Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming*

Jacek Gondzio†

School of Mathematics
and Maxwell Institute for Mathematical Sciences
The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ
United Kingdom.

Technical Report ERGO-2012-008‡

July 25, 2012

Abstract

In this paper we will discuss two variants of an inexact feasible interior point algorithm for convex quadratic programming. We will consider two different neighbourhoods: a (small) one induced by the use of the Euclidean norm which yields a short-step algorithm and a symmetric one induced by the use of the infinity norm which yields a (practical) long-step algorithm. Both algorithms allow for the Newton equation system to be solved inexactly. For both algorithms we will provide conditions for the level of error acceptable in the Newton equation and establish the worst-case complexity results.

Keywords: Inexact Newton Method, Interior Point Algorithms, Linear Programming, Quadratic Programming, Worst-case Complexity Analysis, Matrix-Free Methods.

*Supported by EPSRC grant EP/I017127/1.
†Email: J.Gondzio@ed.ac.uk, URL: http://maths.ed.ac.uk/~gondzio/
‡For other papers in this series see http://www.maths.ed.ac.uk/ERGO/
1 Introduction

It is broadly accepted that interior point methods (IPMs) provide very efficient solution techniques for linear and convex quadratic programming problems [11, 21]. Interior point algorithms for these classes of problems enjoy excellent worst-case complexity bounds: indeed the best known algorithms find the ε-accurate optimal solutions to the problem with n variables in $O(\sqrt{n} \log(1/\varepsilon))$ or $O(n \log(1/\varepsilon))$ iterations, depending on how aggressive steps to optimality are allowed. Computational experience provides evidence that the algorithm which uses a more aggressive strategy (the so-called long-step method) solves linear and quadratic programming problems in a number of iterations which may be expressed as $O(\log n \log(1/\varepsilon))$ [11].

The small number of iterations does not always guarantee the efficiency of the method because occasionally IPMs struggle with a high per-iteration cost of the linear algebra operations. In the most adverse case the cost of solving a dense optimization problem employing a direct linear algebra method to solve the Newton equation system may reach $O(n^3)$ flops per iteration. The effort of a single IPM iteration is usually significantly lower than this upper bound. However if problems are very large then, although they may display reasonable sparsity features, the use of direct sparsity-exploiting linear algebra techniques may still run into trouble due to excessive memory requirements or unacceptably long CPU time. Iterative methods for linear equations such as conjugate gradients or other approaches from the Krylov subspace family may offer a viable alternative to direct methods in such cases.

The interest in the use of iterative methods to solve the Newton equation system in IPMs has been growing over the last decade: see for example the recent survey of D’Apuzzo et al. [8]. Iterative methods offer several advantages. In particular they are often memory efficient and hence allow much larger problems to be solved. However to take full advantage of iterative methods one usually has to relax the accuracy requirements in the solution of the Newton equation system. Consequently, instead of using an exact Newton direction, the resulting IPM employs an inexact one. This opens up all sorts of theoretical and practical questions. We will state and answer some of these in this paper. In particular, we will discuss the key issue concerning an acceptable level of error in the inexact Newton method used by an IPM.

The use of an inexact Newton method [9] is well established in the context of solving nonlinear equations [13] and in nonlinear optimization [18]. Bellavia [5] applied an inexact interior point method to solve monotone nonlinear complementarity problems and proved global convergence and local superlinear convergence of the method. Several successful attempts were also made to shed light on the application of an inexact Newton method in IPMs for linear and convex quadratic programming problems.

Freund, Jarre and Mizuno [10] and Mizuno and Jarre [17] extended a very popular globally convergent infeasible path-following method for linear programming of Kojima, Megiddo and Mizuno [14] to accommodate the inexact solution of Newton systems. In particular Mizuno and Jarre [17] proved that an inexact variant of this algorithm has $O(n^2 \log(1/\varepsilon))$ complexity. Baryamureeba and Steihaug [4] provided another extension of the method of Kojima et al., allowing for inexactness in both primal and dual Newton steps. All these analyses considered a general case in which no assumption was made about how the Newton system is solved. The only assumptions made were concerned with the absolute or relative error in the inexact Newton direction.
Several authors tried to specialize their analyses using a better understanding of the specific iterative methods of linear algebra employed to solve the Newton equation system inexactly. Indeed, if a particular preconditioner is used in a given Krylov subspace method applied in this context, it is often possible to control the residuals in specific linear subspaces and design special variants of an inexact interior point algorithm. Al-Jeiroudi and Gondzio [1] considered the case in which an indefinite preconditioner based on a guess of basic-nonbasic partition inspired by the work of Oliveira and Sorensen [19] is used to precondition the indefinite augmented system (the reduced KKT system). They designed an inexact infeasible primal-dual IPM for linear programming and established its $O(n^2 \log(1/\varepsilon))$ complexity. Lu, Monteiro and O’Neal [15] analysed the case of quadratic programming in which the matrix of the quadratic objective term has a known factorization and proposed an interesting specialized preconditioner for the Newton system in this case. They showed that the resulting inexact IPM converges in $O(n^2 \log(1/\varepsilon))$ iterations. Cafieri et al. [7] performed an analysis of an inexact potential reduction algorithm for convex quadratic programming.

In this paper we consider a feasible primal-dual path-following method for convex quadratic programming and analyse it in a situation when the solutions of the Newton systems admit a certain level of inaccuracy. We prove worst-case iteration complexity results for two variants of such a method. The first variant requires the iterates to stay in a small neighbourhood of the central path induced by the use of the Euclidean norm to control the error in the perturbed complementarity conditions. Such a method has the best known iteration complexity result $O(\sqrt{n} \log(1/\varepsilon))$ and we prove that the inexact variant preserves the same complexity. However, this method is only of theoretical interest because its implementation demonstrates the behaviour predicted by the worst-case analysis. Therefore, this algorithm is not used in practice. The second variant allows the iterates to stay in a wide symmetric neighbourhood of the central path induced by the use of the infinity norm to control the error in the perturbed complementarity conditions. We show that this method reaches an ε-optimal solution in $O(n \log(1/\varepsilon))$ iterations. The second algorithm has a practical meaning and although its worst-case iteration complexity is \sqrt{n} times higher than the former one, in practice this algorithm behaves very well and provides the basis of an implementable method.

