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1 Introduction

This paper considers the problem of building individual confidence intervals for com-
ponents of the true solution to a stochastic variational inequality (SVI). An SVI is
defined as follows. Let (Ω ,F ,P) be a probability space, and ξ be a d-dimensional
random vector defined on Ω and supported on a closed subset Ξ of Rd . Let O be
an open subset of Rn, and F be a measurable function from O×Ξ to Rn, such that
for each x ∈ O, E∥F(x,ξ )∥ < ∞. Let S be a polyhedral convex set in Rn. The SVI
problem is to find a point x ∈ S∩O such that

0 ∈ f0(x)+NS(x), (1)

where f0(x) = E [F(x,ξ )] and NS(x)⊂ Rn denotes the normal cone to S at x:

NS(x) = {v ∈ Rn|⟨v,s− x⟩ ≤ 0 for each s ∈ S} .

Here ⟨·, ·⟩ denotes the scalar product of two vectors of the same dimension.
Variational inequalities provide a means for modeling a variety of optimization

and equilibrium problems, see [3, Chapter 1]. Stochastic variational inequalities al-
low for the incorporation of uncertainty in the model data. As an expectation func-
tion, f0 often does not have a closed form expression and is difficult to evaluate. In
such circumstances the problem (1) is replaced by a suitable approximation. This pa-
per considers the case when a sample average approximation (SAA) is used. The
SAA method takes independent and identically distributed (i.i.d) random vectors
ξ 1,ξ 2, . . . ,ξ N with the same distribution as ξ and constructs a sample average func-
tion fN : O×Ω → Rn as

fN(x,ω) = N−1
N

∑
i=1

F(x,ξ i(ω)). (2)

The SAA problem is to find for given ω ∈ Ω a point x ∈ O∩S such that

0 ∈ fN(x,ω)+NS(x). (3)

We will use x0 to denote a solution to (1) and refer to it as the true solution, and use
xN to denote a solution to (3) and call it an SAA solution; the formal definitions of x0
and xN will be given in Assumption 2 and Theorem 1 respectively.

A natural question to ask is how well the SAA solutions approximate the true
solution. An answer to this question depends on the convergence behavior of SAA
solutions. Under certain regularity conditions, SAA solutions are known to con-
verge almost surely to a true solution as the sample size N goes to infinity, see
Gürkan, Özge and Robinson [6], King and Rockafellar [7], and Shapiro, Dentcheva
and Ruszczyński [18, Section 5.2.1]. Xu [21] showed the convergence of SAA so-
lutions to the set of true solutions in probability at an exponential rate under some
assumptions on the moment generating functions of certain random variables; re-
lated results on the exponential convergence rate are given in [19]. Working with the
exponential rate of convergence of SAA solutions, Anitescu and Petra in [1] devel-
oped confidence intervals for the optimal value of stochastic programming problems
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using bootstrapping. The asymptotic distribution of SAA solutions was obtained in
King and Rockafellar [7, Theorem 2.7] and Shapiro, Dentcheva and Ruszczyński [18,
Section 5.2.2]. For random approximations to deterministic optimization problems,
universal confidence sets for the true solution set were developed by Vogel in [20]
using concentration of measure results.

The objective of this paper is to provide methods to compute confidence intervals
for each individual component of the true solution x0 from a single SAA solution xN ,
based on the asymptotic distribution of SAA solutions. To our knowledge, this line
of work started from the dissertation [2] of Demir. By considering the normal map
formulation (to be defined formally in §2) of variational inequalities, Demir used the
asymptotic distribution to obtain an expression for confidence regions of the solution
to the normal map formulation of (1), which we denote by z0 (the formal definition of
z0 is in Assumption 2). Because some quantities in that expression depend on the true
solutions x0 and z0 and are not computable, Demir proposed a substitution method to
make that expression computable. He did not, however, justify why that substitution
method preserves the weak convergence property needed for the asymptotic exactness
of the confidence regions. The general nonsmooth structure of S creates issues related
to discontinuity of certain quantities, which prevents standard techniques from being
applicable for the required justification.

In [10] Lu and Budhiraja continued to consider the normal map formulations of
both (1) and (3). They provided and justified a new method of constructing asymptot-
ically exact confidence regions for z0, computable from a solution to the normal map
formulation of a single SAA problem (3); the latter solution is denoted by zN and is
formally defined in Theorem 1. The approach in [10] was to combine the asymptotic
distribution of zN with its exponential rate of convergence, and its computation in-
volved calculating a weighted-sum of a family of functions. The method was later
simplified by Lu in [8] by using a single function from the family. When zN does not
asymptotically follow a normal distribution, confidence regions generated from [8]
and [10] are fractions of multiple ellipses pieced together. Lu [9] proposed a differ-
ent method to construct asymptotically exact confidence regions, by using only the
asymptotic distribution and not the exponential convergence rate. The method in [9]
has the advantage that the confidence region generated from it is with high probabil-
ity a single ellipse, even when the asymptotic distribution of zN is not normal, and
is therefore easier to use. Nonetheless, methods in [8,10] provide valuable informa-
tion beyond confidence regions. In the present paper we will show how to use such
information to compute individual confidence intervals for the true solutions. Even
with the estimators from [8,10] in place, it is not straightforward to obtain asymp-
totically exact individual confidence intervals, due to the piecewise linear structure
that underlies the asymptotic distributions of zN and xN . How to reduce the compu-
tational burden related to that piecewise linear structure is another challenge. Those
difficulties are what we aim to overcome in this paper.

Compared to confidence regions, component-wise confidence intervals are usu-
ally more convenient to visualize and interpret. By finding the axis-aligned mini-
mal bounding box of a confidence region of z0 (or x0), one can find simultaneous
confidence intervals, that jointly contain z0 (or x0) with a probability no less than
a prescribed confidence level. However, individual confidence intervals that can be
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obtained by using confidence regions are too conservative for any practical use, espe-
cially for large scale problems. Individual confidence intervals provide a quantitative
measure of the uncertainty of each individual component, and therefore carry impor-
tant information not covered by simultaneous intervals. Lu [9] proposed a method to
construct individual confidence intervals for z0, but that method relies on some re-
strictive assumptions to guarantee the specified level of confidence is met. The meth-
ods we develop in this paper are shown to achieve the guaranteed confidence levels
in more general situations.

As noted above, the confidence region/interval methods in [2,8–10] are mainly
designed for z0. The points z0 and x0 are related by the equality x0 = ΠS(z0). From
a confidence region of z0, one can obtain a confidence region for x0, by projecting
the confidence region of z0 onto S. The resulting set will cover x0 with a rate at least
as large as the coverage rate of the original confidence region for z0. Simultaneous
confidence intervals of x0 can then be obtained from the minimum bounding box of
its confidence region. When S is a box, individual confidence intervals of x0 can also
be obtained from projecting the individual confidence intervals of z0. We shall refer
to such approaches as “indirect approaches.” The indirect approaches are convenient
to implement when the set S is a box, or has a similar structure that facilitates taking
(individual) projections. Beyond those situations, it would be hard to use the indirect
approaches for finding confidence intervals for x0. Another contribution of the present
paper is to provide a direct approach to finding confidence intervals for x0.

Altogether, this paper presents three new methods for constructing individual
confidence intervals, justifies them with weak convergence results, discusses how to
implement these methods, and provides numerical examples. The first two methods
belong to the aforementioned indirect approaches. They produce confidence inter-
vals for z0 from a single zN , and the asymptotic level of confidence can be specified
under general situations. The third method is a direct approach that produces indi-
vidual confidence intervals for x0. The intervals produced by the third method meet
a specified minimum level of confidence in the same situations for which the first
two methods are applicable. While our main interest in this paper is on stochastic
variational inequalities and their normal map formulations, the ideas of the first two
methods work for general piecewise linear homeomorphisms. We outline the ideas
below, and leave formal definitions and proofs to Sections 2 and 3. Throughout, we
use N (ν,Σ) to denote a Normal random vector with mean ν and covariance ma-
trix Σ , and use Yn ⇒ Y to denote the weak convergence of random variables Yn to
Y . For a vector v ∈ Rn, (v) j will denote the jth coordinate. Similarly for a function
f : Rn → Rn, ( f ) j will denote the jth component function. We use ∥ · ∥ to denote the
norm of an element in a normed space; unless a specific norm is stated it can be any
norm, as long as the same norm is used in all related contexts.

For the first two methods, suppose f : Rn → Rn is a piecewise linear homeomor-
phism with a family of selection functions {M1, . . . ,Ml} and the corresponding coni-
cal subdivision {K1, . . . ,Kl}, so f is represented by the linear map Mi when restricted
to Ki. Suppose zN is an n-dimensional random vector such that

√
N(zN − z0) ⇒

f−1(Z), where z0 ∈ Rn is an unknown parameter, Z ∼ N (0, In), and In is the n× n
identity matrix. Our objective is to obtain a confidence interval for (z0) j, j = 1, · · · ,n.
The idea of the first method is to look for a number a such that Pr(|( f−1) j(Z)| ≤ a)
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equals a prescribed confidence level, and then use [(zN) j − aN−1/2,(zN) j + aN−1/2]
as the interval. For situations considered in this paper, z0 and zN are solutions to the
normal map formulations of (1) and (3) respectively, and the function f is unknown
and is substituted by an estimator obtained from approaches in [8] and [10]. Such
a substitution does not affect the asymptotic exactness of confidence intervals com-
puted from this method, as we show in Theorem 4. In addition, to allow for some
choice in where the interval is centered, we introduce a parameter r and consider the
probability Pr(|( f−1) j(Z)− r| ≤ a).

A challenge that arises with the first method is that when the function f is piece-
wise linear we lack a closed form expression for the value of a. The computation of
Pr(|( f−1) j(Z)− r| ≤ a) for fixed a and r requires enumerating all pieces of f−1, and
for each such piece one needs to compute the probability for some normal random
vector to belong to a certain polyhedron. Thus, the calculations necessary to find a
confidence interval increase with the number of pieces in f . These limitations lead to
the consideration of upper bounds for interval half-widths, presented in §4, and the
development of the second method in this paper.

The second method uses the idea of conditioning. Suppose that for each ω ∈ Ω
we can identify a cone K(ω), such that with high probability K(ω) belongs to the
family {K1, . . . ,Kl} and contains zN − z0 in its interior; for situations in this paper
this can be done using an approach in [8]. For the fixed ω we then look for a number
a(ω) such that the following conditional probability

Pr
(
|( f−1) j(Z)| ≤ a(ω), f−1Z ∈ K(ω)

)
Pr( f−1Z ∈ K(ω))

equals a prescribed confidence level, and use [(zN) j−a(ω)N−1/2,(zN) j+a(ω)N−1/2]
as a confidence interval for (z0) j. We will again use an estimator to replace the un-
known f , and justify the method with a convergence result (Theorem 5). The second
method dramatically reduces the computation needed for the first method, by focus-
ing on a single cone K(ω) and avoiding the enumeration of all pieces of f .

The third method also uses the idea of conditioning, but it is a direct approach and
is different from the second method. In general, one cannot apply the first two meth-
ods or the method in [9] directly to compute individual confidence intervals for x0, be-
cause if one would put the asymptotic distribution of xN in the form

√
N(xN − x0)⇒

f (Z) for some function f then f is generally non-invertible. Such non-invertibility re-
lates to a fact that there is possibly a nonzero probability for some components of xN
and x0 to coincide, a situation that does not occur when considering solutions to the
normal map formulations. The third method handles that non-invertibility by look-
ing into the exact cause of such non-invertibility, and produces intervals that meet a
minimum specified level of confidence in the same situations for which the first two
methods are shown to be asymptotically exact. In the proof of the convergence result
for this method (Theorem 6), we see that the intervals it produces exceed the spec-
ified level of confidence only if the corresponding components of xN and x0 have a
nonzero probability to coincide. When the latter situation happens, the third method
returns a point estimate with a nonzero probability.

