Noname manuscript No.
(will be inserted by the editor)

E. Lieb convexity inequalities and noncommutaive
Bernstein inequality in Jordan-algebraic setting

Leonid Faybusovich

communicated by

Received: date / Accepted: date

Abstract We describe a Jordan-algebraic version of E. Lieb convexity inequali-
ties. A joint convexity of Jordan-algebraic version of quantum entropy is proven.
A version of noncommutative Bernstein inequality is proven as an application of
one of convexity inequalities. A spectral theory on semi-simple complex algebras is
used as a tool to prove the convexity results. Possible applications to optimization
and statistics are indicated.

Keywords Generalized Convexity Euclidean Jordan algebras Quantum Entropy

Mathematics Subject Classification (2000) MSC 90C25 - MSC 17C20

1 Introduction

In [12] E. Lieb proved a number of interrelated convexity inequalities, which found
important applications in quantum physics, quantum information theory, statis-
tics and probability. An interesting fact related to these inequalities is that pretty
much all of them admit a Jordan-algebraic interpretation. That makes it tempting
to generalize them to the setting of Euclidean Jordan algebras. If a given simple
Euclidean Jordan algebra admits a representation in Jordan algebra of real sym-
metric matrices, it is quite straightforward in most of the cases. Unfortunately,
it is not always the case. Since an arbitrary Euclidean Jordan algebra is a di-
rect sum of simple ones, to prove the results in general, a different approach is
required. While by now a number of different proofs of original results is known,
surprisingly (and in contrast with mere reformulation of the results), none of them
admits an immediate generalization in Jordan-algebraic setting. In present paper
we provide a Jordan-algebraic version of E. Lieb’s results. One can consider this
paper as an attempt to further develop a version of matrix analysis (in the sense
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of, say, [2]) in the context of Euclidean Jordan algebras. This program has been
started in important papers [1],[16]. The plan of the paper is as follows. In sec-
tion 2 we introduce the vocabulary of Euclidean Jordan algebras. In section 3 we
formulate a Jordan-algebraic version of the main theorem of [12]. We then derive
a number of convexity inequalities and, in particular, prove a joint convexity of
Jordan-algebraic version on quantum entropy. In section 4 we prove (as an appli-
cation of one of the E. Lieb inequalities) the noncommutative Bernstein inequality
developing some ideas of J. Tropp. In section 5 we prove the main theorem fol-
lowing the scheme of [5]. The section may be of an independent interest, since it
shows a deep analogy of spectral theory in semi-simple complex Jordan algebras
and C*-algebras.

2 Jordan-algebraic Concepts

We adhere to the notation of an excellent book [8]. We do not attempt to provide
a comprehensive introduction to Jordan algebras but rather describe a vocabulary
with references to [8]. Let F be the field R or C. A vector space V over F is called
an algebra over F if a bilinear mapping (z,y) — zy from V X V into V is defined.
For an element z in V let L(z) : V — V be the linear map such that

L(x)y = xy.
An algebra V over F is a Jordan algebra if
zy = yx,x(2x’y) = 2° (vy),Va,y € V.

In other words, Jordan algebra is always commutative but typically not associative.
In an algebra V one defines 2™ recursively by ™ = z - 2" '. An algebra V is said
to be power assotiative if 2P - £? = 2PT9 for any « € V and integers p, q.

Proposition 2.1. A Jordan algebra is power associative. Besides,
[L(z?), L(z?)] = 0,Vx € V,

and any positive integers p and q. (In other words, corresponding linear operators
commute).

This is Proposition I1.1.2 in [8]. We will always assume that the Jordan algebra
has an identity element e (i.e. , ze = z,Vz € V). The power associativity of
Jordan algebras allows one (among other things) to develop the spectral theory
very similar to classical case of linear operators on finite dimensional spaces or
finite-dimensional C*- algebras.

Let V be a finite-dimensional power associative algebra over F with an identity
element e, and let F[Y] denote the algebra over F of polynomials in one variable
with coefficients in F. For x € V' we define

Flz] = {p(z) : p € F[Y]}.

