ON THE IRREDUCIBILITY, LYAPUNOV RANK, AND AUTOMORPHISMS OF SPECIAL BISHOP-PHELPS CONES

M. SEETHARAMA GOWDA† AND D. TROTT‡

Abstract. Motivated by optimization considerations, we consider cones in \mathbb{R}^n – to be called special Bishop-Phelps cones – of the form $\{(t, x): t \geq \|x\|\}$, where $\|\cdot\|$ is a norm on \mathbb{R}^{n-1}. We show that when $n \geq 3$, such cones are always irreducible. Defining the Lyapunov rank of a proper cone K as the dimension of the Lie algebra of the automorphism group of K, we show that the Lyapunov rank of any special Bishop-Phelps polyhedral cone is one. Extending an earlier known result for the l_1-cone (which is a special Bishop-Phelps cone with 1-norm), we show that any l_p-cone, for $1 \leq p \leq \infty$, $p \neq 2$, has Lyapunov rank one. We also study automorphisms of special Bishop-Phelps cones, in particular giving a complete description of the automorphisms of the l_1-cone.

Key words. Complementarity set, Lyapunov rank, Bishop-Phelps cone, Irreducible cone

1. Introduction. For a proper cone K in \mathbb{R}^n with dual K^*, the complementarity set of K is

$$C(K) := \{(x, s): x \in K, s \in K^*, \langle x, s \rangle = 0\}.$$ (1.1)

Such a set appears, for example, in complementarity problems [3], [13] and in primal and dual linear programming problems over a cone [12]. In various strategies for solving such problems, one tries to rewrite the complementarity/optimality conditions by replacing the complementarity constraints $x \in K, s \in K^*, \langle x, s \rangle = 0$ by linearly independent 'bilinear' relations. To elaborate, consider a complementarity problem corresponding to K and a function $f: \mathbb{R}^n \to \mathbb{R}^n$, which is to find $x \in \mathbb{R}^n$ such that

$$x \in K, s = f(x) \in K^* \quad \text{and} \quad \langle x, s \rangle = 0.$$

Here, for the $2n$ variables $x \in K$ and $s \in K^*$, there are $n + 1$ equality relations, namely, $s = f(x)$ and $\langle x, s \rangle = 0$. So, to make this a square system, it is desirable to replace the single bilinear relation $\langle x, s \rangle = 0$ by an equivalent system of n independent bilinear relations. This is clearly the case when $K = \mathbb{R}^n_+$ (the non-negative orthant in \mathbb{R}^n); here, the complementarity constraints are equivalently expressed as $x \geq 0, s \geq 0, x_i s_i = 0$ for $i = 1, 2, \ldots, n$. Motivated by this, to measure the number

*August 28, 2013
†Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA; E-mail: gowda@math.umbc.edu, URL: http://www.math.umbc.edu/~gowda
‡Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA; dtrott1@umbc.edu
of independent bilinear relations, Rudolf et al. [16], introduced the following: For a proper cone K in \mathbb{R}^n, an $n \times n$ real matrix Q is a bilinear complementarity relation if

$$(x, s) \in C(K) \Rightarrow \langle Q^T x, s \rangle = 0$$

and the bilinearity rank of K is

$$\beta(K) := \dim Q(K),$$

where $Q(K)$ is the vector space of all bilinear complementarity relations on K. While cones with $\beta(K) = n$ lead to square systems and are desirable, for cones with $\beta(K) > n$, one gets an overdetermined system of bilinear relations. In many of these overdetermined systems, such as symmetric cones [4], one can still get a square system of bilinear relations [10]. In cones with $\beta(K) < n$, the complementarity system can never be written as a square system by means of bilinear complementarity relations alone and this may indicate or cause difficulty in reformulation and solvability of the problem. In [16], Rudolf et al., initiate the study of bilinearity rank and show that isomorphic cones have the same bilinearity rank, a proper cone and its dual have the same rank, and that the rank is additive on a Cartesian product. They also compute the bilinearity rank of certain cones.

A Lyapunov-like matrix/transformation on a proper cone K satisfies the condition

$$(x, s) \in C(K) \Rightarrow \langle Qx, s \rangle = 0$$

and is thus the transpose of a bilinear complementarity relation. Lyapunov-like transformations were introduced in [8] as a generalization of the Lyapunov transformation $X \mapsto AX + XA^T$ that appears in linear dynamical systems theory. These are related to Z-matrices and have been the subject matter of several recent studies, see [8], [9], and [11]. As a consequence of a result in [17],

A is Lyapunov-like on K if and only if $e^{tA} \in Aut(K)$ for all $t \in \mathbb{R},$

where $Aut(K)$ denotes the automorphism group of K. Hence, Lyapunov-like transformations on K are nothing but the elements of $\text{Lie}(Aut(K))$, the Lie algebra of the automorphism group of the cone K [1]; thus, one may redefine the bilinearity rank of K as

$$\beta(K) = \dim \text{Lie}(Aut(K)),$$

and (henceforth) call $\beta(K)$, the Lyapunov rank of K.

Gowda and Tao [10], following the work of [16], established several new results on the Lyapunov rank, and in particular, described the Lyapunov rank of an arbitrary symmetric cone. It was observed in [16] (see also [10], Example (1)), that the
Lyapunov rank of the l_1-cone in \mathbb{R}^n is one, where the l_1-cone is defined by

$$l^n_{1,+} := \{(t, x) : t \geq ||x||_1\},$$

with $||x||_1$ denoting the 1-norm of the vector x in \mathbb{R}^{n-1}. Since the Lyapunov rank is additive on a Cartesian product/sum, it follows that the l_1-cone is irreducible; see [7], Corollary 4.2.5 for an alternate proof. If the 1-norm is replaced by the 2-norm, the resulting l_2-cone

$$l^n_{2,+} = \{(t, x) : t \geq ||x||_2\}$$

is the so-called second-order cone (or the Lorentz cone or the ice-cream cone) in \mathbb{R}^n. This cone is irreducible and its Lyapunov rank is $n^2 - n + 2$, see [10], Section 5.

