Noname manuscript No.
(will be inserted by the editor)

Reformulation versus cutting-planes for robust
optimization

A computational study

Dimitris Bertsimas - Iain Dunning -
Miles Lubin

the date of receipt and acceptance should be inserted later

Abstract Robust optimization (RO) is a tractable method to address uncer-
tainty in optimization problems where uncertain parameters are modeled as
belonging to uncertainty sets that are commonly polyhedral or ellipsoidal. The
two most frequently described methods in the literature for solving RO prob-
lems are reformulation to a deterministic optimization problem or an iterative
cutting-plane method. There has been limited comparison of the two methods
in the literature, and there is no guidance for when one method should be se-
lected over the other. In this paper we perform a comprehensive computational
study on a variety of problem instances for both robust linear optimization
(RLO) and robust mixed-integer optimization (RMIO) problems using both
methods and both polyhedral and ellipsoidal uncertainty sets. We consider
multiple variants of the methods and characterize the various implementation
decisions that must be made. We measure performance with multiple metrics
and use statistical techniques to quantify certainty in the results. We find for
polyhedral uncertainty sets that neither method dominates the other, in con-
trast to previous results in the literature. For ellipsoidal uncertainty sets we
find that the reformulation is better for RLO problems, but there is no dom-
inant method for RMIO problems. Given that there is no clearly dominant
method, we describe a hybrid method that solves, in parallel, an instance with
both the reformulation method and the cutting-plane method. We find that
this hybrid approach can reduce runtimes to 50% to 75% of the runtime for
any one method and suggest ways that this result can be achieved and further
improved on.

Keywords Robust Optimization - Computational Benchmarking

D. Bertsimas, I. Dunning, L. Lubin

Operations Research Center, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, USA

E-mail: dbertsim@mit.edu, idunning@mit.edu, mlubin@mit.edu

2 Dimitris Bertsimas et al.

1 Introduction

Robust optimization (RO) has emerged as both an intuitive and computa-
tionally tractable method to address the natural question of how to handle
uncertainty in optimization problems. In RO the uncertain parameters in a
problem are modeled as belonging to an uncertainty set (see, e.g. [1] or [4] for
a survey). A wide variety of uncertainty sets have been described in the liter-
ature, but polyhedral and ellipsoidal sets are by far the most popular types.
Constraints with uncertain parameters must be feasible for all values of the un-
certain parameters in the uncertainty set, and correspondingly the objective
value is taken to be the worst case value over all realizations of the uncer-
tain parameters. For this reason RO problems, in their original statement,
typically have an infinite number of constraints and cannot be solved directly.
The most common approach to date for solving them in the literature is to use
duality theory to reformulate them as a deterministic optimization problems
that may have additional variables, constraints, and even change problem class
(e.g. a robust linear optimization (RLO) problem with an ellipsoidal uncer-
tainty set becomes a second-order cone problem (SOCP) [2]. Another method,
used less frequently, is an iterative cutting-plane method (e.g. [19]) that re-
peatedly solves a relaxed form of the RO problem with a finite subset of the
constraints, checks whether any constraints would be violated for some value
of the uncertain parameters, adds them if so, and re-solves until no violated
constraint exists.

There is little guidance in the literature about which method should be
used for any given RO problem instance. We are aware of one computational
study by Fischetti and Monaci [11] that directly compares the two methods for
RLO and robust mixed-integer optimization (RMIO) problems with a poly-
hedral uncertainty set and finds that the cutting-plane method is superior for
RLO and that reformulations are superior for RMIO. They do not attempt to
indicate whether this result is statistically significant, and do not experiment
with different variants of the cutting-plane method.

Rather than just consider the question of which method is superior, we
consider a different question in this paper that we feel is more relevant for
both practitioners and researchers, and acknowledges the ever-increasing pop-
ularity of parallel computing. We draw inspiration from modern solvers such
as Gurobi [15] which, by default, simultaneously solve an LO problem with
both the simplex method and an interior point method and return a solu-
tion whenever one of the methods terminates - effectively making the runtime
the minimum of the two methods’ individual runtimes. This can naturally be
extended to the RO case: we can solve an RO problem with both the reformu-
lation method and the cutting plane method simultaneously, and the runtime
is defined by the first method to finish. We do not implement in this paper
a general-purpose tool which does this simultaneous solve automatically, but
the capability to do so would be a natural extension of the capabilities of an
RO modeling system, such as ROME [14].

The contributions of this paper are as follows:

Reformulation versus cutting-planes for robust optimization 3

1. We provide a precise description of the application of the cutting-plane
method to RMIO problems, including an identification of the added com-
plexities over applying the method to RLO problems, and the variants that
should be considered by those seeking to implement the method.

2. We replicate the findings of [11] over an enlarged collection of instances,
and extend them by evaluating the performance of the reformulation and
cutting-plane methods for RO problems with ellipsoidal uncertainty sets.
We use more appropriate metrics and employ statistical techniques to more
precisely characterize the differences in performance between methods.

3. We enhance the performance of the cutting-plane method for RMIO prob-
lems by designing rules on when new cutting planes should be added, and
evaluate a new heuristic to run alongside the MIO solver to improve run-
times.

4. Finally we describe and evaluate our proposed hybrid method which uses
both methods in parallel and stops when either method finishes. We discuss
implementation considerations and possible extensions.

Structure of the paper. In Section 2, we detail the precise RO problem
and uncertainty sets we evaluate. We discuss the details of the different cutting-
plane algorithms and the possible variations in when new generated constraints
should be added. We provide both the intuition and details for a new heuristic
for RMIO problems. Section 3 explains the experimental setup, sources of data
and the combinations of instance, parameters, and methods we evaluated. We
analyze the results in depth to compare the performance of the two methods
and their variants on both RLO and RMIO problems. Section 4 investigates
the proposed hybrid method’s performance relative to the individual methods
and its implementation. Finally Section 5 summarizes the results.

2 Problem and Method Descriptions
We will consider the following general linear RO problem

min ¢’z (1)

subject to lex <b Va, el

alx <by Yam €Uy,
x € R™ x Z"?,

where nq and mo are nonnegative integers, by,...,b,, are given scalars, c is
a given vector, and Uj,...,U,, are the uncertainty sets for each constraint.
We will denote uncertain values using a tilde, e.g. a. In row ¢ a subset J;
of the coefficients are said to be subject to uncertainty, and all uncertain
coefficients have a nominal value a;; around which they may vary. We define
the nominal problem to be the optimization problem identical to the above

4 Dimitris Bertsimas et al.

with the exception that all coefficients are at their nominal values with no
uncertainty, that is a;; = a;; for all ¢ and j. Later in this section we will
detail the properties of the two types of uncertainty sets we consider in this
paper - the polyhedral set introduced in [5] and the ellipsoidal set introduced
in [2]. These sets are both simple to describe but have substantially different
deterministic reformulations and algorithms to calculate a new cutting-plane.