The organization of this paper is as follows. Section 2 reviews pertinent back-
ground material on piecewise linear functions, the normal map formulation and pre-
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vious asymptotics results. The main theoretical results of this paper are presented in
§3, and §4 presents computational approaches for calculating intervals using these
results. The paper concludes in §5 with two numerical examples.

2 Background

In this section we discuss the normal map formulation of a variational inequality,
pertinent properties of piecewise linear functions, the notion of B-differentiability
and previous works on this topic.

For f0 and S defined as above the normal map induced by f0 and S is a function
( f0)S : Π−1

S (O)→ Rn, defined as

( f0)S(z) = f0(ΠS(z))+(z−ΠS(z)). (4)

Here ΠS denotes the Euclidian projector onto the set S and Π−1
S (O) is the set of all

points z ∈ Rn such that ΠS(z) ∈ O. One can check that x ∈ S∩O is a solution to (1)
only if z = x− f0(x) satisfies

( f0)S(z) = 0. (5)

When the above equality is satisfied, one also has ΠS(z) = x. We refer to (5) as the
normal map formulation of (1).

The normal map induced by fN and S is similarly defined to be a function on
Π−1

S (O):
( fN)S(z) = fN(ΠS(z))+(z−ΠS(z)). (6)

The normal map formulation of the SAA problem (3) is then

( fN)S(z) = 0, (7)

where (7) and (3) are related in the same manner as (5) and (1). In general for a
function G mapping from a subset D of Rn back into Rn, the normal map GS induced
by G and S is a map from Π−1

S (D) into Rn with GS(z) = G(ΠS(z))+ z−ΠS(z).
Since S is a polyhedral convex set, the Euclidian projector ΠS is a piecewise

affine function. A continuous function f : Rn → Rk is piecewise affine if there exists
a finite family of affine functions f j : Rn → Rk, j = 1, . . . ,m, such that for all x ∈ Rn

f (x) ∈ { f1(x), . . . , fm(x)}. The affine functions fi, i = 1, . . . ,m, are referred to as the
selection functions of f . When each selection function is linear the function f is
called piecewise linear.

Closely related to piecewise affine functions is the concept of a polyhedral sub-
division. A polyhedral subdivision of Rn is defined to be a finite collection of convex
polyhedra, Γ = {γ1, . . . ,γm} ⊂ Rn, satisfying the following three conditions:

1. Each γi is of dimension n.
2. The union of all the γi is Rn.
3. The intersection of any two γi and γ j, 1 ≤ i ̸= j ≤ m, is either empty or a common

proper face of both γi and γ j.
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If each of the γi is additionally a cone, then Γ is referred to as a conical subdivision.
As seen in [17, Proposition 2.2.3], for every piecewise affine function f there is a
corresponding polyhedral subdivision of Rn such that the restriction of f to each γi
is an affine function. When f is piecewise linear the corresponding subdivision is
conical, and the restriction of f to each cone of the subdivision a linear function.

We now return to the special case of the Euclidian projector onto a polyhedral
convex set S ⊂Rn, a thorough discussion of which can be found in [17, Section 2.4].
Let F be the finite collection of all nonempty faces of S. On the relative interior
of each nonempty face F ∈ F the normal cone to S is a constant cone, denoted
as NS(riF), and CF = F +NS(riF) is a polyhedral convex set of dimension n. The
collection of all such sets CF form the polyhedral subdivision of Rn corresponding to
ΠS. This collection of sets is also referred to as the normal manifold of S, with each
CF called an n-cell in the normal manifold. Each k-dimensional face of an n-cell is
called a k-cell in the normal manifold for k = 0,1, . . . ,n. The relative interiors of all
cells in the normal manifold of S form a partition of Rn.

Next we introduce the concept of B-differentiability. A function h : Rn → Rm is
said to be B-differentiable at a point x ∈ Rn if there exists a positive homogeneous
function, H : Rn → Rm, such that

h(x+ v) = h(x)+H(v)+o(v).

Recall that a function G is positive homogeneous if for all positive numbers λ ∈R and
points x∈Rn G(λx) = λG(x). The function H is referred to as the B-derivative of h at
x and will be denoted dh(x). When in addition to dh(x) being positive homogeneous
it is also linear, dh(x) is the classic Fréchet derivative (F-derivative). A function h :
U ×V → Z is partially B-differentiable in x at (x0,y0)∈U ×V , if the function h(·,y0)
is B-differentiable at x0. The partial B-derivative is denoted by dxh(x0,y0).

A piecewise affine function f , while not F-differentiable at all points, is B -
differentiable everywhere. More precisely, let Γ be the polyhedral subdivision as-
sociated with f . At points x in the interior of a polyhedra γi ∈ Γ , d f (x) is a linear
function equal to d fi(x), the F-derivative of the corresponding selection function fi.
When x lies in the intersection of two or more polyhedra let Γ (x) = {γi ∈ Γ |x ∈ γi},
I = {i|γi ∈ Γ (x)} and Γ ′(x) = {cone(γi − x)|i ∈ I}. That is, Γ (x) is the collection of
elements in Γ that contain x, and Γ ′(x) is the “globalization” of Γ (x) along with
a shift of the origin. With this notation, d f (x) is piecewise linear with a family of
selection functions {d fi(x)|i ∈ I} and the corresponding conical subdivision Γ ′(x).

The following four assumptions are used to prove pertinent asymptotic properties
of SAA solutions.

Assumption 1 (a) E∥F(x,ξ )∥2 < ∞ for all x ∈ O.
(b) The map x 7→ F(x,ξ (ω)) is continuously differentiable on O for a.e. ω ∈ Ω .
(c) There exists a square integrable random variable C such that for all x,x′ ∈ O

∥F(x,ξ (ω))−F(x′,ξ (ω))∥+∥dxF(x,ξ (ω))−dxF(x′,ξ (ω))∥ ≤C(ω)∥x− x′∥,

for a.e. ω ∈ Ω .
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From Assumption 1 it follows that f0 is continuously differentiable on O, see,
e.g., [18, Theorem 7.44]. For any nonempty compact subset X of O, let C1(X ,Rn)
be the Banach space of continuously differentiable mappings f : X → Rn, equipped
with the norm

∥ f∥1,X = sup
x∈X

∥ f (x)∥+ sup
x∈X

∥d f (x)∥. (8)

Then in addition to providing nice integrability properties for fN , as shown in [18,
Theorem 7.48] Assumption 1 will guarantee the almost sure convergence of the
sample average function fN to f0 as an element of C1(X ,Rn) and that d f0(x) =
E [dxF(x,ξ )].

Before stating the second assumption we must first define two sets related to the
geometric structure of the set S. For polyhedral convex S, the tangent cone to S at a
point x ∈ S is defined to be

TS(x) = {v ∈ Rn| there exists t > 0 such that x+ tv ∈ S},

and the critical cone to S at a point z ∈ Rn is

K(z) = TS(ΠS(z))∩{z−ΠS(z)}⊥.

Assumption 2 Suppose that x0 solves the variational inequality (1). Let z0 = x0 −
f0(x0), L = d f0(x0), K0 = TS(x0)∩{z0 − x0}⊥, and assume that the normal map LK0
induced by L and K0 is a homeomorphism from Rn to Rn.

Assumption 3 Let Σ0 denote the covariance matrix of F(x0,ξ ). Suppose that the
determinant of Σ0 is strictly positive.

Assumption 4 (a) For each t ∈ Rn and x ∈ X, let

Mx(t) = E [exp{⟨t,F(x,ξ )− f0(x)⟩}]

be the moment generating function of the random variable F(x,ξ )− f0(x). Assume

1. There exists ζ > 0 such that Mx(t) ≤ exp
{

ζ 2∥t∥2/2
}

for every x ∈ X and every
t ∈ Rn.

2. There exists a nonnegative random variable κ such that

∥F(x,ξ (ω))−F(x′,ξ (ω))∥ ≤ κ(ω)∥x− x′∥

for all x,x′ ∈ O and almost every ω ∈ Ω .
3. The moment generating function of κ is finite valued in a neighborhood of zero.

(b) For each T ∈ Rn×n and x ∈ X, let

Mx(T ) = E [exp{⟨T,dxF(x,ξ )−d f0(x)⟩}]

be the moment generating function of the random variable dxF(x,ξ )− d f0(x). As-
sume

1. There exists ς > 0 such that Mx(T )≤ exp
{

ς2∥T∥2/2
}

for every x ∈ X and every
T ∈ Rn×n.
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2. There exists a nonnegative random variable ν such that

∥dxF(x,ξ (ω))−dxF(x′,ξ (ω))∥ ≤ ν(ω)∥x− x′∥

for all x,x′ ∈ O and almost every ω ∈ Ω .
3. The moment generating function of ν is finite valued in a neighborhood of zero.

Assumptions 1 and 2 ensure that the variational inequality (1) has a locally unique
solution under sufficiently small perturbations of f0 in C1(X ,Rn), see [10, Lemma
1] and the original result in [16]. It is worth mentioning the relation between the
normal map LK0 in Assumption 2 and the normal map ( f0)S. As a piecewise affine
function, ΠS is B-differentiable. If we use Γ to denote the normal manifold of S,
then Γ is also the polyhedral subdivision for ΠS. Following the discussion of B-
differentiability above Assumption 1, Γ ′(z0) denotes the conical subdivision that
corresponds to dΠS(z0). Since f0 is differentiable from Assumption 1, the chain rule
of B-differentiability implies ( f0)S to be B-differentiable, with its B-derivative at z0
given by

d( f0)S(z0)(h) = d f0(x0)(dΠS(z0)(h))+h−dΠS(z0)(h). (9)

The conical subdivision for d( f0)S(z0) is also Γ ′(z0). Moreover, as shown in [14,
Corollary 4.5] and [13, Lemma 5], for any point z ∈Rn and h ∈Rn sufficiently small
the equality

ΠS(z+h) = ΠS(z)+ΠK(z)(h) (10)

holds, which implies
dΠS(z) = ΠK(z) for any z ∈ Rn. (11)

Applying (11) to z0, one can see the normal map LK0 is exactly d( f0)S(z0), a result
that first appeared in [15]. Finally, note that the B-derivative for the normal map
( fN)S, denoted by d( fN)S(·), will take an analogous form to (9).

We shall use ΣN to denote the sample covariance matrix of {F(xN ,ξi)}N
i=1, where

xN is an SAA solution to be formally defined in Theorem 1. Under Assumptions 1
and 2, ΣN converges almost surely to Σ0, see [9, Lemma 3.6]. This combined with
Assumption 3 implies that for almost every ω ∈Ω there exists an Nω such that ΣN(ω)
is invertible for N ≥ Nω .

From Assumption 4 it follows that fN converges to f0 in probability at an ex-
ponential rate, as shown in [10, Theorem 4] which is based on a general result [18,
Theorem 7.67]. That is, there exist positive real numbers β1,µ1,M1 and σ1, such that
the following holds for each ε > 0 and N:

Pr(∥ fN − f0∥1,X ≥ ε)≤ β1 exp{−Nµ1}+
M1

εn exp
{
−Nε2

σ1

}
. (12)

Finally, note that Assumption 4 implies all conditions in Assumption 1; we put As-
sumption 1 as a separate assumption because some intermediate results do not require
the stronger Assumption 4.

The following theorem is adapted from [10, Theorem 7] and provides results
relating to the asymptotic distribution of solutions to (3) and (5).
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Theorem 1 Suppose that Assumptions 1 and 2 hold. Let Y0 be a normal random vec-
tor in Rn with zero mean and covariance matrix Σ0. Then there exist neighborhoods
X0 of x0 and Z of z0 such that the following hold. For almost every ω ∈ Ω , there
exists an integer Nω , such that for each N ≥ Nω , the equation (7) has a unique solu-
tion zN in Z, and the variational inequality (3) has a unique solution in X0 given by
xN = ΠS(zN). Moreover, lim

N→∞
zN = z0 and lim

N→∞
xN = x0 almost surely,

√
N(zN − z0)⇒ (LK0)

−1(Y0), (13)
√

NLK0(zN − z0)⇒ Y0, (14)

and √
N(ΠS(zN)−ΠS(z0))⇒ ΠK0 ◦ (LK0)

−1(Y0). (15)

Suppose in addition that Assumption 4 holds. Then there exist positive real num-
bers ε0,β0,µ0,M0 and σ0, such that the following holds for each ε ∈ (0,ε0] and each
N:

Pr(∥xN − x0∥< ε)≥ Pr(∥zN − z0∥< ε)
(16)

≥ 1−β0 exp{−Nµ0}−
M0

εn exp
{
−Nε2

σ0

}
.

