Abstract

We consider the problem of maximizing influence in a social network. We focus on the case that the social network is a directed bipartite graph whose arcs join senders to receivers. We consider both the case of deterministic networks and probabilistic graphical models, that is, the so-called “cascade” model. The problem is to find the set of the k most influential senders for a given integer k. Although this problem is NP-hard, there is a polynomial-time approximation algorithm due to Kempe, Kleinberg and Tardos. In this work we consider convex relaxation for the problem. We prove that convex optimization can recover the exact optimizer in the case that the network is constructed according to a generative model in which influential nodes are planted but then obscured with noise. We also demonstrate computationally that the convex relaxation can succeed on a more realistic generative model called the “forest fire” model.

1 Influence in social networks

The formation and growth of vast on-line social networks in the past decade has fueled substantial research into the problem of identifying influential members in these networks. An obvious application is determining how to quickly spread an urgent message over a social network. Another obvious application of this research is to determine optimal members of a social network for advertisers to target. Social network research has also been applied to model the spread of health problems by epidemiologists [5], in which case influential nodes would correspond to the persons most in need of medical intervention.
For the purpose of this work, we regard a social network as a directed graph. An arc represents a communication link between a sender and receiver. In the case of a general directed graphs, nodes can be both senders (outdegree ≥ 1) and receivers (indegree ≥ 1). The network passes through a discrete sequence of states. At each discrete state, some of the nodes possess a message. When the network advances to its next state, a node with a message may pass this message along outgoing arcs according to a postulated model for message transmission. In this work, we will consider a deterministic model and a probabilistic model. With these specifications in place, it is now possible to pose the question of finding the k most influential nodes in the network. In other words, given an integer k, find the subset of k nodes such that if a message is seeded at those nodes, the largest number (or expected largest number) of receivers are eventually reached at later time steps.

This problem was first investigated in depth in an influential 2003 paper by Kempe, Kleinberg and Tardos [11]. They note that the problem is NP-hard. Their main contribution is a polynomial-time algorithm based on sampling and on the greedy method for finding an approximate solution to the maximization problem that is within 63% of optimum. Their algorithm is valid for two different probabilistic communication models.

We adopt the following point of view. We specialize to the bipartite case, that is, the graph consists of distinct senders (indegree = 0) and receivers (outdegree = 0) connected by a single layer of arcs. As we explain below, in the deterministic case, this specialization is without loss of generality. Within this framework, we propose a generative model in which the senders are either planted influencers or subordinates and the receivers are partitioned into interest groups. The network of influencers, subordinates and interest groups is, however, partly obscured by noise arcs.

We then propose a natural convex relaxation for the problem. We show that the convex relaxation is able to recover the planted influencers with high probability assuming the parameters of the generative model lie in certain ranges. We have separate results for the deterministic graph model and the probabilistic graph model, known as the “independent cascade” model.

This line of analysis fits into a recent body of results showing that many NP-hard problems can be solved in polynomial time using convex relaxation assuming the data is generated in a certain way. A notable pioneering work in this regard was the discovery of “compressive sensing” by Donoho [7] and by Candès and Tao [4]. This line of attack has also been used to analyze problems in data mining including the clustering problem [2, 1] and nonnegative matrix factorization [6]. The rationale for this line of work is that, although the problems under consideration are NP-hard, it may still be possible to solve them in polynomial time for ‘realistic’ data, i.e., data arising in real-world applications. The reason is that realistic data may possess properties that make the problem of finding hidden structure more tractable than in the case of data constructed by an adversary (as in an NP-hardness proof). One way to make progress in this regard is to postulate a generative model for the data that attempts to capture some real-world characteristics.

In the next section, we focus on the deterministic case of the problem. The more widely used (and presumably realistic) probabilistic model is then analyzed in Section 3. Finally, in Section 5 we consider the even more realistic “forest fire” model of social networks.
We are not able to analyze this model, but we show with computational results that the convex relaxation holds promise for this case as well.

2 Deterministic graph model

In this section we postulate a deterministic model of a social network, that is, each communication link passes messages from its tail to its head with probability equal to 1. In this model, the problem of influence maximization is formally stated as follows. Given a directed graph $G = (V, E)$, and given an integer k, find a subset $V^* \subset V$ such that $|V^*| = k$ and, subject to this constraint, $|\Delta(V^*)|$ is maximum. Here, $\Delta(V^*)$ denotes the subset of V containing nodes reachable by a directed path that begins from a node of V^*.

It is not hard to see that one can replace the original network (an arbitrary directed graph) with a bipartite network. In particular, make two copies of each node (the ‘sender copy’ and the ‘receiver copy’), and put an arc (i, j) in the resulting graph whenever i is the sender copy of an original node i_0, j is the receiver copy of original node j_0, and the original network has a directed path (possibly of length 0 if $i_0 = j_0$) from i_0 to j_0. This reduction to the bipartite case causes a blow-up of at most quadratic size and hence does not affect the polynomial solvability of the problem.

It is also easy to see that the bipartite deterministic case is essentially equivalent to the classic set-cover problem, which is one of Garey and Johnson’s [8] original NP-hard problems. This shows that the problem of finding the k most influential nodes of a social network, even in this apparently simplified case, is NP-hard.

We now describe a particular class of bipartite deterministic networks suitable for analysis. Let the graph be denoted $G = (V_1, V_2, E)$. The nodes of V_1, which are the senders, consist of influencers and subordinates. The nodes in V_2 are called receivers. All arcs in E are directed from V_1 to V_2.

We suppose that V_1 is partitioned into k disjoint interest groups L_1, \ldots, L_k, each having a single influencer and $r_l \geq 0$ subordinates for $l = 1, \ldots, k$. We suppose that V_2 is also partitioned into k interest groups, say $V_2 = G_1 \cup \cdots \cup G_k$, and let $n_l = |G_l|$ for each l. For notational convenience, we assume further that the nodes in V_1 (resp., V_2) are arranged according to the order of L_1, \ldots, L_k (resp., G_1, \ldots, G_k), and that within each interest group in V_1, the first node is always the influencer.

We start by considering the following assumptions on the influencers and subordinates, which corresponds to the noiseless case. This is an easy case that will clarify our assumptions and notation.

A1 There is an arc from the influencer in group L_l to every receiver in G_l, $l = 1, \ldots, k$.

A2 There are no arcs outside interest group boundaries, i.e., there is no arc from L_l to $G_{l'}$ if $l \neq l'$.

A3 Each subordinate in L_l is adjacent to a proper subset of G_l.

It is readily apparent from these assumptions that the solution to the problem of finding the k most influential nodes is to take the k influencers.
Let \(A \) be the \(|V_1| \times |V_2|\) matrix whose \((i,j)\)th entry is 1 if there is an arc from the \(i\)th node in \(V_1\) to the \(j\)th node in \(V_2\). Also, let \(x \in \mathbb{R}^{|V_1|} \) denote an indicator vector for a node in \(V_1\), and let \(x^* \) be the indicator vector corresponding to the influencers. Then it is clear from assumptions \(A1 \) through \(A3 \) that the vector \(x^* \) is an optimal solution to the following integer programming problem:

\[
\begin{align*}
\max \ & e^T t \\
\text{s.t.} \ & t \leq A^T x, \\
& 0 \leq t \leq e, \\
& e^T x = k, \\
& x \in \{0, 1\}^{|V_1|},
\end{align*}
\]

where \(e \) is the vector of all ones, with appropriate dimension. This integer LP models the problem of finding the \(k\) most influential nodes. The variable \(x \) contains a ‘1’ entry for the selected nodes in \(V_1\) and 0 else. The variable \(t \) can only be nonzero at a receiver adjacent to a selected node, and is 0 else. The objective is to maximize the number of ‘1’ entries in \(t \) subject to the constraint that only \(k\) entries of \(x \) may be set to 1. It is not hard to see that vector \(t \) will always be integral at the optimizer, so there is no need for an additional integrality constraint.

