Projection methods in quantum information science

Vris Yuen-Lam Cheung∗ Dmitriy Drusvyatskiy† Chi-Kwong Li‡
Diane Christine Pelejo§ Henry Wolkowicz¶

July 24, 2014

Abstract

We consider the problem of constructing quantum operations or channels, if they exist, that transform a given set of quantum states \(\{ \rho_1, \ldots, \rho_k \} \) to another such set \(\{ \hat{\rho}_1, \ldots, \hat{\rho}_k \} \). In other words, we must find a completely positive linear map, if it exists, that maps a given set of density matrices to another given set of density matrices. This problem, in turn, is an instance of a positive semi-definite feasibility problem, but with highly structured constraints. The nature of the constraints makes projection based algorithms very appealing when the number of variables is huge and standard interior point-methods for semi-definite programming are not applicable. We provide empirical evidence to this effect. We moreover present heuristics for finding both high rank and low rank solutions. Our experiments are based on the method of alternating projections and the Douglas-Rachford reflection method.

Keywords: quantum operations, completely positive linear maps, alternating projection methods, Douglas-Rachford method, Choi matrix, semidefinite feasibility problem, large scale

AMS subject classifications: 90C22, 65F10, 81Q10

Contents

1 Introduction

2 Projection methods for constructing quantum channels

2.1 General background on projection methods

2.2 Computing projections in the quantum channel construction problem

*Department of Combinatorics and Optimization Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; orion.math.uwaterloo.ca/~yl2cheun
†Department of Mathematics, University of Washington, Seattle, WA 98195-4350; Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; people.orie.cornell.edu/dd379
‡Ferguson Professor of Mathematics, Department of Mathematics, College of William and Mary, Williamsburg, VA 23185; people.wm.edu/~cklixx
§Department of Applied Science, College of William and Mary, Williamsburg, VA 23185; dcpelejo@gmail.com
¶Department of Combinatorics and Optimization Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; Research supported by The Natural Sciences and Engineering Research Council of Canada and by AFOSR; orion.math.uwaterloo.ca/~hwolkowi
1 Introduction

A basic problem in quantum information science is to construct, if it exists, a quantum operation sending a given set of quantum states \(\{\rho_1, \ldots, \rho_k\} \) to another set of quantum states \(\{\hat{\rho}_1, \ldots, \hat{\rho}_k\} \); see e.g., [9, 18, 19, 23, 24, 26] and the references therein. Quantum states are mathematically represented as density matrices — positive semidefinite Hermitian matrices with trace one, while quantum operations are represented by trace preserving completely positive linear maps — mappings \(T \) from the space of \(n \times n \) density matrices \(\mathcal{M}^n \) to \(m \times m \) density matrices \(\mathcal{M}^m \) having the form

\[
T(X) = \sum_{j=1}^{r} F_j X F_j^*, \tag{1.1}
\]

for some \(n \times m \) matrices \(F_1, \ldots, F_r \) satisfying \(\sum_{j=1}^{r} F_j^* F_j = I_n \). See [11, 20, 26] for more details.

Thus given some density matrices \(A_1, \ldots, A_k \in \mathcal{M}^n \) and \(B_1, \ldots, B_k \in \mathcal{M}^m \), our task is to find a completely positive linear map \(T \) satisfying \(T(A_i) = B_i \) for each \(i = 1, \ldots, k \). In turn, if we let \(\{E_{11}, E_{12}, \ldots, E_{nn}\} \) denote the standard orthonormal basis of \(\mathcal{M}^n \), then a mapping \(T \) is a trace preserving completely positive linear map if, and only if, the celebrated Choi matrix of \(T \), defined in block form by

\[
C(T) := \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{11} & \cdots & P_{nn} \end{bmatrix} = \begin{bmatrix} T(E_{11}) & \cdots & T(E_{1n}) \\ \vdots & \ddots & \vdots \\ T(E_{11}) & \cdots & T(E_{nn}) \end{bmatrix} \tag{1.2}
\]

is positive semidefinite and the trace preserving constraints, \(\text{trace}(P_{ij}) = \delta_{ij} \), hold, where \(\delta_{ij} \) is the Kronecker delta. Note that the Choi matrix \(C(T) \) is a square \(nm \times nm \) matrix, and hence can be
very large even for moderate values of m and n. A little thought now shows that our problem is equivalent to the positive semidefinite feasibility problem for $P = (P_{ij})$:

$$
\begin{align*}
\sum_{ij} (A_{\ell})_{ij} P_{ij} &= B_{\ell}, \quad \ell = 1, \ldots, k \\
\text{trace}(P_{ij}) &= \delta_{ij}, \quad 1 \leq i \leq j \leq n
\end{align*}
$$