The asymptotic distributions in (13), (14) and (15) depend on z0 through Σ0,
LK0 = d( f0)S(z0) and ΠK0 = dΠS(z0). How to estimate these functions using zN and
the sample data requires special attention, since dΠS(zN) does not always converge to
dΠS(z0). While dΠS(·) is the same function for all points in the relative interior of a
cell in the normal manifold of S [10, Section 5.2], the function changes dramatically
across different cells. In particular, if z0 ∈ riC j, where C j is a k-cell in the normal
manifold of S with k < n, then dΠS(z0) is piecewise linear with multiple pieces. In
contrast, as shown in [9, Proposition 3.5], under Assumptions 1 and 2, the probability
of dΠS(zN) and d( fN)S(zN) being linear maps goes to one as the sample size N goes
to infinity. Thus, as long as z0 does not belong to the interior of an n-cell in the normal
manifold of S, dΠS(zN) does not converge to dΠS(z0).

In [8] this issue was addressed by choosing a point near zN , but not necessarily
zN itself, to use in the estimate for dΠS(·). To choose such a point, for each cell Ci in
the normal manifold of S define a function di : Rn → R by

di(z) = d(z,Ci) = min
x∈Ci

∥x− z∥, (17)

and a function Ψi : Rn → Rn by

Ψi(·) = dΠS(z)(·) for any z ∈ riCi. (18)

In (17) any norm for vectors in Rn can be chosen, and in (18) any z ∈ riCi can be
chosen since dΠS(z) is the same function on the relative interior of a cell. Next,
choose a function g : N→ R satisfying

1. g(N)> 0 for each N ∈ N.
2. lim

N→∞
g(N) = ∞.
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3. lim
N→∞

N
g(N)2 = ∞.

4. lim
N→∞

g(N)n exp
{
−σ0

N
(g(N))2

}
= 0 for σ0 = min

{
1

4σ0
, 1

4σ1
, 1

4σ0(E[C])2

}
, where σ0,

and σ1 are as in (12) and (16) respectively and C as in Assumption 1.
5. lim

N→∞
Nn/2

g(N)n exp
{
−σg(N)2

}
= 0 for each positive real number σ .

Note that g(N) = N p for any p ∈ (0,1/2) satisfies 1–5.
Now for each integer N and any point z ∈ Rn, choose an index i0 by letting Ci0

be a cell that has the smallest dimension among all cells Ci such that di(z)≤ 1/g(N).
Then define functions ΛN(z) : Rn → Rn by

ΛN(z)(h) =Ψi0(h), (19)

and ΦN : Π−1
S (O)×Rn ×Ω → Rn by

ΦN(z,h,ω) = d fN(ΠS(z))(ΛN(z)(h))+h−ΛN(z)(h). (20)

Moving forward we will be interested in ΦN(zN(ω),h,ω), which for convenience we
will express as ΦN(zN)(h) with the ω suppressed. We shall use z∗N to denote a point
in the relative interior of the cell Ci0 associated with (N,zN). With this notation it
follows that dΠS(z∗N) =Ψi0 and

ΦN(zN)(h) = d fN(ΠS(zN))(dΠS(z∗N)(h))+h−dΠS(z∗N)(h). (21)

As shown by Theorem 2 below, the function ΛN(zN), which is the same as dΠS(z∗N),
provides a nice estimate for dΠS(z0). The reason behind this result is the following.
From (16), there is a high probability for the collection of cells in the normal manifold
of S that are within a distance of 1/g(N) from zN to coincide with the collection of
cells that contain z0. Whenever this happens, Ci0 is the cell that contains z0 in its
relative interior, and the two points z∗N and z0 belong to the relative interior of the
same cell Ci0 , with dΠS(z∗N) = dΠS(z0). This observation will be used in the proofs
of Theorems 5 and 6 (with the definition of event AN in (35)). Theorem 2 below was
proved in [8, Corollaries 3.2 and 3.3].

Theorem 2 Suppose that Assumptions 2 and 4 hold. For each N ∈N, let ΛN and ΦN
be as defined in (19) and (20). Then

lim
N→∞

Pr [ΛN(zN)(h) = dΠS(z0)(h) for all h ∈ Rn] = 1, (22)

and there exists a positive real number θ , such that

lim
N→∞

Pr

[
sup

h∈Rn,h ̸=0

∥ΦN(zN)(h)−d( f0)S(z0)(h)∥
∥h∥

<
θ

g(N)

]
= 1. (23)

Moreover suppose Assumption 3 holds, and let ΣN be as defined above. Then
√

NΣ−1/2
0 ΦN(zN)(zN − z0)⇒ N (0, In),

and √
NΣ−1/2

N ΦN(zN)(zN − z0)⇒ N (0, In). (24)
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In contrast to (13) and (14), the quantities in (24) are computable using only the
sample data, providing a basis for building confidence regions of z0. Additionally,
(11) and (22) suggest the use of ΛN as an estimate for ΠK0 when developing methods
for building confidence intervals for x0. Similar results were shown in [10] but with
ΛN taken to be a weighted average of all the functions Ψi satisfying di(zN)≤ 1/g(N).

In [9] a different tack was taken on constructing confidence regions. Instead of
estimating functions that converge to d( f0)S(z0), it was shown that under Assump-
tions 1 and 2, the difference of −

√
Nd( fN)S(zN)(z0−zN) and

√
Nd( f0)S(z0)(zN −z0)

converges to zero in probability, and consequently that

−
√

Nd( fN)S(zN)(z0 − zN)⇒ Y0.

Because d( fN)S(zN) is a linear function with high probability, even when d( f0)S(z0)
is piecewise linear, the above expression provides an easier method to calculate con-
fidence regions and simultaneous confidence intervals.

As noted earlier, confidence regions do not directly lead to useful individual con-
fidence intervals. The papers [8] and [10] did not discuss how to compute individual
confidence intervals, while [9] provided a method for such computation. Below we
briefly introduce the latter method.

With the notation used above (9), let Γ denote the normal manifold of S and
Γ ′(z0) denote the conical subdivision that corresponds to dΠS(z0), which is also the
conical subdivision for d( f0)S(z0). Suppose Γ ′(z0) = {K1, . . . ,Kk}. Then for each
i = 1, . . . ,k, the restriction of d( f0)S(z0) on Ki, which we denote by d( f0)S(z0)|Ki ,
coincides with a linear function; let Mi be the matrix representing that linear func-
tion. Moreover under Assumption 2, d( f0)S(z0) is a global homeomorphism so each
matrix Mi is invertible. We then define Y i = M−1

i Y0. Since Y0 is a multivariate normal
random vector each Y i is a multivariate normal random vector with covariance matrix
M−1

i Σ0M−T
i .

We define the number ri
j =
√
(M−1

i Σ0M−T
i ) j j for each i= 1, . . . ,k and j = 1, . . . ,n.

Finally for each α ∈ (0,1) let χ2
1 (α) be the (1−α)th percentile of a χ2 random vari-

able with one degree of freedom. It then follows that

Pr
(
|(Y i) j| ≤ ri

j

√
χ2

1 (α)

)
= 1−α.

The following theorem on individual confidence intervals for components of z0 was
proven in [9, Theorem 5.1].

Theorem 3 Suppose that Assumptions 1, 2 and 3 hold. Let Ki,Mi,Y i and ri
j be de-

fined as above. For each integer N with d( fN)S(zN) being an invertible linear map,
define a number

rN j =
√
(d( fN)S(zN)−1ΣNd( fN)S(zN)−T ) j j

for each j = 1, . . . ,n. Let rN j = 0 if d( fN)S(zN) is not an invertible linear map. Then
for each real number α ∈ (0,1) and for each j = 1, . . . ,n,

lim
N→∞

Pr

(√
N|(zn − z0) j|

rN j
≤
√

χ2
1 (α)

)
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=
k

∑
i=1

Pr

(∣∣∣ (Y i) j

ri
j

∣∣∣≤√χ2
1 (α) and Y i ∈ Ki

)
(25)

Moreover, suppose for a given j = 1, . . . ,n that the equality

Pr

(∣∣∣ (Y i) j

ri
j

∣∣∣≤√χ2
1 (α) and Y i ∈ Ki

)
= Pr

(∣∣∣ (Y i) j

ri
j

∣∣∣≤√χ2
1 (α)

)
Pr
(
Y i ∈ Ki

)
holds for each i = 1, . . . ,k. Then for each real number α ∈ (0,1),

lim
N→∞

Pr

|(zN − z0) j| ≤

√
χ2

1 (α)rN j
√

N

= 1−α.

We see in (25) that this method of constructing individual confidence intervals,
while easily computable using only the sample data, produces intervals whose asymp-
totic level of confidence is dependant on the true solution, unless the condition below
(25) is satisfied. The latter condition is satisfies, when d( f0)S(z0) is a linear function
or has only two selection functions, in which case the intervals computed from this
method will be asymptotically exact. In general, however, the level of confidence for
such intervals cannot be guaranteed. This limitation motivates the development of
methods proposed in the following section.

3 New methods for building individual confidence intervals

In this section we present three new methods for building individual confidence in-
tervals. The first two methods produce intervals for (z0) j, that have a specified level
of confidence for situations more general than the method examined in Theorem 3.
Those two methods rely on the estimate ΦN(zN); when ΦN(zN) is a linear function,
they return the same interval as the method examined in Theorem 3. The methods
differ when ΦN(zN) is piecewise linear. The first method (given in Theorem 4) uses
all selection functions of ΦN(zN) to calculate an interval. The second (given in Theo-
rem 5) uses zN to determine a subset of selection functions to be used in an interval’s
computation. When the set S is a box these intervals can be projected onto S to pro-
duce intervals that cover (x0) j at a rate at least as large as the coverage rate of (z0) j
by the initial intervals.

The third method (given in Theorem 6) considers the computation of individual
confidence intervals for x0 directly. This method estimates the function that appears in
the right-hand of (15) by using both the function ΛN as defined in (19) and the func-
tion ΦN(zN). Initially these two functions are considered separately, and the relation
between xN and zN is used to emulate the approach of the second method. When cal-
culating an interval’s length, with high probability one only need to consider a single
selection function of the estimate constructed from ΛN and ΦN(zN).
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3.1 The first method (an indirect approach)

In this method, we compute confidence intervals for (z0) j, for each j = 1, · · · ,n, based
on equation (31) in Theorem 4. In that equation, r is an arbitrarily chosen real number,
and ar(Φ−1

N (zN)Σ
1/2
N ) j) returns a number determined by the jth component of the

function Φ−1
N (zN)Σ

1/2
N . In the following, we start with the definition of ar(·).

Let ψ : Rn → R be a continuous function, and Z ∼ N (0, In). Suppose that
Pr(ψ(Z) = b) = 0 for all b and Pr(β1 < ψ(Z)< β2)> 0 for all β1 < β2. Then given
any α ∈ (0,1) and r ∈ R there exists a unique point ar(ψ) ∈ (0,∞) such that

Pr(−ar(ψ)≤ ψ(Z)− r ≤ ar(ψ)) = 1−α.

Let α ∈ (0,1) be fixed. For any function f : Rn → R, define

ar( f ) = inf{l ≥ 0|Pr(−l ≤ f (Z)− r ≤ l)≥ 1−α}. (26)

It then follows that

1. ar( f )< ∞.
2. Pr(−ar( f )≤ f (Z)− r ≤ ar( f ))≥ 1−α .
3. Pr(−(ar( f )−δ )≤ f (Z)− r ≤ ar( f )−δ )< 1−α for all δ > 0.