An equivalent version of the above maximization problem maximizes the nonsmooth continuous function \(e^T (\min \{e, A^T x\}) \) over the discrete set \(\Omega := \{x \in \{0, 1\}^{|V_1|} : e^T x = k\} \). Since \(|\Omega| = \binom{n}{k}\), the above integer programming problem can be solved by a brute-force function evaluation approach in polynomial time when \(k = O(1)\). However, this approach can be inefficient when \(k\) is large.

Thus, we consider the following simple convex relaxation:

\[
\begin{align*}
\max \ & e^T t \\
\text{s.t.} \ & t \leq A^T x, \\
& 0 \leq t \leq e, \\
& e^T x = k, \\
& 0 \leq x \leq e.
\end{align*}
\]

We would like to study when (1) has \(x = x^*\) as its unique solution. In this case, the relaxation is tight and the influencers can be identified by solving the linear program (1), which can be solved by interior point methods in polynomial time.

We have the following result.

Theorem 1. Assume \(A1 \) through \(A3 \). Then \((x^*, e)\) is the unique solution of (1).

Proof. We first prove that \((x, t) = (x^*, e)\) is optimal for (1). The argument that we now present for optimality is more complicated than necessary, but the same argument will later establish uniqueness and also be used in the more general case below. We note first that the feasible set of (1) is nonempty and compact and thus an optimal solution exists. Furthermore, a feasible solution \((x, t)\) of (1) is optimal if and only if there exist \((\lambda, \mu, \nu, \xi)\)
satisfying the following Karush-Kuhn-Tucker (KKT) conditions:

\[
\begin{align*}
\lambda^T(t - A^T x) &= 0, & x^T(-A\lambda + \nu + \xi e) &= 0, \\
\mu^T(e - t) &= 0, & \lambda + \mu &\geq e, \\
\nu^T(e - x) &= 0, & -A\lambda + \nu + \xi e &\geq 0, \\
t^T(\lambda + \mu - e) &= 0, & \lambda &\geq 0, \mu &\geq 0, \nu &\geq 0.
\end{align*}
\]

We shall show that \((x, t) = (x^*, e)\) is optimal by exhibiting explicitly a quadruple \((\lambda^*, \mu^*, \nu^*, \xi^*)\) satisfying the above conditions.

To proceed, set \(\delta = (\max_{1 \leq l \leq k} \{n_l\})^{-1}\) and define

\[
\lambda^* = \left(\frac{e}{n_1}, \ldots, \frac{e}{n_k} \right), \quad \mu^* = e - \lambda^*, \quad \nu^* = \delta x^* \text{ and } \xi^* = 1 - \delta.
\]

Then for those \(i\) such that \(x^*_i > 0\) (influencers), we have \((-A\lambda^* + \nu^* + \xi^* e)_i = 0\), while for those \(i\) such that \(x^*_i = 0\) (subordinates), from assumption A3, we have

\[
(-A\lambda^* + \nu^* + \xi^* e)_i \geq -1 + \frac{1}{\max_{1 \leq l \leq k} n_l} + 1 - \delta = 0.
\]

From these and the definitions of \((\lambda^*, \mu^*, \nu^*, \xi^*)\), it is routine to show that the conditions in (2) are satisfied. Thus, \((x^*, e)\) is optimal for (1).

We now show that \((x^*, e)\) is the unique optimal solution for (1). Suppose that \((x^0, t^0)\) is an optimal solution for (1). Since \(0 \leq t^0 \leq e\) and the optimal value of (1) has to be \(e^T e = \sum_{l=1}^k n_l\), it follows immediately that \(t^0 = e\). Furthermore, from saddle point theory, \((x^0, t^0)\) together with the \((\lambda^*, \mu^*, \nu^*, \xi^*)\) constructed above has to satisfy (2). In particular, it follows from \(\nu^* T(e - x^0) = 0\) that \(x^0\) must equal 1 for the \(k\) entries corresponding to influencers. This together with feasibility of \(x^0\) gives \(x^0 = x^*\). This completes the proof.

We now extend the above model with the addition of noise arcs. In particular, we make the following new assumptions, which allow some receivers to receive from senders in multiple groups, and which also allow some receivers not to be in any group.

A1' The receivers are partitioned as \(G_0 \cup G_1 \cup \cdots \cup G_k\). The \(lth\) influencer is adjacent to all receivers of \(G_l\), \(l = 1, \ldots, k\). Receivers in \(G_0\) are not adjacent to any influencer.

A2' For each \(G_l\), \(l = 1, \ldots, k\), there exists \(H_l \subset G_l\) such that receivers in \(H_l\) are adjacent only to senders from group \(l\). Say \(|H_l| = \theta_l n_l\) (recall \(n_l = |G_l|\), with \(0 < \theta_l \leq 1\).

A3' A subordinate in group \(l\) is adjacent to at most \(\beta_l \theta_l n_l\) receivers of \(H_l\) \((l = 1, \ldots, k; 0 < \beta_l < 1)\).

For A2' and A3', it is assumed that \(\theta_l\) is chosen so that \(\theta_l n_l\) is integral. Note one difference between A3 and A3': in A3, we allow for subordinates to be adjacent to all but
one receiver of G_l, whereas in $A3'$ the restriction is strengthened to at most a constant factor subset of H_l.

Clearly, smaller values of θ_i and larger numbers of receivers in G_0 corresponds to greater amounts of noise. The recovery theorem for this case is as follows.

Theorem 2. Assume $A1'$ to $A3'$. Let $\rho = \min_l \theta_l / \max_l \theta_l$. For a subordinate i, let z_i denote the number of G_0 nodes adjacent to i. Let $n_{\min} = \min(n_1, \ldots, n_k)$. Provided that

$$\beta_l < \rho/2$$

(4)

for all $l = 1, \ldots, k$ and

$$z_i \leq n_{\min} \theta_l \rho/2$$

(5)

for all subordinates $i \in L_l$, $l = 1, \ldots, k$, then the unique solution to (1) is given by (x^*, t^*), where $x_i^* = 1$ if i is an influencer else $x_i^* = 0$, and $t_j^* = 1$ if $j \in G_1 \cup \cdots \cup G_k$ (i.e., j is in an interest group) while $t_j^* = 0$ else (i.e., $j \in G_0$).

Proof. As above, the proof centers on constructing appropriate KKT multipliers. We start with λ and μ defined according to the following table.