(1.3)

where \mathbb{H}_{+}^{nm} denotes the space of $nm \times nm$ positive semi-definite Hermitian matrices. Moreover, the rank of the Choi matrix P has a natural interpretation: it is equal to the minimal number of summands needed in any representation of the form (1.1) for the corresponding trace preserving completely positive map T.

Because of the trace preserving constraints, the solution set of (1.3) is bounded. Thus, the problem is never \textit{weakly infeasible}, i.e., infeasible but contains an asymptotically feasible sequence, e.g., [14]. In particular, one can use standard primal-dual interior point semidefinite programming packages to solve the feasibility problem. However, when the size of the problem (m, n) grows, the efficiency and especially the accuracy of the semidefinite programming approach is limited. To illustrate, even for a reasonable sized problem $m = n = 100$, the number of complex variables involved is $10^8/2$. In this paper, we exploit the special structure of the problem and develop projection-based methods to solve high dimensional problems with high accuracy. We present numerical experiments based on the \textit{alternating projection (MAP)} and the \textit{Douglas-Rachford (DR)} projection/reflection methods. We see that the DR method significantly outperforms MAP for this problem. Our numerical results show promise of projection-based approaches for many other types of feasibility problems arising in quantum information science.

2 Projection methods for constructing quantum channels

2.1 General background on projection methods

We begin by describing the method of alternating projections (MAP) and the Douglas-Rachford method (DR) in full generality. To this end, consider an Euclidean space E with an inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. We are interested in finding a point x lying in the intersection of two closed subsets A and B of E. For example A may be an affine subspace of Hermitian matrices (over the reals) and B may be the convex cone of positive semi-definite Hermitian matrices (over the reals), as in our basic quantum channel problem (1.3). Projection based methods then presuppose that given a point $x \in E$, finding a point in the nearest-point set

$$
\text{proj}_A(x) = \arg\min_{a \in A} \{\|x - a\|\}
$$

is easy, as is finding a point in $\text{proj}_B(x)$. When A and B are convex, the nearest-point sets proj$_A(x)$ and proj$_B(x)$ are singletons, of course.

Given a current point $a_t \in A$, the method of alternating projections then iterates the following two steps

choose $b_t \in \text{proj}_B(a_t)$

choose $a_{t+1} \in \text{proj}_A(b_t)$
When A and B are convex and there exists a pair of nearest points of A and B, the method always generates iterates converging to such a pair. In particular, when the convex sets A and B intersect, the method converges to some point in the intersection $A \cap B$. Moreover, when the relative interiors of A and B intersect, convergence is R-linear with the rate governed by the cosines of the angles between the vectors $a_{l+1} - b_l$ and $a_l - b_l$. For details, see for example [2,3,8,17]. When A and B are not convex, analogous convergence guarantees hold, but only if the method is initialized sufficiently close to the intersection \cite{5,13,21,22}.

The Douglas Rachford algorithm takes a more asymmetric approach. Given a point $x \in E$, we define the reflection operator
\[
\text{refl}_A(x) = \text{proj}_A(x) + (\text{proj}_A(x) - x).
\]
The Douglas Rachford algorithm is then a “reflect-reflect-average” method; that is, given a current iterate $x_l \in E$, it generates the next iterate by the formula
\[
x_{l+1} = \frac{x_l + \text{refl}_A(\text{refl}_B(x_l))}{2}.
\]
It is known that for convex instances, the “projected iterates” converge \cite{25}. The rate of convergence, however, is not well-understood. On the other hand, the method has proven to be extremely effective empirically for many types of problems; see for example \cite{1,4,16}.