Before presenting the specific details of the polyhedral and ellipsoidal un-
certainty sets (in Section 2.3 and Section 2.4 respectively) we will detail the
cutting-plane methods we considered for both RLO problems and RMIO prob-
lems. While similar in spirit, there is a substantial difference in the details of
their implementation. The method for RLO problems (Section 2.1) is fairly
simple and comparable to other constraint generation methods. The method
for RMIO problems (Section 2.2) requires consideration of exactly when in the
integer optimization solution process cuts should be added.

2.1 Cutting-plane method for RLO

The idea behind the cutting-plane method for RLO is similar to other row
generation methods such as Bender’s Decomposition. While there is a con-
straint for every a in the relevant uncertainty set, only a small subset of these
constraints is binding for a robust optimal solution. This suggests that only
generating constraints as they are needed to ensure robustness of the solution
would be an efficient technique. Given this motivation, the algorithm for RLO
problems is as follows:

1. Initialize the master problem to be the nominal problem, that is the prob-
lem described in Eq. (1) where all @;; are replaced with their nominal values
Q-

2. Solve the master problem, obtaining a solution x*.

3. For each uncertain row ¢ (that is, rows ¢ such that J; # 0)

(a) Compute a = argmaxcy a’ *.
(b) If a’x* > b; + ¢, add the constraint a’x < b; to the master problem.

4. If no constraints were added then we declare that z* is the optimal robust
solution to the RO and terminate. If any constraints were added we return

to Step 2.

The computational practicality of this method relies on the fact that while
adding constraints will make the current master problem solution infeasible,
we are able to hot-start the optimization (in Step 2) by using the dual simplex
method. As a result almost all commercial and open-source LO solvers can be
used to solve the master problem. We will defer discussing guarantees of the
termination of this algorithm to Sections 2.3 and 2.4.

The constraint feasibility tolerance € is a parameter that may be varied
depending on the needs of the application and the solver used, but should
generally be an appropriately small value such as 107%. We implemented the

Reformulation versus cutting-planes for robust optimization 5

cutting-plane generation and related logic in C++ and used the commercial
solver Gurobi 5.6 [15] to solve the master problem.

Note that a number of improvements to the classical cutting-plane method
have been developed, including bundle methods and the analytic center cutting-
plane method (ACCPM) [7]. These methods, in general, aim to “stabilize” the
sequence of solutions z*, which can lead to improved theoretical and practical
convergence rates. These techniques have been investigated in the context of
stochastic programming [20] but to our knowledge not in the context of RO.
Nevertheless, a preliminary implementation of a proximal bundle method did
not yield significant improvements in computation time in our experiments,
and the complexity of integrating these techniques within branch and bound
(for RMIO) discouraged further investigation.

2.2 Cutting-plane method for RMIO

The cutting-plane method for RMIO is more complicated than the RLO case,
although the principle of only adding constraints as needed is the same. The
primary difference is that detailed consideration must be given to the most
appropriate time to add new cuts, and that whatever timing is selected guar-
antees that the final solution is indeed robust.

Perhaps the most obvious place to add cuts is at the root LO relaxation
in the branch-and-bound tree. However, it is not sufficient to apply the RLO
cutting-plane method to just the root relaxation as the optimal robust integer
solution may be affected by constraints that are not active at the fractional
solution of the relaxation. Consider this simple example that demonstrates
this behavior:

max x
subject to = < 1.5
u-x>1 VYuel0.9,1.1]

T integer.

The relaxed master problem for this RMIO consists of two constraints,
z < 1.5 and > 1 (taking the nominal value of u to be 1), leading to the
trivial solution ;.. = 1.5 when we relax integrality. This solution is feasible
to all constraints, so no new cutting planes are generated at the root. If we now
branch once on the value of x (i.e. z <1 or z > 2) we will obtain the integer
solution x = 1 which is not feasible with respect to the uncertain constraint -
in fact, there is no feasible integer solution to this problem. Although making
the root relaxation feasible to the uncertain constraints doesn’t guarantee the
feasibility of subsequent integer solutions, the addition of constraints at the
root may guide the search along more favorable lines - we will analyze this
effect in our computational results.

6 Dimitris Bertsimas et al.

Another possibility is to check for and add new constraints at every node in
the branch-and-bound tree, ensuring that the fractional solution at each node
is feasible with respect to the uncertain constraints before further branching.
This appears to have been the approach taken in [11]. While this will ensure
that any integer solution produced by branching will be feasible to the uncer-
tain constraints, there is likely to be a heavy computational cost as we add
cuts that are unnecessary, in the sense that they are being added to nodes on
a branch of the search tree that may not produce an optimal integer solution
or improve the bound.

A third possibility is to only check for and add new constraints when we ob-
tain candidate integer-feasible solutions. These constraints are often described
as lazy constraints as they are not explicitly provided to the solver before
they are needed. Instead they are implemented by providing a callback to the
solver that is responsible for checking the feasibility of all integer solutions
and reporting any violated constraints. The solver then discards the candidate
integer solution (if it is not feasible) and adds the violated constraints to the
active nodes of the branch-and-bound tree. Like adding constraints at each
node, using lazy constraints is sufficient to guarantee that the final integer
solution is feasible with respect to the uncertain constraints, but given the rel-
atively small number of integer solutions for many MIO problems we decided
that it would be a far more efficient method.

One option that is not practical is to completely solve the master problem
to provable optimality before adding new constraints. If we wait until the
end we are most likely to be adding useful constraints but we pay a huge
computational cost as we essentially solve the master problem from scratch
multiple times; unlike the case of RLO, no hot-start is possible as even the
previous integer solution cannot be provided as an incumbent solution. Lazy
constraints are a more appropriate technique as they are added before the solve
is completed, allowing us to retain the bound corresponding to the fractional
solution.

The final cutting-plane method we implemented is as follows:

1. As for RLO, initialize the master problem to be the nominal problem, that
is the problem described in Eq. (1) where all a;; are replaced with their
nominal values a;.

2. Apply the RLO cutting-plane method to the root fractional relaxation of
the RMIO master problem until the fractional solution is feasible with
respect to all uncertain constraints. Note that while we may generate un-
necessary cuts with respect to the final integer solution, we may also gain
by requiring less cuts later on when we have progressed further down the
tree.

3. The MIO solver now begins the branch-and-bound process to solve the
master problem.

— Whenever an integer solution is found we will check all uncertain con-
straints to see if any are violated by the candidate solution. If any vi-
olations are detected we report these new lazy constraints to the MIO

Reformulation versus cutting-planes for robust optimization 7

solver, which will discard the candidate integer solution. This ensures
that only cuts active at integer solutions are added, and that any inte-
ger solution will be feasible with respect to the uncertain constraints. If
no constraints are violated, the MIO solver will accept the integer solu-
tion as its incumbent solution, and the integrality gap will be evaluated
relative to this solution.

— If we do find that the integer solution violates one of the uncertain
constraints, we will apply a heuristic that will try to obtain a feasible
integer solution using this candidate integer solution as a starting point.
For more details, see Section 2.2.1.

We used Gurobi 5.6 [15] to solve the MIO problem, with all other logic
implemented in C++.