<table>
<thead>
<tr>
<th></th>
<th>t_j^*</th>
<th>λ_j</th>
<th>μ_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j \in H_t$</td>
<td>1</td>
<td>n_{\min} / n_l</td>
<td>$1 - n_{\min} / n_l$</td>
</tr>
<tr>
<td>$j \in G_t - H_t$</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$j \in G_0$</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

We postpone defining ν and ξ until after we have verified the first few KKT conditions. Observe from the table that $(t^* - ATx^*)_j = 0$ for $j \in G_0$ (both terms are 0) and also for $j \in H_t$ (both terms are 1), so the KKT condition $\lambda^T (t - ATx) = 0$ is verified. The conditions $\lambda + \mu \geq \nu, t^T (\lambda + \mu - \nu) = 0$, and $\mu^T (e - t) = 0, \lambda \geq 0, \mu \geq 0$ are all easily checked.

The remaining KKT conditions can be established by finding ν and ξ so that $(x^*)^T (-A\lambda + \nu + \xi e) = 0$ and $-A\lambda + \nu + \xi e \geq 0$. Furthermore, we require that ν be positive in entries corresponding to influencers and 0 in entries corresponding to subordinates. In order for such ν and ξ to exist, it suffices to establish that every entry of $A\lambda$ indexed by an influencer is strictly greater than every entry of $A\lambda$ indexed by a subordinate. If such a bound held, then there is a value, say ω, such that $A(i,:)^\top \lambda > \omega$ for influencers i while the opposite inequality holds for subordinates i. Then we take $\nu_i = A(i,:) \lambda - \omega$ for i an influencer, $\nu_i = 0$ for i a subordinate, and $\xi = \omega$ to satisfy the KKT conditions.

Observe that the value of $A(i,:) \lambda$ when i is the influencer for group l is $n_{\min} / n_l \cdot |H_l|$ which is bounded below by $\theta_l n_{\min}$. On the other hand, when i is a subordinate in group l, then

$$A(i,:) \lambda \leq \beta_l \theta_l n_{\min} + z_i.$$

(The first term arises from $A3'$.) Thus, to establish the KKT conditions requires for all l, all subordinates $i \in L_l$,

$$\beta_l + \frac{z_i}{n_{\min} \theta_l} < \frac{\min_l \theta_l \nu}{\theta_l}.$$

6
But this is established by the assumptions of the theorem, since the two terms on the left-hand side are bounded above by $\rho/2$ (with the first bound being strict) while the right-hand side upper bounds ρ.

Finally, uniqueness is established similarly as before: by complementarity, any solution (x°, t°) must satisfy $\nu^T(e - x) = 0$ for the particular dual vector ν defined above. As in Theorem 1, we must have $x^\circ = x^*$. On the other hand, (x°, t°) has to satisfy $\mu^T(e - t) = 0$ and $\lambda^T(t - A^T x) = 0$ with the particular dual vectors μ and λ defined above. The first relation implies that $t^\circ_j = 1$ for all $j \in G_l - H_l$, $l = 1, \ldots, k$. The second relation implies that $t^\circ_j = 0$ for all $j \in G_0$, and also forces $t^\circ_j = 1$ at $j \in H_l$, $l = 1, \ldots, k$. Thus, we also have $t^\circ = t^*$. This completes the proof.

We now consider a randomized generative model to create a social network in which the interest groups and influencers are ‘planted’ but then obscured by randomly generated noise.

Assume the sizes of the interest groups G_0, G_1, \ldots, G_k and L_1, \ldots, L_k are chosen deterministically. Let $q, s > 0$ be two fixed parameters (independent of problem size) of the generative model.

The arcs are chosen at random by the receivers as follows.

1. Each receiver in G_1, \ldots, G_k creates an incoming arc from its influencer with probability 1.

2. Each receiver in G_l, $l = 1, \ldots, k$, creates an incoming arc with probability sr_{min}/r_l from each subordinate in L_l. Here $r_{\text{min}} = \min(r_1, \ldots, r_k)$, and recall that r_l stands for the number of subordinates in L_l.

3. With probability q/r, each receiver in G_l, $l = 1, \ldots, k$, creates an incoming arc from each sender outside its interest group. Here, $r = r_1 + \cdots + r_k + k$, which is the total number of senders.

4. A node in G_0 creates incoming arcs from each subordinate in all groups L_1, \ldots, L_k each with probability sr_{min}/r.

One motivation for these formulas is that each receiver in G_1, \ldots, G_k will have approximately the same expected indegree, namely, approximately $1 + sr_{\text{min}} + q$, which in turn is approximately sr_{min}. Thus, an algorithm could not distinguish receiver interest groups with simple degree-counting. The expected outdegree of the influencer for group l is $n_l + (n - n_l)q/r$, and the expected outdegree of a subordinate is $n_ls_{\text{min}}/r_l + |G_0|s_{\text{min}}/r + (n - n_l)q/r$. Here, we set $n = n_1 + \cdots + n_k$. This means that an influencer can be distinguished from its own subordinates via degree counting, but degrees alone cannot identify which k senders are the influencers (since a subordinate in G_l could have higher degree than the influencer in G_l'). Finally, rule 4 implies that the expected indegree of nodes in G_0 is roughly sr_{min}, so again, they are not distinguished by their degree.

The main theorem about this construction is that under certain assumptions concerning the sizes of the groups, q and s, exact recovery of the optimal solution is assured with high probability.
Theorem 3. Assume the graph is generated by rules 1–4 enumerated above. Assume also that

\[s \leq 0.3e^{-4q}, \tag{6} \]
\[|G_0| \leq 0.1n_{\min}r e^{-1.3q}/(sr_{\min}), \tag{7} \]

and

\[r_l \leq r/10 - 1, \]

for \(l = 1, \ldots, k \).

Then with probability exponentially close to 1, the conditions of Theorem 2 hold, and hence the influencers can be recovered as the solution to (1). By “exponentially close to 1” we mean that the probability of success is \(1 - c_1 \exp(-c_2n_{\min}) \), for scalars \(c_1, c_2 > 0 \) that may depend on \(s, q, r_{\min} \) and \(r \).

Proof. First, let us estimate how many receivers of \(G_l \) will have no incoming arcs from senders outside \(G_l \) and we shall take the collection of all such receivers to be \(H_l \). Moreover, to be specific, we take \(\theta_l \) so that \(|H_l| = \theta_l n_l \) and set \(\beta_l \) so that a subordinate in group \(l \) is adjacent to \(\beta_l \theta_l n_l \) receivers of \(H_l \), \(l = 1, \ldots, k \).

Now, note that a given receiver \(j \) in \(G_l \) has the probability of \((1 - q/r)^{r_l-1} \) of having no out-of-group senders, which is bounded below by \((1 - q/r)^r \), which in turn is bounded below by \(e^{-1.1q} \) provided \(q/r \leq 1/6 \) as assumed in the theorem. On the other hand, we have \((1 - q/r)^{r_l-1} \leq (1 - q/r)^{0.9r} \leq e^{-0.9q} \) since \(r_l \leq 0.1r - 1 \) by assumption. Thus, the expected size of \(H_l \) lies in the range \([n_l e^{-1.1q}, n_l e^{-0.9q}]\). The probability is thus exponentially small as \(n_l \) gets large that \(|H_l| \) will lie outside \([0.9n_l e^{-1.1q}, 1.1n_l e^{-0.9q}]\). Therefore, by the union bound, the probability is exponentially small that any \(|H_l| \), \(l = 1, \ldots, k \), will lie outside this range. Hence, with probability exponentially close to 1, \(0.9e^{-1.1q} \leq \theta_l \leq 1.1e^{-0.9q} \) for all \(l = 1, \ldots, k \). Furthermore, this means \(\rho \) as defined in Theorem 2 is at least \(0.8e^{-0.2q} \).