To simplify the analysis and to allow the reader to concentrate on the essential consequences of inexactness in the Newton direction we will analyse feasible algorithms. It is worth mentioning that this does not limit the applicability of the analysis. Indeed, the homogeneous and self-dual embedding [22] provided an elegant tool to transform the linear programs into new models for which the primal and dual initial feasible solutions are known and therefore primal and dual feasibility can be maintained throughout the computations. The homogeneous and self-dual embedding was initially used in the context of LPs and implemented by Andersen and Andersen [2] in their Mosek software. Later this elegant model was extended to conic optimization by Andersen et al. [3].

Finally, let us comment that the key motivation for this work is the need to better understand how much inaccuracy is admissible in the Newton systems and provide the foundations for cases in which interior point algorithms rely on iterative methods to solve the underlying linear algebra problems. There has recently been a shift of interest in the IPM community towards the application of iterative methods to solve the reduced KKT systems [8]. There exists a rich body of literature (cf. Benzi et al. [6]) which deals with very similar saddle point problem arising in the discretisations of partial differential equations and we expect that the coming years will bring many interesting developments in iterative methods applicable to IPMs. In particular
Inexact Feasible IPMs

there is a clear need to develop alternative preconditioners which are compatible with the spirit of the matrix-free interior point method [11, 12].

The paper is organised as follows. In Section 2 we will introduce the quadratic optimization problem, define the notation used in the paper and point out an essential difference between the exact and inexact interior point methods. In Section 3 we will perform the worst-case analysis of two variants of an inexact feasible interior point algorithm for convex quadratic programming. First we will analyse the algorithm operating in a small neighbourhood of the central path induced by the 2-norm. Such a method yields the best complexity result known to date but it has only a theoretical importance. Next we will analyse the feasible algorithm operating in a symmetric neighbourhood of the central path induced by the infinity norm. This method has a practical meaning as an implementable algorithm. It provides a theoretical basis for the recently developed matrix-free variant of the interior point method [12]. Our analysis will follow that of Wright [21] and will generalize it from linear programming to quadratic programming and from exact to inexact method. In Section 4 we will briefly comment on some practical aspects related to the implementation of inexact interior point method and finally in Section 5 we will give our conclusions.

2 Interior point methods: background

We are concerned in this paper with the theory of interior point methods for solving convex quadratic programming (QP) problems. We consider the following general primal-dual pair of QPs

$$\begin{align*}
\text{Primal} & : \quad \min & c^T x + \frac{1}{2} x^T Q x \\
\text{s.t.} & \quad Ax = b, \\
& \quad x \geq 0,
\end{align*}$$

$$\begin{align*}
\text{Dual} & : \quad \max & b^T y - \frac{1}{2} x^T Q x \\
\text{s.t.} & \quad A^T y + s - Q x = c, \\
& \quad y \text{ free, } s \geq 0,
\end{align*}$$

(1)

where $A \in \mathbb{R}^{m \times n}$ has full row rank $m \leq n$, $Q \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix, $x, s, c \in \mathbb{R}^n$ and $y, b \in \mathbb{R}^m$. Setting $Q = 0$ yields the special case of the linear programming (LP) primal-dual pair.

To derive a primal-dual interior point method [21] we first introduce the logarithmic barrier function $\mu \sum_{j=1}^n \log x_j$ to “replace” the inequality constraint $x \geq 0$ in the primal and then, by using Lagrangian duality theory, write down the first-order optimality conditions

$$\begin{align*}
Ax & = b, \\
A^T y + s - Q x & = c, \\
X Se & = \mu e, \\
(x, s) & \geq 0,
\end{align*}$$

(2)

where X and S are diagonal matrices in $\mathbb{R}^{n \times n}$ with elements of vectors x and s spread across the diagonal, respectively and $e \in \mathbb{R}^n$ is the vector of ones. This system of equations has a unique solution $(x(\mu), y(\mu), s(\mu))$, $x(\mu) > 0$, $s(\mu) > 0$ for any $\mu > 0$. The corresponding point is called a μ-centre. A family of these points for all positive values of μ determines a continuous curve $\{(x(\mu), y(\mu), s(\mu)) : \mu > 0\}$ which is called the primal-dual central trajectory or central path.
The first two equations in (2) are the primal and dual feasibility conditions, respectively. The third equation is a perturbed complementarity condition; the parameter μ associated with the logarithmic barrier function controls the level of perturbation. The convergence to optimality is forced by taking the barrier parameter μ to zero [21, 11].

In this paper we will assume that we work with the feasible interior point method and therefore all iterates (x, y, s) satisfy the first two equations in (2). Consequently, the duality gap is equal to the complementarity gap

$$c^T x + \frac{1}{2} x^T Q x - (b^T y - \frac{1}{2} x^T Q x) = x^T s = n \mu,$$

and by reducing the barrier parameter μ, IPM achieves convergence to optimality. The standard interior point algorithm applies the Newton method to (2), that is, computes the Newton direction and makes a step in this direction followed by a reduction of the barrier parameter μ. Due to the feasibility of (x, y, s) the residual in (2) takes the following form

$$(b - Ax, c - A^T y - s + Qx, \sigma \mu e - XS e) = (0, 0, \xi).$$

Hence the Newton direction $(\Delta x, \Delta y, \Delta s)$ is obtained by solving the following system of linear equations

$$
\begin{bmatrix}
 A & 0 & 0 \\
 -Q & A^T & I \\
 S & 0 & X
\end{bmatrix}
\begin{bmatrix}
 \Delta x \\
 \Delta y \\
 \Delta s
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 \xi
\end{bmatrix},
$$

where I denotes the identity matrix of dimension n.

In this paper we will analyse the method which allows the system (5) to be solved inexactly. To be precise, we will assume that all the iterates remain primal and dual feasible and an inexact Newton direction $(\Delta x, \Delta y, \Delta s)$ satisfies the following system of linear equations

$$
\begin{bmatrix}
 A & 0 & 0 \\
 -Q & A^T & I \\
 S & 0 & X
\end{bmatrix}
\begin{bmatrix}
 \Delta x \\
 \Delta y \\
 \Delta s
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 \xi + r
\end{bmatrix},
$$

which admits an error r in the third equation. Let us observe that any step in such a primal-dual inexact Newton direction preserves primal and dual feasibility.