Motivated by the above results, we consider cones in \mathbb{R}^n of the form

$$K = \{(t, x) : t \geq ||x||\},$$

where $|| \cdot ||$ is a norm on \mathbb{R}^{n-1}, $n > 1$. We will call these special Bishop-Phelps cones (abbreviated as special BP cones) as they are particular instances of the so-called Bishop-Phelps cones [5] given by

$$\{z \in \mathbb{R}^n : ||z|| \leq \phi(z)\},$$

where $|| \cdot ||$ is a norm on \mathbb{R}^n and ϕ is a continuous linear functional on \mathbb{R}^n.

The above results on l_1 and l_2 cones motivate a number of interesting questions:

- Is every special BP cone irreducible?
- What is the Lyapunov rank of such a cone? What if this cone is polyhedral? What if the norm is the p-norm?
- Can one describe the automorphism group of such a cone?

Answering these, in this paper, we prove the following results for $n \geq 3$:

(i) Every special BP cone is irreducible.
(ii) Every polyhedral special BP cone has Lyapunov rank one.
(iii) The Lyapunov rank of the l_p-cone, for $1 \leq p \leq \infty$, $p \neq 2$, is one.
(iv) Every automorphism of the l_1-cone on \mathbb{R}^n is of the form

$$\theta \begin{bmatrix} 1 & 0 \\ 0 & D \end{bmatrix},$$

where $\theta > 0$ and D is a generalized permutation matrix (that is, it is a product of a permutation matrix and a diagonal matrix with diagonal entries ± 1).
We remark that the above results (i) and (ii) do not extend to arbitrary Bishop-Phelps cones as every closed and pointed cone in \mathbb{R}^n (in particular, \mathbb{R}_+^n) is a Bishop-Phelps cone and conversely [14]. However, Bishop-Phelps cones with strictly convex norm and $\|\phi\| > 1$ are irreducible, see [7], Example 4.1. We also note that the above results fail for special BP cones when $n = 2$.

The organization of the paper is as follows. In Section 2, we cover some basic material. Section 3 deals with the irreducibility issue. In Section 4, we consider the Lyapunov ranks of polyhedral special BP cones and l_p-cones. Our final section deals with automorphisms of special BP cones.

2. Preliminaries. Throughout this paper, \mathbb{R}^n denotes the Euclidean n-space where the vectors are written as row vectors or column vectors depending on the context. The usual inner product is written as $\langle x, y \rangle$ or as $x^T y$. The standard unit vectors in \mathbb{R}^n are denoted by e_1, e_2, \ldots, e_n; thus, e_i has one in the ith slot and zeros elsewhere.

For a set K in \mathbb{R}^n, $\text{int}(K)$ and \overline{K} denote, respectively, the interior and closure of K. The subspace generated by K is denoted by $\text{span}(K)$. We let

\[
\text{cone}(K) = \{ \lambda x : \lambda \geq 0, x \in K \}.
\]

The dual of K is given by

\[
K^* := \{ y \in \mathbb{R}^n : \langle y, x \rangle \geq 0 \ \forall x \in K \}.
\]

A nonempty set K is a cone if $K = \text{cone}(K)$. A closed convex cone K in \mathbb{R}^n is said to be, see [2],

(a) pointed if $K \cap -K = \{0\}$;

(b) proper if K is pointed and has nonempty interior.

For a closed convex set S, a vector x in S is an extreme vector if $x = ty + (1-t)z$ with $0 < t < 1, y, z \in S$ holds only when $y = z = x$; we denote the set of all extreme vectors of S by $\text{ext}(S)$. Note that when S is also compact, by the (finite dimensional) Krein-Milman theorem, see Theorems 3.21 and 3.25 in [15], S is the convex hull of $\text{ext}(S)$:

\[
S = \text{conv} (\text{ext}(S)).
\]

For a convex cone K, we say that a nonzero vector x in K is an extreme direction if the equality $x = y + z$ with $y, z \in K$ holds only when y and z are nonnegative multiples of x.

Given any norm $\| \cdot \|$ on $\mathbb{R}^{n-1}, n > 1$, consider the cone in (1.2). That this is a special case of a Bishop-Phelps cone (1.3) is seen by defining, on \mathbb{R}^n, the norm
\[(t, x) \mapsto |t| + |x|\] and the continuous linear functional \(\phi : (t, x) \mapsto 2t \). Bishop-Phelps cones are always closed and pointed, and proper when \(||\phi|| > 1 \) (see Proposition 2.2 and Theorem 2.5 in [5]). Thus, \textit{any cone of the form (1.2) is proper}. If \(S \) denotes the closed unit ball in \(\mathbb{R}^{n-1} \) with respect to a norm \(|| \cdot || \), we see that the cone \(K \) in (1.2) is also given by

\[K = \text{cone} \left(\{1\} \times S \right) \]

and, as a consequence, every extreme direction of \(K \) is a positive multiple of \((1, x)\) for some \(x \in \text{ext}(S) \). In this setting, given \(x \in \text{ext}(S) \), we note that \(-x \in \text{ext}(S)\); We say that \((1, -x)\) is the \textit{conjugate} of \((1, x)\) and say that \((1, x)\) and \((1, -x)\) form a \textit{conjugate pair}. Corresponding to a norm \(|| \cdot || \) on \(\mathbb{R}^{n-1} \), we define the \textit{dual norm} \(|| \cdot ||_D \) on \(\mathbb{R}^{n-1} \) by

\[||x||_D = \max \{ (x, u) : ||u|| = 1 \}. \]