Next, for each subordinate in group \(l \), the probability that a receiver in \(G_l \) lies in \(H_l \) and selects that particular subordinate is \(sr_{\min}(1 - q/r)^{r_l-1}/r_l \). Thus, the expected number of receivers from \(H_l \) that will select this subordinate is \(sr_{\min}(1 - q/r)^{r_l-1}/r_l \). Hence, with probability exponentially close to 1, the number of \(H_l \) members adjacent to this subordinate lies in \([0.9sr_{\min} e^{-1.1q} n_l/r_l, 1.1sr_{\min} e^{-0.9q} n_l/r_l]\). Thus, by the union bound, the probability is exponentially close to 1 that all groups satisfy

\[\beta_l \leq \frac{1.1sr_{\min} e^{-0.9q}}{\theta_l r_l} \leq \frac{1.1sr_{\min} e^{-2q}}{0.9r_l} < 1.3se^{-2q} < 0.4e^{-0.2q} \leq \frac{\rho}{2}. \]

Hence, we see that (4) is satisfied.

Finally, we turn to the other condition of Theorem 2, i.e., (5). Observe that the expected number of \(G_0 \)-receivers that will select a particular subordinate is given by \(sr_{\min}|G_0|/r \). Thus, by Hoeffding’s inequality, the number of such receivers is bounded above by

\[\frac{n_{\min}}{4}(0.9e^{-1.1q})(0.8e^{-2q}) + \frac{sr_{\min}|G_0|}{r} < \frac{n_{\min}}{2}(0.9e^{-1.1q})(0.8e^{-2q}) \tag{8} \]
with probability at least
\[
1 - \exp \left(- \left[\frac{n_{\min}}{4|G_0|} (0.9e^{-1.1q})(0.8e^{-2q}) \right]^2 |G_0| \right) \geq 1 - \exp(-c_3 n_{\min}) \quad (9)
\]
for some \(c_3 \) depending only on \(s, q \) and \(r_{\min}/r \), where the inequalities in (8) and (9) follow from (7). Moreover, using bounds on \(\theta_l \) and \(\rho \) from the above discussions, the right hand side of (8) is bounded above by \(n_{\min}\theta_l/2 \) with probability exponentially close to 1. Therefore, with probability exponentially close to 1, all subordinates will be adjacent to at most \(n_{\min}\theta_l/2 \) in \(|G_0| \), which establishes the theorem.

3 Probabilistic graphical model

In this section, we consider the independent cascade model, which was introduced by Goldenberg et al. [9] and analyzed by Kempe et al. [11]. Each arc \(e \in E \) is now labeled with a probability \(p_e \). At each time step, a node that received a message on the previous step transmits it along an outgoing arc \(e \) with probability \(p_e \). If the random choice is made not to transmit, then the sender does not attempt to transmit again on subsequent steps.

Note that finding influential nodes in the independent cascade model is not the same problem as finding influential nodes in a deterministic network whose arcs have been selected probabilistically as in the previous section. The reason is that in the independent cascade model, the algorithm selecting the most influential set of \(k \) senders does not have prior knowledge as to which transmissions will succeed or fail.

We focus again only on the bipartite graph case. For this model, the bipartite assumption apparently does entail a loss of generality, i.e., it is not clear how the general case can be reduced to the bipartite case. On the other hand, the bipartite case still has some bearing on reality; [3] shows that the most common cascade depth on the Twitter social network is 1.

Thus, assume \(G = (V_1, V_2, E) \) is a bipartite graph. Based on this fixed \(G \), we consider a family of graphs \(\Upsilon \) generated from \(G \) having the same vertex sets but with arcs chosen from \(E \) with independent probability \(p_e \).

This model can then be formulated as the following stochastic integer programming problem:
\[
\begin{align*}
\max_{x, t} & \quad E_{A \in \Upsilon} (e^T t) \\
\text{s.t.} & \quad t \leq A^T x, \\
& \quad 0 \leq t \leq e, 0 \leq x \leq e, \\
& \quad e^T x = k, x_i \in \{0, 1\}, i = 1, \ldots, |V_1|,
\end{align*}
\]

(10)

where the expectation is taken over the \(|V_1| \times |V_2|\) incidence matrices \(A \) of graphs in \(\Upsilon \). Notice that for any zero-one vector \(x \) satisfying \(e^T x = k \), the corresponding feasible random variables \(t_i \) for (10) that maximize the expectation satisfy
\[
t_j(A) = \begin{cases}
1 & \text{if } \exists i \text{ s.t. arc } (i, j) \text{ is chosen in } A, \\
0 & \text{otherwise}.
\end{cases}
\]
Furthermore, the probability that there is no arc \((i, j)\) for a given \(j\) is \(\prod_{i: (i, j) \in E} (1 - p(i, j))^{x_i}\). Hence,

\[
E_{A \in \Upsilon}(t_j) = 1 - \prod_{i: (i, j) \in E} (1 - p(i, j))^{x_i},
\]

from which we see immediately that problem (10) is the same as

\[
\min_{x} \sum_{j \in V_2} \prod_{i: (i, j) \in E} (1 - p(i, j))^{x_i}
\]

s.t. \(e^T x = k, 0 \leq x \leq e, x_i \in \{0, 1\}, i = 1, \ldots, |V_1|\).

Dropping the integer constraints, we obtain the following relaxation to (10):

\[
\min_{x} g(x) := \sum_{j \in V_2} \prod_{i: (i, j) \in E} (1 - p(i, j))^{x_i}
\]

s.t. \(e^T x = k, 0 \leq x \leq e\), \((11)\)

It can be checked that the objective function denoted \(g(x)\) is a convex function of \(x\) for a fixed probability vector. Thus, the above is a convex optimization problem and can be solved in polynomial time.

We now begin the analysis of the possibility that the solution to the stochastic integer program can be recovered from the convex relaxation. Again, we assume a partitioning of both senders and receivers into \(k\) interest groups with one influencer per interest group. We also assume that an influencer is adjacent to all receivers in its corresponding group, and that there exists a collection of receivers \(G_0\) with \(|G_0| \geq 0\) that are not adjacent to any influencer. In other words, we assume \(A1'\).

First, it should be noted that even in the presence of strong assumptions \(A1\) to \(A3\) made in the deterministic case, the convex relaxation is not guaranteed to find the influencers. In fact, even the integer solution may not find the influencers. For example, consider the case in which there are two interest groups \((k = 2)\), and each has an influencer and one subordinate, thus four senders total. Assume the receiver group sizes are \(n_1 = 100\) and \(n_2 = 20\). Suppose that the number of receivers connected to the two subordinates are \(m_1 = 99\) and \(m_2 = 10\) respectively. Finally, suppose all the arc probabilities are 0.5. In this case, the optimal integer solution is to take both the influencer and subordinate in the first group rather than the two influencers. This is because the influencer in the large group will reach only about 50 of its receivers, so its subordinate will reach another 25 or so in the first group, which is better than the 10 or so that the influencer of the second group might reach.