A polynomial p € F[Y] of minimal possible degree such that p(z) = 0 is called
the minimal polynomial of x. Given x € V, let m(z) be the degree of the minimal
polynomial of z. We define the rank of V' as

r =max{m(z):x € V}.

An element z is called regular if m(z) = 7.
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Proposition 2.2. The set of requlr elements is open and dense in V.There exist
polynomials ai,...ar on V such that the minimal polynomial of every regular
element x is given by

Fuz) =N —ar (@A +az(@)N 2+ 4 (=) ar(x).
The polynomials az,...a, are unique and a; is homogeneous of degree j.

This is Proposition 11.2.1 in [8]. The coefficient a;(z) is called the trace of x
and is denoted tr(x) (in particular, trace is linear). The coefficient a,(x) is called
the determinant of z and is denoted det(x). An element z is said to be invertible
if there exists an element y € F[z] such that zy = e. The set A € F such that
2 — Ae is not invertible is called the spectrum of x and is denoted spec(x).

Given z € V, we define

P(z) = 2L(z)* — L(2?).

The map P is called the quadratic representation of V. We denote DP(x)y by
2P(z,y). Here DP(x)y is the Frechet derivative of the map P at point z € V
evaluated on y € V. It is easy to see that

P(z,y) = L(z)L(y) + L(y) L(z) — L(zy),z,y € V.

Proposition 2.3. Let V be a finite-dimensional Jordan algebra over F. An ele-
ment x € V is invertible if and only if P(x) is invertible. In this case

P(x)z ' =z, P(z)"' = Pz ).
This is Proposition II1.3.1 in [8].

Proposition 2.4. Let J be the (open) set of invertible elements in V. The map
z— 2 ' T = T is Frechet differentiable and
i)D(z"Hu=—P(z u,z € J,u € V.
i) If & and y are invertible, then P(x)y is invertible and (P(z)y) ™" = P(z™ ')y~ .
i)
P(P(z)y) = P(x)P(y)P(z),Vz,y € V.

w)
P(P(x)y, P(x)z) = P(x)P(y, z)P(z),Vz,y,z € V.

This is Proposition I1.3.3 in [8]. A bilinear form § on V is called associative if

B(xy, z) = B(x,yz),Ve,y, zinV.

Proposition 2.5. The symmetric bilinear forms TrL(zy) and tr(zy) are asso-
ciative.

This is Proposition 11.4.3 in [8].

In case , where F = R we consider an important class of Euclidean Jordan
algebras. A Jordan algebra V over R is called Euclidean if tr(z?) > 0,Vz € V\{0}.
An element ¢ € V is called idempotent if ¢ = ¢. Two idempotents are orthogonal
if ed = 0. A system of idempotents ci,...ck is a complete system of orthogonal
idempotents If ¢? = ¢;, cic;=0,i#j,andc1+ ...+ ¢, =e.
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Theorem 2.1. Let V be an Euclidean Jordan algebra. Given x € V there ex-
ist unique real numbers A1, ...\, all distinct, and a unique complete system of
orthogonal idempotents c1,...,ck such that

r=MAc1+ ...+ ApCk.

In this case spec(x) = {A1,..., \x},c1,...,cr € Rlz].

This is Theorem III.1.1 in [§].
An idempotent is primitive if it is non-zero and cannot be written as a sum of
two non-zero idempotents. We say that ci,...,cm is a complete system of orthog-

onal primitive idempotents, or Jordan frame, if each c; is primitive idempotent
and if

cick=0,j#k,c1+...+cm=e.
Note that in this case m = r (rank of V).

Theorem 2.2. Suppose V' has rank r. Then for x € V there exists a Jordan frame
C1,...cr and real numbers \1,...\r such that

T
T = E Ajcj.
Jj=1

The numbers \j (with multiplicities) are uniquely determined by x. Furthermore,

det(z) = H Aj, tr(x) = ZAJ-.
j=1 j=1

This is Theorem II1.1.2 in [8].
Given a function f which is defined at least on spec(x), we can define

f(z) = Zf(mi,

if =37, Aici. In particular,

I

exp(x) = Zexp()\i)ci,lnx = Zln Aici, A > 0.