The salient point here is that for MAP and DR to be effective in practice, the nearest point mappings proj_A and proj_B must be easy to evaluate. We next observe that for the quantum channel construction problem – our basic problem – these mappings are indeed fairly easy to compute (especially the projection onto the affine subspace).

2.2 Computing projections in the quantum channel construction problem

In the current work, we always consider the space of Hermitian matrices \mathbb{H}^{nm} as an Euclidean space, that is we regard \mathbb{H}^{nm} as an inner product space over the reals in the obvious way. As usual, we then endow \mathbb{H}^{nm} with the Frobenius norm $\|P\| = \sum_{i,j} (\text{Re} P_{i,j})^2 + (\text{Im} P_{i,j})^2$, where $\text{Re} P_{i,j}$ and $\text{Im} P_{i,j}$ are the real and the complex parts of $P_{i,j}$, respectively.

Recall that our basic problem is to find a Hermitian matrix $P = (P_{ij})$ satisfying
\[
\begin{align*}
\sum_{ij}(A_{\ell})_{ij} P_{ij} &= B_{\ell}, \quad \ell = 1, \ldots, k \\
\text{trace}(P_{ij}) &= \delta_{ij}, \quad 1 \leq i \leq j \leq n \\
P &\in \mathbb{H}^{nm}_+.
\end{align*}
\]

We aim to apply MAP and DR to this formulation. To this end, we first need to introduce some notation to help with the exposition. Define the linear mappings
\[
\mathcal{L}_A(P) := \left(\sum_{ij} (A_{\ell})_{ij} P_{ij} \right)_l \quad \text{and} \quad \mathcal{L}_T(P) = \left(\text{trace}(P_{i,j}) \right)_{i,j},
\]
and let
\[
\mathcal{L}(P) = (\mathcal{L}_A(P), \mathcal{L}_T(P)).
\]
Moreover assemble the vectors
\[
B = (B_1, \ldots, B_k) \quad \text{and} \quad \Delta = (\delta_{i,j})_{i,j}.
\]
Thus we aim to find a matrix P in the intersection of \mathbb{H}_{+}^{nm} with the affine subspace

$$A := \{ P : \mathcal{L}(P) = (B, \Delta) \}.$$

Projecting a Hermitian matrix P onto \mathbb{H}_{+}^{nm} is standard due to the Eckart-Young Theorem, \[15\]. Indeed if $P = U^* \text{Diag}(\lambda_1, \ldots, \lambda_{mn})U$ is an eigenvalue decomposition of P, then we have

$$\text{proj}_{\mathbb{H}_{+}^{nm}}(P) = U^* \text{Diag}(\lambda_1^+, \ldots, \lambda_{mn}^+)U,$$

where for any real number r, we set $r^+ = \max\{0, r\}$. Thus projecting a Hermitian matrix onto \mathbb{H}_{+}^{nm} requires a single eigenvalue decomposition — a procedure for which there are many efficient and well-tested codes (e.g., \[12\]).

We next describe how to perform the projection onto the affine subspace A, that is how to solve the nearest point problem

$$\min \left\{ \frac{1}{2} \| P - \hat{P} \|^2 : \mathcal{L}(\hat{P}) = (B, \Delta) \right\}.$$

Classically, the solution is

$$\text{proj}_A(P) = P + \mathcal{L}^\dagger R,$$

where \mathcal{L}^\dagger is the Moore-Penrose generalized inverse of \mathcal{L} and $R := (B, \Delta) - \mathcal{L}(P)$ is the residual.

Finding the Moore-Penrose generalized inverse of a large linear mapping, like the one we have here, can often be time consuming and error prone. Luckily, the special structure of the affine constraints in our problem allow us to find \mathcal{L}^\dagger both very quickly and very accurately, so that in all our experiments the time to compute the projection onto A is negligible compared to the computational effort needed to perform the eigenvalue decompositions. We now describe how to compute \mathcal{L}^\dagger in more detail; full details can be found in the supplementary text \[10\].