2.2.1 A heuristic to repair infeasible candidate integer solutions

The MIO solver will find multiple integer solutions as it attempts to solve the
master problem to provable optimality. When it does so we will check whether
any new constraints can be generated from the uncertainty sets that would
make the candidate integer solution infeasible. If we do find any, we add these
lazy constraints to the master problem and declare the found integer solution
to be infeasible. The solver will discard the solution and keep on searching for
another integer solution.

We hypothesize that in many cases these integer solutions that violated the
uncertain constraints can be made feasible with respect to these constraints
solely by varying the value of the continuous variables. The solver cannot ex-
plore this possibility by itself, as it is unaware of the uncertain constraints until
we provide them. This may lead to possibly high-quality integer solutions be-
ing rejected and only re-discovered later in the search process. To address this
issue we developed a heuristic that attempts to repair these integer solutions:

1. Our input is an integer solution z* to the master problem that violates one
or more uncertain constraints. Create a duplicate of the master problem,
called the subproblem.

2. Fix the values of all integer variables in the subproblem to their values in

the integer solution z*. It follows that the subproblem is now equivalent

to the master problem for a RLO problem.

Using the cutting-plane method for RLO problems to solve the subproblem.

4. If a solution to the subproblem is found, then this solution is a valid integer
solution for the original problem that satisfies all constraints, uncertain and
deterministic. Report this solution to the MIO solver so that it may update
its incumbent solution and bounds.

5. If no solution can be found for the subproblem then we take no action, and
conclude that we must change the values of integer variables in order to
obtain a robust integer solution.

©w

We take a number of steps to improve the computational tractability of
this heuristic. For example, we keep only one copy of the LO subproblem in

8 Dimitris Bertsimas et al.

memory and use it for all runs of the heuristic. This avoids the overhead of
creating multiple copies, and we can use the dual simplex method to efficiently
solve the subproblem given a new candidate solution. An additional effect is
that we accumulate generated constraints from previous heuristic runs, further
reducing the time for new integer solutions to be repaired or rejected. Secondly,
we can take the lazy constraints we generate for the master problem and apply
them to the heuristic subproblem to avoid re-generating them later. Finally all
constraints we generate for the heuristic subproblem are valid for the master
MIO, so we can add them to the master as lazy constraints to avoid generating
integer solutions that will violate uncertain constraints in the first place.

The benefits of the heuristic are not guaranteed and may vary from instance-
to-instance. The heuristic adds computational load that can only be made up
for by improvements in speed with which we tighten the bound. In particu-
lar, by adding constraints back into the MIO master problem we may avoid
needlessly generating non-robust integer solutions, but at the price of longer
solve times at each node. We will explore these trade-offs between using the
heuristic or not in Section 3.2.2.

2.3 Polyhedral uncertainty sets

We considered the polyhedral uncertainty set defined in [5] with two properties:
for a set U; corresponding to constraint ¢
— the uncertain coefficients a,; Vj € J; lie in the interval [a;; — Gij, a;j + @sj),
where a;; is the nominal value, and
— at most I" uncertain coefficients in the row are allowed to differ from their
nominal value.

One may formulate a LO problem to find the coeflicients a;; € U; that
would most violate the constraint @l < b;. In [5] the authors demonstrate
that duality theory allows us to replace the original uncertain constraint with
a finite set of new deterministic constraints and auxiliary variables correspond-
ing to the constraints and variables of the dual of this problem. As detailed in
Table 1, this reformulation preserves the problem class of the original RO prob-
lem - a RLO problem becomes a LO problem, and likewise a RMIO problem
becomes a MIO problem.

While we could generate new constraints by solving the aforementioned LO
problem, we can exploit the structure to solve the problem more efficiently by
applying the following algorithm to each uncertain constraint 7:

— Given a current solution x to the master problem, calculate the absolute
deviations z; = d;; |z;| for all j € J;.

— Sort z; (all non-negative by definition) from largest to smallest magnitude.
The indices J' corresponding to the I" largest values of z; will cause the
maximum violation of the constraint 7 if set to their upper or lower bounds.

— If the constraint can be violated by setting those coefficients to their bounds
while all other coefficients remain at their nominal values, add this violated
constraint.

Reformulation versus cutting-planes for robust optimization 9

As we are only interested in a subset of the coefficients of size I' this
algorithm will run in O(n + I'logI") time per constraint using an efficient
partial sorting algorithm. We also note that many other polyhedral uncertainty
sets exist that will require different cutting-plane algorithms, but we consider
this set to be representative of many commonly-seen polyhedral sets in the
literature. Termination of the cutting-plane algorithm is guaranteed in the
case of the polyhedral uncertainty set: cutting-plane generation is equivalent
to optimizing a linear function over a polyhedron, and there are only finitely
many extreme points of the uncertainty set.

2.4 Ellipsoidal uncertainty sets

We evaluated the ellipsoidal uncertainty sets introduced in [2, 3], which model
the coefficients a; € U; as belonging to the ellipse

~ 2
S () <

JEJ;

The reformulation method for ellipsoidal sets replaces the uncertain constraints
with new second-order cone constraints; thus LO problems become second-
order cone problems (SOCPs), and MIO problems become mixed-integer SOCPs
(MISOCPs) (Table 1).

The algorithm to generate a new deterministic constraint for a given uncer-
tain constraint is equivalent to finding the maximizer of a linear function over
a ball, which has a closed-form expression. If we consider the Karush-Kuhn-
Tucker conditions for the cutting-plane problem maxzey, @’ = we find that we
can efficiently determine a new constraint @ in O(n) time by evaluating

where A is a diagonal matrix where the diagonal elements are the elements of
a. Note that this closed-form solution applies to generalizations which consider
correlation matrices (non-axis aligned ellipses).

An interesting point of difference between the ellipsoidal cutting-plane
method and the ellipsoidal reformulation is that the cutting-plane method
does not modify the problem’s class as no quadratic terms appear in the gen-
erated constraints. However, unlike for polyhedral uncertainty sets, finite ter-
mination of the cutting-plane method applied to ellipsoidal uncertainty sets is
not theoretically guaranteed, which perhaps discourages the implementation
of this method in practice. Nevertheless, we will see that this method is indeed
practical in many cases.

10 Dimitris Bertsimas et al.

Table 1 Problem class of the deterministic reformulations and cutting-plane method master
problems for RLO and RMIO problems, dependent on the choice of uncertainty set. The
polyhedral set does not change the problem class. The cutting-plane method master problem
remains in the same problem class as the original RO problem regardless of the set selected,
but the most efficient algorithm to generate a new cut is dependent on the set.

Polyhedral set Ellipsoidal set
Robust Problem RLO RMIO RLO RMIO
Reformulation LP MIO SOCP MISOCP
Cutting-plane master LP MIO LO MIO
Cut generation Sorting Closed-form

3 Computational Benchmarking

Obtaining a large number of diverse RO problems was achieved by taking
instances from standard LO and MIO problem libraries and converting them
to RO problems. We obtained test problems from four sources:

1. LO problems from NETLIB [13], all of which are relatively easy for modern
solvers in their nominal forms.

2. LO problems from Hans Mittelmann’s benchmark library [18].

MIO problems from MIPLIB3 [6].