1=1 =1

Convexity and differentiability ofsuch functions on Euclidean Jordan algebras have
been studied in [1],[16] (see also [6]). We extensively use these properties in the
paper.
Let
Q={s*:2eV}.

Theorem 2.3. Let V be an FEuclidean Jordan algebra.The interior §2 of Q is
a symmetric (i.e. , self-dual, homogeneous) convex cone. Furthermore,(2 is the
connected component of e in the set J of invertible elements, and also (2 is the
set of elements x in V' for which L(z) is positive definite. In particular, the group
of linear automorphisms GL({2) of {2 acts transitively on it. Moreover, P(x) €
GL(£2) for any invertible x.
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This is Proposition II1.2.2 in [§].

Let c1,...cx be complete system of orthogonal idempotents. For each idempo-
tent ¢, denote V(c,0),V (¢, 1),V (c,1/2) the eigenspaces of L(c) corresponding to
eigenvalues 0,1, 1/2, respectively. Then L(c1),. .., L(ck) pairwise commute and

V=P v,
1<i<j

where Vi; = V(ei, 1), Vi = V(ei, 1/2) NV (ej,1/2). Such a decomposition of V
corresponding to a complete system of orthogonal idempotents is called the Peirce
decomposition. It is studied in detail in Section 1 of Chapter iV in [8]. A typical
example of a Jordan algebra over a field F is the vector space of symmetric matrices
over F' with multiplication operation

_ AB+ BA

A B ,
2

where on the right we have a usual matrix multiplication. In case F = R we get
an exmple of an Euclidean Jordan algebra.

3 Convexity inequalities

In this section we mostly follow the original paper [12] making necessary Jordan-
algebraic adjustments.
Let V be an Euclidean Jordan algebra.

Theorem 3.1. Let 0 < p <1,k € V. The function f1 : 2 x 2 = R,
f1(a,b) = tr((P(k)a?)b~?)
s concave.

Here P is quadratic representation on V. This Theorem is proved in Section 5.

Lemma 3.1. Given k,u,v € V,
tr(P(k)u)v) = (k, P(u,v)k) = (P(k)u,v).
Proof. By definition: P(k)u = 2L(k)*u — L(k*)u and hence
tr((P(k)u)v) = (2L(k)u, L(k)v) — (L(k*)u, v).
On the other hand,
(k, P(u,v)k) = (k, (L(u)L(v) + L(v)L(u))k) — (k, L(uv)k) =
2L(u)k, L(v)k) — (k*, uv) = 2(L(k)u, L(k)v) — (L(u)k?,v) =

2(L(k)u, L(k)v) — (L(E*)u, v).
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Consider the function v : [0,1] — R,
b(p) = (P(k)a”, b'~").
We obviously have:
¢ (p) = (P(k)(a” Ina),b*~P) — (P(k)a®,b" P Inb).

In particular,
¢'(1) = (P(k)(alna), e) — (P(k)a,Inb).
For k = e we obtain:

' (1) =tr(alna — alnb).

Theorem 3.2. The function (a,b) — tr(alna — alnb) is convex on 2 x 2.

Proof. (1) = (P(k)a, e) is a linear function of (a,b), whereas the function 1) (1+h)
is concave in (a,b) for —1 < h < 0 by Theorem 3.1. Hence,

A = ¥ D =)

is convex for —1 < h < 0. Consequently,
' (1) = limA(h),h — 0~
is convex. O

The function
D:2xN2—R

D(a,b) =tr(alna — alnb — (a — b))
is called quantum relative entropy.
Corollary 3.1. The quantum relative entropy is (jointly) convexr on 2 X (2.

Lemma 3.2. Let &,n; : [a,0)) > R,y e R)I=1,..., M. If

M
Z ar& (M) () >0,

=1

for all X\, € [a,b]. Then for u,v € V, spec(u) C [a,b], spec(v) C [a,b],

M
tr(z a§(uw)m(v)) > 0.
=1
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Proof. Let
u = Z)xici,v = Z/Aidi
=1 =1

be spectral decompositions u, v,respectively (see Theorem [?]). Then

&(u) = Z&z(Ai)czvm(v) = an(ﬂi)di

and, consequently

” I

M M
tr(Y_a&i(m©) =D Y (cids) Yy a&im(u;) =0,
l =1

i=1 j=1
since (c;, d;) > 0, for all 4, j. O

Proposition 3.1.
D(a,b) > 0,Y(a,b) € 2 x £2.