It is easily seen that the dual cone of \(K = \{(t, x) : t \geq ||x||\} \) is

\[K^* = \{(t, x) : t \geq ||x||_D \}. \]

For \(1 \leq p \leq \infty \) and \(x \in \mathbb{R}^{n-1} \), the \(p \)-norm is \(||x||_p := \left(\sum_{i=1}^{n-1} |x_i|^p \right)^{1/p} \) when \(p < \infty \) and \(||x||_\infty = \max |x_i| \). The dual norm of \(|| \cdot ||_p \) is \(|| \cdot ||_q \) where \(\frac{1}{p} + \frac{1}{q} = 1 \). We define the \(l^p \)-cone as

\[l^p = \{(t, x) : t \geq ||x||_p \}. \]

\textbf{3. Irreducibility.} Given a closed convex cone \(K \) in \(\mathbb{R}^n \), we say that it is \textit{reducible} if there exist nonempty sets \(K_1 \neq \{0\} \) and \(K_2 \neq \{0\} \) such that

\[K = K_1 + K_2, \quad \text{span}(K_1) \cap \text{span}(K_2) = \{0\}. \]

(As in [7], it can be shown that \(K_1 \) and \(K_2 \) are then closed convex cones in \(\mathbb{R}^n \).) In this case, we say that \(K \) is a \textit{direct sum} of \(K_1 \) and \(K_2 \). A closed convex cone that is not reducible is said to be \textit{irreducible}.

\textbf{Theorem 3.1.} In \(\mathbb{R}^n \), for \(n \geq 3 \), every special BP cone is proper and irreducible.

\textbf{Proof.} The properness of \(K \) has already been noted. Let \(S \) denote the closed unit ball in \((\mathbb{R}^{n-1}, || \cdot ||) \) so that \(K = \text{cone} \left(\{1\} \times S \right) \). As all norms are equivalent on \(\mathbb{R}^{n-1} \), we see that the compact convex set \(S \) has nonempty interior. Since \(\text{conv} (\text{ext}(S)) = S \), \(\text{ext}(S) \) must contain \(n-1 \) linearly independent vectors, say, \(z_1, z_2, \ldots, z_{n-1} \). Now let \(T : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1} \) be a matrix/linear transformation with \(T(z_i) = e_i \) for all \(i = 1, 2, \ldots, n-1 \), where (we recall that) \(e_1, e_2, \ldots, e_{n-1} \) are the standard unit vectors in \(\mathbb{R}^{n-1} \). Clearly, \(T \) is invertible. Define a new norm \(|| \cdot ||_* \) on \(\mathbb{R}^{n-1} \) by

\[||x||_* = ||T^{-1}x|| \quad (x \in \mathbb{R}^{n-1}). \]
Then the closed unit ball corresponding to $|| \cdot ||_*$ is $S_* = T(S)$ and the corresponding norm induced cone is

$$\text{cone} \left(\{1\} \times S_* \right) = \begin{bmatrix} 1 & 0 \\ 0 & T \end{bmatrix} \left(\text{cone} \left(\{1\} \times S \right) \right).$$

Note that the cones induced by $|| \cdot ||$ and $|| \cdot ||_*$ are isomorphic and irreducibility of one implies that of the other. So, we may assume without loss of generality that the closed unit ball S of the given norm $|| \cdot ||$ on \mathbb{R}^{n-1} contains $e_1, e_2, \ldots, e_{n-1}$ as extreme vectors and, as $x \in \text{ext}(S) \Rightarrow -x \in \text{ext}(S)$, write

$$(3.1) \quad E := \{\pm e_1, \pm e_2, \ldots, \pm e_{n-1}\} \subseteq \text{ext}(S).$$

Now suppose, if possible, that K is reducible: $K = K_1 + K_2$, where K_1 and K_2 are closed convex cones with $K_1 \neq \{0\}, K_2 \neq \{0\}, \text{span}(K_1) \cap \text{span}(K_2) = \{0\}$. Define, for $i = 1, 2$,

$$S_i = \{x \in S : (1, x) \in K_i\}.$$

Clearly, these sets are compact, convex, disjoint, and $S_1 \cup S_2 \subseteq S$. We claim that

$$(3.2) \quad \text{ext}(S) \subseteq \text{ext}(S_1) \cup \text{ext}(S_2).$$

To see this, let $x \in \text{ext}(S)$ so that $||x|| = 1$. Then $(1, x) \in K_1 + K_2$ and we may write

$$(1, x) = (\lambda_1, x_1) + (\lambda_2, x_2),$$

where $(\lambda_i, x_i) \in K_i$ for $i = 1, 2$. Then $\lambda_i \geq ||x_i||$ for $i = 1, 2, 1 = \lambda_1 + \lambda_2$, and $x = x_1 + x_2$. Now,

$$1 = ||x|| \leq ||x_1|| + ||x_2|| \leq \lambda_1 + \lambda_2 = 1$$

implies that $||x_i|| = \lambda_i$ for $i = 1, 2$. If one λ_i is zero, say $\lambda_1 = 0$, then $x_1 = 0$ and so $(1, x) = (1, x_2) \in K_2, x \in S_2$. As $x \in \text{ext}(S)$ and $S_1 \cup S_2 \subseteq S$, we must have $x \in \text{ext}(S_2)$. If both λ_1 and λ_2 are nonzero (that is, positive), then the equality

$$x = (\frac{x_1}{\lambda_1})\lambda_1 + (\frac{x_2}{\lambda_2})\lambda_2$$

says that x is a convex combination of two unit vectors. Since $x \in \text{ext}(S)$, we must have $x = \frac{x_1}{\lambda_1} = \frac{x_2}{\lambda_2}$ which further implies that for $i = 1, 2$,

$$(1, x) = (1, \frac{x_i}{\lambda_i}) = \frac{1}{\lambda_i} (\lambda_i, x_i) \in K_i.$$