4. MIPLIB 2010, the current standard MIO benchmark library [16]. We se-
lected only the “easy” instances, where the nominal problem is solvable to
provable optimality in under an hour.

@

Uncertain coefficients are identified using a procedure based on the method
in [3], that is similar to methods in other papers [5,11]):

— A coefficient is certain if it is representable as a rational number with
denominator between 1 and 100 or a small multiple of 10.

— It is otherwise declared to be uncertain, with a 2% deviation allowed from
the nominal value: @;; = 0.02 |a;;]|.

— All equality constraints are certain.

After removing all instances which had no uncertain coefficients, we were able
to use 183 LO problems and 40 MIO problems.

We compared the reformulation and the cutting-plane methods for RLO
(Section 3.1) and RMIO (Section 3.2). We tried three different values of I’
(1, 3, and 5) to test if the solution methods were sensitive to the amount of
robustness. We used single-threaded computation throughout and a time limit
of 1,000 seconds was enforced on all instances. All solver settings were left at
their defaults unless otherwise stated.

For the case of the polyhedral reformulation for RLO problem we con-
trolled for the choice between interior point (“barrier”) and dual simplex as
the solution method. In particular, for the interior point method we disabled
“crossover” (obtaining an optimal basic feasible solution) as we didn’t consider
it relevant to the experiment at hand (the solution to the reformulation was
not needed for any further use). The choice of solution method is significant
in this case as we restricted the solver to one thread in all benchmarks - if

Reformulation versus cutting-planes for robust optimization 11

multiple threads were available, we could use both simultaneously and take
the faster of the two. This implication is explored further in Section 4.

We did not experiment with different solver options for the polyhedral set
RMIO reformulation but did experiment with a solver option that chooses
which algorithm to use to solve the ellipsoidal reformulation (a MISOCP).
There are two choices available in Gurobi 5.6 : either a linearized outer-
approximation, similar to the cutting plane method we employ, or solving
the nonlinear continuous relaxation directly at each node. We solved the re-
formulation with each algorithm to investigate their relative performance for
the RO problems.

We use multiple measures to try to capture different aspects of the relative
performance of the various methods and parameters. As the time to solve
each problem varies dramatically we used only unitless measures, and avoided
measures that are heavily affected by skew like the arithmetic mean employed
in [11]. We complement these numerical results with the graphical performance
profiles [9] which show a more complete picture of the relative runtimes for
each method. Where possible we will relate the measures described below to
these performance profiles.

The first and most basic measure is the percentage of problems solved fastest
by each method. This corresponds to the y-axis values in the performance pro-
files for a performance ratio of 1. This measure is sensitive to small variations
in runtime, especially for smaller problems, and does not capture any of the
worst-case behaviors of the methods.

The second and third measures are both summary statistics of normalized
runtimes. More precisely, for a particular combination of problem class (RLO,
RMIO), uncertainty set (polyhedral, ellipsoidal), and I" we define T to be
the runtime of method M for instance k € {1, ..., K}, and define T} to be the

best runtime for instance k across all methods, that is 7} = miny 7. Then
M

the second measure is, for each method M, to take the median of { 7;1“ } The

k
median is a natural measure of the central tendency as it avoids any issues

with outliers, although it is somewhat lacking in power when more than 50%
of the instances take the same value, as is sometimes the case for our data. The
third measure, which doesn’t have this shortcoming, is to take the geometric
mean of the same data for each method M, that is to calculate

K o —-K
(T) ' @

We note that the arithmetic mean can give misleading results for ratios [12]
and that the geometric mean is considered a suitable alternative.

A natural question is to ask how confident we are in the second and third
measures, which we address with confidence intervals. To do so, we must frame
our collection of test problems as samples from an infinite population of pos-
sible optimization problems. We are sampling neither randomly nor indepen-
dently from this population, so these intervals must be treated with some

12 Dimitris Bertsimas et al.

Table 2 Summary of RLO benchmark results for the polyhedral uncertainty set for I" = 5.
% Best is the fraction of problems for which a method had the lowest run time. Median
and Geom. Mean are the median and geometric mean respectively of the run times for each
instance normalized by the best time across methods. The percentage best for the pseudo-
method Reformulation (Best of Both) is calculated as the sum of the two reformulation
percentages. The two entries marked with an asterisk represent a separate comparison made
only between those two methods in isolation from the alternatives.

% Best | Median (95% CI) | Geom. Mean (95% CI)
Cutting-plane 75.5 1.00 (1.00, 1.00) 1.52 (1.31, 1.89)
Reformulation (Barrier) 15.8 1.57 (1.40, 1.77) 1.88 (1.72, 2.10)
Reformulation (Dual Simplex) 8.7 1.48 (1.40, 1.54) 1.69 (1.57, 1.85)
Reformulation (Best of Both) 24.5 1.27 (1.20, 1.54) 1.39 (1.32, 1.49)
Cutting-planc * 83.7 | 1.00 (1.00, 1.00) 1.39 (1.22, 1.68)
Reformulation (Dual Simplex) * 16.3 1.42 (1.39, 1.54) 1.54 (1.46, 1.65)

Table 3 Summary of RLO benchmark results for the ellipsoidal uncertainty set for I" = 5.
% Best is the fraction of problems for which a method had the lowest run time. Median
and Geom. Mean are the median and geometric mean respectively of the run times for each
instance normalized by the best time across methods.

| % Best | Median (95% CI) | Geom. Mean (95% CI)
Cutting-plane 44.8 1.06 (1.00, 1.12) 1.76 (1.51, 2.18)
Reformulation 55.2 1.00 (1.00, 1.00) 1.38 (1.27, 1.57)

caution. As the distribution of these measures is not normal, and the sample
sizes are not particularly large, we estimate 95% confidence intervals using
bootstrapping (e.g. [10]) which avoids some of the assumptions that would
otherwise have to be made to get useful results.

Finally we found that runtimes were relatively invariant to the choice of I".
Any differences were less than the general minor variations caused by running
the benchmarks multiple times. For this reason we present results only for
I' = 5 throughout the paper. Additionally although we are not interested in
comparing in any way the merits of polyhedral versus ellipsoidal sets, we wish
to note that the relative “protection” level implied by a given I" differs for the
polyhedral and ellipsoidal sets.

3.1 Results for RLO

We found that the cutting-plane method was the fastest method for most
(76%) RLO problems with polyhedral uncertainty sets (Table 2), which matches
previous observations [11]. It also had a lower runtime geometric mean than ei-
ther of the two reformulation methods tried, although the difference is not sub-
stantial when viewed together with the confidence intervals. We also performed
an alternative comparison between the dual simplex reformulation method and
the cutting-plane method that again shows that the cutting-plane methods is
faster on a vast majority of instances, but without a definitive difference in ge-
ometric mean. An explanation for this is to be found in Figure 1 which shows
that the cutting plane method is within a factor of two of the fastest run-

Reformulation versus cutting-planes for robust optimization 13

Table 4 Summary of RMIO benchmark results for the polyhedral uncertainty set for I" = 5.
% Best is the fraction of problems for which a method had the lowest run time. Median
and Geom. Mean are the median and geometric mean respectively of the run times for
each instance normalized by the best time across methods. The two entries marked with an
asterisk represent a separate comparison made only between those two methods in isolation
from the alternatives.