Henceforth, we use the matlab command $\text{sHvec}(A_k)$ to denote a vectorization of the matrix A_k. We now construct the matrix $M \in \mathbb{R}^{k \times m^2}$ by declaring

$$M^T = [\text{sHvec}(A_1) \quad \text{sHvec}(A_2) \quad \ldots \quad \text{sHvec}(A_k)].$$

We then separate M into three blocks

$$M = [M_R \quad M_\mathfrak{I} \quad M_D],$$

where $M_D \in \mathbb{R}^{k \times m}$ has rows formed from the diagonals of matrices A_i, and M_R and $M_\mathfrak{I}$ have rows formed from the real and imaginary parts of A_i, respectively, for $i = 1, \ldots, k$. Define now the matrices

$$M_{R \mathfrak{I} D} := \begin{bmatrix} M_R & -M_\mathfrak{I} & M_D \\ M_\mathfrak{I} & M_R & -M_\mathfrak{I} \\ M_D & M_\mathfrak{I} & M_D \end{bmatrix},$$

$$N_{R \mathfrak{I} D} := \frac{1}{\sqrt{2}} \begin{bmatrix} M_R & M_\mathfrak{I} \\ -M_\mathfrak{I} & M_R \\ M_D & M_\mathfrak{I} \\ M_\mathfrak{I} & -M_R \\ M_D & -M_\mathfrak{I} \end{bmatrix} \begin{bmatrix} M_D & 0 \\ 0 & M_D \end{bmatrix}.$$

(2.3)

Permuting the rows and columns of $N_{R \mathfrak{I} D}$ in a certain way, described in \[10\], we obtain a matrix denoted by N_{final}. Then \mathcal{L} can be represented in coordinates (i.e. acting on a vectorization of P) in a surprisingly simple way, namely as a matrix:

$$L := \begin{bmatrix} I_{t(n-1)} \otimes N_{\text{final}} \\ 0 \\ \begin{bmatrix} I_{n-1} \otimes M_{R \mathfrak{I} D} \quad 0_{R(n-1), n^2} \\ e_n \otimes I_{n^2} \end{bmatrix} \end{bmatrix}^T,$$

(2.4)
where \(\otimes \) denotes the Kronecker product, and \(t(n - 1) \) denotes the triangular number \(t(n - 1) = \frac{n(n-1)}{2} \). Let the matrix \((M_{\mathbb{R} \mathbb{Z} D})_{null}\) have orthonormal columns that yield a basis for \(\text{null}(M_{\mathbb{R} \mathbb{Z} D}) \), i.e.,

\[
\text{null}(M_{\mathbb{R} \mathbb{Z} D}) = \text{range}((M_{\mathbb{R} \mathbb{Z} D})_{null}).
\]

The generalized inverse of the top-left block is trivial to find from \(N_{\text{final}} \). An explicit expression for the generalized inverse of the bottom right-block can also be found. Therefore, we get an explicit blocked structure for the Moore-Penrose generalized inverse of the complete matrix representation.

\[
L^\dagger =
\begin{bmatrix}
I_{t(n-1)} \otimes N^\dagger_{\text{final}} & 0 \\
0 & \begin{bmatrix}
I_{n-1} \otimes M_{\mathbb{R} \mathbb{Z} D}^\dagger & e_{n-1} \otimes (M_{\mathbb{R} \mathbb{Z} D})_{null} \\
e_{n-1} \otimes -M_{\mathbb{R} \mathbb{Z} D}^\dagger & I_{n^2} - (n-1)(M_{\mathbb{R} \mathbb{Z} D})_{null}
\end{bmatrix}
\end{bmatrix},
\tag{2.5}
\]

as claimed. Thus \(L^\dagger \) is easy to construct by simply stacking various small matrices together in blocks. Moreover, this means that both expressions \(Lp \) and \(L^\dagger R \) can be vectorized and evaluated efficiently and accurately.

3 Numerical experiments

In this section, we numerically illustrate the effectiveness of the projection/reflection methods for solving quantum channel construction problems. The large/huge problems were solved on an AMD Opteron(tm) Processor 6168, 1900.089 MHz cpu running LINUX. The smaller problems were solved using an Optiplex 9020, Intel(R) Core(TM), i7-4770 CPUs, 3.40GHz, 16GB running windows 7.