In the proof of Theorem 4 we use the following two lemmas.

Lemma 1 Let ψ be as above and {ψN}∞
N=1 be a sequence of functions that converges

pointwise to ψ . Then for any r ∈ R, limN→∞ ar(ψN) = ar(ψ).

Proof Note supN ar(ψN) < ∞. This follows from the fact that ψN(Z) converges to
ψ(Z) a.s. and so {ψN(Z)}∞

N=0 is tight. Next fix a subsequence, again indexed by N,
along which ar(ψN)→ a∗. It suffices to show a∗ = ar(ψ).

Note that a∗ ̸= 0. If this were the case then for every ε > 0

1−α ≤ lim
N→∞

Pr(−ε ≤ ψN(Z)− r ≤ ε) = Pr(−ε ≤ ψ(Z)− r ≤ ε) .

Since ε is arbitrary this would imply Pr(ψ(Z) = r)≥ 1−α , a contradiction.
Assume now without loss of generality that infN ar(ψN)> 0. Then

1−α ≤ lim
N→∞

Pr
(
−1 ≤ ψN(Z)− r

ar(ψN)
≤ 1
)
= Pr

(
−1 ≤ ψ(Z)− r

a∗
≤ 1
)
. (27)

Applying the same argument for all 0 < δ < infN ar(ψN) we see that

Pr
(
−1 ≤ ψ(Z)− r

(a∗−δ )
≤ 1
)
≤ 1−α .

Sending δ to 0 we obtain Pr(−a∗ ≤ ψ(Z)− r ≤ a∗) ≤ 1−α , which combined with
(27) gives

Pr(−a∗ ≤ ψ(Z)− r ≤ a∗) = 1−α .

Thus a∗ = ar(ψ), and limN→∞ ar(ψN) = ar(ψ).
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⊓⊔
Let C(Rn,R) denote the space of continuous functions from Rn to R. Equipped

with the local uniform topology, this is a Polish space.

Lemma 2 Let {ψN}∞
N=1 be a sequence of C(Rn,R) valued random variables which

converges in distribution to ψ . Also let {ZN}∞
N=1 be a sequence of Rn valued random

variables converging in distribution to Z. Then for any r ∈ R,

Pr(−ar(ψN)≤ ψN(ZN)− r ≤ ar(ψN))→ 1−α .

Proof By Lemma 1 and the convergence of ψN to ψ , it follows that ar(ψN)→ ar(ψ)
in probability. Also since ar(ψ)> 0,

1
ar(ψN)

1ar(ψN)>0 →
1

ar(ψ)

in probability, where 1ar(ψN)>0 is the indicator random variable for the event ar(ψN)> 0.
Let AN denote the event that ar(ψN)> 0. Then

Pr(−ar(ψN)≤ ψN(ZN)− r ≤ ar(ψN)) = Pr
(

AN ; −1 ≤ ψN(ZN)− r
ar(ψN)

≤ 1
)

+Pr(Ac
N ; −ar(ψN)≤ ψN(ZN)− r ≤ ar(ψN)) .

By ar(ψN)→ ar(ψ) in probability and ar(ψ)> 0, it follows that Pr(AN)→ 1. There-
fore,

Pr(Ac
N ; −ar(ψN)≤ ψN(ZN)− r ≤ ar(ψN))→ 0 as N → ∞.

Let BN be the event that −1 ≤ ψn(ZN)−r
ar(ψN)

1ar(ψN)>0 ≤ 1. By the convergence of ψN to
ψ and ZN to Z, we have that ψN(ZN)⇒ ψ(Z) in distribution, and thus

Pr(BN)→ Pr
(
−1 ≤ ψ(Z)− r

ar(ψ)
≤ 1
)
= Pr(−ar(ψ)≤ ψ(Z)− r ≤ ar(ψ)) = 1−α.

Consequently, Pr(−ar(ψN)≤ ψN(ZN)− r ≤ ar(ψN))→ 1−α .
⊓⊔

The application of these lemmas to our problem of interest is facilitated by the
following two propositions.

Proposition 1 (a) Let f : Rn → Rn be a piecewise linear function and { fN}∞
N=1 a

sequence of piecewise linear functions from Rn to Rn with

sup
h∈Rn,h̸=0

∥ fN(h)− f (h)∥
∥h∥

→ 0. (28)

Suppose that there exists a conical subdivision Γ = {γ1,γ2 . . .γm} of Rn such that for
all N sufficiently large fN |γi = AN,i and f |γi = Ai are linear functions for each γi. Then

sup
h∈Rn,h̸=0

∥AN,ih−Aih∥
∥h∥

→ 0 for i = 1, . . . ,m. (29)

(b) Suppose in addition that f is a homeomorphism. Then for all N sufficiently
large fN is a homeomorphism and f−1

N converges uniformly on compacts to f−1.
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Proof By (28), suph∈γi,h ̸=0
∥AN,ih−Aih∥

∥h∥ converges to 0 as N → ∞, for each i = 1, . . . ,m.
As Γ is a conical subdivision of Rn, γi is of dimension n which means that it contains
a ball in Rn. The fact that ∥AN,ih−Aih∥ converges to 0 for all h in a ball implies that
the matrix AN,i converges to Ai, giving (29).

To prove (b) first note that since f is a homeomorphism, A−1
i is well defined for

each i and
{

A−1
1 ,A−1

2 , . . . ,A−1
m
}

provides a family of selection functions for f−1 [17,
Proposition 2.3.2]. Moreover we have that f−1 is Lipschitz continuous with Lipschitz
constant

δ = max
1≤i≤m

(
∥A−1

i ∥
)
< ∞.

Similarly for N sufficiently large the functions fN − f will be piecewise linear
with a family of selection functions given by {AN,1 −A1, . . . ,AN,m −Am}, and thus
Lipschitz continuous with Lipschitz constant

ρN = max
1≤i≤m

(∥AN,i −Ai∥)

From part (a) we have limN→∞ ∥AN,i −Ai∥ = 0 for each i, so for all N sufficiently
large ρN < δ−1. From [14, Lemma 3.1] it then follows that fN is a homeomorphism
for N sufficiently large.

To obtain f−1
N → f−1 uniformly on compacts, note first from limN→∞ A−1

N,i = A−1
i

it follows that { f−1
N }∞

N=v is uniformly Lipschitz continuous for v large enough. Then
for any compact set C and any subsequence of f−1

N there exists a further subsequence,
f−1
Nk

that converges uniformly on C to some function g. To prove part (b) it then
suffices to show that g(x) = f−1(x).

To see that this holds let x ∈ C,αk = f−1
Nk

(x), and α = g(x). By αk → α and
fNk → f it follows that fNk(αk)→ f (α). Also for each k

fNk(αk) = fNk( f−1
Nk

(x)) = x.

Thus x = f (α) = f (g(x)), or g(x) = f−1(x), the desired result.
⊓⊔

Proposition 2 Suppose that Assumptions 2, 3 and 4 hold, and for each N ∈ N let
ΦN(zN) be as in (21). Then Φ−1

N (zN)Σ
1/2
N converges to d( f0)

−1
S (z0)Σ

1/2
0 in probabil-

ity, uniformly on compacts.

Proof As previously noted, when Assumption 4 holds the conditions of Assumption
1 are satisfied, and under Assumptions 1 and 2 ΣN converges almost surely to Σ0.
Convergence of ΣN to Σ0 and (23) imply that for all ε > 0

lim
N→∞

Pr

(
sup

h∈Rn,h̸=0

∥Σ−1/2
N ΦN(zN)(h)−Σ−1/2

0 d( f0)S(z0)(h)∥
∥h∥

< ε

)
= 1. (30)

By a standard subsequential argument we can assume without loss of generality that
almost surely

sup
h∈Rn,h ̸=0

∥Σ−1/2
N ΦN(zN)(h)−Σ−1/2

0 d( f0)S(z0)(h)∥
∥h∥

→ 0.
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In order to show almost sure convergence of Φ−1
N (zN)Σ

1/2
N to d( f0)

−1
S (z0)Σ

1/2
0 we

will apply Proposition 1. It suffices then that for a.e. ω , with fN =Φ−1
N (zN(ω))Σ 1/2

N (ω)

and f = d( f0)
−1
S (z0)Σ

1/2
0 , conditions of Proposition 1 are satisfied.

To this end recall the expressions for d( f0)S(z0) given in (9), ΦN(zN) given in
(20) and ΛN(zN) given in (19). From these it is clear that the conditions in part (a)
of Proposition 1 will be satisfied if we can find a conical subdivision Γ such that for
every γi ∈ Γ and z ∈ Rn, dΠS(z)|γi is equal to a linear function.

Let C1, . . . ,Cl be all of the k-cells in the normal manifold of S, k = 0,1, . . . ,n.
Then for every z ∈ Rn, z ∈ riC j for some j, and dΠS(z)(·) =Ψj(·) for Ψj defined as
in (18). The desired subdivision Γ can be constructed by taking the collection of all
cones with non-empty interior of the form γ =∩l

k=1γk where each γk is from a conical
subdivision of Ψk.

Finally by Assumptions 2 and 3, Σ−1/2
0 d( f0)S(z0) is a homeomorphism, satisfy-

ing the condition in part (b) of Proposition 1. The result follows.
⊓⊔

At this point we are able to present the main result for our first method on com-
putation of asymptotically exact individual confidence intervals.

Theorem 4 Suppose that Assumptions 2, 3 and 4 hold. Let α ∈ (0,1), r ∈ R, and let
ar(·) be as defined in (26). Then for every j = 1, . . . ,n,

lim
N→∞

Pr
(∣∣√N(zN − z0) j − r

∣∣≤ ar
(
(Φ−1

N (zN)Σ
1/2
N ) j

))
= 1−α . (31)

Proof By Proposition 2, (Φ−1
N (zN)Σ

1/2
N ) j converges to (L−1

K Σ 1/2
0 ) j in C(Rn,R), in

probability. Since L−1
K Σ 1/2

0 is a piecewise linear homeomorphism it follows that for
Z ∼ N(0, In) and each j = 1, . . . ,n,

Pr
(
(L−1

K Σ 1/2
0 ) j(Z) = b

)
= 0 for all b

and
Pr
(

β1 < (L−1
K Σ 1/2

0 ) j(Z)< β2

)
> 0 for all β1 < β2.

Taking ZN =
√

NΣ−1/2
N ΦN(zN)(zN − z0), by Theorem 2 (see (24)) ZN converges in

distribution to Z. Then with ψN = (Φ−1
N (zN)Σ

1/2
N ) j, and ψ = (L−1

K Σ 1/2
0 ) j, it follows

from Lemma 2 that

Pr(−ar(ψN)≤ ψN(ZN)− r ≤ ar(ψN))

= Pr
(
−ar(ψN)≤ (Φ−1

N (zN)Σ
1/2
N ) j

(√
NΣ−1/2

N ΦN(zN − z0)
)
− r ≤ ar(ψN)

)
= Pr

(
−ar(ψN)≤

√
N(Φ−1

N (zN)Σ
1/2
N ) j

(
Σ−1/2

N ΦN(zN − z0)
)
− r ≤ ar(ψN)

)
= Pr

(
−ar((Φ−1

N (zN)Σ
1/2
N ) j

)
≤
√

N(zN − z0) j − r ≤ ar((Φ−1
N (zN)Σ

1/2
N ) j

))
converges to 1−α as N → ∞.
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⊓⊔
While Theorem 4 proves the asymptotic exactness of intervals for a general choice

of r, (31) and (26) indicate how the choice of r will affect both an interval’s center and
length. Additionally, when ΦN(zN) is piecewise linear evaluating ar

(
(Φ−1

N (zN)Σ
1/2
N ) j

)
requires working with each selection function, which can pose a computational chal-
lenge if the number of selection functions is large. The second method limits the
computational burden of working with a piecewise linear function by considering
only a subset of selection functions indicated by zN .