Proof. The function ¢(A\) = Aln A is convex forA > 0. Hence,
d(N) = (1) > &' (W) (A — ),
for any A, u > 0. Consequently,
Alnx —Alnp— (A —p) >0,Ap>0.
By Lemma 3.2 D(a,b) > 0. O
Proposition 3.2. Let b € (2. Then
tr(b) = max{tr(alnb—alna+a):a € 2}.
Proof. Since D(a,b) > 0,V(a,b) € 2 x (2, we have:
tr(b) > tr(alnb — alna + a),Va € (2.
But for a = b we obtain the equality. O
Theorem 3.3. Given h € V, the function fz2 : 2 - R,
f2(a) = tr(exp(h +1na))
is concave on {2.
Proof. Take b = exp(h + Ina) in Proposition 3.2. Then:
tr(exp(h + Ina)) = maz{tr(v(h + Ina) — vinv +v) : v € 2} =
maz{tr(vh) — D(v,a) + tr(a) : v € 2}. (1)

Since the function D(v, a) is jointly convex in (v, a), (1) shows that f2(a) is concave

on 2. O
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Proposition 3.3. Fora € 2

+o0 e .
lna/0 (1+T — (a+Te)” )dr. (2)

Proof. Let
a = Z )\ici
i=1
be a spectral decomposition of a.See Theorem 2.2. Then

Ina = i In A\;c;.
i=1

On the other hand, for R > 0

o BT Y L | 1 .
/O(HT—(HT@) )dT_;[/O (s~ ) rle

But
R 1 1+R
———)dr =1 In A;.
/0 T v W
Taking limit when R — 400, we obtain the result. O

The expression (2) allows one to compute (using Proposition 2.4 i) ) the Frechét
derivative of Ina :

“+oo
Dln(a)h = [/ P(a+ 7€) 'dr]h,h € V.
0

Following the original paper of E.Lieb [12], we will introduce notation Ty for the
linear operator

+oo
Tu(h) = [/O P(a+ 7e) " 'dr]h.
Note that
(Tu(h), k) = D*¢(a)(h, ),

where ¢(a) = tr(alna),a € 2,i.e. T, is the Hessian of the quantum entropy. In
this connection, it is important to calculate the inverse of T,. Obviously, T, is
positive definite for any a € (2.

Proposition 3.4.

1
Ta—l:/ P(a'"7,a")dr.
0
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Proof. Let

k
a = E Aici
=1

be the spectral decomposition of a such that A1 > Ao > ...

Theorem 2.1). Let, further,

v= B v

1<i<j<k

> A > 0. (see

be the corresponding Peirce decomposition. Then P(a 4 7€) ™' restricted to Vij

acts by multiplication by
N
i+ 7)(A+7)

Hence, for h € V;; :

“+o00
dr
T.(h) = —  _h=
( ) /O ()\i-l-T)(/\j -I—T)
InX; —InX;, ., .
————h
N = U F

Consider

For h € Vjj;

P(a'™7,a")h = 2L(a'"")L(a") - L(a)]h =

1—7HyT Tyl—T
ATTAT A ATAL

2

Hence,

L(h) = =2 =X _p gt g,

InA; —In A
Io(h) = Ash,i=j.

Comparing this with (3), we conclude that I, = T *.
Proposition 3.5. The function ¢ : V x 2 — R,
qa(a, h) = (h, Ta(h))

is jointly convex in (h,a).
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Proof. Fix a,b € £2,0 < A < 1. Denote Aa + (1 — A)b by c. Consider quadratic
forms:

I (u,v) = Aq(a,u) + (1 — N)q(b,v),
Iy(u,v) = qle, \u+ (1 — A)v)
on V x V. Note that I is positive definite. Consider an optimization problem

Iy (u,v)

¢)(u7 U) = T (u’ 1))