% Best | Median (95% CI) | Geom. Mean (95% CI)
Cutting-plane 32.5 1.39 (1.00, 2.39) 2.96 (2.00, 5.26)
Cutting-plane & root 20.0 1.19 (1.01, 1.41) 1.68 (1.40, 2.19)
Cutting-plane & heur. 2.5 1.37 (1.07, 2.12) 2.92 (1.96, 5.23)
Cutting-plane & root & heur. 7.5 1.22 (1.04, 1.55) 1.73 (1.43, 2.23)
Reformulation 37.5 1.28 (1.00, 1.77) 1.88 (1.50, 2.68)
Cutting-plane & root * 57.5 1.00 (1.00, 1.00) 1.58 (1.31, 2.07)
Reformulation * 42.5 1.05 (1.00, 1.62) 1.76 (1.41, 2.56)

ning time for approximately 90% of problems, but can be at least an order of
magnitude slower than reformulation for the remaining 10%. Finally we have
included a pseudo-method in Table 2 that takes the minimum of the two re-
formulation times, as many LO solvers can use both methods simultaneously.
We see that while cutting-planes are still superior for a majority of problems,
the geometric mean of the “best-of-both” reformulation method is lower than
the cutting-plane method, although their essentially overlapping confidence
intervals suggest not too much importance should be placed on this difference.

This result is inverted for RLO problems with ellipsoidal uncertainty sets,
where the reformulation is superior in a small majority of cases (Table 3).
Given this, it is unsurprising that there is essentially no difference in their
median normalized running times. The geometric mean is more conclusive,
with the reformulation method taking a clearer lead. This again seems to
be due to significantly worse performance in a small number of instances, as
evidenced by the performance profile in Figure 1.

3.2 Results for RMIO

For RMIO problems we have five major variations available:

1. Reformulation (in two minor variations for ellipsoidal sets).

2. Cutting-plane, without cutting-planes added at root node, heuristic dis-
abled.

3. Cutting-plane, with cutting-plane method applied to root node, heuristic
disabled.

4. Cutting-plane, without cutting-planes added at root node, heuristic en-
abled.

5. Cutting-plane, with cutting-plane method applied to root node, heuristic
enabled.

We now investigate in more details the relative benefits of generating con-
straints at the root node (Section 3.2.1) and of the heuristic (Section 3.2.2).

14 Dimitris Bertsimas et al.

Table 5 Summary of RMIO benchmark results for the ellipsoidal uncertainty set for I" = 5.
% Best is the fraction of problems for which a method had the lowest run time. Median
and Geom. Mean are the median and geometric mean respectively of the run times for
each instance normalized by the best time across methods. The two entries marked with an
asterisk represent a separate comparison made only between those two methods in isolation
from the alternatives.

% Best | Median (95% CI) | Geom. Mean (95% CI)

Cutting-plane 30.0 1.08 (1.00, 1.42) 2.51 (1.66, 4.53)
Cutting-plane & root 22.5 1.20 (1.00, 1.55) 1.83 (1.44, 2.80)
Cutting-plane & heur. 20.0 1.02 (1.00, 1.39) 2.52 (1.67, 4.64)
Cutting-plane & root & heur. 2.5 1.33 (1.03, 1.59) 1.88 (1.47, 2.81)
Reformulation 12.5 1.83 (1.01, 8.59) 5.92 (3.31,12.54)
Reformulation (outer-approx) 12.5 1.27 (1.01, 1.41) 2.03 (1.52, 3.20)
Cutting-plane & root * 72.5 1.00 (1.00, 1.00) 1.31 (1.12, 1.89)
Reformulation (outer-approx) * 27.5 1.07 (1.00, 1.25) 1.45 (1.24, 1.96)

The results are summarized in Tables 4 and 5 for the polyhedral and el-
lipsoidal uncertainty sets respectively. For the polyhedral set we found that
the various cutting-plane methods were fastest in 62.5% of instances, although
there was little to separate the cutting-plane methods and reformulation in the
medians. There was no meaningful difference in the geometric means with the
notable exception of the two cutting-plane variants that did not add cuts at
the root. We proceeded to simplify the comparison to just the cutting-plane
method with cuts at the root and the reformulation. When viewed in this light
there seems to be a slight edge to cutting-planes, but the difference is too small
to confidently declare as significant. This contradicts the results in [11] which
concluded that cutting-planes were “significantly worse” than reformulation;
this could be attributed to the enlarged test set, the addition of cutting planes
at the root, the measurement metric used, or a combination of these factors.

For ellipsoidal uncertainty sets the cutting-plane method was better than
reformulation in even more instances (75%) than for the polyhedral sets. In-
terestingly, and in contrast to the polyhedral set results, the cutting-plane
variations without cuts at the root node performed better in the median than
any other variation, although the geometric mean results reverse this result.
Additionally the outer-approximation variant of the reformulation appears to
perform far better overall than the alternative, perhaps due to the structure
of reformulated RMIOs. Finally we isolated the best cutting-plane and refor-
mulation variants and compared them, indicating that cutting-planes had an
edge but that again the difference in geometric mean was too small relative to
the uncertainty to be declared significant.

3.2.1 Treatment of root node

In Section 2.2 we considered the option of applying the RLO cutting-plane
method to the root relaxation of the RMIO master problem. While this would
possibly generate unnecessary constraints, we hypothesized that it may guide
the search process to avoid considering integer solutions that are not feasi-
ble with respect to the uncertain constraints. We experimented to determine

Reformulation versus cutting-planes for robust optimization 15

Table 6 RMIO benchmark results for I" = 5 comparing performance when cuts are added
at the root node or not, with methods paired based on whether the heuristic was also used
and which uncertainty set they are for. All metrics calculated as described in Table 4.

% Best | Median (95% CI) | Geom. Mean (95% CI)
Poly., 1o root cuts 50.0 | 1.00 (1.00, 1.16) 1.96 (1.43, 3.49)
Poly., root cuts 50.0 1.00 (1.00, 1.01) 1.12 (1.05, 1.29)
Poly., heur. & no root cuts 52.5 1.00 (1.00, 1.00) 1.86 (1.35, 3.24)
Poly., heur. & root cuts 47.5 1.00 (1.00, 1.00) 1.10 (1.05, 1.22)
Ell., no root cuts 60.0 1.00 (1.00, 1.00) 1.71 (1.26, 3.03)
ElL, root cuts 40.0 1.00 (1.00, 1.01) 1.25 (1.13, 1.54)
Ell., heur. & no root cuts 65.0 1.00 (1.00, 1.00) 1.67 (1.23, 2.94)
EllL, heur. & root cuts 35.0 1.00 (1.00, 1.09) 1.24 (1.13, 1.49)

Table 7 RMIO benchmark results for I" = 5 comparing performance when cuts are added
at the root node or not, with methods paired based on which uncertainty set they are for
and whether the instances are feasible or not. All metrics calculated as described in Table 4.

