theorem B.5 (Theorem 3.3 in Dai et al. (2000)) Suppose that x∗ is unique and xN → x∗

a.s., and that there exist a neighborhood X̂ ⊂ X of x∗ and positive constants γ0, M such that

E
[
eγ|G(x,ξ)|

]
≤ C

for all x ∈ X̂ and for all γ ∈ [0, γ0]. Then, for any ε > 0, there are α > 0, β > 0 such that

P (yN − y∗ ≥ ε) ≤ αe−βN , for all N > 0.

C Proof of Proposition 2.4

Proof: Given u1, u2 ∈ U, let u := (1 − κ)u1 + κu2 for an arbitrarily chosen κ ∈ [0, 1]. It is easy to
see u ∈ M and u satisfies the probability measure condition (2.5b). Since (1 − κ)G1 � (1 − κ)u1

and κG1 � κu2, we have

G1 = (1− κ)G1 + κG1 � (1− κ)u1 + κu2 = u,

and similarly, u � G2. It shows that u satisfies the boundary conditions (2.5c). We now check the
satisfaction of auxiliary condition (2.5d). It follows that∫

Θ
ϕi(t)du(t) = (1− κ)

∫
Θ
ϕi(t)du1(t) + κ

∫
Θ
ϕi(t)du2(t) ≤ (1− κ)ci + κci = ci.

�

D Proof of Lemma 2.5

Proof: By definition, for any u ∈ U(κ1), there exist u1 ∈ U1 and u2 ∈ U2 such that

u = (1− κ1)u1 + κ1u2

=

(
1− κ1

κ2

)
u1 +

κ1

κ2
((1− κ2)u1 + κ2u2).

Because u1 ∈ U1 ⊆ U(κ2), (1− κ2)u1 + κ2u2 ∈ U(κ2), and U(κ2) is a convex set by Theorem 3.1 in
Rockafellar (1970), we have u ∈ U(κ2). �

E Proof of Theorem 2.6

The proof here follows the steps in Hu and Mehrotra (2012) where a similar result is obtained in
the context of ambiguous trade-off weights in multi-objective optimization. Proof: Let us choose
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κ1, κ2 such that 0 ≤ κ1 ≤ κ2 ≤ 1. It follows by Lemma 2.5 that U(κ1) ⊆ U(κ2) so that C(U(κ1)) ≤
C(U(κ2)). We now prove the concavity of C(U(·)). For δ ∈ [0, 1], we have

C(U((1− δ)κ1 + δκ2)) = −max
x∈X

min
u∈U((1−δ)κ1+δκ2)

∫
Θ
ϕ0
x(t)du(t)

= −max
x∈X

min
u∈(1−δ)U(κ1)⊕δU(κ2)

∫
Θ
ϕ0
x(t)du(t) (by Lemma B.1)

= −max
x∈X

min
u1 ∈ U(κ1)
u2 ∈ U(κ2)

∫
Θ
ϕ0
x(t) d[(1− δ)u1(t) + δu2(t)]

≥ −
(

(1− δ) max
x∈X

min
u1∈U(κ1)

∫
Θ
ϕ0
x(t)du1(t) + δmax

x∈X
min

u2∈U(κ2)

∫
Θ
ϕ0
x(t)du2(t)

)
= (1− δ)C(U(κ1)) + δC(U(κ2)).

�

F Proof of Theorem 4.1

We fix x ∈ X and first prove the weak duality. We denote

α(u) :=

∫
Θ
ϕ0
x(t)du(t)

β0(u) :=

∫
Θ
du(t)− 1

βi(u) =

∫
Θ
ϕi(t)du(t)− ci, i = 1, . . . ,M.