By using the positive semidefiniteness of Q and exploiting the first two equations in the appropriate Newton system, it is easy to demonstrate that for both the exact (5) and the inexact (6) Newton direction $(\Delta x, \Delta y, \Delta s)$, the following property holds:

$$\Delta x^T \Delta s = \Delta x^T Q \Delta x \geq 0.$$

The third equation in the Newton system plays a crucial role in the convergence analysis of an interior point algorithm. For the inexact Newton direction (6) this equation takes the following form

$$S \Delta x + X \Delta s = \xi + r = \sigma \mu e - XS e + r.$$
and by using $e^T e = n$ and $x^T s = n\mu$ we get

$$s^T \Delta x + x^T \Delta s = \sigma \mu e^T e - x^T s + e^T r = (\sigma - 1)x^T s + e^T r.$$

Hence the complementarity gap at the new point $(x(\alpha), y(\alpha), s(\alpha)) = (x, y, s) + \alpha(\Delta x, \Delta y, \Delta s)$ becomes

$$x(\alpha)^T s(\alpha) = (x + \alpha \Delta x)^T (s + \alpha \Delta s) = x^T s + \alpha(s^T \Delta x + x^T \Delta s) + \alpha^2 \Delta x^T \Delta s$$

$$= (1 - \alpha(1 - \sigma))x^T s + \alpha e^T r + \alpha^2 \Delta x^T \Delta s$$ \hspace{1cm} (8)

and the corresponding average complementarity gap is

$$\mu(\alpha) = x(\alpha)^T s(\alpha)/n = (1 - \alpha(1 - \sigma))\mu + \alpha e^T r/n + \alpha^2 \Delta x^T \Delta s/n.$$ \hspace{1cm} (9)

Under the condition that the error term $e^T r$ and the second order term $\Delta x^T \Delta s$ are kept small enough in comparison with $\alpha(1 - \sigma)x^T s$, the complementarity gap at the new point is reduced compared with that at the previous iteration, thus guaranteeing progress of the algorithm.

The convergence analysis of an interior point algorithm relies on imposing uniform progress in reducing the error in the complementarity conditions which technically is translated into a requirement that the error is small and bounded with $O(\mu)$. To achieve it we will restrict the iterates to remain in the neighbourhood of the central path $\{(x(\mu), y(\mu), s(\mu)), \mu > 0\}$ and we will control the barrier reduction parameter σ and the stepsize α so that $x(\alpha)^T s(\alpha)$ in (8) is noticeably smaller than $x^T s$.

We will consider two different ways of controlling the proximity to the central path and in both cases we will prove the convergence of the inexact interior point method and derive the worst-case complexity result. In both cases we will consider the feasible interior point algorithm and, hence, we will assume that all primal-dual iterates belong to the primal-dual strictly feasible set $\mathcal{F}^0 = \{(x, y, s) | Ax = b, A^T y + s - Qx = c, (x, s) > 0\}$. All iterates are confined to a neighbourhood of the central path which translates to a requirement that the error in the perturbed complementarity condition (2) is small. Depending on the norm used to measure this error, we will consider two different neighbourhoods:

- a small neighbourhood induced by the use of the Euclidean norm for some $\theta \in (0, 1)$

$$N_2(\theta) = \{(x, y, s) \in \mathcal{F}^0 | \|XSe - \mu e\| \leq \theta \mu\},$$ \hspace{1cm} (10)

which yields a short-step algorithm, and

- a symmetric neighbourhood induced by the use of the infinity norm for some $\gamma \in (0, 1)$

$$N_S(\gamma) = \{(x, y, s) \in \mathcal{F}^0 | \gamma \mu \leq x_j s_j \leq \frac{1}{\gamma} \mu, \forall j\},$$ \hspace{1cm} (11)

which yields a long-step algorithm.

The former has a theoretical importance as it leads to the algorithm with the best complexity result known to date. However, it is not an implementable method because it leads to poor performance in practice. Indeed, its behaviour reproduces the worst-case analysis. The latter neighbourhood has a practical meaning and leads to an efficient algorithm in practice.
Following the general theory of the inexact Newton Method [9, 13], we will assume that the residual r in (6) satisfies
\[\|r\|_p \leq \delta \|\xi\|_p, \tag{12} \]
for some $\delta \in (0, 1)$ and an appropriate p-norm. According to the type of the neighbourhood used, (10) or (11), this inequality will use either $p = 2$ or $p = \infty$, respectively. Further in the paper we will omit a subscript 2 for the Euclidean norm unless an expression involves different norms at the same time and such an omission could lead to a confusion.

In the next section we will prove that the feasible interior point algorithm using an inexact Newton direction (6) and applied to a convex quadratic program converges to an ε-accurate solution in $O(\sqrt{n} \ln(1/\varepsilon))$ or $O(n \ln(1/\varepsilon))$ iterations if it operates in the $N_2(\theta)$ or $N_S(\gamma)$ neighbourhood, respectively. Our analysis will follow the general scheme used by Wright [21].