Clearly this cannot happen as $\text{span}(K_1) \cap \text{span}(K_2) = \{0\}$. We thus have our claim. Recalling the definition of E from (3.1) let, for $i = 1, 2$, $E_i := E \cap S_i$. We claim that
E_1 and E_2 are nonempty. To see this, assume the contrary and suppose (without loss of generality) $E_2 = \emptyset$ so that, by (3.2), $E \subseteq S_1$. Then, $\{(1, \pm e_i) : i = 1, 2, \ldots, n-1\} \subseteq K_1$. As the set $\{(1, e_1), (1, e_2), \ldots, (1, e_{n-1}), (1, -e_1)\}$ forms a basis of \mathbb{R}^n, we see that

$$\mathbb{R}^n = \text{span}(\{(1, \pm e_i) : i = 1, 2, \ldots, n-1\}) \subseteq \text{span}(K_1).$$

This means that $\text{span}(K_2) = \{0\}$, leading to a contradiction.

Thus, E_1 and E_2 are nonempty and $E = E_1 \cup E_2$. Let

$$E_1 = \{u_1, u_2, \ldots, u_k\} \quad \text{and} \quad E_2 = \{v_1, v_2, \ldots, v_l\}$$

so that $k + l = 2(n - 1)$.

Let $C_1 := \{(1, u_1), (1, u_2), \ldots, (1, u_k)\}$ and $C_2 = \{(1, v_1), (1, v_2), \ldots, (1, v_l)\};$ we note that $C_i \subset K_i$ so that

$$\text{span}(C_1) \cap \text{span}(C_2) = \{0\}.$$

Now for any given element $(1, x)$ in $\{1\} \times E$, we recall that $(1, -x)$ is the conjugate of $(1, x)$ and $(1, x)$ and $(1, -x)$ form a conjugate pair. As every element of E is of the form $\pm e_i$ for some i, the conjugate of any element in C_1 (likewise C_2) is either in C_1 or in C_2. We now consider the following cases:

1. Both C_1 and C_2 contain some conjugate pairs.
2. Both C_1 and C_2 are without conjugate pairs.
3. Only C_1 (say) contains conjugate pairs.

We show that each case leads to a contradiction.

Case 1: Suppose that $(1, e_i), (1, -e_i) \in C_1$ and $(1, e_j), (1, -e_j) \in C_2$ for some $i \neq j$. In this case, $(1, e_i) + (1, -e_i) = (2, 0) = (1, e_j) + (1, -e_j) \in \text{span}(C_1) \cap \text{span}(C_2) = \{0\}$ which is not possible.

Case 2: In this case, the conjugate of any element of C_1 (of C_2) is found in C_2 (respectively, in C_1). This sets up a one-to-one correspondence between elements of C_1 and C_2 showing that the cardinalities of C_1 and C_2 are equal, that is, $k = l$. Since these cardinalities add up to $2(n - 1)$, we must have $k = l = n - 1$. As there are no conjugate pairs in C_1 and in C_2, both C_1 and C_2 are linearly independent sets in \mathbb{R}^n.

Thus, $\dim(\text{span}(C_i)) = n - 1$ for $i = 1, 2$. Since $\text{span}(C_1) \cap \text{span}(C_2) = \{0\}$, we must have $n \geq (n - 1) + (n - 1)$, that is, $n \leq 2$. This cannot happen, as we have assumed that $n \geq 3$.

Case 3: In this case, we write C_1 and C_2 in terms of distinct elements:

$C_1 = \{(1, w_1), \ldots, (1, w_m), (1, -w_1), \ldots, (1, -w_m), (1, z_1), \ldots, (1, z_r)\}$ and $C_2 = \{(1, -z_1), \ldots, (1, -z_r)\}$. (Note that $(1, z_1), \ldots, (1, z_r)$ are elements in C_1 whose conjugates are not in C_1 but in C_2.) It follows that $r = l$ and $k = 2m + r = 2m + l$. Since $k + l = 2(n - 1)$, we must have $m + l = n - 1$ or $m + l + 1 = n$. Since the subset
\{(1, w_1), \ldots, (1, w_m), (1, -w_1), (1, z_1), \ldots, (1, z_r)\} \text{ of } C_1 \text{ is linearly independent and its cardinality is } n, \ \text{span}(C_1) = \mathbb{R}^n. \text{ This leads to } K_2 = \{0\} \text{ and to a contradiction.}

We have thus proved that the reducibility of } K \text{ leads to a contradiction. Hence the theorem.}

\textbf{Remark (1).} The following examples show that for general BP cones or for special BP cones with } n = 2, \text{ the above theorem may not hold.}

For } n \geq 2, \text{ consider the BP cone}

\{x \in \mathbb{R}^n : ||x||_1 \leq \phi(x)\},

where ||x||_1 \text{ is the 1-norm of } x \text{ and } \phi(x) = \langle x, e \rangle, \text{ with } e \text{ denoting the vector of ones.}

This cone, being } \mathbb{R}_+^n, \text{ is reducible.