— max,

(u,v) € V x V\ {0,0}. Let v be the maximal value of ¢. If v < 1 (for all choices
of a,b € £2,0 < A < 1), then the result follows. The stationary points (u*,v™) of
the optimization problem should satisfy the equation:
DF2(U*»IU*)(9, h’) - ¢(U*v ’U*)Dpl(U*7 ’U*)(g, h) =0
for all (g,h) € V x V. This leads to equations:
T + (1= AJu™), 9) + (1 = NTeQh™ + (1= A", ) =
o(u”, v")((ATa(u"), g) + (1 = NTp(v7), b)),

and hence

A =Te(w) =Ta(u), Te(w) = vTp(v"), (5)

where v = ¢(u™,v"),w = Au™ + (1 = A\)v*. If v = 0 (and consequently less or equal
than one), we are done. If not,

* 1 —1 * 1 —1
u ==-T, (A),v  ==-T, (A
5 (4) 5T (4)

by (5). Note that A # 0 (otherwise, (u*,v*) = (0,0).). Since T *(A) = \u* +
(1 = X\)v*, we obtain:

AT HA) + (1= T H(A) = 4T (). (6)

By Proposition 3.4 the relationship (5) means:
1
/ AP(a™,a' ")+ (1 = AP, 7)) —yP(c”, ¢ ") Adr = 0. (7)
0

However,
(A, AP(@”,a" ")+ (1= N POB7,b " T)]A) < (A, P(cT, e 7 T)A),

0 <7 <1 by Theorem 3.1. Hence, v < 1. O
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Recall that
“+oo
T.(h) = DIn(a)h = [/ P(a+Te)” dr]h.
0

Since

1
§P(G’3g)7a'ag € Va

we can calculate the second Frechet derivative of In using the chain rule. Let

¥(a) = (a+ 7€) 7", d(a) = P(¢(a))h.

DP(a)g =

Then
D¢(a)g = (DP(¢(a)) Dip(a)g)h = 2P (v (a), —P(a+Te) "' g)h =
—2P((a+7e) ', Pla+7e) 'g)h =
—2P(P((a +7e) e, P(a+1e) Y/*Pla+1e) '/ ?g)h =
—2P(a+ 7€) 2 P(e, P(a+1e) ?g)P(a + 7e) */?h =
—2P(a + 7e) " Y2[L(P(a + 7€) "?)g)(P(a + 7€) "/?h)).
Hence,

D?(tr(alna))(h1, ha, h3) = (h1, D* In(a)(ha, hs) = (8)
+oo
2/0 tr[(M(a,7)h1)(M(a,7)h2)(M (a,)hs3)]dr,

a € 2,h1,ha,hz € V,M(a,7) = P(a+7e) /2
Lemma 3.3. Let C be a convexr cone in a vector space and let F' : C' — R be a
convex function such that

F(a+tb) — F(a)
t

lim t— 0T,

exists and is denoted by G(a,b) for all a,b € C. Assume that F is homogeneous of
order 1, i.e. , F(Aa) = AF(a),a € C,\ > 0. Then

G(a;b) < F(b),Ya,b e C.

Proof. For t > 0,a,be C':

b) < (1+1)(—— F(a)+ —— F (b)) =

a t
F(a+th) = F((148)(——+-——b)) = (1+t) F( T+1 it 1+i

a
14+t 141¢ l+t+

F(a) + tF(b).

Hence,
F(a+tb) — F(a) <
7 <

F(b).
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Note that the function g(a,h) = (h,Ta(h)) is homogeneous of order 1 on the-
cone {2 x V. Indeed,

—+ o0
q(Aa, \h) = / (Ah, P(Aa + 7€) ' Ah)dr =
0

/—‘_m(h7 P(a+ %e)flh)dT = Xq(a, h).
0

T

The last equality is obtained by making the change of variables 7 = . Applying
Lemma 3.3 to g, we obtain

Dq(a, h)(b,g) = 2(Ta(h), g) — (Ra(h),b) < (g,T5(g)) (9)

for all a,b € £2,g,h € V. Here
—+ oo
Ro(h) = 2/ P(a+Te)71/2[P(a+7'6)71/2h]2d7',
0

(see (8)). The relationship (9) is crucial in [12] for proving various convexity in-
equalities.
Since the exponential is the inverse of logarithm, we have:

In(exp(a)) = a,a € V.
Using the chain rule, we obtain:
D(in(exp(a))(D(exp(a))h = h,

h,a € V. Consequently,

Texp(a) (D(exp(a))h) = h7
or

D(exp(a))h = Ty 0y (h) =

exp(a)

[ / Plexp(ar), exp(a(l — 7)))dr|(h), (10)

where in the last equality we used Proposition 3.4.
We say that a,b € V commute, if

[L(a), L(b)] = 0.