% Best | Median (95% CI) | Geom. Mean (95% CI)

Poly., feas., no root cuts 56.5 1.00 (1.00, 1.00) 1.27 (1.13, 1.77)
Poly., feas., root cuts 43.5 1.00 (1.00, 1.01) 1.10 (1.04, 1.32)
Poly., infeas., no root cuts 18.2 22.99 (1.00,29.92) 12.43 (1.87,27.05)
Poly., infeas., root cuts 81.8 1.00 (1.00, 1.00) 1.22 (1.00, 1.49)
Ell., feas., no root cuts 67.2 1.00 (1.00, 1.00) 1.08 (1.03, 1.20)
Ell., feas., root cuts 32.8 1.00 (1.00, 1.02) 1.25 (1.12, 1.61)
EllL, infeas., no root cuts 30.8 20.50 (1.00,29.68) 8.54 (1.67,24.84)
ElL, infeas., root cuts 69.2 | 1.00 (1.00, 1.00) 1.24 (1.00, 1.78)

whether this option helps or not by solving with and without it, and the sum-
mary of the results is presented in in Table 6, where all results are relative
to the better of with and without root cuts. We note that there is essen-
tially no difference in median performance, and the difference only appears in
the geometric means. In particular we note that not adding cuts at the root
can result in much longer solve times, dragging the geometric means higher.
This behaviour is fairly consistent across uncertainty set type and whether the
heuristic is used or not.

Further investigation reveals that the difference in solve times is mostly
due to its superior performance on infeasible instances, where the difference
between the two is drastic in both median and geometric mean. Something
similar is suggested in [11], although not explored fully. This can be seen in
the performance profiles in Figure 2 where the no-root-cut lines fall underneath
the other variations on the right side of the plots. For feasible instances there is
not a substantial difference between the two. We conclude from this evidence
that adding constraints to make the root fractional solution feasible for all
uncertain constraints is generally advisable, and that if there is a reasonable
expectation that infeasiblity is possible this option should definitely be used.

16 Dimitris Bertsimas et al.

Table 8 RMIO benchmark results for I' = 5 comparing performance when the heuristic is
used to not using it, with methods paired based on which uncertainty set they are for. All
metrics calculated as described in Table 4.

% Best | Median (95% CI) | Geom. Mean (95% CI)
Poly., root cuts 67.5 1.00 (1.00, 1.00) 1.01 (1.00, 1.06)
Poly., heur. & root cuts 32.5 1.00 (1.00, 1.01) 1.04 (1.02, 1.07)
EIL, root cuts 675 | 1.00 (1.00, 1.00) 1.02 (1.00, 1.07)
EllL, heur. & root cuts 32.5 1.00 (1.00, 1.01) 1.05 (1.02, 1.09)

3.2.2 Repair heuristic

Section 2.2.1 details a heuristic that takes integer solutions produced during
branch-and-bound that violate one or more uncertain constraints and attempts
to make them feasible by modifying only the continuous variables. We eval-
uated the solution times with the heuristic enabled relative to the solution
times with it disabled, and the summary of results is presented in Table 8.
Using the heuristic was better than not using it in approximately one-third of
the cases for both polyhedral and ellipsoidal sets. The geometric means were
roughly one, indicating that on average the heuristic doesn’t make much of a
difference for the problems we considered.

3.3 Implementation Considerations

The implementation details for the individual methods could make a substan-
tial difference. In particular, MISOCP functionality in commercial solvers is
relatively new compared to LO and MIO as of the time of writing, which
suggests that an efficient, problem-specific cutting plane method like the type
demonstrated in this paper may have an edge over a generic solver. Over
time, one might expect the performance of MISOCP reformulations to improve
with the maturity of commercial implementations. This may explain why the
cutting-plane method was better for a majority of the RMIO ellipsoidal un-
certainty set instances we evaluated. On the other hand, MIO solvers have
presolve functionality that is capable of powerful problem reductions, which
would be to the benefit of reformulations. By implementing our cutting-plane
generation code in C++ and connecting to the solver using in memory li-
braries, we avoided as much overhead as possible; cutting-plane overhead may
grow with a less tightly coupled connection or if a slower language is used to
generate cuts. We also used single-threaded computation throughout - cutting-
plane generation may interact with a multi-threaded solver in unexpected ways
that may slow down the solver.

4 Evaluation of Hybrid Method

In the previous section we mainly focused on the direct comparison of different
variations of the cutting-plane and reformulation methods for solving RO prob-

Reformulation versus cutting-planes for robust optimization 17

Proportion of problems solved

0.2) Cutting-plane
i —— Reformulation (barrier)
- - - Reformulation (simplex)
ol \ \ \ \
1 2 3 4 5 6 7 8 9 10
Performance Ratio
1y
0.8 n
K
i
2
12}
5 06/, :
)
2
a
o
S
5 0a) :
g
15
%
o
~
A
0.2 - -
Cutting-plane
—— Reformulation
ol ! ! ! ! ! . . .
1 2 3 4 5 6 7 8 9 10

Performance Ratio

Fig. 1 Performance profiles [9] for RLO instances with polyhedral and ellipsoidal uncer-
tainty, above and below, respectively. Higher lines indicate superior performance.

18 Dimitris Bertsimas et al.

1
0.8 |- N
]
%]
2
2
0
5 06 .
)
<)
—
2
o
S
g 04 7
=
5]
2,
E Cutting-plane
02l Cutting-plane, root N
' Cutting-plane, heur.
Cutting-plane, root, heur.
— Reformulation
ol \ \ \ \
1 2 3 4 5 6 7 8 9 10
Performance Ratio
1y T T T

Problems solved

Cutting-plane

Cutting-plane, root
Cutting-plane, heur.

0.2 Cutting-plane, root, heur. |
------- Reformulation (continuous)
—— Reformulation (outer approx.)
ol ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10

Performance Ratio

Fig. 2 Performance profiles [9] for RMIO instances with polyhedral and ellipsoidal uncer-
tainty, above and below, respectively. Higher lines indicate superior performance. “root”
indicates adding constraints at the B&B root note, and “heur” indicates that the proposed
feasibility heuristic is enabled.

Reformulation versus cutting-planes for robust optimization 19

Table 9 Summary of hybrid method RLO benchmark results for the polyhedral uncertainty
set with I" = 5. Both measures are functions of the hybrid method runtime relative to another
method’s runtime (Equation 3).

| Median (95% CI) | Geom. Mean (95% CI)

Cutting-plane 1.00 (1.00, 1.00) 0.66 (0.53, 0.76)
Reformulation (Barrier) 0.64 (0.56, 0.71) 0.53 (0.48, 0.58)
Reformulation (Dual Simplex) | 0.68 (0.65, 0.71) 0.59 (0.54, 0.64)
Reformulation (Best of Both) 0.79 (0.73, 0.83) 0.72 (0.67, 0.76)

lems. In this section, we change the focus to how best to use this information
in practice. We propose applying both the reformulation and the cutting-plane
method simultaneously to the same problem, in much the same way that some
modern solvers apply both the simplex and interior point methods to solving
a (deterministic) linear optimization problem.