For } n = 2, \text{ consider the special BP cone}

K = \{(t, x) : t \geq |x|\}.

This is isomorphic to the nonnegative orthant in } \mathbb{R}^2 \text{ and hence reducible.

4. The Lyapunov rank. Recall that given a proper cone } K \text{ in } \mathbb{R}^n, \text{ the Lyapunov rank of } K \text{ is the dimension of the space of all Lyapunov-like matrices on } K.

It has been shown in [10], Theorem 3, that the Lyapunov rank of a polyhedral cone in } \mathbb{R}^n \text{ can be any natural number } m \text{ with } 1 \leq m \leq n, m \neq n - 1. \text{ In particular, the Lyapunov rank of the nonnegative orthant in } \mathbb{R}^n \text{ is } n. \text{ In this section, we consider cones of the form (1.2).

Theorem 4.1. In } \mathbb{R}^n, \text{ for } n \geq 3, \text{ every polyhedral special BP cone has Lyapunov rank one.

The result follows immediately from Theorem 3.1 (of the previous section) and Corollary 5 of [10] that says that for any polyhedral proper cone, the Lyapunov rank is one if and only if it is irreducible. Below, we offer a direct and elementary proof.

Proof. Let } n \geq 3 \text{ and } K \text{ given by (1.2) be polyhedral. We show that every Lyapunov-like matrix on } K \text{ is a multiple of the identity matrix, thus proving the result. As done in the proof of Theorem 3.1, we may assume that } \pm e_i, \ i = 1, 2, \ldots, n - 1 \text{ are extreme vectors of the closed unit ball of } \mathbb{R}^{n-1} \text{ under the given norm. Then } (1, \pm e_i), \ i = 1, 2, \ldots, n - 1, \text{ are extreme directions of } K. \text{ Assuming that vectors in } \mathbb{R}^n \text{ are now written as column vectors, consider a Lyapunov-like matrix given by}

\[A = \begin{bmatrix} a & b^T \\ c & D \end{bmatrix}, \]

where } a \in \mathbb{R}, \ b, c \in \mathbb{R}^{n-1}, \text{ and } D \text{ is an } (n-1) \times (n-1) \text{ matrix. As } K \text{ is a polyhedral cone, by Theorem 2 in [10], every (column) vector } [1 \ e_i]^T, \ i = 1, 2, \ldots, n - 1, \text{ is an}
eigenvector of A. Thus, there exist real numbers λ_i and μ_i, $i = 1, 2, \ldots, n - 1$, such that
\[
A \begin{bmatrix} 1 \\ e_i \end{bmatrix} = \lambda_i \begin{bmatrix} 1 \\ e_i \end{bmatrix} \quad \text{and} \quad A \begin{bmatrix} 1 \\ -e_i \end{bmatrix} = \mu_i \begin{bmatrix} 1 \\ -e_i \end{bmatrix},
\]
for all $i = 1, 2, \ldots, n - 1$. From these, we get
\[
a + \langle b, e_i \rangle = \lambda_i, \ a - \langle b, e_i \rangle = \mu_i, \ c + De_i = \lambda_i e_i, \ c - De_i = -\mu_i e_i
\]
for all $i = 1, 2, \ldots, n - 1$. These lead to $a = \frac{\lambda_i + \mu_i}{2}, \ De_i = \frac{\lambda_i + \mu_i}{2} e_i = a e_i$, $2c = (\lambda_i - \mu_i)e_i$, and $2\langle b, e_i \rangle = \lambda_i - \mu_i$ for all $i = 1, 2, \ldots, n - 1$. As $n \geq 3$, the conditions $2c = (\lambda_i - \mu_i)e_i$ for all $i = 1, 2, \ldots, n - 1$ imply that $c = 0$ and $\lambda_i = \mu_i$ for all i. We see that $D = a I_{n-1}$, where I_{n-1} is the identity matrix of size $n - 1$ and $b = 0$. From these we see that $A = a I_n$. Thus, multiples of identity are the only Lyapunov-like matrices on K. Hence the Lyapunov rank of K is one.

Proof. The Minkowski functional of S is a norm whose closed unit ball is S [15]. The corresponding cone induced by this norm is K. Thus, K is a polyhedral special BP cone and the result follows from the above theorem.

Theorem 4.3. Let $n \geq 3$. For any p with $1 \leq p \leq \infty$, $p \neq 2$, the Lyapunov rank of $l^p_{p,+}$ is one.

Proof. For $p = 1, \infty$, the cone $l^p_{p,+}$ is polyhedral; hence the result follows from the previous theorem. We assume $1 < p < \infty$, $p \neq 2$, and define q by $\frac{1}{p} + \frac{1}{q} = 1$. Consider a matrix
\[
A = \begin{bmatrix} a & b^T \\ c & D \end{bmatrix},
\]
which is Lyapunov-like on $l^p_{p,+}$, where $a \in \mathbb{R}$, D is an $(n - 1) \times (n - 1)$ matrix, etc. Our goal is to show that $A = a I$. Now, for each $x \in \mathbb{R}^{n-1}$ with $||x||_p = 1$, define $s \in \mathbb{R}^{n-1}$ by
\[
s = \text{sgn}(x) \ast |x|^{\frac{p}{q}},
\]
whose ith component is $s_i = \text{sgn}(x_i) |x_i|^{\frac{p}{q}}$, where $\text{sgn}(\alpha)$ is $1, 0, -1$ according as whether the number α is positive, zero, or negative. Then, $||s||_q = 1$ and $\langle x, s \rangle = 1$. Now viewing vectors in \mathbb{R}^n as column vectors, we see that $u = [1 x]^T \in l^p_{p,+}$, $v =
\[[1 - s]^T \in l_{q,+}^n, \text{ and } \langle u, v \rangle = 0. \text{ Since } A \text{ is Lyapunov-like, we have } \langle Au, v \rangle = 0. \text{ This leads to } \]

\[a + \langle b, x \rangle - \langle c, s \rangle - \langle Dx, s \rangle = 0. \]

Since this equation is valid if we replace \(x \) by \(-x\) and \(s \) by \(-s\), we must have \(\langle b, x \rangle - \langle c, s \rangle = 0 \) and \(\langle (D - aI)x, s \rangle = 0 \). We specialize \(x \) and \(s \) to show that \(b = c = 0 \) and \(D = aI \).