This example indicates that the influencers are in fact not the most influential nodes unless the group sizes are not too disparate.

Now consider again a similar example in which the sizes are \(n_1 = 100, n_2 = 44, m_1 = 80, m_2 = 40\). In this case, one can check that the optimal integer solution picks out the two influencers and reaches an expected 0.5 \(\cdot 144 = 72\) receivers. However, it is not hard to check that there is a continuous solution of the form \(x_1 = 1, x_2 = \epsilon, x_3 = 1 - \epsilon, x_4 = 0\) for an \(\epsilon > 0\) better than this integer solution.

These small examples indicate that two extensions to the analysis from the last section should be made to handle the cascade model. First, the smaller interest groups cannot be
too much smaller than the larger ones, else they will never be selected even by the integer programming model. Second, even when the convex relaxation succeeds, it often gives weights to influencers that are close to 1 but not equal to 1. In other words, a rounding procedure must be established to obtain the integer solution from the convex solution.

To continue the development of the model, let us simplify notation by assuming that all arcs have exactly the same probability \(p \in (0, 1) \). (It is likely that our results can be extended to the general case of distinct \(p_e \) values, but there is no obvious a priori model for selecting values of \(p_e \) that would be more realistic than equal values.) This means that the objective function may be rewritten as

\[
g(x) = \sum_{j \in V_2} (1 - p) h^T_j x,
\]

where \(H \) is the \(|V_1| \times |V_2|\) matrix whose \((i, j)\)th entry is 1 if there is an arc in \(G \) from the \(i \)th node in \(V_1 \) to the \(j \)th node in \(V_2 \), else \(H \) is zero, and where \(h_j \) denotes the \(j \)th column of \(H \).

We show in the next theorem that, under some assumptions and using a suitable rounding procedure, it is possible to identify the influencers from a solution of problem (11). Moreover, the indicator vector \(x^* \) corresponding to the influencers actually solves (10).

Theorem 4. Suppose that for some \(\xi \in [0, \frac{1}{2k+1}] \), we have

\[
\min_{1 \leq i \leq k} \hat{n}_i \geq (1 - p)^{0.5 + \frac{\xi}{2}} \max_{1 \leq j \leq k} \left\{ \alpha_j + \frac{\gamma_j}{1 - p} \right\} \quad \text{and} \quad n_l - \alpha_l > (1 - p)^{-k} \gamma_l, \quad \forall l = 1, \ldots, k, \tag{12}
\]

where \(\hat{n}_l \) denotes the number of receivers in \(G_l \) that are not adjacent to senders outside \(L_l \); each influencer in \(L_l \) is adjacent to all receivers in \(G_l \); each subordinate in \(L_l \) is adjacent to at most \(\alpha_l < n_l \) receivers in \(G_l \) and at most \(\gamma_l \) receivers outside \(G_l \).

Define a vector \(y_\xi(x) \) as follows:

\[
(y_\xi(x))_i := \begin{cases}
1 & \text{if } x_i \geq 0.5 - \frac{\xi}{2}, \\
0 & \text{otherwise}.
\end{cases}
\]

Then:

(a) The vector \(y_\xi(x^\circ) = x^* \) for any solution \(x^\circ \) of problem (11).

(b) The vector \(x^* \) is a solution of (10).

Remark 1. When there are no noise arcs, i.e., \(\gamma_l = 0 \) for all \(l \), taking \(\xi = 0 \) and noting that \(\hat{n}_l = n_l \) in this case, the condition (12) reduces to \(\min_i n_i \geq (1 - p)^{0.5} \max_j \alpha_j \). This is the probabilistic noiseless case, that is, the analog to the deterministic noiseless case given by A1–A3 in the previous section. If \(p \to 1 \) (i.e., the deterministic limit is approached), then the restriction \(\min_i n_i \geq (1 - p)^{0.5} \max_j \alpha_j \) becomes arbitrarily loose.
Proof. Let x^* be a solution of (11). We first analyze the case when $x^*_i \geq 1 - \xi > \frac{2k}{2k+1}$ at every influencer i. In this case, it holds that for any x^*_j with j being a subordinate,

$$x^*_j \leq k - \sum_{i: \text{influencer}} x^*_i < k - \frac{2k^2}{2k+1} = \frac{k}{2k+1} < \frac{1}{2} - \frac{\xi}{2},$$

from which we see immediately that $y_{\xi}(x^*) = x^*$.

Hence, to establish (a), it remains to analyze the case when there exists a sender group L_{i_0} such that $x^*_{i_0} < 1 - \xi$ at the influencer $i_0 \in L_{i_0}$.

In this case, first, we claim that $x^*_{i_0} = 0$ for all $j \in L_{i_0}$, $j \neq i_0$.

Suppose to the contrary that $x^*_{j_0} > 0$ for some such $j = j_0$. We shall establish that $(\nabla g(x^*))_{i_0} < (\nabla g(x^*))_{j_0}$. Granting this, one can readily show that the vector x^*_j

$$(x^*_j)_i = \begin{cases} x^*_i + \epsilon x^*_{j_0} & \text{if } i = i_0, \\ (1 - \epsilon) x^*_j & \text{if } i = j_0, \\ x^*_i & \text{otherwise}. \end{cases}$$

is feasible for (11) and $g(x^*_j) < g(x^*)$ for all sufficiently small $\epsilon > 0$, contradicting the optimality of x^*. Hence, to establish the claim, it now remains to show that $(\nabla g(x^*))_{i_0} < (\nabla g(x^*))_{j_0}$.

To this end, define the sets $V_{i_0} = \{j : (i_0, j) \in E\}$ and $V_{j_0} = \{j : (j_0, j) \in E\}$. Suppose first that $\gamma_{i_0} = 0$. Since $n_{l_0} > \alpha_{l_0}$ by assumption, it follows that $V_{j_0} \subsetneq V_{i_0}$ and hence we see immediately that

$$(\nabla g(x^*))_{i_0} = \ln(1 - p) \sum_{j \in V_{i_0}} (1 - p)^{h_j^T x^*} < \ln(1 - p) \sum_{j \in V_{j_0}} (1 - p)^{h_j^T x^*} = (\nabla g(x^*))_{j_0}.$$

We next consider the case when $\gamma_{i_0} > 0$:

$$(\nabla g(x^*))_{i_0} = \ln(1 - p) \sum_{j \in V_{i_0} \cap V_{j_0}} (1 - p)^{h_j^T x^*} + \ln(1 - p) \sum_{j \in V_{i_0} \setminus V_{j_0}} (1 - p)^{h_j^T x^*}$$

$$\leq \ln(1 - p) \sum_{j \in V_{i_0} \cap V_{j_0}} (1 - p)^{h_j^T x^*} + \ln(1 - p)(n_{l_0} - \alpha_{l_0})(1 - p)^k$$

$$< \ln(1 - p) \sum_{j \in V_{i_0} \cap V_{j_0}} (1 - p)^{h_j^T x^*} + \ln(1 - p)\gamma_{i_0}$$

$$\leq \ln(1 - p) \sum_{j \in V_{i_0} \cap V_{j_0}} (1 - p)^{h_j^T x^*} + \ln(1 - p) \sum_{j \in V_{j_0} \setminus V_{i_0}} (1 - p)^{h_j^T x^*}$$

$$= (\nabla g(x^*))_{j_0},$$

where the first inequality follows from the fact that there are at least $n_{l_0} - \alpha_{l_0}$ nodes in $V_{i_0} \setminus V_{j_0}$, and $h_j^T x^* \leq k$ by feasibility (since $e^T x^* = k$ and $x^* \geq 0$). The second inequality follows from the assumption of the theorem, while the third inequality follows from the definition of γ_{i_0} and the fact that $h_j^T x^* \geq 0$. Combining the two cases, we conclude that $(\nabla g(x^*))_{i_0} < (\nabla g(x^*))_{j_0}$ and hence we have shown that $x^*_j = 0$ for all $j \in L_{i_0}$, $j \neq i_0$.