For simplicity of exposition, in our numerical experiments, we set \(n = m \). Moreover, we will impose the unital constraint \(T(I_n) = I_n \), a common condition in quantum information science. We note in passing that the unital constraint implies that the last constraint in each density matrix block of constraints for each \(i \) is redundant. To generate random instances for our tests we proceed as follows. We start with given integers \(m = n, k \) and a value for \(r \). We generate a Choi matrix \(P \) using \(r \) random unitary matrices \(F_i, i = 1, \ldots, r \) and a positive probability distribution \(d \), i.e., we set

\[
P = \sum_{i=1}^{r} d_i F_i F_i^*.
\]

Note that, given a density matrix \(X \), then the trace preserving completely positive map can now be evaluated using the blocked form of \(P \) in (1.2) as

\[
T(X) = \sum_{ij} X_{ij} P_{ij}.
\]

We then generate random density matrices \(A_i, i = 1, \ldots, k \) and set \(B_i \) as the image of the corresponding trace preserving completely positive map \(T \) on \(A_i \), for all \(i \). This guarantees that we have a feasible instance of rank \(r \) and larger/smaller \(r \) values result in larger/smaller rank for the feasible Choi matrix \(P \). We set \(A_{k+1} \) to be \(I_n \) to enforce the unital constraint.
3.1 Solving the basic problem with DR

We first look at our basic feasibility problem (1.3). We illustrate the numerical results only using the DR algorithm since we found it to be vastly superior to MAP; see Section 3.2 below. We found solutions of huge problems with surprisingly high accuracy and very few iterations. The results are presented in Table 3.1. We give the size of the problem, the number of iterations, the norm of the residual (accuracy) at the end, the maximum value of the cosine values indicating the linear rate of convergence, and the total computational time to perform a projection on the PSD cone. The projection on the PSD cone dominates the time of the algorithm, i.e., the total time is roughly the number of iterations times the projection time. To fathom the size of the problems considered, observe that a problem with \(m = n = 10^2 \) finds a PSD matrix of order \(10^4 \) which has approximately \(10^8/2 \) variables. Moreover, we reiterate that the solutions are found with extremely high accuracy in very few iterations.

<table>
<thead>
<tr>
<th>m=n,k,r</th>
<th>iters</th>
<th>norm-residual</th>
<th>max-cos</th>
<th>PSD-proj-CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>90,50,90</td>
<td>6</td>
<td>5.88e-15</td>
<td>.7014</td>
<td>233.8</td>
</tr>
<tr>
<td>100,60,90</td>
<td>7</td>
<td>7.243e-15</td>
<td>.8255</td>
<td>821.7</td>
</tr>
<tr>
<td>110,65,90</td>
<td>7</td>
<td>7.983e-15</td>
<td>.8222</td>
<td>1484</td>
</tr>
<tr>
<td>120,70,90</td>
<td>8</td>
<td>8.168e-15</td>
<td>.8256</td>
<td>2583</td>
</tr>
<tr>
<td>130,75,90</td>
<td>8</td>
<td>7.19e-15</td>
<td>.8288</td>
<td>3607</td>
</tr>
<tr>
<td>140,80,90</td>
<td>9</td>
<td>8.606e-15</td>
<td>.8475</td>
<td>5832</td>
</tr>
<tr>
<td>150,85,90</td>
<td>11</td>
<td>8.938e-15</td>
<td>.8606</td>
<td>6188</td>
</tr>
<tr>
<td>160,90,90</td>
<td>11</td>
<td>9.295e-15</td>
<td>.8718</td>
<td>1.079e+04</td>
</tr>
<tr>
<td>170,95,90</td>
<td>12</td>
<td>9.412-15</td>
<td>0.8918??</td>
<td>1.139e+04</td>
</tr>
</tbody>
</table>

Table 3.1: Using DR algorithm; for solving huge problems

Note that the CPU time depends approximately linearly in the size \(m = n \).