3 Worst-case complexity results

The analysis for two different neighbourhoods will share certain common features. The algorithm makes a step in the Newton direction obtained by solving (6). When a step in the Newton direction ($\Delta x, \Delta y, \Delta s$) is made, the new complementarity product for component j is given by
\[
x_j(\alpha) s_j(\alpha) = (x_j + \alpha \Delta x_j)(s_j + \alpha \Delta s_j)
= x_j s_j + \alpha (s_j \Delta x_j + x_j \Delta s_j) + \alpha^2 \Delta x_j \Delta s_j. \tag{13}
\]
The third equation in (6) is a local linearization of the complementarity condition and controls the middle term $s_j \Delta x_j + x_j \Delta s_j = \xi_j + r_j$ in the above equation. The error in the approximation of complementarity products is determined by the second-order term $\Delta x_j \Delta s_j$ in (13). We will provide a bound on these products, namely, we will bound the vector of the second-order error terms $\|\Delta X \Delta S\|$. Having multiplied the third equation in the Newton system (6) by $(XS)^{-1/2}$, we obtain
\[
X^{-1/2} S^{1/2} \Delta x + X^{1/2} S^{-1/2} \Delta s = (XS)^{-1/2} (\xi + r). \tag{14}
\]
Defining $u = X^{-1/2} S^{1/2} \Delta x$ and $v = X^{1/2} S^{-1/2} \Delta s$ and using (7) we obtain $u^T v = \Delta x^T \Delta s \geq 0$. Let us partition all products $u_j v_j$ into positive and negative ones: $\mathcal{P} = \{j \mid u_j v_j \geq 0\}$ and $\mathcal{M} = \{j \mid u_j v_j < 0\}$ and observe that
\[
0 \leq u^T v = \sum_{j \in \mathcal{P}} u_j v_j + \sum_{j \in \mathcal{M}} u_j v_j = \sum_{j \in \mathcal{P}} |u_j v_j| - \sum_{j \in \mathcal{M}} |u_j v_j|. \tag{15}
\]
Next, let us write equation (14) component-wise as $u_j + v_j = (x_j s_j)^{-1/2} (\xi_j + r_j)$ for every $j \in \{1, 2, \ldots, n\}$ and take the sum of squared equations for components $j \in \mathcal{P}$:
\[
0 \leq \sum_{j \in \mathcal{P}} (u_j + v_j)^2 = \sum_{j \in \mathcal{P}} (u_j^2 + v_j^2) + 2 \sum_{j \in \mathcal{P}} u_j v_j = \sum_{j \in \mathcal{P}} (x_j s_j)^{-1} (\xi_j + r_j)^2,
\]
to get
\[
2 \sum_{j \in \mathcal{P}} |u_j v_j| = 2 \sum_{j \in \mathcal{P}} u_j v_j \leq \sum_{j \in \mathcal{P}} (x_j s_j)^{-1} (\xi_j + r_j)^2.
\]
The barrier reduction parameter for the short-step algorithm is defined as the complementarity products satisfy the following inequality for the 2-norm:

\[\| \Delta X \Delta e \|_1 = \sum_{j \in \mathcal{P}} |u_j v_j| + \sum_{j \in \mathcal{M}} |u_j v_j| \leq 2 \sum_{j \in \mathcal{P}} |u_j v_j| \]

\[\leq \sum_{j \in \mathcal{P}} (x_j s_j)^{-1} (\xi_j + r_j)^2 \leq \sum_{j=1}^n (x_j s_j)^{-1} (\xi_j + r_j)^2. \quad (16) \]

We will now consider two different algorithms: the short-step method in which the iterates are confined to \(N_2(\theta) \) neighbourhood (10) and the long-step method in which the iterates are confined to \(N_2(\gamma) \) neighbourhood (11). The names “short-step” and “long-step” describe the steps to optimality and are related to the choice of barrier reduction parameter \(\sigma \) (and should not be confused with the stepsizes taken in the Newton direction). In the short-step method, \(\sigma \) is very close to one and therefore the algorithm makes only a short step to optimality while in the long step method, \(\sigma \) is usually a small number satisfying \(\sigma \ll 1. \)

3.1 Analysis of the short-step method

In this section we will assume that \((x, y, s) \in N_2(\theta)\) for some \(\theta \in (0, 1) \) and inequality (12) holds for the 2-norm: \(\|r\|_2 \leq \delta \|\xi\|_2. \) It is easy to deduce that since \(\|XSe - \mu e\|_\infty \leq \|XSe - \mu e\|_2 \leq \theta \mu, \) the complementarity products satisfy the following inequality

\[(1 - \theta)\mu \leq x_j s_j \leq (1 + \theta)\mu \quad \forall j. \quad (17) \]

The barrier reduction parameter for the short-step algorithm is defined as \(\sigma = 1 - \beta / \sqrt{n} \) for some \(\beta \in (0, 1) \). Such a definition implies that \((1 - \sigma)^2 n = \beta^2 \) and therefore, using \(e^T (XSe - \mu e) = 0, \) the norm of the term \(\xi = \sigma \mu e - XSe \) in (4) satisfies

\[\|XSe - \mu e\|^2 = \|(XSe - \mu e) + (1 - \sigma)\mu e\|^2 \]

\[= \|XSe - \mu e\|^2 + 2(1 - \sigma)\mu e^T (XSe - \mu e) + (1 - \sigma)^2 \mu^2 e^T e \]

\[\leq \theta^2 \mu^2 + (1 - \sigma)^2 n \mu^2 \]

\[= (\theta^2 + \beta^2)\mu^2. \quad (18) \]

We are now ready to derive a bound on \(\|\Delta X \Delta Se\|. \)

Lemma 3.1 Let \(\theta \in (0, 1). \) If \((x, y, s) \in N_2(\theta)\) then the inexact Newton direction \((\Delta x, \Delta y, \Delta s)\) obtained by solving (6) satisfies

\[\|\Delta X \Delta Se\| \leq \frac{(1 + \delta)^2 (\theta^2 + \beta^2)}{(1 - \theta)} \mu. \quad (19) \]

Proof: Inequality (17) provides a bound \(\min_j \{x_j s_j\} \geq (1 - \theta)\mu. \) We use it to rewrite (16):

\[\|\Delta X \Delta Se\|_2 \leq \|\Delta X \Delta Se\|_1 \leq \frac{1}{\min_j \{x_j s_j\}} \sum_{j=1}^n (\xi_j + r_j)^2 \leq \frac{1}{(1 - \theta)\mu} \|\xi + r\|^2. \quad (20) \]

Using (12) (with \(p = 2 \)) and (18) we write

\[\|\xi + r\|^2 \leq (\|\xi\| + \|r\|)^2 \leq (1 + \delta)^2 \|\xi\|^2 \leq (1 + \delta)^2 (\theta^2 + \beta^2)\mu^2, \]
and after substituting this expression into (20) obtain the required inequality (19).

Next we will show that for appropriately chosen constants θ, β and δ, a full Newton step is feasible and the new iterate $(\bar{x}, \bar{y}, \bar{s}) = (x, y, s) + (\Delta x, \Delta y, \Delta s)$ also belongs to the $N_2(\theta)$ neighbourhood of the central path. We will prove an even stronger result which is that for any step $\alpha \in (0,1]$ in the Newton direction the following point

$$\alpha \in \mathbb{R}$$

is primal-dual feasible and belongs to the $N_2(\theta)$ neighbourhood.