For any feasible solution u ∈ U of the primal problem (2.5) and feasible solution λ with λi ≥ 0 for
i = 1, . . . ,M of the dual problem (4.4) we have

ψ(x, λ) ≤ L(x, u, λ) = α(u) +

M∑
i=0

λiβi(u) ≤ α(u),

which implies weak duality. Next, we show the strong duality under Assumption (A1). Let γ be
the optimal value of the primal problem (2.5). By Assumption (A1), problem (2.5) is feasible, and
thus 0 ≤ γ ≤ 1 because of (2.2) and (2.3). Let us now consider the system

α(u)− γ < 0, β0(u) = 0, βi(u) ≤ 0, i = 1, . . . ,M, for some u ∈ D, (F.1)

and the set

Λ =
{

(p, q) ∈ RM+2 | p > α(u)− γ, q0 = β0(u), qi ≥ βi(u), i = 1, . . . ,M, for some u ∈ D
}
.

Since α(·) and βi(·), i = 0, . . . ,M , are affine, and D is convex, it is easy to see that Λ is a convex
set. Since γ is the optimal objective value of (2.5), the system (F.1) has no solution, and hence,
Λ excludes the zero vector. Now using the separating hyperplane theorem (Bazaraa et al., 2006,
Corollary 1 to Theorem 2.4.7), there exists a nonzero (λ̂, λ) such that

λ̂p+
M∑
i=0

λiqi ≥ 0, for all (p, q) ∈ cl Λ.
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Now fix u ∈ D. Since p and qi, i = 1, . . . ,M , can be made arbitrarily large, the above inequality
holds only if λ̂ ≥ 0 and λi ≥ 0 for i = 1, . . . ,M . Furthermore, (α(u)− γ, β(u)) ∈ cl Λ for all u ∈ D.
Therefore, we have

λ̂(α(u)− γ) +
M∑
i=0

λiβi(u) ≥ 0, for all u ∈ D. (F.2)

We now claim that λ̂ > 0. By contradiction, suppose that λ̂ = 0. By Assumption (A1) there
exists an interior point û ∈ U, i.e., G1 ≺ û ≺ G2, β0(û) = 0, and βi(û) < 0 for i = 1, . . . ,M .
Substituting in (F.2), it follows that

∑M
i=1 λiβi(û) ≥ 0, which implies that λi = 0 since βi(û) < 0

and λi ≥ 0. Therefore, we have λ0β0(u) ≥ 0 for all u ∈ D. Since G1 ≺ û, we have β0(G1) < 0,
and thus λ0 = 0. It contradicts with the fact that (λ̂, λ) is nonzero in the separating hyperplane
theorem.

Dividing (F.2) by λ̂ and denoting λ̃i = λi/λ̂ for i = 0, . . . ,M , we get

α(u) +
M∑
i=0

λ̃iβi(u) ≥ γ, for all u ∈ D,

which shows that ψ(x, λ̃) ≥ γ. It implies that the optimal value of the dual problem (4.4) is greater
than or equal to the optimal value of the primal problem (2.5). The strong duality follows since we
have already established the weak duality result.

G Lemma G.1

Lemma G.1 Let û ∈M satisfy
∫

Θ ϕ
i(t)dû(t) < ci. For κ1 ∈ [0, 1) and κ2 ∈ (1,∞), denote

D̂(û) := {u ∈M | κ1û � u � κ2û}, (G.1)

and consider the value of function

φû(x, λ) := inf
u∈D̂(û)

L(x, u, λ).

At an unbounded λ̂, i.e., ‖λ̂‖ =∞, we have

φû(x, λ̂) = −∞, x ∈ X .