3.2 Heuristic for finding max-rank feasible solutions using DR and MAP

We now look at the problem of finding high rank feasible solutions. Recall that this corresponds to finding a trace preserving completely positive map \(T \) mapping \(A_i \) to \(B_i \), so that \(T \) necessarily has a long operator sum representation (1.1). We moreover use this section to compare the DR and MAP algorithms. Our numerical tests fix \(m = n, k \) and then change the value of \(r \), i.e., the value used to generate the test problems.

The heuristic for finding a large rank solution starts by finding a (current) feasible solution \(P_c \) using a multiple of the identity as the starting point \(P_0 = m n I_{mn} \) and finding a feasible point \(P_c \) using DR. We then set the current point \(P_c \) to be the barycenter of all the feasible points currently found. The algorithm then continues by changing the starting point to the other side and outside of the PSD cone, i.e., the new starting point is found by traveling in direction \(d = m n I_{mn} - \text{trace}(P_c)P_c \) starting from \(P_c \) so that the new starting point \(P_n := P_c + \alpha d \) is not PSD. For instance, we may set \(\alpha = 2^i \|d\|^2 \) for sufficiently large \(i \). We then apply the DR algorithm with the new starting point until we find a matrix \(P \succ 0 \) or no increase in the rank occurs.

Again, we see that we find very accurate solutions and solutions of maximum rank. We find that DR is much more efficient both in the number of iterations in finding a feasible solution from a given starting point and in the number of steps in our heuristic needed to find a large rank...
solution. In Tables 3.2 and 3.3 we present the output for several values of \(r \) when using DR and MAP, respectively. We use a randomly generated feasibility instance for each value of \(r \) but we start MATLAB with the \texttt{rng(default)} settings so the same random instances are generated. We note that the DR algorithm is successful for finding a maximum rank solution and usually after only the first step of the heuristic. The last three \(r = 12, 10, 8 \) values required 8, 9, 12 steps, respectively. However, the final \(P \) solution was obtained to (a high) 9 decimal accuracy.

The MAP always requires many more iterations and at least two steps for the maximum rank solution. It then fails completely once \(r \leq 12 \). In fact, it reaches the maximum number of iterations while only finding a feasible solution to 3 decimals accuracy for \(r = 12 \) and then 2 decimals accuracy for \(r = 10, 8 \). We see that the cosine value has reached 1 for \(r = 12, 10, 8 \) and the MAP algorithm was making no progress towards convergence.

For each value of \(r \) we include:

1. the number of steps of DR that it took to find the max-rank \(P \);
2. the minimum/maximum/mean number of iterations for the steps in finding \(P \) \(^1\);
3. the maximum of the cosine of the angles between three successive iterates \(^2\);
4. the value of the maximum rank found. \(^3\)

<table>
<thead>
<tr>
<th></th>
<th>rank steps</th>
<th>min-itors</th>
<th>max-itors</th>
<th>mean-itors</th>
<th>max-cos</th>
<th>max rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r=30)</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7.008801e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=28)</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7.323953e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=26)</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7.550174e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=24)</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7.911440e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=22)</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8.238539e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=20)</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8.454781e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=18)</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>8.730321e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=16)</td>
<td>1</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>8.995266e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=14)</td>
<td>1</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>9.288445e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=12)</td>
<td>8</td>
<td>194</td>
<td>3500</td>
<td>1.916375e+03</td>
<td>9.954262e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=10)</td>
<td>9</td>
<td>506</td>
<td>3500</td>
<td>2.605778e+03</td>
<td>9.968120e-01</td>
<td>900</td>
</tr>
<tr>
<td>(r=8)</td>
<td>12</td>
<td>2298</td>
<td>3500</td>
<td>3.350833e+03</td>
<td>9.986002e-01</td>
<td>900</td>
</tr>
</tbody>
</table>

Table 3.2: Using DR algorithm; with \([m \ n \ k \ mn \ toler \ iterlimit] = [30 \ 30 \ 16 \ 900 \ 1e\, -\, 14 \ 3500]\); max/min/mean iter and number rank steps for finding max-rank of \(P \). The 3500 here means 9 decimals accuracy attained for last step.