We define the hybrid method each problem class and uncertainty set type
as follows:

— RLO problems with polyhedral uncertainty sets: simultaneously solve with
the cutting-plane method and both reformulation methods (simplex and
interior point).

— RLO problems with ellipsoidal uncertainty sets: simultaneously solve with
the cutting-plane method and the reformulation method.

— RMIO problems with polyhedral uncertainty sets: simultaneously solve
with the cutting-plane method (with root cuts) and with the reformulation
method.

— RMIO problems with ellipsoidal uncertainty sets: simultaneously solve with
the cutting-plane method (with root cuts) and with the reformulation
method (outer-approximation).

The statistic we are interested in is a slight variant of the one considered
in Section 3. For a particular combination of problem class (RLO, RMIO),
uncertainty set (polyhedral, ellipsoidal), and I" define T} to be run time for
the hybrid method. We are interested in the reduction in running time for the
hybrid method versus any single method M, that is

!
™"

3)

This quantity is bounded by 0 and 1 for RLO problems by construction, but
may be greater than 1 for RMIO problems (for example, if we compare against
the heuristic method and for a particular instance using the heuristic would
have been better). We will consider the median, geometric mean, and general
distribution of this quantity.

20 Dimitris Bertsimas et al.

Table 10 Summary of hybrid method RLO benchmark results for the ellipsoidal uncer-
tainty set with I" = 5. Both measures are functions of the hybrid method runtime relative
to another method’s runtime (Equation 3).

| Median (95% CI) | Geom. Mean (95% CI)
Cutting-plane 1.00 (0.88, 1.00) 0.57 (0.46, 0.66)
Reformulation | 0.83 (0.78, 0.97) 0.68 (0.60, 0.73)

Table 11 Summary of hybrid method RMIO benchmark results for the polyhedral uncer-
tainty set with I" = 5. Both measures are functions of the hybrid method runtime relative
to another method’s runtime (Equation 3).

| Median (95% CI) | Geom. Mean (95% CI)

Cutting-plane 0.72 (0.33, 0.99) 0.36 (0.20, 0.55)
Cutting-plane & root 1.00 (0.35, 1.00) 0.63 (0.49, 0.77)
Cutting-plane & heur. 0.79 (0.51, 0.98) 0.37 (0.20, 0.55)

Cutting-plane & root & heur. | 0.95 (0.66, 0.99) 0.62 (0.47, 0.75)

Reformulation 0.95 (0.59, 1.00) 0.57 (0.39, 0.70)

4.1 Results for RLO

For the polyhedral uncertainty set (Table 9) we defined the hybrid method
to be the best of all three methods. As the cutting-plane method was best in
75% of instances, there is no median improvement versus the cutting-plane
method, and roughly 15% median improvement versus the better of the refor-
mulations. However, if we look at the geometric means then the hybrid method
is significantly better, with runtimes about 50% to 75% of any single method.

For the ellipsoidal uncertainty set (Table 10) the hybrid method is simply
the better of the two available methods. It is nearly twice as fast on average
as using the cutting-plane method and has runtimes less than about 70% on
average of the reformulation method. Its interesting to note that the perfor-
mance difference for the median is not as dramatic suggesting that for most
problems there is not much difference, but for some instances the difference is
substantial.

4.2 Results for RMIO

The hybrid method for RMIO problems with the polyhedral uncertainty set
(Table 11) is defined to be the best of the cutting-plane method with root cuts
and the reformulation method. As with RLO problems we see only moder-
ate improvements in median, but the improvement in geometric mean shows
improvements in runtime by a factor of approximately two to three.

For ellipsoidal uncertainty sets (Table 12) the hybrid method the best
of the cutting-plane method with root cuts and the reformulation (outer-
approximation) method. Once more we see only moderate improvements in
median, but the improvement in geometric mean shows improvements in run-
time up to a factor of approximately two (and even more for the alternative
reformulation solution method).

Reformulation versus cutting-planes for robust optimization 21

Table 12 Summary of hybrid method RMIO benchmark results for the ellipsoidal uncer-
tainty set with I" = 5. Both measures are functions of the hybrid method runtime relative
to another method’s runtime (Equation 3).

| Median (95% CI) | Geom. Mean (95% CI)

Cutting-plane
Cutting-plane & root
Cutting-plane & heur.

Cutting-plane & root & heur.

Reformulation

0.99 (0.85, 1.00
1.00 (0.78, 1.00
1.00 (0.77, 1.00

0.83 (0.14, 1.00

0.55 (0.29, 0.86)
0.76 (0.52, 0.89)
0.55 (0.29, 0.85)

0.24 (0.10, 0.47)

)
V| o

0.99 (0.93, 1.00) 0.74 (0.52, 0.87)
) (
) (

Reformulation (outer-approx) 0.93 (0.78, 1.00 0.69 (0.51, 0.81)

Histograms of the hybrid runtime versus method runtimes for both un-
certainty sets are displayed in Figure 3. We can see that, as expected, the
histograms for the methods selected for inclusion in the hybrid method are
mostly bunched around 1.0, but that for the other methods there is another
peak between 0.0 and 0.2 for the instances that were solved substantially
quicker with the hybrid method. It is these instances that drive the difference
in geometric mean and show where a hybrid method could offer the most value.

4.3 Implementation Considerations

We note that implementation details may restrict the realizable benefits of the
hybrid method. In particular, we considered only single-threaded computation
for each individual method, and assumed there was no performance impact
from running multiple methods simultaneously. To examine these assumptions
and their impact on practical implementations we will assume that we are
running on machine that can run 7' > 2 threads independently with minimal
impact on each other. For example, a “quad core” machine could run T' = 4
threads with minimal impact. We will analyze the impact of these realities on
the two problem classes independently.

For the RLO problem we used three methods, so would require T" > 3 to
obtain the results stated above. An examination of the performance profiles
suggests that if 7" is only two then we should use the cutting-plane method
and the simplex method for reformulation. If T > 4 the question of what to
do with the extra threads arises. While the reformulation method with the
simplex algorithm is single-threaded, the interior-point reformulation method
can be run in multi-threaded mode. The cutting-plane method relies on the
simplex method to solve the master problem, but the cutting-planes could be
generated in parallel. Thus on a machine with T' = 8, for example, one thread
could be allocated to solving the reformulation with the simplex method, two
threads could be allocated to the cutting-plane method, and the remainder to
the interior-point method for the reformulation.