12
Using this claim, the fact that \(x^o_{i_0} < 1 - \xi, 0 \leq x^o \leq 1 \) and \(e^T x^o = k \), we conclude that there must exist a group \(L_{i_1} \) such that \(x^o_{i_1} \geq 1 - \xi \) at the influencer \(i_1 \in L_{i_1} \) with \(x^o_{j_1} > 0 \) for some subordinate \(j_1 \in L_{i_1} \). Define
\[
a := \min\{x^o_{i} : i \text{ is an influencer}, x^o_{i} < 1 - \xi\}, \quad i_a \in \arg\min\{x^o_{i} : i \text{ is an influencer}, x^o_{i} < 1 - \xi\},
b := \max\{x^o_{j} : j \text{ is a subordinate}, x^o_{j} > 0\}, \quad j_b \in \arg\max\{x^o_{j} : j \text{ is a subordinate}, x^o_{j} > 0\}.
\]

From the above discussion, these quantities are well-defined. For easy reference, we name the group containing \(i_a \) by \(L_{i_a} \) and the group containing \(j_b \) by \(L_{j_b} \). We also denote the influencer in \(L_{i_b} \) by \(i_b \).

To establish that \(y^\xi(x^o) = x^* \), we now show that \(b < 0.5 - \frac{\xi}{2} \leq a \).

To this end, recall that the point \(x^2 \) is optimal if and only if there exist \(u \geq 0, v \geq 0 \) and \(\lambda \in \mathbb{R} \) such that the following KKT conditions are satisfied:
\[
\nabla g(x^o) + \lambda e - u + v = 0,
u^T x^o = 0, \quad v^T (x^o - e) = 0. \tag{13}
\]

Since \(x^o_{i_a} = a < 1 - \xi \leq 1 \), we have \(v_{i_a} = 0 \). Moreover, since there are \(\hat{n}_{i_a} \) receivers adjacent to no vertex outside \(L_{i_a} \) and recall we have shown that \(x^o_{i} = 0 \) for \(i \in L_{i_a}, i \neq i_a \), it follows that \(h_j^T x^o = a \) at all such receivers. Combining these two observations, we obtain that
\[
\ln(1 - p) \cdot \hat{n}_{i_a} (1 - p)^a \geq (\nabla g(x^o))_{i_a} \geq -\lambda. \tag{14}
\]

Next, notice that at \(j_b \), we have \(x^o_{j_b} = b > 0 \) and thus \(u_{j_b} = 0 \). Hence
\[
-\lambda \geq (\nabla g(x^o))_{j_b} = \left(\ln(1 - p) H \left((1 - p) h_j^T x^o \right) \right)_{j \leq \sum_i n_i} \bigg|_{j_b} \\
= \ln(1 - p) \sum_{j : (j_b, j) \in E} \left(1 - p \right)^{h_j^T x^o} \\
\geq \ln(1 - p) \cdot (\alpha_{j_b} (1 - p)^{1+b} + \gamma_{j_b} (1 - p)^b),
\]

where the inequality follows since: at any \(j \in G_{j_b} \) with \((j_b, j) \in E \), \(h_j = 1 \) at the \(i_b \)th and \(j_b \)th entry, and hence \(h_j^T x^o \geq x^o_{j_b} + x^o, j_b \geq 1 + b \); while for those \(j \notin G_{j_b} \) with \((j_b, j) \in E \), we have \(h_j^T x^o \geq x^o_{j_b} \geq b \). Combining this with (14), we obtain further that
\[
\ln(1 - p) \cdot \hat{n}_{i_a} (1 - p)^a \geq \ln(1 - p) \cdot (\alpha_{j_b} (1 - p)^{1+b} + \gamma_{j_b} (1 - p)^b),
\]
\[
\Rightarrow \alpha_{j_b} (1 - p)^{1+b} + \gamma_{j_b} (1 - p)^b \geq \hat{n}_{j_b} (1 - p)^a,
\]
\[
\Rightarrow \left(1 - p \right)^b \geq \frac{\hat{n}_{i_a}}{\alpha_{j_b} + (1 - p)^{-1} \gamma_{j_b}} \left(1 - p \right)^{-a-1} \geq (1 - p)^{a-0.5+\frac{\xi}{2}},
\]

where the last inequality comes from the assumption. This implies that \(b \leq a - 0.5 + \frac{\xi}{2} \), which together with \(b \geq 0 \) and \(a < 1 - \xi \) gives what we want. This proves part (a).

We now prove part (b).

Take a feasible point \(x \neq x^* \) of (10). Necessarily, there are exactly \(k \) entries of \(x \) equal to 1. We will establish (b) by constructing a feasible vector \(x' \) from \(x \) such that \(g(x') < g(x) \).
Consider first the case that there is a group L_{i_0} with at least one subordinate j_0 such that $x_{j_0} = 1$, while for the influencer of the group i_0, $x_{i_0} = 0$. In this case, define a feasible vector x' by

$$x'_i = \begin{cases}
1 & \text{if } i = i_0, \\
0 & \text{if } i = j_0, \\
x_i & \text{else,}
\end{cases}$$

and note that

$$g(x) = \sum_{j \notin G_{i_0}} (1 - p)^{h_j^T x} + \sum_{l \neq i_0} \sum_{j \in G_l} (1 - p)^{h_j^T x}.$$

We shall analyze the change in the value of g by looking at contributions from within G_{i_0} and outside G_{i_0}.

By changing from x to x', there are now at least $n_{i_0} - \alpha_{i_0}$ receivers within group G_{i_0} adjacent to at most $k - 1$ senders, this means that the objective function contribution from G_{i_0} goes down by at least $(n_{i_0} - \alpha_{i_0})(1 - p)^{k-1} - (1 - p)^{k}$ = $(n_{i_0} - \alpha_{i_0})p(1 - p)^{k-1}$. On the other hand, the objective function may increase due to contributions in other groups; in particular, the subordinate j_0 may be adjacent to at most γ_{i_0} receivers in other groups, and therefore the increase in the objective function is at most $\gamma_{i_0}((1 - p)^{0} - (1 - p)^{1}) = p\gamma_{i_0}$. Thus, to confirm that $g(x') < g(x)$ requires showing that $(n_{i_0} - \alpha_{i_0})p(1 - p)^{k-1} > p\gamma_{i_0}$; this follows from the second half of (12).

The preceding argument shows that a solution to (10) cannot be optimal if a subordinate in an interest group is selected while the influencer is not. In particular, this means that if a solution x is optimal and it has exactly one ‘1’ entry per influence group, then it must be equal to x^*.