\(^1\)Note that if the maximum value is the same as \texttt{iterlimit}, then the method failed to attain the desired accuracy \texttt{toler} for this particular value of \(r \).
\(^2\)This is a good indicator of the expected number of iterations.
\(^3\)We used the \texttt{rank} function in MATLAB with the default tolerance, i.e., \texttt{rank(\(P \))} is the number of singular values of \(P \) that are larger than \(mn \ast \text{eps}(||P||) \), where \(\text{eps}(||P||) \) is the positive distance from \(||P|| \) to the next larger in magnitude floating point number of the same precision. Here we note that we did not fail to find a max-rank solution with the DR algorithm.
Table 3.3: Using MAP algorithm; with $[m n k mn toler iterlimit] = [30 30 16 900 1e-14 3500]$; max/min/mean iter and number rank steps for finding max-rank of P. The 3500 mean-iters means max iterlimit reached; low accuracy attained.

<table>
<thead>
<tr>
<th></th>
<th>rank steps</th>
<th>min-iters</th>
<th>max-iters</th>
<th>mean-iters</th>
<th>max-cos</th>
<th>max rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>r=30</td>
<td>2</td>
<td>55</td>
<td>67</td>
<td>61</td>
<td>8.233188e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=28</td>
<td>2</td>
<td>65</td>
<td>77</td>
<td>71</td>
<td>8.513481e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=26</td>
<td>2</td>
<td>78</td>
<td>89</td>
<td>8.350000e+01</td>
<td>8.754098e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=24</td>
<td>2</td>
<td>100</td>
<td>109</td>
<td>1.045000e+02</td>
<td>9.040865e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=22</td>
<td>2</td>
<td>124</td>
<td>130</td>
<td>127</td>
<td>9.250665e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=20</td>
<td>2</td>
<td>156</td>
<td>158</td>
<td>157</td>
<td>9.432779e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=18</td>
<td>2</td>
<td>239</td>
<td>245</td>
<td>242</td>
<td>9.689567e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=16</td>
<td>2</td>
<td>388</td>
<td>407</td>
<td>3.975000e+02</td>
<td>9.847052e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=14</td>
<td>2</td>
<td>1294</td>
<td>1369</td>
<td>1.331500e+03</td>
<td>9.980012e-01</td>
<td>900</td>
</tr>
<tr>
<td>r=12</td>
<td>2</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>1.000000e+00</td>
<td>493</td>
</tr>
<tr>
<td>r=10</td>
<td>2</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>1.000000e+00</td>
<td>483</td>
</tr>
<tr>
<td>r=8</td>
<td>2</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>1.000000e+00</td>
<td>475</td>
</tr>
</tbody>
</table>

3.3 Heuristic for finding low rank and rank constrained solutions

In quantum information science, one might want to obtain a feasible Choi matrix solution $P = (P_{ij})$ with low rank, e.g., [27, Section 4.1]. If we have a bound on the rank, then we could change the algorithm by adding a rank restriction when one projects the current iterate of $P = (P_{ij})$ onto the PSD cone. That is instead of taking the positive part of $P = (P_{ij})$, we take the nonconvex projection

$$P_r := \sum_{j \leq r, \lambda_j > 0} \lambda_j x_j x_j^*,$$

where P has spectral decomposition $\sum_{j=1}^{mn} \lambda_j x_j x_j^*$ with $\lambda_1 \geq \cdots \geq \lambda_{mn}$.

Alternatively, we can do the following. Suppose a feasible Choi matrix $C(T) = P_c = (P_{ij})$ is found with rank(P_c) = r. We can then attempt to find a new Choi matrix of smaller rank restricted to the face F of the PSD cone where the current P_c is in the relative interior of F, i.e., the minimal face of the PSD cone containing P_c. We do this using facial reduction, e.g., [6,7]. More specifically, suppose that $P_c = VDV^T$ is a compact spectral decomposition, where $D \in S^{++}_r$ is diagonal, positive definite and has rank r. Then the minimal face F of the PSD cone containing P_c has the form $F = V S^+_r V^T$. Recall $Lp = b$ denotes the matrix/vector equation corresponding to the linear constraints in our basic problem with $p = sHvec(P)$. Let $L_{i:}$ denote the rows of the matrix representation L. We let $sHMat = sHvec^{-1}$. Note that $sHMat = sHvec^*$, the adjoint. Then each row of the equation $Lp = b$ is equivalent to

$$\langle L_{i:}^T, sHvec(P) \rangle = \langle sHMat(L_{i:}^T), V\bar{P}V^T \rangle = \langle V^T sHMat(L_{i:}^T)V, \bar{P} \rangle, \quad \bar{P} \in S^+_r.$$