Proof: Expanding the square, using $e^T r = n$ we write

$$\|r - \frac{e^T r}{n} e\|^2 = \|r\|^2 - \frac{1}{n^2} (e^T r)^2 e^T e - \frac{2}{n} (e^T r)^2$$

$$= \|r\|^2 - \frac{1}{n} (e^T r)^2 \leq \|r\|^2.$$ (24)

Similarly, expanding the square, using $e^T r = n$ again and $(\Delta X \Delta S e)^T e = \Delta x^T \Delta s$, we write

$$\|\Delta X \Delta S e - \frac{\Delta x^T \Delta s}{n} e\|^2 = \|\Delta X \Delta S e\|^2 + \frac{1}{n^2} (\Delta x^T \Delta s)^2 e^T e - \frac{2}{n} (\Delta x^T \Delta s)^2 (\Delta X \Delta S e)^T e$$

$$= \|\Delta X \Delta S e\|^2 - \frac{1}{n} (\Delta x^T \Delta s)^2 \leq \|\Delta X \Delta S e\|^2.$$ (25)

Next, using (22), the definition of $N_2(\theta)$ and inequalities (24), (12) and (25), we write

$$\|X(\alpha)S(\alpha)e - \mu(\alpha)e\| \leq (1-\alpha)\|XSe - \mu e\| + \alpha \|r - \frac{e^T r}{n} e\| + \alpha^2 \|\Delta X \Delta S e - \frac{\Delta x^T \Delta s}{n} e\|$$

$$\leq (1-\alpha)\theta \mu + \alpha \delta \|\xi\| + \alpha^2 \|\Delta X \Delta S e\|.$$
Inexact Feasible IPMs

Inequalities (18) and (19) (Lemma 3.1) provide bounds for the last two terms in the above inequality. We use them to write

\[\|X(\alpha)S(\alpha)e - \mu(\alpha)e\| \leq (1 - \alpha)\theta \mu + \alpha \delta \sqrt{\theta^2 + \beta^2} \mu + \alpha^2 \frac{(1 + \delta)^2(\theta^2 + \beta^2)}{(1 - \theta)} \mu. \]

The choice of \(\theta = \beta = 0.1 \) guarantees that \(\sqrt{\theta^2 + \beta^2} \leq \sqrt{2} \theta \) and \(\frac{(1 + \delta)^2(\theta^2 + \beta^2)}{(1 - \theta)} = \frac{2(1 + \delta)^2}{9} \) hence

\[\|X(\alpha)S(\alpha)e - \mu(\alpha)e\| \leq (1 - \alpha)\theta \mu + \sqrt{2} \alpha \delta \theta \mu + \alpha^2 \frac{2(1 + \delta)^2}{9} \mu. \]

Using equality (9) we observe that this lemma will be proved (inequality (23) will be satisfied) if the following holds

\[
(1 - \alpha)\theta \mu + \sqrt{2} \alpha \delta \theta \mu + \alpha^2 \frac{2(1 + \delta)^2}{9} \mu \leq \theta \left((1 - \alpha(1 - \sigma))\mu + \frac{e^T r}{n} + \alpha^2 \frac{\Delta x^T \Delta s}{n}\right).
\]

We further simplify this inequality by removing the same terms present on both sides of it and then dividing it by \(\alpha \theta \). Inequality (7) guarantees that \(\Delta x^T \Delta s \) is nonnegative, hence we conclude that (23) will be satisfied if

\[
\sqrt{2} \delta \mu + \alpha \frac{2(1 + \delta)^2}{9} \mu \leq \sigma \mu + \frac{e^T r}{n}.
\]

We observe that \(|e^T r| \leq \|e\| \|r\| = \sqrt{n} \delta \|\xi\| \) and hence, using (18), we write

\[
\left| \frac{e^T r}{n} \right| \leq \frac{\delta}{\sqrt{n}} \sqrt{\theta^2 + \beta^2} \mu \leq \frac{\sqrt{2} \delta \theta}{\sqrt{n}} \mu.
\]

Therefore to guarantee that (23) holds for any \(\alpha \in (0, 1] \), it suffices to choose \(\delta \) such that

\[
\sqrt{2} \delta \mu + \frac{2(1 + \delta)^2}{9} \mu \leq \sigma \mu - \frac{\sqrt{2} \delta \theta}{\sqrt{n}} \mu
\]

and this simplifies to

\[
\sqrt{2} \delta (1 + \frac{\theta}{\sqrt{n}}) + \frac{2(1 + \delta)^2}{9} \mu \leq \sigma = 1 - \frac{\beta}{\sqrt{n}}.
\]

The left hand side of this inequality is an increasing function of \(\delta \) and we can easily check that the choice \(\delta = 0.3 \) gives \(0.3 \sqrt{2}(1 + \theta/\sqrt{n}) + 3.38/9 \leq 1 - \beta/\sqrt{n} \) which holds for \(\theta = \beta = 0.1 \) and any \(n \geq 2 \). □

Lemma 3.2 guarantees that for any \(\alpha \in (0, 1] \) the new iterate (21) also belongs to the \(N_{2}(\theta) \) neighbourhood of the central path. We will set \(\alpha = 1 \) and take the full step in the Newton direction. Observe that the inexact Newton direction (6) allows the error \(r \) to appear only in the third equation which means that the direction \((\Delta x, \Delta y, \Delta s) \) preserves the feasibility of primal and dual equality constraints. The new iterate is defined as \((\bar{x}, \bar{y}, \bar{s}) = (x, y, s) + (\Delta x, \Delta y, \Delta s) \) and setting \(\alpha = 1 \) in (9) gives

\[
\bar{\mu} = \mu(\alpha) = \sigma \mu + \frac{e^T r}{n} + \frac{\Delta x^T \Delta s}{n}.
\]
With $\theta = \beta = 0.1$ and $\delta = 0.3$ the right-hand-side term in inequality (19) may be simplified to give $\|\Delta X \Delta S e\| \leq 0.38\beta\mu$ and, using the Cauchy-Schwartz inequality, we get the bound

$$ \frac{\Delta x^T \Delta s}{n} = \frac{(\Delta X \Delta S e)^T e}{n} \leq \frac{1}{n} \|\Delta X \Delta S e\|\|e\| \leq \frac{0.38}{\sqrt{n}} \beta \mu. $$

Using this inequality, our choice $\theta = \beta$, (26) and $\sigma = 1 - \beta/\sqrt{n}$, we obtain the following bound on $\bar{\mu}$ in (27)

$$ \bar{\mu} \leq (1 - \frac{\beta}{\sqrt{n}})\mu + \frac{2\delta \beta}{\sqrt{n}} \mu + \frac{0.38 \beta}{\sqrt{n}} \mu = (1 - \frac{\eta}{\sqrt{n}})\mu, \quad (28) $$

where $\eta = \beta(1 - 2\delta - 0.38) = 0.002$.