Proof: We state the proof for an arbitrarily given x ∈ X , and express the function φû(x, λ) as

φû(x, λ) = inf
u∈D̂(û)

L(x, u, λ)

=κ1

∫
Θ

[L(x, λ)(t)]+dû(t)− κ2

∫
Θ

[L(x, λ)(t)]−dû(t) + h(λ)

=κ1

∫
Θ
L(x, λ)(t)dû(t)− (κ2 − κ1)

∫
Θ

[L(x, λ)(t)]−dû(t) + h(λ)

=κ1

∫
Θ
ϕ0
x(t)dû(t) + (κ1 − 1)λ0 +

M∑
i=1

λi

(
κ1

∫
Θ
ϕi(t)dû(t)− ci

)

− (κ2 − κ1)

∫
Θ

[
ϕ0
x(t) + λ0 +

M∑
i=1

λiϕ
i(t)

]
−

dû(t).
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Let

φ̂û(x, λ) :=κ1

∫
Θ
ϕ0
x(t)dû(t) + (κ1 − 1)λ0 +

M∑
i=1

λi

(
κ1

∫
Θ
ϕi(t)dû(t)− ci

)

− (κ2 − κ1)

[∫
Θ
ϕ0
x(t) + λ0 +

M∑
i=1

λiϕ
i(t) dû(t)

]
−

.

Since
∫

Θ−[g(t)]−dû(t) ≤ −[
∫

Θ g(t)dû(t)]− for any measurable function g, we have

φ̂û(x, λ) ≥ φû(x, λ). (G.2)

In the following two cases we first discuss the value of the function φ̂û(x, λ̂) at an unbounded λ̂.
Case 1: If ∫

Θ
ϕ0
x(t) + λ0 +

M∑
i=1

λiϕ
i(t)dû(t) ≤ 0, (G.3)

then we have

φ̂û(x, λ) =(κ2 − 1)

∫
Θ
ϕ0
x(t) + λ0 +

M∑
i=1

λiϕ
i(t) dû(t) +

∫
Θ
ϕ0
x(t)dû(t) +

M∑
i=1

λi

(∫
Θ
ϕi(t)dû(t)− ci

)

≤
∫

Θ
ϕ0
x(t)dû(t) +

M∑
i=1

λi

(∫
Θ
ϕi(t)dû(t)− ci

)
.

Since
∫

Θ ϕ
i(t)dû(t) < ci, any unbounded λ̂i for i ∈ {1, . . . ,M} results in φ̂û(x, λ̂) = −∞. Clearly,

φ̂û(x, λ̂) = −∞ when λ̂0 = −∞ and λ̂i <∞ for i ∈ {1, . . . ,M}. Now suppose λ̂0 =∞. To satisfy
(G.3), we have λ̂i =∞ for some i ∈ {1, . . . ,M} so that φ̂û(x, λ̂) = −∞.

Case 2: If ∫
Θ
ϕ0
x(t) + λ0 +

M∑
i=1

λiϕ
i(t)dû(t) ≥ 0, (G.4)

then

φ̂û(x, λ) = (κ1 − 1)

∫
Θ
ϕ0
x(t) + λ0 +

M∑
i=1

λiϕ
i(t)dû(t) +

∫
Θ
ϕ0
x(t)dû(t) +

M∑
i=1

λi

(∫
Θ
ϕi(t)dû(t)− ci

)

≤
∫

Θ
ϕ0
x(t)dû(t) +

M∑
i=1

λi

(∫
Θ
ϕi(t)dû(t)− ci

)
.

Similarly, φ̂û(x, λ̂) = −∞ when any λ̂i is unbounded or λ̂0 = ∞. Also to satisfy (G.4), λ̂0 = −∞
needs some unbounded λ̂i. Consequently, φ̂û(x, λ̂) = −∞.

The above shows that φ̂û(x, λ̂) = −∞ for any unbounded λ̂. The inequality (G.2) shows that

φû(x, λ̂) ≤ φ̂û(x, λ̂) = −∞.

�

27



H Proof of Lemma 5.1

At the first step of the proof, we show that Λ̂ is a nonempty compact set and Z∗ is bounded. Next,
we verify the almost sure boundedness of ZN for large enough sample size N .

Step 1. We first state the proof for a fixed x ∈ X . By Assumption (A1), let û be an interior
point of U. There are κ1 ∈ [0, 1) and κ2 ∈ (1,∞) such that

G1 � κ1û ≺ κ2û � G2.