Both the hybrid methods for RMIO problems use only two methods, requir-
ing only that 7' > 2. However, both cutting-plane and reformulation methods
for RMIO can use many threads, begging the question of how to distribute
T threads among them. This question can only practically be answered with

22 Dimitris Bertsimas et al.
30
20 —
20 — 9]
15 = o i’
T)
10 - g—; 10 3
(0]
5 - 0-
30
0_
-
20 - T
20 — =2
15 — T 10 =
o] o
5 g
10 - 3
s
30
5 - =3
=
0= 20 — _"CI;
)
3
20 10 - g
) 3
= 5
— 15— | 4
c =3 c 0-
S (V) =}
Q 10 - 5=D o 30 =
O > © =
5 g i
20 = o
3
0- 3
10 9
%
% z
1 0- -
s 30
>3
o
= oy
o _ @
% 20 _5:
2
- 10 — o
o
=
0_
20 = 30
e ot
15 = Y g
: 20 5
10 - s =
= o
o 3
1 -
5 — S 0 =
=y
)
0= 0= =

0.0 0.2 04 06 0.8 1.0

Hybrid time / method time

0.0 02 04 06 08 1.0
Hybrid time / method time

Fig. 3 Histograms of the runtime for the hybrid method normalized by each of the in-
dividual methods (Equation 3). The left column is for RMIO problems with polyhedral
uncertainty sets, and the right column is for RMIO problems with ellipsoidal uncertainty

sets.

Reformulation versus cutting-planes for robust optimization 23

further instance-specific experimentation beyond the scope of this paper. In
general, however, it is far from trivial to achieve a perfect speed-up factor of
T when using T threads to solve a single MIO problem [17], which suggests
that a hybrid approach could provide an improvement over a pure strategy of
providing all available threads to a single solver.

A parallel hybrid strategy could be further enhanced by communicating be-
tween the two solvers. Consider first the reformulation at the presolve stage:
any inferences made about variable bounds, including fixing variables, deter-
mined from the reformulation are also valid for the cutting-plane method. Thus
the cutting-plane method can benefit from the structure of the reformulation,
which could provide improvements above those predicted above. Furthermore
a feasible solution found with the cutting-plane method is also feasible for
the reformulation method, allowing us to tighten the integrality gap from one
direction. Finally the lower bound from the reformulation method is also a
valid lower bound for the cutting-plane algorithm, allowing us to tighten the
integrality gap from the other direction. Carvajal et al. [8] reported success
with a similar approach in the context of general MIO problems.

5 Discussion

The relative benefits of cutting planes versus reformulations are a mixed story
when compared directly against each other. The two main metrics considered
were the median and geometric mean of the runtime for each method nor-
malized by the best runtime across methods. In general, the performance gap
between them was not large in either metric for any combination of problem
class (RLO, RMIO) and uncertainty set, but especially in the median. The
geometric mean generally revealed greater differences due to small numbers of
instances that are dramatically better with one method than the other. This
is reflected in the tails of the performance profiles in Figures 1 and 2. We
summarize the results as follows:

— For RLO problems with polyhedral uncertainty sets, there was some evi-
dence that the cutting-plane method was superior for a majority of cases,
but there is no clear overall winner.

— For RLO problems with ellipsoidal uncertainty sets, the reformulation
method was better than the cutting-plane method.

— For RMIO problems with polyhedral uncertainty sets, there was no clear
winner between the cutting-plane method (with cuts added at the root)
and the reformulation method.

— For RMIO problems with ellipsoidal uncertainty sets, there was some ev-
idence that the cutting-plane method (with cuts added at the root) was
better than the reformulation method (using the outer-approximation op-
tion).

The most practical benefit of benchmarking the methods was to determine
the performance of a hybrid solver that runs both simultaneously. When we

24 Dimitris Bertsimas et al.

consider the performance of this hybrid method we see reductions in runtime
to 50% to 75% across all combinations of problem and uncertainty set. This
is a clear win, and suggests that a hypothetical robust optimization solver
should follow this hybrid strategy. This would be achieved by modeling the
RO problem directly (perhaps with a RO-specific modeling language), then
relying on the modeling tool or RO solver to automatically produce both the
reformulation and the cutting-plane generator. As we noted in 4.3, further
synergies over simply running both methods in isolation may be possible, at
the cost of increased implementation complexity.

Future avenues for the study of computational aspects of RO would include
benchmarking more and tougher MIO instances that take longer to solve. As
discussed in Section 2.1, methods from nonlinear and stochastic programming
may be able to reduce the number of cuts required to reach feasibility, al-
though our preliminary experiments in this domain were not successful. Novel
warm-starting methods, presolve techniques and additional heuristics may im-
prove both methods, but especially the cutting-plane method. Finally we note
that reformulations have a block structure similar to that seen in stochastic
programming, which may be exploitable to speed up the solver.

Acknowlegements

The authors would like to thank the two anonymous reviewers for their help
in improving the rigour and focus of the paper. This research was partially
supported by ONR grant N00014-12-1-0999. M. Lubin was supported by the
DOE Computational Science Graduate Fellowship, which is provided under
grant number DE-FG02-97ER25308.

References

1. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton University
Press (2009)

2. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Operations
Research Letters 25(1), 1 — 13 (1999)

3. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contam-
inated with uncertain data. Mathematical Programming 88, 411-424 (2000)

4. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM review 53(3), 464-501 (2011)

5. Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35-53
(2004)

6. Bixby, R., Ceria, S., McZeal, C., Savelsberg, M.: An updated mixed integer programming
library: MIPLIB 3.0. Optima 58, 12-15 (1998)

7. Briant, O., Lemarchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Com-
parison of bundle and classical column generation. Mathematical Programming 113(2),
299-344 (2008)

8. Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y.: Using di-
versification, communication and parallelism to solve mixed-integer linear programs.
Operations Research Letters 42(2), 186 — 189 (2014)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical Programming 91, 201-213 (2002)

Reformulation versus cutting-planes for robust optimization 25

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Efron, B., Tibshirani, R.J.: An introduction to the bootstrap, vol. 57. CRC press (1994)
Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain
(integer) linear programs. Mathematical Programming Computation 4, 239-273 (2012)
Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize
benchmark results. Communications of the ACM 29(3), 218-221 (1986)

Gay, D.M.: Electronic mail distribution of linear programming test problems. Mathe-
matical Programming Society COAL Newsletter 13, 10-12 (1985)

Goh, J., Sim, M.: Robust optimization made easy with rome. Operations Research
59(4), 973-985 (2011)

Gurobi Optimization Inc.: Gurobi optimizer reference manual (2014). URL
http://www.gurobi.com

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna,
E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T\,
Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Mathematical Programming
Computation 3(2), 103-163 (2011)

Koch, T., Ralphs, T., Shinano, Y.: Could we use a million cores to solve an integer
program? Mathematical Methods of Operations Research 76(1), 67-93 (2012)
Mittelmann, H.: Benchmark of parallel LP solvers. URL
http://plato.asu.edu/ftp/Ipcom.html

Mutapcic, A., Boyd, S.: Cutting-set methods for robust convex optimization with pes-
simizing oracles. Optimization Methods & Software 24(3), 381-406 (2009)

Zverovich, V., Fbin, C., Ellison, E., Mitra, G.: A computational study of a solver system
for processing two-stage stochastic LPs with enhanced benders decomposition. Mathe-
matical Programming Computation 4(3), 211-238 (2012)