3.2 The second method (an indirect approach)

In this method, we compute confidence intervals for (z0) j, for each j = 1, · · · ,n, based
on equation (34) in Theorem 5, in which ηα

j (·, ·) replaces ar(·) in the first method
to determine an interval’s width. Below we give the definition of ηα

j (·, ·;). Let f :
Rn → Rn be a piecewise linear homeomorphism with a family of selection functions
{M1, . . . ,Ml}, and the corresponding conical subdivision {K1, . . . ,Kl}. As before, let
( f ) j denote the jth component function of f . For any choice of cone Ki, i = 1, . . . , l,
component j = 1, . . . ,n and α ∈ (0,1) we first define ηα

j ( f ,x) for points x ∈ intKi as
the unique and strictly positive number satisfying

Pr
(
|
(

f−1(Z)
)

j | ≤ ηα
j ( f ,x), f−1(Z) ∈ Ki

)
= (1−α)Pr

(
f−1(Z) ∈ Ki

)
. (32)

Note that ηα
j ( f ,x) is the same number for all x∈ intKi, since nothing in the above def-

inition depends on the exact location of x, except that Ki has to be the cone containing
x in its interior. Because f is a homeomorphism we can rewrite (32) as

Pr
(
|
(
M−1

i Z
)

j | ≤ ηα
j ( f ,x), M−1

i Z ∈ Ki

)
= (1−α)Pr

(
M−1

i Z ∈ Ki
)
. (33)

For points x ∈
∩k

s=1 Kis define ηα
j ( f ,x) = max

s=1,...,k
ηα

j ( f ,xis) where xis ∈ intKis .

The following Lemma will play a similar role in the proof of Theorem 5 as
Lemma 1 did in the proof of Theorem 4.

Lemma 3 Let { fm}∞
m=1 be a sequence of piecewise linear functions such that for all

m sufficiently large fm and f have a common conical subdivision {K1, . . . ,Kl}, and

sup
h∈Rn,h ̸=0

∥ fm(h)− f (h)∥
∥h∥

→ 0.

Then for all m sufficiently large fm will be a homeomorphism and for all α ∈ (0,1),
x ∈ Rn and j = 1, . . . ,n one has ηα

j ( fm,x)→ ηα
j ( f ,x).

Proof From Proposition 1 it follows that fm will be a homeomorphism for all m
sufficiently large. The convergence of ηα

j ( fm,x) to ηα
j ( f ,x) can be shown using an

argument analogous to the one used in the proof of Lemma 1 and is therefore omitted.
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⊓⊔
In the proof of Theorem 5 we make use of the notation introduced before Theorem

3. With this notation Γ ′(z0) = {K1, . . . ,Kk} is the conical subdivision associated with
d( f0)S(z0) such that d( f0)S(z0)|Ki = Mi and Ki = cone(Pi − z0) where P1, . . . ,Pk are
all n-cells in the normal manifold of S that contain z0. Note that for i = 1, . . . ,k we
can write Y i = M−1

i Σ 1/2
0 Z and Y0 = Σ 1/2

0 Z where Z ∼ N (0, I). Finally we define
Y ∗ = d( f0)

−1
S (z0)Σ

1/2
0 Z, and note that Y ∗1Y ∗∈Ki = Y i1Y i∈Ki

.

Theorem 5 Let Assumptions 2, 3 and 4 hold. Then with ΦN(zN)(·) and z∗N as defined
in (21) one has that for all j = 1, . . . ,n and α ∈ (0,1),

Pr
(√

N|(zN − z0) j| ≤ ηα
j (Σ

−1/2
N ΦN(zN),zN − z∗N)

)
→ 1−α. (34)

Proof Let Ci, i = 1, . . . , l be all of the cells in the normal manifold of S, and for each
N define the event

AN =

{
ω
∣∣∣∣{i|di(zN(ω))≤ 1/g(N)

}
=
{

i|z0 ∈Ci
}}

. (35)

By the remarks below (21), if ω ∈ AN then the two points z∗N and z0 belong to the rel-
ative interior of the same cell in the normal manifold of S, with Γ ′(z0) = Γ ′(z∗N(ω))
and d( f0)S(z0) and ΦN(zN(ω)) sharing the conical subdivision {K1, . . . ,Kk}. More-
over as shown in [8, Theorem 3.1] limN→∞ Pr(AN) = 1, so it follows from (30)

lim
N→∞

Pr

(
AN ; sup

h∈Rn,h̸=0

∥Σ−1/2
N ΦN(zN)(h)−Σ−1/2

0 d( f0)S(z0)(h)∥
∥h∥

< ε

)
= 1. (36)

Combining this with Lemma 3 it follows that for all fixed x, ηα
j (Σ

−1/2
N ΦN(zN),x)

converges in probability to ηα
j (Σ

−1/2
0 d( f0)S(z0),x).

Next let B be a fixed neighborhood of z0 such that B ∩ (z0 + Ki) = B ∩ Pi for
i = 1, . . . ,k. We then have

lim
N→∞

Pr
(√

N|(zN − z0) j| ≤ ηα
j (Σ

−1/2
N ΦN(zN),zN − z∗N)

)
= lim

N→∞
Pr
(√

N|(zN − z0) j| ≤ ηα
j (Σ

−1/2
N ΦN(zN),zN − z∗N); AN

)
= lim

N→∞

k

∑
i=1

Pr
(√

N|(zN − z0) j| ≤ ηα
j (Σ

−1/2
N ΦN(zN),zN − z∗N); AN ; zN ∈ B∩ intPi

)
= lim

N→∞

k

∑
i=1

Pr
(√

N|(zN − z0) j| ≤ ηα
j (Σ

−1/2
N ΦN(zN),xi); AN ; zN ∈ B∩ intPi

)
where xi is any point in intKi. The first equality above follows from limN→∞ Pr(AN) =
1, and the second from limN→∞ Pr

(
zN ∈ Rn\∪k

i=1 B∩ intPi
)
= 0 as shown in [9, Propo-

sition 3.5]. For the final equality, recall that ω ∈ AN implies that z∗N and z0 belong to
the relative interior of the same cell in the normal manifold. Since the latter cell
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is a face of each Pi, i = 1, · · · ,k, by the additional requirement zN ∈ intPi one has
zN − z∗N ∈ cone(intPi − z∗N) and the latter set is exactly cone(intPi − z0), namely intKi.

When k = 1, z0 is contained in the interior of an n-cell P1 and K1 = Rn. In this
case Y ∗ ∼ N

(
0,M−1

1 Σ0M−T
1

)
, and (34) follows from,

√
N(zN − z0) j

ηα
j (Σ

−1/2
N ΦN(zN),x1)

⇒
(Y ∗) j

ηα
j (Σ

−1/2
0 d( f0)S(z0),x1)

.

Next we consider the case when k ≥ 2. For all j = 1, . . . ,n and i = 1, . . . ,k let
v̄i, j ∈Rn be such that v̄i, j ̸∈Ki and |(v̄i, j) j|>ηα

j (Σ
−1/2
0 d( f0)S(z0),xi). Define random

variables

vi, j
N =

√
N(zN − z0)1zN∈B∩intPi

+ v̄i, j1zN ̸∈B∩intPi
,

Ŷ i, j = Y i1Y i∈intKi
+ v̄i, j1Y i ̸∈intKi

,

η̂ i, j
N = ηα

j

(
Σ−1/2

N ΦN(zN),xi

)
1zN∈B∩intPi

+ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

)
1zN ̸∈B∩intPi

,

and note that
η̂ i, j

N ⇒ ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

)
.

Next, for all Borel sets W ⊂ intKi,

Pr
(

vi, j
N ∈W

)
= Pr

(√
N(zN − z0) ∈W, zN ∈ B∩ intPi

)
= Pr

(√
N(zN − z0) ∈W, zN ∈ B

)
,

and hence

lim
N→∞

Pr
(

vi, j
N ∈W

)
= lim

N→∞
Pr
(√

N(zN − z0) ∈W,zN ∈ B
)

= lim
N→∞

Pr
(√

N(zN − z0) ∈W
)

= Pr(Y ∗ ∈W ) = Pr
(
Y i ∈W

)
= Pr

(
Ŷ i, j ∈W

)
. (37)

Since zN → z0 in probability and intKi = cone(intPi − z0), it follows that as N → ∞,

Pr
(√

N(zN − z0) ∈ (intKi)
c, zN ∈ B∩ intPi

)
→ 0,

and

Pr(zN ̸∈ B∩ intPi)→ Pr(Y ∗ ̸∈ intKi) = Pr
(
Y i ̸∈ intKi

)
= Pr

(
Ŷ i, j ̸∈ intKi

)
.

Thus for any Borel set D in Rn,

lim
N→∞

Pr
(

vi, j
N ∈ D∩ (intKi)

c
)

= lim
N→∞

1D∩(intKi)c(v̄i, j)Pr(zN ̸∈ B∩ intPi)

= 1D∩(intKi)c(v̄i, j)Pr
(
Ŷ i, j ̸∈ intKi

)
= Pr

(
Ŷ i, j ∈ D∩ (intKi)

c) . (38)
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Combining (37) with (38) and since η̂ i, j
N and ηα

j

(
Σ−1/2

0 d( f0)S(z0),xi

)
are strictly

positive under our assumptions we have that

vi, j
N

η̂ i, j
N

⇒ Ŷ i, j

ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

) ,
and thus

lim
N→∞

Pr

(∣∣∣ (vi, j
N ) j

η̂ i, j
N

∣∣∣≤ 1

)
= Pr

∣∣∣ (Ŷ i, j) j

ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

)∣∣∣≤ 1


= Pr

∣∣∣ (Y i) j

ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

)∣∣∣≤ 1, Y i ∈ intKi

 ,

where we used the fact |(v̄i, j) j| > ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

)
. The latter fact also im-

plies lim
N→∞

Pr
(∣∣∣ (v̄i, j) j

η̂ i, j
N

∣∣∣≤ 1
)
= 0, so it follows that

lim
N→∞

Pr

√
N

|(zN − z0) j|
ηα

j (Σ
−1/2
N ΦN(zN),xi)

≤ 1; AN ; zN ∈ B∩ intPi


= lim

N→∞
Pr

(
√

N
|(zN − z0) j|

η̂ i, j
N

≤ 1, zN ∈ B∩ intPi

)
= lim

N→∞
Pr

(
|(vi, j

N ) j|
η̂ i, j

N

≤ 1

)

= Pr

∣∣∣ (Y i) j

ηα
j

(
Σ−1/2

0 d( f0)S(z0),xi

)∣∣∣≤ 1, Y i ∈ intKi


= Pr

(
|(M−1

i Σ 1/2
0 Z) j| ≤ ηα

j

(
Σ−1/2

0 d( f0)S(z0),xi

)
, M−1

i Σ 1/2
0 Z ∈ Ki

)
= Pr

(
|(d( f0)

−1
S (z0)Σ

1/2
0 Z) j| ≤ ηα

j

(
Σ−1/2

0 d( f0)S(z0),xi

)
, d( f0)

−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
= (1−α)Pr

(
d( f0)

−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
.

Finally, since on AN we have zN − z∗N ∈ intKi,

lim
N→∞

Pr
(√

N|(zN − z0) j| ≤ ηα
j (Σ

−1/2
N ΦN(zN),zN − z∗N)

)
= lim

N→∞

k

∑
i=1

Pr

√
N

|(zN − z0) j|
ηα

j (Σ
−1/2
N ΦN(zN),xi)

≤ 1; AN ; zN ∈ B∩ intPi


=

k

∑
i=1

(1−α)Pr
(

d( f0)
−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
= (1−α)

k

∑
i=1

Pr
(

d( f0)
−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
= 1−α.
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⊓⊔
Comparing the above two methods, computation of ηα

j (Σ
−1/2
N ΦN(zN),zN −z∗N) is

more efficient than that of ar
(
(Φ−1

N (zN)Σ
1/2
N ) j

)
, as it with high probability restricts

the computation to a single cone in the conical subdivision of ΦN(zN), namely the
cone that contains zN − z∗N in its interior (the same cone also contains zN − z0 in its
interior whenever the event AN in (35) holds).