Consider now the case that x has two (or more) ‘1’ entries in the same group L_{i_1}. By the preceding analysis, we already know that x is suboptimal if the influencer in L_{i_1} is not selected. Therefore, assume that $x_{i_1} = 1$, where i_1 is the influencer of L_{i_1}, and assume also that there is a subordinate $j_1 \in L_{i_1}$ such that $x_{j_1} = 1$.

By feasibility, there is another group L_{i_0} in which x has no ‘1’ entry at all. Consider the solution x' in which the subordinate in group L_{i_1} indexed j_1 is changed to 0, while the influencer in group L_{i_0}, say which is numbered i_0, is changed to 1.

Unlike the previous case, we shall analyze the change in the value of g by looking at the decrease of function value due to the change from $x_{i_0} = 0$ to $x'_{i_0} = 1$, and then the increase induced by changing $x_{j_1} = 1$ to $x'_{j_1} = 0$.

Since there are n_{i_0} receivers in G_{i_0} not adjacent to any sender whose x-value is 1, the decrease in the objective function due to changing $x_{i_0} = 0$ into $x'_{i_0} = 1$ is at least $n_{i_0}((1 - p)^{0} - (1 - p)^{1}) = n_{i_0}p$. On the other hand, the increase in the objective function due to changing $x_{j_1} = 1$ to $x'_{j_1} = 0$ is at most

$$\alpha_{i_1}((1 - p)^{1} - (1 - p)^{2}) + \gamma_{i_1}((1 - p)^{0} - (1 - p)^{1}) = \alpha_{i_1}p(1 - p) + \gamma_{i_1}p,$$

where: the first term accounts for the maximum possible increase in the objective function among receivers in G_{i_1} (these receivers are adjacent to at least two senders in L_{i_1}, in
solution \mathbf{x}, namely the i_1 and j_1), while the second term is the maximum possible increase contributed by other groups (not G_{l_1}) due to changing $x_{j_1} = 1$ to $x'_{j_1} = 0$. Thus, showing that the objective function decreases requires establishing $\hat{n}_l p > \alpha_l p(1 - p) + \gamma_l p$. This follows from the first condition of (12) since $1 - p < (1 - p)^{0.5 + \epsilon/2}$. This completes the proof.

It is now possible, as in the previous section, to write down rules for a generative model whose networks will satisfy the conditions of Theorem 4. Since the construction and proof are not very different from those in the previous section, we will omit the details but instead point out the salient differences imposed by (12). The first part of condition (12) requires all the receiver groups G_1, \ldots, G_k to have roughly the same size. The second part of the condition places a stringent bound on the number of noise arcs if k is large. We conjecture that a different analysis could improve this exponential dependence on k.

4 On solving the general case with the convex relaxation

The theory developed shows that the two convex relaxations can exactly solve the underlying integer problem when the data comes from the postulated generative models. Unless $P = NP$, we cannot expect our convex relaxation (or any convex relaxation) to solve these problems if the data comes from an unknown source. It is reasonable, however, to at least expect that when the relaxations succeed in exact recovery for general data, there is a certificate of their success.

We first make the fairly obvious but still useful observation that if the LP model (1) returns a 0-1 solution as the LP optimizer, then this solution must be optimal also for the integer program, and furthermore, optimality for the integer program is certified by the LP solution. This observation holds regardless of the source of the data. We use this fact in the next section.

In the case of the convex relaxation (11) for the cascade model, the situation is not as clear. Our theory states that even when (11) is able to identify the optimizer of (10), it does not return a 0-1 solution and hence is not able to certify optimality. For general problems, the proposed rounding procedure may not even yield a feasible point. Thus, in the case that the problem data comes from an unknown source, it is unclear how the convex solution could be useful.

We now describe a simple strategy for making use of the convex solution of (11). Consider

$$\tilde{\mathbf{y}}(\mathbf{x}) := \begin{cases} 1 & \text{if } x_i \text{ is one of the } k \text{ largest entries in } \mathbf{x}, \\ 0 & \text{else.} \end{cases}$$

Notice that this vector is well-defined whenever the k largest entries in \mathbf{x} are uniquely identified. In addition, $\tilde{\mathbf{y}}(\mathbf{x}^*) = \mathbf{y}_\xi(\mathbf{x}^*)$ under the assumptions of Theorem 4. Furthermore, it is not hard to show that $\mathbf{x} \mapsto \tilde{\mathbf{y}}(\mathbf{x})$ sends an \mathbf{x} feasible for (11) to the closest vertex of the feasible region. Given a solution \mathbf{x}' from the convex relaxation (11), let \mathbf{x}'' be a
solution of the following convex optimization problem

$$\begin{align*}
\min_{\mathbf{x}} \quad & g(\mathbf{x}) \\
\text{s.t.} \quad & \mathbf{e}^T \mathbf{x} = k, \\
& \tilde{y}(\mathbf{x}')^T \mathbf{x} \leq k - 1, \\
& 0 \leq \mathbf{x} \leq \mathbf{e}.
\end{align*}$$

It is not hard to see that the constraint $\tilde{y}(\mathbf{x}')^T \mathbf{x} \leq k - 1$ cuts off one and only one vertex from the feasible region of (11), namely $\tilde{y}(\mathbf{x}')$. Thus, it follows immediately that if $g(\mathbf{x}'') > g(\tilde{y}(\mathbf{x}'))$, then one can certify that $\tilde{y}(\mathbf{x}')$ is an optimal solution for (10). More complicated variants of this strategy exist that require greater computational time but are able to certify optimality of $\tilde{y}(\mathbf{x}')$ in more cases. We have confirmed that the simple strategy described in this section is able to certify optimality to (10) for some instances in which \mathbf{x}' is already fairly close to a 0-1 point.

5 A simplified forest fire model with numerical simulations

In this section, via numerical simulations, we study the performance of (1) and (11) on recovering the influencers in random graphs generated according to a simplified forest fire model. Our codes are written in MATLAB. All numerical experiments are performed on MATLAB 7.14 (R2012a) equipped with CVX version 1.22 [10] and SeDuMi 1.21 [13].

We generate random graphs as follows. We start with k influencers, each paired up with one receiver, and set upper bounds u_i and u_f for the total number of senders and receivers, respectively. When the upper bounds u_i and u_f are not reached, we add a receiver with probability p_1, and a subordinate with probability $1 - p_1$. The new receiver j first picks randomly an existing receiver and chooses one of its senders i_1 as its own at random, i.e., an arc (i_1, j) is added to the graph. Then, with probability p_2, this new receiver j continues by picking a random receiver j_1 of i_1, and chooses at random one of its senders i_2 as its own. This process continues with probability p_2. The procedure for adding a new subordinate is similar. When one of the upper bounds u_i and u_f is reached, say u_i is reached, a new receiver is then added according to the above procedure until u_f is also reached. This generative process is a two-layer version of the forest-fire model due to [12]. Networks generated by the forest-fire model have graph properties that seem to match those of real social networks, although a detailed analysis of these properties is lacking. Notice the “rich-get-richer” flavor of the forest-fire model, i.e., that nodes with many connections attract even more connections compared to isolated nodes; this also appears to be a characteristic of real social networks.