We are now ready to state the complexity result for the inexact short-step feasible interior point method operating in a $N_2(0.1)$ neighbourhood.

Theorem 3.1 Given $\epsilon > 0$, suppose that a feasible starting point $(x^0, y^0, s^0) \in N_2(0.1)$ satisfies $(x^0)^T s^0 = n\mu^0$, where $\mu^0 \leq 1/e^\kappa$, for some positive constant κ. Then there exists an index L with $L = O(\sqrt{n} \ln(1/\epsilon))$ such that $\mu^l \leq \epsilon$, $\forall l \geq L$.

Proof: is a straightforward application of Theorem 3.2 in Wright [21, Ch. 3]. \hfill \square

3.2 Analysis of the long-step method

In this section we will assume that $(x, y, s) \in N_S(\gamma)$ for some $\gamma \in (0, 1)$ and inequality (12) holds for the infinity norm: $\|r\|_\infty \leq \delta\|\xi\|_\infty$. We will ask for an aggressive reduction of the duality gap from one iteration to another and set the barrier reduction parameter $\sigma \in (0, 1)$ to be significantly smaller than 1. Therefore it will not be possible in general to make the full step in the Newton direction.

Using definition (11) of the symmetric neighbourhood $N_S(\gamma)$ and observing that $1/\gamma - 1 > 1 - \gamma$ we derive the following bound for the term $\xi = \sigma\mu e - XSe$ in (4)

$$ \|XSe - \sigma\mu e\|_\infty = \|(XSe - \mu e) + (1 - \sigma)\mu e\|_\infty
\leq \|XSe - \mu e\|_\infty + (1 - \sigma)\mu
\leq \max\{1 - \gamma, \frac{1}{\gamma} - 1\}\mu + (1 - \sigma)\mu
= (\frac{1}{\gamma} - \sigma)\mu. \quad (29) $$

We are now ready to derive a bound on $\|\Delta X \Delta S e\|_\infty$.

Lemma 3.3 Let $\gamma \in (0, 1)$. If $(x, y, s) \in N_S(\gamma)$ then the inexact Newton direction $(\Delta x, \Delta y, \Delta s)$ obtained by solving (6) satisfies

$$ \|\Delta X \Delta S e\|_\infty \leq \|\Delta X \Delta S e\|_1 \leq n\frac{(1 + \delta)^2}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \mu \quad (30) $$

and

$$ \Delta x_j \Delta s_j \leq \frac{(1 + \delta)^2}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \mu, \quad \forall j. \quad (31) $$
Proof: The definition of the \(N_S(\gamma) \) neighbourhood provides a bound \(\min_j \{ x_j s_j \} \geq \gamma \mu \). We use it to rewrite (16):

\[
\| \Delta X \Delta Se \|_{\infty} \leq \| \Delta X \Delta Se \|_1 \leq \frac{1}{\min_j \{ x_j s_j \}} \sum_{j=1}^{n} (\xi_j + r_j)^2 \leq \frac{1}{\gamma \mu} \| \xi + r \|_2^2.
\]

(32)

Using (12) (for the infinity norm) and (29) we write

\[
\| \xi + r \|_2^2 \leq n \| \xi + r \|_{\infty}^2 \leq n(1 + \delta)^2 \| \xi \|_{\infty}^2 \leq n(1 + \delta)^2 \frac{1}{\gamma} \sigma^2 \mu^2,
\]

and, after substituting this expression into (32), obtain the required inequality (30). We observe that (30) implies that

\[
-n \frac{(1 + \delta)^2}{\gamma} \frac{1}{(\gamma) - \sigma} \mu \leq \Delta x_j \Delta s_j \leq n \frac{(1 + \delta)^2}{\gamma} \frac{1}{(\gamma) - \sigma} \mu, \quad \forall j,
\]

but we can obtain a tighter upper bound for this component-wise error term. For this we write equation (14) for component \(j \) and square both sides of it to get

\[
2 \Delta x_j \Delta s_j \leq \frac{(\xi_j + r_j)^2}{x_j s_j} \leq \frac{(1 + \delta)^2 \| \xi \|_{\infty}^2}{\gamma \mu} \leq \frac{(1 + \delta)^2}{\gamma} \frac{1}{(\gamma) - \sigma} \mu, \quad \forall j,
\]

which implies (31) and completes the proof. \(\square \)

Next we will show that for appropriately chosen constants \(\sigma, \gamma \) and \(\delta \), a (small) step \(\alpha = O(1/n) \) in the inexact Newton direction is feasible and the new iterate \((x(\alpha), y(\alpha), s(\alpha)) = (x, y, s) + \alpha (\Delta x, \Delta y, \Delta s) \) remains in the \(N_S(\gamma) \) neighbourhood of the central path.

The Lemma below provides conditions which have to be met by three parameters: the proximity constant \(\gamma \in (0, 1) \) in (11), the barrier reduction parameter \(\sigma \in (0, 1) \), and the level of error \(\delta \in (0, 1) \) allowed in the inexact Newton method (12).