3.3 The third method (a direct approach)

Comparing the asymptotic distributions for zN and xN , as given by (13) and (15)
respectively, we see that the latter distribution has ΠK0 in it, the projector onto the
critical cone to S at z0. Since ΠK0 is generally non-invertible, neither of the methods
presented in §3.1 and §3.2 can be used to directly construct intervals for (x0) j. Both
methods require the invertibility of the function appearing in the asymptotic distribu-
tion either in the construction of an interval or the proof of the interval’s exactness.

The non-invertibility of ΠK0 also leads us to change our focus from asymptoti-
cally exact intervals to intervals meeting a specified minimum level of confidence for
the following reason. If the function ΠK0 ◦ (LK0)

−1(·) appearing in (15) has a selec-
tion function whose matrix representation contains a row of zeros (say the jth row),
then there is a non-zero probability for (xN) j to equal (x0) j. In this case any rea-
sonable method for constructing individual confidence intervals of (x0) j will have a
lower bound on its performance: no matter how narrow the interval is, the probability
for it to contain (x0) j is no less than the probability for (x0) j and (xN) j to coincide.

The method to be presented below determines the interval width based on equa-
tion (41) in Theorem 6, in which hα

j (·, ·, ·) replaces ηα
j (·, ·) in the previous method.

Below we introduce the definition of hα
j ( f ,g,x), where f and g are piecewise lin-

ear functions from Rn to Rn that share a common conical subdivision, {K1, . . . ,Kk},
with g invertible. For any choice of cone Ki, i = 1, . . . ,k, component j = 1, . . . ,n and
α ∈ (0,1) we first define hα

j ( f ,g,x) for points x ∈ intKi to be

hα
j ( f ,g,x) = inf

l ≥ 0
∣∣∣ Pr

(
|
(

f (g−1(Z))
)

j | ≤ l and g−1(Z) ∈ Ki

)
Pr(g−1(Z) ∈ Ki)

≥ (1−α)

 .

Denoting the matrix representations of the selection functions on each cone as f |Ki =
Qi and g|Ki = Mi, for all points x ∈ intKi the function hα

j ( f ,g,x) will take the same
value and the above definition is equivalent to

hα
j ( f ,g,x) = inf

{
l ≥ 0

∣∣∣ Pr
(
|(Qi) jM−1

i Z| ≤ l and M−1
i Z ∈ Ki

)
Pr
(
M−1

i Z ∈ Ki
) ≥ (1−α)

}
. (39)

For points x ∈
∩v

s=1 Kis define hα
j ( f ,g,x) = maxs=1,...,v hα

j ( f ,g,xis) where xis ∈ intKis .
As shown in the following lemma we can identify when hα

j ( f ,g,x) = 0 based on x
and the matrix representations for the appropriate selection functions of f .



24 Michael Lamm et al.

Lemma 4 For any point x ∈
∩v

s=1 Kis , j = 1, . . . ,n and α ∈ (0,1), hα
j ( f ,g,x) = 0 if

and only if (Qis) j is the zero vector for all s = 1, . . . ,v.

Proof It suffices to prove the result for x ∈ intKi. If hα
j ( f ,g,x) = 0,

0 < (1−α)Pr
(
M−1

i Z ∈ Ki
)
≤ Pr

(
|(Qi) jM−1

i Z| ≤ 0 and M−1
i Z ∈ Ki

)
,

and hence,

0 < Pr
(
(Qi) jM−1

i Z = 0 and M−1
i Z ∈ Ki

)
≤ Pr

(
(Qi) jM−1

i Z = 0
)
. (40)

Since (Qi) jM−1
i Z ∼ N

(
0,∥(Qi) jM−1

i ∥2
)
, where ∥ · ∥ denotes the Euclidian norm,

(40) implies that ∥(Qi) jM−1
i ∥ = 0, and thus (Qi) j is a vector of zeroes. The reverse

implication follows immediately.
⊓⊔

When using hα
j ( f ,g,x) to construct confidence intervals for solutions to (1) we

will be interested in

f = ΠK0 and g = Σ−1/2
0 d( f0)S(z0)

and their estimates

fN = ΛN(zN) = dΠS(z∗N) and gN = Σ−1/2
N ΦN(zN).

From (11) and (22) it follows that the probability of all four functions sharing a
common conical subdivision and fN equalling f goes to one as the sample size goes
to infinity. We therefore take this to be the setting for the following lemma.

Lemma 5 Let f ,g :Rn →Rn be piecewise linear functions with g a homeomorphism.
Suppose that { fN}∞

N=1 and {gN}∞
N=1 are two sequences of piecewise linear functions

such for all N sufficiently large

1. fN = f .
2. f , g and gN all share a common conical subdivision {K1, . . . ,Kk}.
3. sup

h∈Rn,h ̸=0

∥gN(h)−g(h)∥
∥h∥ → 0.

Then for all N sufficiently large gN will be a homeomorphism and hα
j ( fN ,gN ,x) →

hα
j ( f ,g,x) for all x ∈ Rn, α ∈ (0,1) and j = 1, . . . ,n.

Proof From Proposition 1 it follows that for all N sufficiently large gN is a home-
omorphism and that g−1

N converges uniformly on compacts to g−1. Next take v to
be large enough so that for all N ≥ v the functions gN are invertible, fN = f and
f , g and gN all share common conical subdivision {K1, . . . ,Kk}. To prove the re-
mainder of the Lemma’s claim it suffices to show that for any x ∈ intKi, i = 1, . . . ,k,
hα

j ( f ,gN ,x)→ hα
j ( f ,g,x).

When x∈ intKi and hα
j ( f ,g,x)= 0, it follows from Lemma 4 that hα

j ( f ,gN ,x)= 0.
In the case of x ∈ intKi and hα

j ( f ,g,x) > 0, the convergence can be shown using an
argument analogous to the proof of Lemma 1 and Lemma 3 and is therefore omitted.
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⊓⊔
The main result of this section, Theorem 6, can now be proven. We will use the

same notation used in Theorem 5 where Γ ′(z0) = {K1, . . . ,Kk} is the conical subdivi-
sion associated with d( f0)S(z0) such that d( f0)S(z0)|Ki = Mi and Ki = cone(Pi − z0),
where P1, . . . ,Pk are all n-cells in the normal manifold of S that contain z0. We addi-
tionally denote ΠK0 |Ki = Qi and define the following random variables:

Y i = M−1
i Σ 1/2

0 Z, Y0 = Σ 1/2
0 Z and Y ∗ = d( f0)

−1
S (z0)Σ

1/2
0 Z.

Theorem 6 Let Assumptions 2, 3 and 4 hold. Let ΦN(zN)(·) and z∗N be as defined in
(21). For all j = 1, . . . ,n and α ∈ (0,1),

lim
N→∞

Pr
(√

N|(xN − x0) j| ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),zN − z∗N)

)
≥ 1−α. (41)

Proof As in the proof of Theorem 5 we begin by letting Ci, i = 1, . . . , l denote the
cells in the normal manifold of S and for each N let the event AN be as defined in
(35). Now for ω ∈ AN the equality ΠK0 = dΠS(z∗N) holds, and {K1, . . . ,Kk} provides
a common conical subdivision for ΠK0 , d( f0)S(z0) and ΦN(zN(ω)). From (36) and
Lemma 5 it follows that for all fixed u, hα

j (dΠS(z∗N),Σ
−1/2
N ΦN(zN),u) converges in

probability to hα
j (ΠK0 ,Σ

−1/2
0 d( f0)S(z0),u).

Next let B be a fixed neighborhood of z0 such that B ∩ (z0 + Ki) = B ∩ Pi for
i = 1, . . . ,k. We then have

lim
N→∞

Pr
(√

N|(xN − x0) j| ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),zN − z∗N)

)
= lim

N→∞
Pr
(√

N|(ΠS(zN)−ΠS(z0)) j | ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),zN − z∗N); AN

)
= lim

N→∞

k

∑
i=1

Pr
(√

N|
(
ΠK0(zN − z0)

)
j | ≤ hα

j (dΠS(z∗N),Σ
−1/2
N ΦN(zN),zN − z∗N); AN ; zN ∈ B∩ intPi

)
=

k

∑
i=1

lim
N→∞

Pr
(√

N|(Qi) j(zN − z0)| ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),ui); AN ; zN ∈ B∩ intPi

)
(42)

where ui is any point in intKi. The first equality uses the relation between solutions
to a variational inequality and its normal map formulation, while the second equality
combines the almost sure convergence of zN to z0 with (10). The final equality uses
the fact that for ω ∈ AN and zN ∈ intPi both zN − z0 and zN − z∗N will be contained in
intKi and thus zN − z∗N may be replaced with ui and ΠK0(zN − z0) = Qi(zN − z0).

Evaluating each term in (42) depends on (Qi) j. If (Qi) j is the zero vector for some
i, then

lim
N→∞

Pr
(√

N|(Qi) j(zN − z0)| ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),ui); AN ; zN ∈ B∩ intPi

)
= lim

N→∞
Pr
(√

N(zN − z0) ∈ intKi

)
= Pr(Y ∗ ∈ intKi)

= Pr
(

d( f0)
−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
. (43)
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On the other hand, if (Qi) j is a nonzero vector (i.e., it contains at least one nonzero
element) for some i, we define a vector v̄i, j to be such that v̄i, j ̸∈ Ki and |(Qi) j v̄i, j|>
hα

j (ΠK0 ,Σ
−1/2
0 d( f0)S(z0),ui). With these we define random vectors

vi, j
N =

√
N(zN − z0)1zN∈B∩intPi

+ v̄i, j1zN ̸∈B∩intPi
,

Ŷ i, j = Y i1Y i∈intKi
+ v̄i, j1Y i ̸∈intKi

,

ĥi, j
N = hα

j

(
dΠS(z∗N),Σ

−1/2
N ΦN(zN),ui

)
1zN∈B∩intPi

+hα
j

(
ΠK0 ,Σ

−1/2
0 d( f0)S(z0),ui

)
1zN ̸∈B∩intPi

.

Using the same arguments as in Theorem 5 it follows that

vi, j
N

ĥi, j
N

⇒ Ŷ i, j

hα
j

(
ΠK0 ,Σ

−1/2
0 d( f0)S(z0),ui

)
and

lim
N→∞

Pr

√
N

|(Qi) j(zN − z0)|
hα

j (dΠS(z∗N),Σ
−1/2
N ΦN(zN),ui)

≤ 1; AN ; zN ∈ B∩ intPi


= (1−α)Pr

(
d( f0)

−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
. (44)

Combining (43) and (44), with the fact that zN − z∗N ∈ intKi on AN , we have

lim
N→∞

Pr
(√

N|(xN − x0) j| ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),zN − z∗N)

)
= lim

N→∞

k

∑
i=1

Pr
(√

N|(Qi) j(zN − z0)| ≤ hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),ui); AN ; zN ∈ B∩ intPi

)
≥ (1−α)

k

∑
i=1

Pr
(

d( f0)
−1
S (z0)Σ

1/2
0 Z ∈ Ki

)
= 1−α .

⊓⊔
An important fact seen in the proof of Theorem 6 is that

lim
N→∞

Pr
(√

N|(xN − x0) j| ≤ hα
j (ΠKN ,Σ

−1/2
N ΦN(zN),zN − z∗N)

)
> 1−α

if and only if there exists a cone Ki in the conical subdivision of ΠK0 such that the jth

component of ΠK0 |Ki is zero. When this is the case, we have

(xN(ω)− x0) j =
(
ΠS(zN(ω))−ΠS(x0)

)
j = (Qi) j (zN(ω)− z0) = 0,

as long as zN(ω)−z0 ∈ intKi and zN is sufficiently close to z0. If additionally ω ∈ AN ,
then dΠS(z∗N) = ΠK0 and we have by Lemma 4

hα
j (dΠS(z∗N),Σ

−1/2
N ΦN(zN),zN − z∗N) = 0,

meaning that the method of Theorem 6 returns the correct point estimate (xN(ω)) j =
(x0) j. Recalling that limN→∞ Pr(AN) = 1 and that zN converges to z0 almost surely,
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we see that the potentially conservative asymptotic level of confidence is not the
result of using unnecessarily long intervals, but instead follows from the fact that
for sufficiently large sample sizes the proposed method will return the correct point
estimate with a nonzero probability.