(i) By taking \(x = s = e_i, i = 1, 2, \ldots, n - 1 \), we see that \(b = c \) and that any diagonal element of \(D - aI \) is zero.

(ii) Recalling that \(n \geq 3 \), for any \(\varepsilon_i = \pm 1 \), we let \(x = (\frac{1}{n-1})^\frac{1}{n} \sum_{i=1}^{n-1} \varepsilon_i e_i \) and \(s = (\frac{1}{n-1})^\frac{1}{n} \sum_{i=1}^{n-1} \varepsilon_i e_i \). Then with \(b = c \) and \(p \neq q \), \(\langle b, x \rangle - \langle c, s \rangle = 0 \) leads to \(\sum_{i=1}^{n-1} b_i \varepsilon_i = 0 \). Since \(\varepsilon_i = \pm 1 \) are arbitrary, we deduce that \(b = 0 \).

(iii) For any \(t, 0 < t < 1 \), we let \(x_1 = t^{\frac{1}{n}} \), \(x_2 = (1-t)^{\frac{1}{n}} \), \(x_3 = x_4 = \cdots = x_{n-1} = 0 \), and \(s_1 = t^{\frac{1}{n}} \), \(s_2 = (1-t)^{\frac{1}{n}} \), \(s_3 = s_4 = \cdots = s_{n-1} = 0 \). Putting these in \(\langle (D - aI)x, s \rangle = 0 \) and simplifying, we deduce that the leading \(2 \times 2 \) principal submatrix of \(D - aI \) is zero. By a similar argument, we show that any \(2 \times 2 \) principal submatrix of \(D - aI \) is also zero. We conclude that \(D - aI = 0 \).

Thus we have proved that \(A = aI \). Hence, the Lyapunov rank of \(l_{p,+}^n \) is one.

Remark (2). For \(n = 2 \), consider the special BP cone \(K = \{(t, x) : t \geq |x|\} \). This, being isomorphic to the nonnegative orthant in \(\mathbb{R}^2 \), has Lyapunov rank \(2 \).

5. **Automorphisms.** Given a proper cone \(K \) in \(\mathbb{R}^n \), we say that an \(n \times n \) matrix \(A \) is an automorphism of \(K \) and write \(A \in \text{Aut}(K) \) if \(A \) is nonsingular and \(A(K) = K \).

As noted in the Introduction, if \(A \) is Lyapunov-like on \(K \), then \(e^{tA} \in \text{Aut}(K) \) for all \(t \in \mathbb{R} \). When \(\beta(K) = 1 \), multiples of the identity matrix are the only Lyapunov-like matrices. Motivated by these, we raise the question of describing \(\text{Aut}(K) \), when \(K \) is a special BP cone. While this remains an open problem, we describe some special automorphisms that are induced by isometries of the given norm on \(\mathbb{R}^{n-1} \). As a special case, we completely describe the automorphisms of the \(l_1 \)-cone.

Given a norm on \(\mathbb{R}^{n-1} \), \(n > 1 \), with the corresponding closed unit ball \(S \), we consider the special BP cone \(K \) defined by (1.2). Relative to this \(K \), we say that an \(n \times n \) real matrix \(A \) is conjugate-pair-preserving if for any \(x \in \text{ext}(S) \) and \(\lambda > 0 \)

\[A \begin{bmatrix} 1 \\ x \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ y \end{bmatrix} \Rightarrow A \begin{bmatrix} 1 \\ -x \end{bmatrix} = \mu \begin{bmatrix} 1 \\ -y \end{bmatrix}. \]

Recall that a matrix \(D \) on \(\mathbb{R}^{n-1} \) is an isometry of \(||·|| \) if \(||Dx|| = ||x|| \) for all \(x \in \mathbb{R}^{n-1} \).

Theorem 5.1. For \(n \geq 3 \), consider a special BP cone given by (1.2). Then for
any \(\theta > 0 \) and an isometry \(D \) of \(\| \cdot \| \), the matrix

\[
\theta \begin{bmatrix} 1 & 0 \\ 0 & D \end{bmatrix},
\]

is a conjugate-pair-preserving automorphism of \(K \). Conversely, every conjugate-pair-preserving automorphism of \(K \) arises this way.

Proof. The first part of the theorem is easily verified. For the second part, we take a conjugate-pair-preserving automorphism \(A \) of \(K \) and show that it is of the specified form. We write \(A \) in the form

\[
A = \begin{bmatrix} a & b^T \\ c & D \end{bmatrix},
\]

where \(a \in \mathbb{R}, D \) is an \((n-1) \times (n-1)\)-matrix, etc. Since the vector \(u = [1 \ 0]^T \) in \(\mathbb{R}^n \) is in the interior of \(K \), the first column of \(A \), namely \(Au \), is also in the interior of \(K \). This means that \(a > ||c|| \). Thus, by scaling \(A \) if necessary (which results in \(\theta = a \)), we may assume that

\[
A = \begin{bmatrix} 1 & b^T \\ c & D \end{bmatrix}.
\]

Our immediate goal is to show that \(c = 0 = b \).