Lemma 3.4 Let \((x, y, s) \) be the current iterate in the \(N_S(\gamma) \) neighbourhood and \((\Delta x, \Delta y, \Delta s) \) be the inexact Newton direction which solves equation system (6). If the stepsize \(\alpha \in (0, 1] \) satisfies the following conditions:

\[
\alpha (\gamma + n) \frac{(1 + \delta)^2}{\gamma} \frac{1}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \leq \sigma (1 - \gamma) - \delta (1 + \gamma) \frac{1}{\gamma} (\frac{1}{\gamma} - \sigma) \quad (33)
\]

\[
\delta (1 + \frac{1}{\gamma}) (\frac{1}{\gamma} - \sigma) + \alpha \frac{(1 + \delta)^2}{\gamma} \frac{1}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \leq \frac{1}{\gamma} (1 - \sigma) \quad (34)
\]

then the new iterate \((x(\alpha), y(\alpha), s(\alpha)) \) belongs to the \(N_S(\gamma) \) neighbourhood, that is:

\[
\gamma \mu (\alpha) \leq x_j (\alpha) s_j (\alpha) \leq \frac{1}{\gamma} \mu (\alpha), \quad \forall j.
\]

(35)

Proof: Using the average complementarity gap (9) at the new iterate \((x(\alpha), y(\alpha), s(\alpha)) \) together with expression (13) and the third equation in (6), we deduce that the left inequality in (35) will hold for any \(j \) if

\[
\gamma \left((1 - \alpha) \mu + \alpha \sigma \mu + \alpha \frac{e^T r}{n} + \alpha^2 \frac{\Delta x^T \Delta s}{n} \right) \leq (1 - \alpha) x_j s_j + \alpha \sigma \mu + \alpha r_j + \alpha^2 \Delta x_j \Delta s_j.
\]
Since \((x, y, s) \in N_S(\gamma)\) we know that \(\gamma(1 - \alpha)\mu \leq (1 - \alpha)xjs\) and therefore the above inequality will hold if we satisfy a tighter version of it:

\[
\gamma \left((1 - \alpha)\mu + \alpha \sigma\mu + \alpha \frac{e^T r}{n} + \alpha^2 \frac{\Delta x^T \Delta s}{n} \right) \leq \gamma (1 - \alpha)\mu + \alpha \sigma\mu + \alpha r_j + \alpha^2 \Delta x_j \Delta s_j.
\]

After removing identical terms from both sides and dividing both sides by \(\alpha\), we conclude that the inequality will hold if

\[
\alpha \left(\frac{\Delta x^T \Delta s}{n} \right) \leq \sigma (1 - \gamma)\mu + r_j - \gamma \frac{e^T r}{n}.
\]

Using Lemma 3.3 we deduce that

\[
\frac{\Delta x^T \Delta s}{n} = \frac{(\Delta X \Delta Se)^T }{n} \leq \frac{1}{n} \|\Delta X \Delta Se\|_1 \|e\|_\infty \leq \frac{(1 + \delta)^2}{\gamma} \frac{1}{(1) - \sigma}^2 \mu
\]

hence

\[
\gamma \frac{\Delta x^T \Delta s}{n} - \Delta x_j \Delta s_j \leq (\gamma + n) \frac{1}{\gamma} \frac{(1 + \delta)^2}{(1) - \sigma}^2 \mu.
\]

Using (12) (for the infinity norm) and (29) we deduce that \(\|r\|_\infty \leq \delta \|\xi\|_\infty \leq \delta (\frac{1}{\gamma} - \sigma)\mu\) and

\[
|e^T r| \leq \|r\|_1 \leq n \|r\|_\infty \leq n \delta (\frac{1}{\gamma} - \sigma)\mu
\]

hence

\[
|r_j - \gamma \frac{e^T r}{n}| \leq |r_j| + \gamma \frac{|e^T r|}{n} \leq \delta (1 + \gamma) (\frac{1}{\gamma} - \sigma)\mu.
\]

The inequalities (38) and (40) allow us to determine the most adverse conditions in (36), namely when its left-hand-side is the largest possible and the right-hand-side is the smallest possible:

\[
\alpha(\gamma + n)(1 + \delta)^2 \frac{1}{(1) - \sigma}^2 \mu \leq \sigma (1 - \gamma)\mu - \delta (1 + \gamma) (\frac{1}{\gamma} - \sigma)\mu.
\]

We then conclude that (33) implies (36) and therefore the left inequality in (35) holds. This completes the first part of the proof.

The second part deals with the right inequality in (35). Again, using (9), (13) and the third equation in (6), we write the required inequality which should be satisfied for any \(j \in \{1, 2, \ldots, n\}\)

\[
(1 - \alpha)x js + \alpha \sigma\mu + \alpha r_j + (\alpha^2 \Delta x_j \Delta s_j) \leq \frac{1}{\gamma} \left((1 - \alpha)\mu + \alpha \sigma\mu + \alpha \frac{e^T r}{n} + \alpha^2 \frac{\Delta x^T \Delta s}{n} \right),
\]

and determine the condition under which it holds. We use similar arguments as in the earlier part of the proof: for example, \((x, y, s) \in N_S(\gamma)\) implies \((1 - \alpha)x js \leq \frac{1}{\gamma}(1 - \alpha)\mu\). Hence we simplify this inequality by removing identical terms and then divide both sides of it by \(\alpha\). The inequality we need to satisfy becomes

\[
r_j - \frac{e^T r}{\gamma n} + \alpha \left(\Delta x_j \Delta s_j - \frac{\Delta x^T \Delta s}{\gamma n} \right) \leq \frac{1}{\gamma} - 1)\sigma\mu.
\]
Using (31) and (7) we write
\[\Delta x_j \Delta s_j - \frac{\Delta x^T \Delta s}{\gamma n} \leq \frac{(1 + \delta)^2}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \mu \]
and using (12) and (29) and similar arguments to those which led to (40) we write
\[|r_j - \frac{e^T r}{\gamma n}| \leq |r_j| + |\frac{e^T r}{\gamma n}| \leq \delta (1 + \frac{1}{\gamma}) (\frac{1}{\gamma} - \sigma) \mu. \]

By (42) and (43), to satisfy (41) we need to choose \(\alpha \) such that:
\[\delta (1 + \frac{1}{\gamma}) (\frac{1}{\gamma} - \sigma) \mu + \alpha (1 + \delta)^2 (\frac{1}{\gamma} - \sigma)^2 \mu \leq (\frac{1}{\gamma} - 1) \sigma \mu \]
which simplifies to (34) and completes the second part of the proof. \(\square \)

Lemma 3.4 provides conditions which the stepsize \(\alpha \in (0, 1] \) needs to satisfy so that the new iterate remains in the \(N_S(\gamma) \) neighbourhood of the central path. We still need to demonstrate that after a step is made a sufficient reduction of duality gap is achieved.