While (31), (34) and (41) provide computable intervals with the desired asymp-
totic properties, in general ar(·), ηα

j (·, ·) and hα
J (·, ·, ·) lack closed form expressions.

In the next section we consider the computation of these quantities. For ease of expo-
sition, moving forward we will suppress the arguments of ar, ηα

j and hα
j .

4 Interval Computation

This section considers the computation of ar, ηα
j and hα

J , and discusses how to find
upper bounds for these quantities. Before presenting a general method for computing
ar, ηα

j and hα
J we consider special cases when either closed form expressions exist or

less burdensome techniques can be used. For each of these discussions we begin by
considering ar with the results for ηα

j and hα
J following in a similar fashion.

The first case we consider is when Σ−1/2
N ΦN(zN) and dΠS(z∗N) are linear functions

with matrix representations MN and QN respectively. Since (M−1
N Z) j is a mean zero

Normal random variable for each coordinate j, it is natural to set r = 0 for ar. Then
from basic properties of Normal random vectors,

a0 = ηα
j =

√
χ2

1 (α)∥(M−1
N ) j∥2 and hα

j =
√

χ2
1 (α)∥(QN) jM−1

N ∥2

where ∥ · ∥ is the Euclidian norm. Note in this case both intervals for (z0) j are the
same as the interval considered in Theorem 3.

In the piecewise linear case let ϕN, j denote the jth component function of Φ−1
N (zN)Σ

1/2
N .

Finding ar requires a search over values of l > 0 and evaluating Pr(|ϕN, j(Z)− r| ≤ l).
To evaluate this probability we rewrite it in terms of the selection functions of ϕN, j.

To this end, let Γ = {K1, . . . ,Kk} be the common conical subdivision for Σ−1/2
N ΦN(zN)

and dΠS(z∗N), and let
{

MN,1, . . . ,MN,k
}

and
{

QN,1, . . . ,QN,k
}

be the matrix represen-
tations for the respective selection functions. Then with

Ti = Σ−1/2
N ΦN(zN)(Ki) = MN,i(Ki),

{T1, . . . ,Tk} provides a conical subdivision for ϕN, j such that ϕN, j|Ti = (M−1
N,i) j. Due

to the high probability of Σ−1/2
N ΦN(zN) and d( f0)S(z0) sharing a common conical

subdivision we have used the same notation Ki, i = 1, . . . ,k, as was introduced before
Theorem 3. In the discussion that follows it is not necessary for the functions to share
a common conical subdivision. Additionally, any assumptions made about the value
of k will refer to the number of selection functions for a particular realization of
Σ−1/2

N ΦN(zN) unless otherwise stated.
For any two cones Tv,Tu ∈ Γ ′ with v ̸= u, their intersection is either empty or a

proper face of both cones, and hence Pr(Z ∈ Tv ∩Tu) = 0. The probability we need to
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evaluate can thus be rewritten as

Pr(|ϕN, j(Z)− r| ≤ l) =
k

∑
i=1

Pr(|ϕN, j(Z)− r| ≤ l and Z ∈ Ti)

=
k

∑
i=1

Pr
(
|(M−1

N,i) jZ − r| ≤ l and Z ∈ Ti

)
. (45)

Note the connection between (45) and what must be considered to find ηα
j . Find-

ing ηα
j requires us to evaluate

Pr
(
|(M−1

N,i) jZ| ≤ l and M−1
N,i Z ∈ Ki

)
= Pr

(
|(M−1

N,i) jZ| ≤ l and Z ∈ Ti

)
, (46)

for different values of l, but only for those indices i such that zN − z∗N ∈ Ki. At this
point we see the computational benefits of ηα

j over ar. Recall from the proof of
Theorem 5 that

lim
N→∞

k

∑
i=1

Pr(AN and zN ∈ B∩ intPi) = 1,

where k is the number of selection functions for d( f0)S(z0), AN is as defined in (35)
and Ki = cone(Pi − z0) . Moreover when AN holds and zN ∈ B∩ intPi it was argued
that zN − z∗N ∈ intKi. Therefore with high probability each value of l we consider
when finding ηα

j will involve evaluating (46) for a single index i. In contrast, (45)
involves a similar calculation for every cone in the subdivision. Finding hα

j will with
high probability also require considering only a single index i, but with the quantity
evaluated being Pr

(
|(QN,i) jM−1

N,i Z| ≤ l and Z ∈ Ti

)
.

The question of finding ar, ηα
j and hα

j in the piecewise linear case now becomes
how to evaluate

Pr
(
|bT

N,iZ − r| ≤ l and Z ∈ Ti
)
, (47)

where bT
N,i = (M−1

N,i) j when finding ar and ηα
j , and bT

N,i = (QN,i) jM−1
N,i when finding

hα
j . When k = 2 and r = 0 evaluating (47) is simplified by observing that the two

cones in Γ ′ satisfy T1 = −T2 and the fact that Z and −Z have the same distribution.
It then follows that

Pr
(
|bT

N,iZ| ≤ l and Z ∈ Ti
)

= 1/2Pr
(
|bT

N,iZ| ≤ l
)

= Pr(Z ∈ Ti)Pr
(
|bT

N,iZ| ≤ l
)
.

In this case no search is necessary for ηα
j and hα

j . Finding a0 may still require a search
over different values of l but this search can refer to the cumulative distribution func-
tion of a standard Normal random variable to evaluate the necessary probabilities.

When k > 2 our approach to evaluating (47) is to rewrite it as the probability
of a Normal random vector being in a box with possibly infinite endpoints. Once
formulated in this manner the probability can be evaluated either using the numerical
techniques of [12] or the Monte Carlo and Quasi-Monte Carlo methods of [4, Chapter
4], both of which are implemented in R package mvtnorm [4,5]. Comparisons of the
methods for different problem sizes can be found in [11]. The method in [12] requires
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the Normal random vector of interest to have a non-singular covariance matrix, so we
first consider a class of SVIs for which this condition holds when finding ar and ηα

j .
When the SVI is a complementarity problem with S = Rm ×Rn−m

+ , where Rk
+

denotes the positive orthant, each of the polyhedral cones Ki ∈ Γ can be expressed as
an n-dimensional box,

Ki = [li
1,u

i
1]× . . .× [li

n,u
i
n]

with 0, ∞ or −∞ as endpoints. Additionally by Φ−1
N (zN)Σ

1/2
N a homeomorphism it

follows that for each i = 1, . . . ,k and x ∈ Rn

x ∈ Ti ⇔ Φ−1
N (zN)Σ

1/2
N (x) ∈ Ki ⇔ M−1

N,i x ∈ Ki.

Therefore we can write

Pr
(
|(M−1

N,i) jZ − r| ≤ l and Z ∈ Ti

)
= Pr

(
r− l ≤ (M−1

N,i) jZ ≤ r+ l and M−1
N,i Z ∈ Ki

)
= Pr

(
M−1

N,i Z ∈ [li
1,u

i
1]× . . .× [max(li

j,r− l),min(ui
j,r+ l)]× . . .× [li

n,u
i
n]
)

= Pr
(
Z̃ ∈ [li

1,u
i
1]× . . .× [max(li

j,r− l),min(ui
j,r+ l)]× . . .× [li

n,u
i
n]
)

where Z̃ ∼N
(

0,M−1
N,i M

−T
N,i

)
. It follows that Z̃ has a non-singular covariance matrix,

and either method of evaluating the probability can be used. Note that this approach
cannot be used to find hα

j due to the additional consideration of (QN,i) j.
In general to compute ar, ηα

j and hα
j we can use the structure of Ti being a poly-

hedral cone. In this case we express the cone as a system of linear inequalities,

Ti = {x ∈ Rn|Cix ≤ 0v}

for Ci some v×n matrix and 0v the v-dimensional zero vector. We then rewrite

Pr
(
|bT

N,iZ − r| ≤ l and CiZ ≤ 0v
)
= Pr(Z̄ ∈ (−∞,0]× . . .× (−∞,0]× [r− l,r+ l])

where Z̄ ∼ N
(
0v+1,DiDT

i
)

and Di =

[
Ci

bT
N,i

]
.

When the covariance matrix of Z̄ is singular only the methods of [4, Chapter 4] may
be employed.

The potential of having to search over values of l when finding ar leads us to
consider the question finding an upper bound for ar. Since for linear functions ar

is easily found one might hope that for ψ piecewise linear with family of selection
functions expressed as n dimensional row vectors

{
b1, . . . ,bk

}
, with ∥b1∥ ≤ ∥b2∥ ≤

. . .≤ ∥bk∥, that ar(ψ)≤ ar(bk). This need not be true.
For example take

b1 =
[

1/5 7/5
]
,b2 =

[
7/5 1/5

]
,b3 =

[
1 1
]
,

and γi =
{

x ∈ R2|Cix ≤ 0
}

for i = 1, . . . ,5, where

C1 =

[
1 −1
2 −1

]
, C2 =

[
−1 1
−1 2

]
,C3 =

[
−2 1
1 −2

]
,

C4 =
[

1 −1
]

and C5 =
[
−1 1

]
.
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Note both {γ1,γ2,γ3} and {γ4,γ5} are conical subdivisions of R2. Define ψ1 and ψ2
to be piecewise linear functions such that ψ1|γi = bi for i = 1,2,3, ψ2|γ4 = b1 and

ψ2|γ5 = b2 . It follows that a0(bi) = a0(ψ2) =
√

2χ2
1 (α), i = 1,2,3. Next let

R1 =
{

z ∈ R2|−a0(ψ2)≤ ψ1(z)≤ a0(ψ2)
}
,

R2 =
{

z ∈ R2|−a0(ψ2)≤ ψ2(z)≤ a0(ψ2)
}
.

As shown in Figure 1, the set R2 includes R1 as a subset with D = R2 \R1 having
a non-empty interior. Thus Pr(Z ∈ R1)< Pr(Z ∈ R2) and a0(ψ2)< a0(ψ1), showing
that maxa0(bi) is not an upper bound for a0(ψ1).

z2

z1

Fig. 1: Sets R1 (shaded) and R2 for α = .05

To construct a valid upper bound for an interval’s half width we will use the
following Lemma.

Lemma 6 Let f : Rn → R be a piecewise linear function with family of selection
functions given by n dimensional row vectors {b1, . . . ,bm} and corresponding conical
subdivision Γ = {γ1, . . . ,γm}. Let Z ∼ N (0, In), c j = Pr(Z ∈ γ j) , and u > 0 be such
that

Pr(|b jZ − r| ≤ u)≥ 1− c jα

for j = 1, . . . ,m, α ∈ (0,1). Then Pr(−u ≤ f (Z)− r ≤ u)≥ 1−α .

Proof Let E j be the event that
{
|b jZ − r| ≤ u and Z ∈ γ j

}
. As argued previously

Pr(| f (Z)− r| ≤ u) =
m
∑
j=1

Pr(E j). Next note

Pr
(
Ec

j
)

≤ Pr
(
Z ∈ γc

j
)
+Pr(|b jZ − r|> u)

≤ 1− c j + c jα = 1− (1−α)c j.
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Thus Pr(E j)≥ (1−α)c j and

Pr(| f (Z)− r| ≤ u) =
m

∑
j=1

Pr(E j)≥ (1−α)
m

∑
j=1

c j = 1−α .

⊓⊔

Corollary 1 Let α j =α Pr(Z ∈ γ j), then u j = ∥b j∥
√

χ2
1 (α j) will satisfy Pr(|b jZ| ≤ u j)

= 1−α j, and u = max
1≤ j≤m

u j satisfies Pr(| f (Z)| ≤ u)≥ 1−α .