By Lemma G.1 we have that, at an unbounded λ̂,

φû(x, λ̂) = inf
u∈D̂(û)

L(x, u, λ̂) = −∞.

Recall that D(û) is denoted as in (G.1). Since D̂(û) ⊆ D, we have

ψ(x, λ̂) ≤ φû(x, λ̂) = −∞. (H.1)

Since ψ(x, 0) =
∫

Θ ϕ
0
x(t)dG1(t) ≥ 0 and ψ(x, ·) is a continuous concave function for all x ∈ X , Λ̂

is a closed nonempty set. Also, its boundedness is ensured by (H.1). On the other hand, denoting
Λ∗(x) as the set of optimal solutions of problem (4.4), we have a uniform lower bound on the
optimal value of problem (4.4) unrelated to this arbitrary x ∈ X , ψ(x, λ∗(x)) ≥ ψ(x, 0) for any
λ∗(x) ∈ Λ∗(x). Therefore, Λ∗(x) ⊆ Λ̂ for any x ∈ X . The compactness of X is given by Assumption
(A3). Then Z∗ ⊆ X × Λ̂ is bounded.

Step 2. Under Assumption (A2), the SAA problem of (4.4) for any x ∈ X is given by

max
λ

ψN (x, λ)

s.t. λi ≥ 0, i = 1, . . . ,M.

Let us denote the set of its optimal solutions by ΛN (x). Recall that ψ(x, ·) is continuous and
concave in λ, and ψ(x, 0) ≥ 0. It implies that there exists an interior point λ̄ ∈ {λ ∈ RM+1 | λi ≥
0, i = 1, . . . ,M}, which is the feasible region of problem (4.4), such that ψ(x, λ) > −∞ for all λ
in a neighborhood of λ̄. It is easy to see that the feasible region of problem (4.4) is closed and
convex and that the corresponding integrand shown in (4.8) is concave in λ. The proof at step 1
also shows that the set of optimal solutions Λ∗(x) is nonempty and is contained in the bounded set
Λ̂. It follows from Theorem 5.4 in Shapiro et al. (2009) (restated in Theorem B.3 for completeness)
that D(ΛN (x),Λ∗(x))→ 0 a.s. as N →∞. For a given ε > 0, let us choose a compact neighborhood
C of Λ̂,

C :=

{
λ ∈ RM+1

∣∣∣∣∣ inf
λ̂∈Λ̂
‖λ− λ̂‖2 ≤ ε

}
.

Then, there exists N̂(x) > 0 such that, for all N ≥ N̂(x), ΛN (x) ⊆ C a.s.. We now claim that

N∗ := max
x∈X

N̂(x) <∞, a.s..

Otherwise, because X is compact under Assumption (A3), there is a sample region Ω with Ū(Ω) > 0
(Ū is the uniform distribution on Θ) such that, for any sample realization of ω ∈ Ω, N̂(x̂) =∞ for
some x̂ ∈ X . Then,

Pr

{
lim
N→∞

supD(ΛN (x̂),Λ∗(x̂)) > ε/2

}
≥ Ū(Ω) > 0,

which is a contradiction. Therefore, we have ΛN (x) ⊆ C for all x ∈ X when N ≥ N∗ a.s.. Then
ZN ⊆ X × C for N ≥ N∗ a.s..
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I Proof of Proposition 3.1

Using integration by parts, we have∫ θ2

θ1

k(t− θ1)k−1u(t)dt = (θ2 − θ1)k −
∫ θ2

θ1

tkdu(t) = (θ2 − θ1)k − E[ζk].

for all k ∈ Z+. It thus follows that

E[ζk] = (θ2 − θ1)k − (θ2 − θ1)k
∫ θ2

θ1

u(t)dtk(θ2 − θ1)−k = θk(1− E[u(ϑk)]).
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