Let \(u_i, \) \(i = 1, 2, \ldots, n - 1 \), be linearly independent vectors in \(\text{ext}(S) \), where \(S \) is the closed unit ball in \(\mathbb{R}^{n-1} \). As \(n \geq 3 \), we have at least two (different) vectors \(u_1 \) and \(u_2 \). Now, \(A \) is nonsingular and maps extreme directions of \(K \) to extreme directions of \(K \); so, we have

\[
(5.2) \quad A \begin{bmatrix} 1 \\ u_1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ x \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ u_2 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ w \end{bmatrix},
\]

where \(\lambda, \alpha > 0 \) and \(||x|| = 1 = ||w|| \). Since \(A \) is conjugate-pair-preserving, we must have

\[
(5.3) \quad A \begin{bmatrix} 1 \\ -u_1 \end{bmatrix} = \mu \begin{bmatrix} 1 \\ -x \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ -u_2 \end{bmatrix} = \beta \begin{bmatrix} 1 \\ -w \end{bmatrix},
\]

where \(\mu, \beta > 0 \). Expanding these we get

\[1 + \langle b, u_1 \rangle = \lambda, \quad c + Du_1 = \lambda x, \quad 1 - \langle b, u_1 \rangle = \mu, \quad c - Du_1 = -\mu x\]

with similar statements for \(u_2 \) in place of \(u_1 \). These yield

\[\lambda + \mu = 2, \quad 2c = (\lambda - \mu)x, \quad \alpha + \beta = 2, \quad 2c = (\alpha - \beta)w.\]
Now suppose, to get a contradiction, that \(c \neq 0 \). As \(||x|| = 1 = ||w|| \), the equality \((\lambda - \mu)x = (\alpha - \beta)w \) implies that \(|\lambda - \mu| = |\alpha - \beta| \) and \(x = \pm w \). From these and the equality \(\lambda + \mu = 2 = \alpha + \beta \), we get the following two cases:

(i) \(\lambda = \alpha, \mu = \beta, x = w \).

(ii) \(\lambda = \beta, \mu = \alpha, x = -w \).

From (5.2) and (5.3), along with the invertibility of \(A \), the first case leads to
\[
\begin{bmatrix}
1 & u_1^T \\
0 & D
\end{bmatrix}
\]
and the second case leads to
\[
\begin{bmatrix}
1 & -u_2^T \\
0 & D
\end{bmatrix}
\]
Clearly, these cannot happen. Hence \(c = 0 \). From \(2c = (\lambda - \mu)x \), we get \(\lambda = \mu \) or \(x = 0 \). Now, \(x \neq 0 \) as the vector \([1 \ u_1]^T\), which is on the boundary of \(K \), cannot map to \(\lambda[1, 0]^T \), which is in the interior of \(K \). Thus, we must have \(\lambda = \mu \). But then,
\[
1 + \langle b, u_1 \rangle = \lambda, \quad 1 - \langle b, u_1 \rangle = \mu \Rightarrow \langle b, u_1 \rangle = 0.
\]
Likewise, \(\langle b, u_2 \rangle = 0 \). By similar considerations, we arrive at \(\langle b, u_i \rangle = 0 \) for all \(i = 1, 2, \ldots, n - 1 \), yielding \(b = 0 \). Thus,
\[
A = \begin{bmatrix}
1 & 0 \\
0 & D
\end{bmatrix}.
\]

We now claim that \(D \) is an isometry. Let \(u \) be any unit vector in \(\mathbb{R}^{n-1} \). Then, the vector \([1 \ u]^T\) is on the boundary of \(K \). Hence \(A[1 \ u]^T \) is a positive multiple of a vector of the form \([1 \ v]^T\), where \(||v|| = 1 \). This leads to \(Du = v \) and to \(||Du|| = ||v|| = 1 \). Thus, \(D \) is an isometry. This completes the proof.

In the result below, we say that a square matrix is a *generalized permutation matrix* if it is the product of a permutation matrix and a diagonal matrix with diagonal entries \(\pm 1 \).

Theorem 5.2. For \(n \geq 3 \), every matrix in \(Aut(l_{1,+}^n) \) is of the form
\[
\theta \begin{bmatrix}
1 & 0 \\
0 & D
\end{bmatrix},
\]
where \(\theta > 0 \) and \(D \) is a generalized permutation matrix.

Proof. It is clear that every matrix of the form (5.4) is an automorphism of the \(l_1 \)-cone. Now we prove the converse. Let \(A \in Aut(l_{1,+}^n) \). We first claim that \(A \) is conjugate-pair-preserving. If \(S \) denotes the closed unit ball of \(l_1 \)-norm on \(\mathbb{R}^{n-1} \), then \(\text{ext}(S) = \{ \pm e_i : i = 1, 2, \ldots, n - 1 \} \). As the \(l_1 \)-cone is cone \((\{1\} \times S)\), we note that the extreme directions of the \(l_1 \)-cone are given by
\[
\left\{ \begin{bmatrix}
1 \\
\pm e_i
\end{bmatrix} : i = 1, \ldots, n - 1 \right\}.
\]
Now, let $A \in \text{Aut}(l^n_{1,+})$. As in the proof of the previous theorem, we see that the $(1, 1)$ entry of A is positive; thus, we can scale A and assume without loss of generality that A is in the form