Lemma 3.5 Let \((x, y, s) \in N_S(\gamma) \) be given and let \((\Delta x, \Delta y, \Delta s) \) be the inexact Newton direction which solves equation system (6). If the stepsize \(\alpha \in (0, 1] \) satisfies the inequality
\[\sigma + \delta \left(\frac{1}{\gamma} - \sigma \right) + \alpha \frac{(1 + \delta)^2}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \mu \leq 0.9 \mu, \]
then the duality gap at the new iterate \((x(\alpha), y(\alpha), s(\alpha)) \) satisfies:
\[\mu(\alpha) \leq (1 - 0.1 \alpha) \mu. \]

Proof: By substituting (9) into (45), cancelling similar terms and dividing the resulting inequality by \(\alpha \), we replace (45) with a new condition that the stepsize \(\alpha \) has to satisfy:
\[\sigma \mu + \frac{e^T r}{n} + \alpha \frac{\Delta x^T \Delta s}{n} \leq 0.9 \mu. \]
Using the bounds (39) and (37) derived earlier we conclude that the above inequality will hold if
\[\sigma \mu + \delta \left(\frac{1}{\gamma} - \sigma \right) \mu + \alpha \frac{(1 + \delta)^2}{\gamma} (\frac{1}{\gamma} - \sigma)^2 \mu \leq 0.9 \mu, \]
which is equivalent to (44). \(\square \)

It remains to consider the three conditions (33), (34) and (44) and to demonstrate that an appropriate choice of parameters \(\gamma, \sigma \) and \(\delta \) guarantees that all these conditions hold for some \(\alpha = \mathcal{O}(\frac{1}{n}) \).

We set the proximity constant \(\gamma = 0.5 \) in (11), the barrier reduction parameter \(\sigma = 0.5 \) and \(\delta = 0.05 \) as the level of error allowed in the inexact Newton method (12). Indeed, with these
parameter settings \(\left(1 + \delta \right) \left(\frac{1}{\gamma} - \sigma \right)^2 = 4.96125 \), and we verify that all three conditions (33), (34) and (44) are satisfied by \(\hat{\alpha} = \frac{1}{50n} \) for any \(n \geq 2 \). Substituting such an \(\hat{\alpha} \) into (45) gives

\[
\bar{\mu} = \mu(\hat{\alpha}) \leq \left(1 - \frac{\eta}{n}\right) \mu,
\]

where \(\eta = 0.002 \), and allows us to conclude this section with the following complexity result for the long-step inexact feasible interior point method operating in a \(N_S(0.5) \) neighbourhood.

Theorem 3.2 Given \(\epsilon > 0 \), suppose that a feasible starting point \((x^0, y^0, s^0) \in N_S(0.5)\) satisfies \((x^0)^T s^0 = n\mu^0\), where \(\mu^0 \leq 1/e^\kappa \), for some positive constant \(\kappa \). Then there exists an index \(L \) with \(L = O(n \ln(1/\epsilon)) \) such that \(\mu_l \leq \epsilon \), \(\forall l \geq L \).

Proof: is a straightforward application of Theorem 3.2 in Wright [21, Ch. 3]. \(\square \)

4 Practical aspects of the inexact IPM

Linear system (6) is a modification of (5) which admits the error \(r \) in its third equation. The analysis in the previous section provides guarantees that when the Newton equation system (6) is solved inexactly and error \(r \) satisfies condition (12) the interior point algorithms retain their good complexity results. In this section we will briefly comment on a practical way of computing the Newton direction which meets condition (12).

Let us observe that after eliminating \(\Delta s \), (5) is reduced to the augmented form

\[
\begin{bmatrix}
-Q - \Theta^{-1} A^T & -X^{-1}
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix} = \begin{bmatrix}
-\xi
\end{bmatrix},
\]

where \(\Theta = XS^{-1} \in \mathbb{R}^{n \times n} \). Any IPM has to solve at least one such system at each iteration [8, 11]. Numerous attempts have been made during the last decade to employ an iterative method for this task. Iterative methods for linear algebra are particularly attractive if they can be used to find only an approximate solution of the linear system, that is, when their run can be truncated to merely a few iterations. It is common to interrupt the iterative process once the required (loose) accuracy of the solution is obtained. Clearly such a solution is inexact and in the context of (46) this translates to dealing with an inexact Newton direction \((\Delta \tilde{x}, \Delta \tilde{y})\) which satisfies

\[
\begin{bmatrix}
-Q - \Theta^{-1} A^T & -X^{-1}
\end{bmatrix}
\begin{bmatrix}
\Delta \tilde{x} \\
\Delta \tilde{y}
\end{bmatrix} = \begin{bmatrix}
-\xi + r_x \\
r_y
\end{bmatrix},
\]

where the errors \(r_x \in \mathbb{R}^n \) and \(r_y \in \mathbb{R}^m \) determine the level of inexactness.

The analysis presented in this paper applies to the situation when \(r_y = 0 \). The other error, \(r_x \) may take a nonzero value and indeed, (47) becomes equivalent to (6) if \(r_y = 0 \) and

\[
-X^{-1} \xi + r_x = -X^{-1}(\xi + r).
\]

This equation combined with condition (12) determines practical stopping criteria set for an iterative solution method applied to (46):

\[
r_y = 0 \quad \text{and} \quad ||r|| = ||XR|| \leq \delta ||\xi||.
\]

(49)
Interestingly, there exist classes of iterative methods which can meet the above stopping criteria. They belong to a broad collection of iterative methods for saddle point problems [6] and rely on specially designed indefinite preconditioners [16, 20].

5 Conclusions

The analysis presented in this paper provides the proofs of $O(\sqrt{n} \log(1/\varepsilon))$ and $O(n \log(1/\varepsilon))$ iteration complexity of the, respectively, short-step and long-step inexact feasible primal-dual algorithms for quadratic programming. The analysis allows for considerable relative errors in the Newton direction. Indeed, δ in (12) may take values 0.3 and 0.05 for the short-step and long-step algorithms, respectively. This shows, somewhat surprisingly, that the inexactness in the solution of the Newton equation system (6) may be quite considerable without adversely affecting the best known worst-case iteration complexity results of these algorithms. It is an encouraging result for researchers who design preconditioners for iterative methods and wish to apply them to solve the reduced Newton equation systems arising in the context of interior point methods.

Acknowledgement

The author is grateful to Kimonas Fountoulakis, Pablo González-Brevis and Julian Hall for reading earlier versions of this paper and useful suggestions which led to an improvement of the presentation.

References