Therefore, we can replace the linear constraints with the smaller system $\bar{Lp} = b$ with equations $\langle \bar{L}_{i:}, \bar{p} \rangle$, where $\bar{L}_{i:} = sHvec \left(V^T sHMat(L_{i:}^T)V \right)$. In addition, since the current feasible point P_c is in the relative interior of the face $V S^+_r V^T$, if we start outside the PSD cone S^+_r for our feasibility search, then we get a singular feasible \bar{P} if one exists and so have reduced the rank of...
the corresponding initial feasible P. We then repeat this process as long as we get a reduction in the rank.

The MAP approach we are using appears to be especially well suited for finding low rank solutions. In particular, the facial reduction works well because we are able to get extremely high accuracy feasible solutions before applying the compact spectral decomposition. If the initial P_0 that is projected onto the affine subspace is not positive semidefinite, then successive iterates on the affine subspace stay outside the semidefinite cone, i.e., we obtain a final feasible solution \bar{P} that is not positive definite if one exists. Therefore, the rank of VV^T is reduced from the rank of P. The code for this has been surprisingly successful in reducing rank. We provide some typical results for small problems in Table 3.4. We start with a small rank (denoted by r) feasible solution that is used to generate a feasible problem. Therefore, we know that the minimal rank is $\leq r$. We then repeatedly solve the problem using facial reduction until a positive definite solution is found which means we cannot continue with the facial reduction. Note that we could restart the algorithm using an upper bound for the rank obtained from the last rank we obtained.

<table>
<thead>
<tr>
<th>$m=n,k$</th>
<th>initial rank r</th>
<th>facial red. ranks</th>
<th>final rank</th>
<th>final norm-residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,10</td>
<td>11</td>
<td>100,50,44,39</td>
<td>39</td>
<td>1.836e-15</td>
</tr>
<tr>
<td>12,10</td>
<td>10</td>
<td>92,61,43,44</td>
<td>44</td>
<td>1.786e-15</td>
</tr>
<tr>
<td>20,14</td>
<td>20</td>
<td>304,105,71</td>
<td>71</td>
<td>9.648e-15</td>
</tr>
<tr>
<td>22,13</td>
<td>20</td>
<td>374,121,75</td>
<td>75</td>
<td>9.746e-15</td>
</tr>
</tbody>
</table>

Table 3.4: Using DAM algorithm with facial reduction for decreasing the rank

Finally, our tests indicate that the rank constrained problem, which is nonconvex, often can be solved efficiently. Moreover, this problem helps in further reducing the rank. To see this, suppose that we know a bound, $rbnd$, on the rank of a feasible P. Then, as discussed above, we change the projection onto the PSD cone by using only the largest $rbnd$ eigenvalues of P. In our tests, if we use r, the value from generating our instances, then we were always successful in finding a feasible solution of rank r. Our final tests appear in Table 3.5. We generate problems with initial rank r. We then start solving a constrained rank problem with starting constraint rank r_s and decrease this rank by 1 until we can no longer find a feasible solution; the final rank with a feasible solution is r_f.

<table>
<thead>
<tr>
<th>$m=n,k$</th>
<th>initial rank r</th>
<th>starting constr. rank r_s</th>
<th>final constr. rank r_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,9</td>
<td>15</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>25,16</td>
<td>35</td>
<td>45</td>
<td>19</td>
</tr>
<tr>
<td>30,21</td>
<td>38</td>
<td>48</td>
<td>27</td>
</tr>
</tbody>
</table>

Table 3.5: Using DR algorithm for rank constrained problems with ranks r_s to r_f

References