$$A = \begin{bmatrix} 1 & b^T \\ c & D \end{bmatrix}.$$

Now, A is nonsingular and maps extreme directions to extreme directions; so, we have

$$A \begin{bmatrix} 1 \\ e_1 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ x \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ -e_1 \end{bmatrix} = \mu \begin{bmatrix} 1 \\ y \end{bmatrix},$$

where $\lambda, \mu > 0$ and $x, y \in \{\pm e_i : i = 1, 2, \ldots, n-1\}$. Since $2u = [1 \ e_1]^T + [1 - e_1]^T$ is in the interior of $l^n_{1,+}$, $A(2u)$ is in the interior of $l^n_{1,+}$. From the above relations, we see that $\lambda + \mu = |\lambda + \mu| > ||\lambda x + \mu y||_1$. Since $x, y \in \{\pm e_i : i = 1, 2, \ldots, n-1\}$, using the definition of l_1-norm, we see that $y = -x$. This proves that A is conjugate-pair-preserving. By the previous result,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & D \end{bmatrix},$$

where D is an isometry of the l_1-norm. Since the isometries of the l_1-norm are generalized permutations, see [6], we have the stated result.

Remark (3). That D is a generalized permutation in (5.7) can be shown in a different way (without using a result of [6]): Using (5.7) in (5.6), we get

$$1 = \lambda, \quad De_1 = \lambda x.$$

As $x \in \{\pm e_i : i = 1, 2, \ldots, n-1\}$, we see that $De_1 \in \{\pm e_i : i = 1, 2, \ldots, n-1\}$. More generally, $De_j \in \{\pm e_i : i = 1, 2, \ldots, n-1\}$ for any j. Note that such an inclusion is valid for D^{-1} in place of D as A^{-1} is also an automorphism. Thus,

$$D(\{\pm e_i : i = 1, 2, \ldots, n-1\}) = \{\pm e_i : i = 1, 2, \ldots, n-1\}.$$

This shows that D is a generalized permutation.

Remark (4). For $n = 2$, let $K = \{(t, x) : t \geq |x|\}$. Then the matrix

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

is an automorphism of K which is clearly not of the form given in the above theorem.

Remark (5). For any proper cone K, $A \in \text{Aut}(K)$ if and only if $A^T \in \text{Aut}(K^*)$. Thus, knowing the automorphisms of the l_1-cone, one can describe the automorphisms of the l_∞-cone.
6. **Concluding Remarks.** In this paper, we have studied the so-called special Bishop-Phelps cones and described some results pertaining to irreducibility, Lyapunov rank, and automorphisms. We end this paper by noting a characterization result on self-dual special Bishop-Phelps cones and raising a question on the homogeneity property. The following result provides a simple answer for the self-duality property (which is likely to be known).

Theorem 6.1. For \(n \geq 2 \), the special BP cone \(K \) in \(\mathbb{R}^n \) given by (1.2) is self-dual in \(\mathbb{R}^n \), that is, \(K = K^* \) if and only if the norm \(\| \cdot \| \) on \(\mathbb{R}^{n-1} \) is the 2-norm.

Proof. When the norm is the 2-norm, the corresponding special BP-cone is either the second-order cone \(l^n_{2,+} \) (see Section 1) or the cone \(K = \{(t,x) : t \geq |x|\} \) in \(\mathbb{R}^2 \). These cones are self-dual. Now suppose that \(K \) is self-dual so that \(K = K^* \). We recall that

\[
K^* = \{(s,y) : s \geq \|y\|_D\},
\]

where \(\|y\|_D \) denotes the dual norm of \(y \). Now for any \(x \in \mathbb{R}^{n-1} \),

\[
(||x||, x) \in K = K^*
\]

implies that \(||x|| \geq ||x||_D \). Similarly, the inclusion \((||x||_D, x) \in K^* = K \) implies that \(||x||_D \geq ||x|| \). Hence, \(||x|| = ||x||_D \) for all \(x \in \mathbb{R}^{n-1} \). Now,

\[
||x||^2 = (x,x) \leq ||x|| ||x||_D = ||x||^2.
\]

Thus, \(||x|| \leq ||x|| \) for all \(x \in \mathbb{R}^{n-1} \). Finally, by definition of the dual norm, for any \(x \in \mathbb{R}^{n-1} \), there exists a vector \(u \) with \(||u|| = 1 \) such that \(||x||_D = ||(x,u)|| \). Thus,

\[
||x|| = ||x||_D = ||(x,u)|| \leq ||x||_2 ||u||_2 \leq ||x||_2 ||u|| \leq ||x||_2.
\]

We conclude that \(||x|| = ||x||_2 \) for all \(x \in \mathbb{R}^{n-1} \). This completes the proof.

We say that a proper cone \(K \) is **homogeneous** [18] if for any two elements \(x, y \in \text{int} K \), there exists \(A \in \text{Aut}(K) \) such that \(A(x) = y \). A self-dual homogeneous cone is said to be a **symmetric cone** [4]. It is known that every symmetric cone is the cone of squares in some Euclidean Jordan algebra (and conversely). The second order cone \(l^n_{2,+} \) is a symmetric cone. It is easily seen, from Theorem 5.2, that the cone \(l^n_{1,+} \) \((n \geq 3) \) is not homogeneous. (If not, any element of the open unit ball of \((\mathbb{R}^{n-1}, ||\cdot||_1) \) can be mapped onto any another in the open unit ball by a generalized permutation.) These two examples motivate the following problem:

Which special Bishop-Phelps cones are homogeneous? In particular, is \(l^n_{p,+} \) non-homogeneous for \(p \neq 2 \)?
REFERENCES