Note that while Corollary 1 provides an upper bound for a0( f ), Lemma 6 can
similarly be used to find upper bounds for ar when r ̸= 0. Additionally upper bounds
for ηα

j and hα
j can be found as in Corollary 1 by considering only the subset of cones

γi indicated by zN − z∗N .

5 Numerical Examples

This section applies the proposed methods and the method of Theorem 3 to two nu-
merical examples. The half-width of intervals produced using the method of Theorem
3 will be denoted by υα

j . When calculating ar, ηα
j or hα

j for a function with three or
more selection functions, the approach used throughout the examples is to perform
a binary search with probabilities calculated as in §4 using the methods of [4, Chap-
ter 4]. This search terminates when either the distance between the upper and lower
bounds or the probability of the value being tested are within specified tolerance lev-
els.

In each example we are able to find the true solution allowing us to examine the
coverage rates for the different methods. For each example we generate 2,000 SAA
problems at each sample size of N=50, 100, 200 and 2,000. For each sample the value
of r used for ar is chosen by generating i.i.d. Zv ∼ N (0, In), calculating

rN = 10−3
103

∑
v=1

Φ−1
N (zN)Σ

1/2
N (Zv),

and taking the appropriate coordinate of this vector. The use of this procedure will be
indicated with the notation arN .

Example 1

For the first example, we consider a non-complementarity problem with

S =

{
x ∈ R2

∣∣∣ [ .5 −1
−2 1

][
x1
x2

]
≤
[

0
0

]}
and F(x,ξ ) =

[
4 0
3 2

][
x1
x2

]
+

[
ξ1
ξ2

]
,

where ξ is uniformly distributed over the box [−1,1]× [−2,2]. In this case

f0(x) =
[

4 0
3 2

]
,
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and the SVI and its corresponding normal map formulation have true solutions x0 =
z0 = 0. The function d( f0)S(z0) is then piecewise linear, with the family of selection
functions given by matrices[

4 0
3 2

]
,

[
1.6 1.2
1 3

]
,

[
1 0
0 1

]
and

[
3.4 1.2
2.8 2.4

]
and the corresponding conical subdivision {K1, K2, K3 and K4} given by Ki = {x ∈
R2
∣∣Cix ≤ 0} with

C1 =

[
.5 −1
−2 1

]
C2 =

[
2 −1

−.5 −1

]
C3 =

[
.5 1
−2 1

]
and C4 =

[
−2 −1
−.5 1

]
.

With this information we evaluate (25) for α = .05 and observe values of .9454 and
.9461 for j = 1 and 2 respectively.

In Tables 1 and 2 we summarize the coverage rates of (z0)1 and (z0)2 for each
interval determined by υα

j , arN and ηα
j . We see that the overall performance of the

Table 1: Coverage rates (z0)1 α = .05

υα
1 arN ηα

1
N=50 94.25% 94.75% 94.2%
N=100 94.55% 94.95 % 94.9%
N=200 94.1 % 94.55 % 94.85 %
N=2,000 94.7% 95.35% 95.45%

Table 2: Coverage rates (z0)2 α = .05

υα
2 arN ηα

2
N=50 93.8% 95.95% 93.65 %
N=100 94.15% 95.5% 93.65%
N=200 94.2% 95.25 % 94.95%
N=2,000 94.9% 95.45 % 95.4%

three approaches is generally comparable and in line with the specified 95% level of
confidence and (25).

Differences between the methods become apparent in Figure 2 where for the sam-
ples of size 2,000 we plot the length of intervals for (z0)2 by which Ki contains
zN − z0. These differences are further illustrated in Table 3 where we break down
the coverage of (z0)2 and average interval length by which Ki contains zN − z0.

0.02 0.06 0.1

K1

K2

K3

K4

(a) υα
2

0.02 0.06 0.1

(b) arN

0.02 0.06 0.1

(c) ηα
2

Fig. 2: Interval length for (z0)2 by cone, N = 2,000
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Table 3: Coverage of (z0)2 and half-width by cone, N = 2,000, α = .05

Coverage rate Average length
Cone (samples in cone) υα

2 arN ηα
2 υα

2 arN ηα
2

K1(80) 100% 100% 90% .0541 .0750 .0177
K2 (689) 92.31% 98.84% 95.21% .0471 .0749 .0508
K3 (824) 95.39% 90.29% 96.24 % .1012 .0749 .1051
K4 (407) 97.3% 99.26% 95.09% .0775 .0749 .0649

The consistent value of arN across samples is to be expected given Lemma 1 and
Proposition 1. Note that values of arN that deviate slightly from this pattern corre-
spond to the two samples for which z∗N was not contained in the relative interior of
the same k-cell as z0. Across cones the performance of the intervals varies, but this
is accounted for in the definition of arN . Compare this with the intervals with half-
width υα

2 . This approach does not directly account for the effect d( f0)S(z0) being
piecewise linear has on the asymptotic distribution of SAA solutions, and therefore
the performance of the intervals. While in this example we can calculate (25) and
observe that the intervals have an asymptotic level of confidence close to the desired
95%, in general the varying performance across cones is not accounted for and the
method may be unreliable. The value of ηα

2 also varies across cones, but its use of
zN − z∗N and ΦN(zN) to estimate the location of zN − z0 in the conical subdivision of
d( f0)S(z0) allows for a level of confidence to be specified with less restrictive condi-
tions. Additionally, the benefit of allowing ηα

2 to vary in a systematic way is seen in
the more consistent performance of this approach across the four cones.

Table 4: Coverage of (x0)i, α = .05

(x0)1 (x0)2
N=50 96.05% 96.2%
N=100 97% 97.25%
N=200 97.1% 97.15%
N=2,000 97% 95.33%

We next examine the performance of confidence intervals for (x0) j. For any real
numbers l ≤ u neither ΠS(R× [l,u]) nor ΠS([l,u])×R) result in sets that yield mean-
ingful confidence intervals for (x0)1 or (x0)2. Therefore the indirect approach of
projecting confidence intervals for (z0) j onto S cannot be used and only the direct
approach proposed in §3.3 is applicable. Combining (41) and the fact S ⊂ R2

+ we
consider

[
max{0,(xN) j −N−1/2hα

j }, (xN) j +N−1/2hα
j
]

as the confidence interval for
(x0) j. In Table 4 we summarize the coverage of (x0)1 and (x0)2 at each sample size
with α = .05 , and in Table 5 we examine the performance and length of the inter-
vals for the samples of size 2,000 broken down by the location of zN − z0. Since the
selection function corresponding to ΠK0 |K3 is represented by the zero matrix when
zN − z0 ∈ K3 the correct point (xN) j = (x0) j = 0 is returned and as a result we see
that the intervals for each component of x0 outperform the specified confidence level
of 95%.
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Table 5: Intervals for (x0)i by cone, N = 2,000, α = .05

Coverage rate Average length
Cone (samples in cone) (x0)1 (x0)2 (x0)1 (x0)2

K1(80) 88.75% 90% .0104 .0132
K2 (689) 95.36% 95.36% .0089 .0177
K3 (824) 100% 100% 0 0
K4 (407) 95.33% 95.33% .0073 .0036

Example 2

For the second example we let S = R5
+,

F(x,ξ ) =


ξ1 1.5 .5 .75 .9
1.5 ξ2 0 .8 1.5
.5 0 ξ3 .75 1.7
.75 .8 .75 ξ4 1
.9 1.5 1.7 1 ξ5




x1
x2
x3
x4
x5

+


ξ6
ξ7
ξ8
ξ9
ξ10

 ,
with ξ uniformly distributed over the box

[2,4]×[0,4]×[0,3]×[2,6]×[−1,6]×[−1,1]×[−.5, .5]×[−2,2]×[−.75, .75]×[−1,1] .

The SVI and its normal map formulation have solutions x0 = z0 = 0. Moreover
ΠR5

+
= dΠR5

+
(z0) with

dΠR5
+
(z0)(x) =


h1 0 0 0 0
0 h2 0 0 0
0 0 h3 0 0
0 0 0 h4 0
0 0 0 0 h5




x1
x2
x3
x4
x5

 where hi =

{
0 if xi ≤ 0,
1 if xi ≥ 0,

so d( f0)R5
+
(z0)(·) is piecewise linear with a family of thirty-two selection functions.

Taking α = .05 we first consider confidence intervals for (z0) j. Evaluating (25) for
each value of j = 1, . . . ,5 we observe that the intervals for (z0) j considered in Theo-
rem 3 have asymptotic levels of confidence of 93.85%, 93.33%, 94.38%, 93.39% and
92.96% respectively.

Table 6: Coverage rates for (z0)3

υα
4 arN ηα

4
N = 50 93.05% 96.3 % 93.3%
N = 100 92.85% 99.95 % 92.8%
N = 200 94% 94.7 % 94.95%

N = 2,000 94.35% 94.6 % 94.8%

Coverage rates of the confidence intervals are largely in line with the specified
level of confidence or as indicated by (25), with the coverage rates of (z0)3 summa-
rized in Table 6 for each approach and sample size considered. The performance of
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the different methods broken down by where zN − z0 falls in the conical subdivision
associated with d( f0)S(z0) cannot be as well observed, given the large number of
cones relative to the number of samples. What we are able to observe is the consis-
tent values of arN across samples as compared to the values of υα

j and ηα
j , shown

in Figure 3 for (z0)3 and N =2,000. Note there are two samples for which the value

.02 .04 .06 .08 .10 .12 .14

υ
α

3

a
rN

η
α

3

Fig. 3: Intervals Lengths for (z0)3,N = 2,000

of arN deviate from this pattern, and as in the previous example they correspond to
samples for which z∗N and z0 are not contained in the relative interior of the same
k-cell. In this example the computational benefits of ηα

j are clear. For almost all of
the samples calculating arN required working with a piecewise linear function with
thirty two selection functions, whereas for all of the samples calculating ηα

j only in-
volved a single selection function, leading to a dramatic reduction in the necessary
computation.

With this example we also examine how upper bounds satisfying the conditions
of Lemma 6 compare to the actual half-widths. In Table 7 we summarize average
and median ratio of bound to actual half-width for samples of size N = 2,000. While
easier to compute we see that the bounds can be quite conservative. This is in large
part due to their dependance on estimates of Pr(Z ∈ Ti), especially in the case of
bounds for arN which require considering each Ti.

Table 7: Ratio of upper bound to interval half-width

arN ηα
j

Average ratio Median ratio Average ratio Median ratio

N = 2,000

(z0)1 6.20 6.33 3.04 2.18
(z0)2 15.53 13.44 3.58 2.92
(z0)3 4.00 3.49 2.25 1.55
(z0)4 5.27 5.26 3.69 2.37
(z0)5 9.20 8.04 2.80 2.12

When computing intervals for (x0) j note that since S = R5
+ each selection func-

tion of dΠS(z∗N) is represented by a diagonal matrix with values of zero and one along
the diagonal. When zN − z∗N falls into a cone for which the jth diagonal element of the
selection function’s matrix representation is one from (33) and (39) we see that ηα

j
and hα

j will be equal. The interval for (x0) j produced using the approach of §3.3
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would then be the same as the projection onto S of the interval for (z0) j produced us-
ing the approach of §3.2. If jth diagonal element is zero the method of §3.3 returns the
correct point estimate (xN) j = 0, whereas the projection onto S of the interval for (z0) j

produced using the approach of §3.2 is given by
[
0,max

{
0, (zN) j +N−1/2ηα

j
}]

. The

.0

.02

.04

.06

.08

Fig. 4: Bounds for hα
3 ,N = 2,000 by sample

two approaches therefore produce intervals that cover (x0) j = 0 at an identical rate
with the approach of §3.3 returning the correct point estimate more often. Moreover
the bound for hα

j provided by Corollary 1 will have similar properties since these
bounds consider adjusting only the value of α and not the selection functions used.
Therefore when the jth diagonal element of the indicated selection function is one the
bounds for hα

j and ηα
j will be the same, and if the jth diagonal element is zero the

bound for hα
j is also zero. This is illustrated in Figure 4 where we have plotted the

bounds for hα
3 for each sample of size 2,000.
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