We have further tweaked the model as follows. In order to guarantee that the k influencers remain most influential in the resulting graph, each receiver will randomly pick one influencer and add the corresponding arc if it is not already adjacent to one. Finally, a fixed percentage $\sigma\%$ of arcs randomly chosen from the complement graph are added as noise arcs.
In our first test below, we consider model (1). We choose k between 20 and 120, $u_i = 10k$ and $u_f = 10u_i$. We consider $p_1 = 0.3$, 0.7, $p_2 = 0.9$ and $\sigma = 0.5$, 1. We generate 10 random instances as above using these parameters. The computational results, averaged over the 10 instances, are reported in Table 1, where we report the number of arcs before noise is added (E_{orig}) and the number of noise arcs (E_{noise}). We also report the recovery error (err) given by $\sqrt{\sum_{i=1}^{k} |x_i - 1|^2}$, where x is the approximate solution of (1) obtained via CVX (calling SeDuMi 1.21), and the number of instances with successful recovery (N_{rec}) marked by $\sqrt{\sum_{i=1}^{k} |x_i - 1|^2} < 10^{-8}$. The results show that even with a relatively large number of noise arcs, model (1) still successfully identify the influencers.

In our second test, we consider model (11). We take $p_1 = 0.3$, 0.7 and $p_2 = 0.9$ as before but consider the much smaller noise $\sigma = 0$ and 0.01. Moreover, since (11) is solved by CVX (calling SeDuMi 1.21) via a successive approximation method that becomes very costly for large instances, we only consider values of k between 20 and 45. This is because (11) involves a transcendental convex function and therefore is not expressible as a semidefinite programming problem; it is only approximately expressible [10]. We then set $u_i = 10k$ and $u_f = 10u_i$ as before and take $p = 0.9$ in (11). We generate 10 random instances using these parameters. The computational results averaged over the 10 instances are reported in Table 2, where E_{orig} and E_{noise} are defined as above. The recovery error err is given by $\sqrt{\sum_{i=1}^{k} |\tilde{x}_i - 1|^2}$, where \tilde{x} is the zero-one vector that is one at those entries corresponding to the largest k elements in the solution vector returned from CVX. Furthermore, successful recovery is marked by $\sqrt{\sum_{i=1}^{k} |\tilde{x}_i - 1|^2} < 10^{-8}$, and the number of such instances is reported under N_{rec}. The computational results show that model (11) is not capable of identifying all influencers correctly, even when there are no noise arcs.

Table 1: Results on model (1) applied to simplified forest fire model.

<table>
<thead>
<tr>
<th>k</th>
<th>p_1</th>
<th>$\sigma = 0.5$</th>
<th>$\sigma = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{orig}</td>
<td>E_{noise}</td>
<td>err</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>9338</td>
<td>1953</td>
</tr>
<tr>
<td>20</td>
<td>0.7</td>
<td>8674</td>
<td>1957</td>
</tr>
<tr>
<td>40</td>
<td>0.3</td>
<td>18636</td>
<td>7907</td>
</tr>
<tr>
<td>40</td>
<td>0.7</td>
<td>16704</td>
<td>7916</td>
</tr>
<tr>
<td>60</td>
<td>0.3</td>
<td>27358</td>
<td>17863</td>
</tr>
<tr>
<td>60</td>
<td>0.7</td>
<td>25548</td>
<td>17872</td>
</tr>
<tr>
<td>80</td>
<td>0.3</td>
<td>35618</td>
<td>31822</td>
</tr>
<tr>
<td>80</td>
<td>0.7</td>
<td>33603</td>
<td>31832</td>
</tr>
<tr>
<td>100</td>
<td>0.3</td>
<td>44394</td>
<td>49778</td>
</tr>
<tr>
<td>100</td>
<td>0.7</td>
<td>41670</td>
<td>49792</td>
</tr>
<tr>
<td>120</td>
<td>0.3</td>
<td>54052</td>
<td>71730</td>
</tr>
<tr>
<td>120</td>
<td>0.7</td>
<td>52145</td>
<td>71739</td>
</tr>
</tbody>
</table>

1 Note that by construction, the influencers are located at the first k entries.
Table 2: Results on model (11) applied to simplified forest fire model, with $p = 0.9$.

<table>
<thead>
<tr>
<th>k</th>
<th>p_1</th>
<th>$\sigma = 0$</th>
<th>$\sigma = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E_{orig}</td>
<td>E_{orig}</td>
</tr>
<tr>
<td>20</td>
<td>0.3</td>
<td>9183</td>
<td>1.0e-1</td>
</tr>
<tr>
<td>20</td>
<td>0.7</td>
<td>8652</td>
<td>4.4e-1</td>
</tr>
<tr>
<td>25</td>
<td>0.3</td>
<td>11622</td>
<td>3.0e-1</td>
</tr>
<tr>
<td>25</td>
<td>0.7</td>
<td>10645</td>
<td>5.4e-1</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>14183</td>
<td>2.0e-1</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>12889</td>
<td>7.0e-1</td>
</tr>
<tr>
<td>35</td>
<td>0.3</td>
<td>15602</td>
<td>2.0e-1</td>
</tr>
<tr>
<td>35</td>
<td>0.7</td>
<td>14162</td>
<td>8.4e-1</td>
</tr>
<tr>
<td>40</td>
<td>0.3</td>
<td>18474</td>
<td>5.4e-1</td>
</tr>
<tr>
<td>40</td>
<td>0.7</td>
<td>17592</td>
<td>6.4e-1</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>20263</td>
<td>3.0e-1</td>
</tr>
<tr>
<td>45</td>
<td>0.7</td>
<td>19714</td>
<td>7.4e-1</td>
</tr>
</tbody>
</table>

6 Conclusions

We have considered the possibility of using convex relaxation to solve the NP-hard problem of finding the set of k most influential nodes in a social network. We restricted attention to the bipartite case, which is without loss of generality when the arcs are deterministic. We describe a generative model in which senders and receivers are both divided into interest groups, each interest group has one influential sender, and most of the arcs join senders in an interest group to receivers in the same group. Our theory shows that for deterministic arcs, recovery of the influencers is possible even with substantial noise. Recovery in the probabilistic model is also possible with more stringent assumptions. Our computational tests on the forest-fire model, which is not covered by our theory, nonetheless exhibit the results predicted by the theory.

The first question left by our work is whether a stronger convex relaxation is possible in the case of the probabilistic graph model. S. Ahmed pointed out in private communication that while the problem is still in integer form, there are many possible adjustments that could be made to the objective function before passing to the convex relaxation; the adjustments could be chosen so that the integer problem is not affected but the convex relaxation is stronger.

The second main question left by our work is whether a theoretical analysis of the forest-fire model is possible. As mentioned in the introduction, this model is believed to correspond to real social networks much better than the interest-group model developed herein.

The last question is whether the analysis can be extended to the nonbipartite directed graph case. An immediate difficulty with this case, assuming the independent cascade model, is that there is apparently no closed-form expression for the objective function.
(expected number of receivers reached by the \(k \) senders) for the optimization problem. Kempe, Kleinberg and Tardos deal with this difficulty by using sampling. In their context of approximation algorithms, sampling is completely acceptable since it merely creates a further approximation factor. On the other hand, if one is aiming for the exact optimizer as we do, then it is no longer apparent that sampling is an appropriate strategy.

References