Proposition 3.6. The elements a,b € V' commute if and only if, there exists a
Jordan frame c1,...,cr in'V and \i, u; € Ryi=1,...7, such that

a = i)\ici, b = XT:/LZ'CZ'.
=1 =1

This is Lemma X.2.2 in [8]. For a detailed discussion of commutavity in the
above sense see [13]. The following Theorem is a Jordan-algebraic version of the
Golden-Thomson inequality.
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Theorem 3.4. Let u,v,w € V. Then
tr(exp(w) Texp(—u) (€xp(v))) = tr(exp(u + v + w)).
If u commutes with v, then
tr(exp(u) exp(v) exp(w)) > tr(exp(u + v + w)).
Remark 3.1. Recall that
tr(u(vw)) = tr((wv)w), Vu,v,w € V.
See Proposition 2.5.

Proof. Let a = exp(—u),b = exp(v),l = u + w. By Theorem 3.3 the function
¢l ) = R,
¢1(c) = —tr(exp(l +1nc))
is convex. It is also clear that ¢;(Ac) = A¢y(c) for any A > 0. Hence, by Lemma
3.3:
Dei(a)b < ¢i(b).
Note that:
D¢i(a)b = —tr(Ta(b) exp(l + In(a)).

Substituting expressions for a, b,! we obtain:
tr(exp(u + v+ w)) < tr(exp(w)Toxp(—u) (exp(v))).

If u commutes with v, then computing the corresponding integral in common for
u and v Jordan frame, we obtain:

+oo 5
Texp(—uy (exp(1)) = / (exp(—u) + 7¢) ™ exp(v)dr = exp(u) exp(v).

4 Noncommutative Bernstein inequality

Let V be an Euclidean Jordan algebra. Suppose that v1,...,varare independent
random variables on a probability space X ( with probability measure Pr defined
on g-algebra A of subsets of X) with values in V. We denote by £ the mathematical
expectation with respect to Pr. In other words, if v : X — V is a random variable,
then

5[@]:/)(U(w)dPr(w).

Given v € V with spec(v) = {A1,... As} and A1 > A2 > ... > A, then Anaz(v) =
A1 and

[vlloo := max{Amaz (v), Amaz (—v)}-
Note that ||v||ec defines a norm on V invariant under the action of the group of
automorphisms of V' (see [1],[6]). In this section we prove the following result.
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Theorem 4.1. Letwvi,...vy : X — V be independent random variables such that
Evi] =0,i=1,... M. Suppose that

Amaz (Uz) <K

almost surely for alli=1,... M. Here K is a fixed positive number. Denote

M
o* =11 Edllloo. (11)

Then, fort >0

M o? Kt
Pr()\maw(z vi) >t) < rexp(—ﬁh(?)) <
i=1
2
7“exp(—7(72 n Kt/3)’

Here r is the rank of V. and
h(A) =14+ A)In(1+X) =X A>0.

In case where V is the Jordan algebra of complex Hermitian matrices, this
result is due to [15]. Note that we do not assume that V' is simple. One can even
consider infinite-dimensional spin-factors (as in [4]) as irreducible components. It
does not effect the proof.

Corollary 4.1. Let vi,...vp @ X — V be independent random variables such
that E[v;] = 0,i =1,... M. Suppose that

[villoo < K
almost surely forall i =1,2,... M. Then, fort >0

M o? Kt
Pr(l Y willoo > ) < 2r exp(— T h(o) <
i=1

t2

2r exp(fia2 K3

).

In our proof ofTheorem 4.1 we follow [9], making necessary Jordan-algebraic
adjustments.

Proposition 4.1. Let v: X — V be a random variable. Then, given t > 0,

Pr(Amaz(v) > t) <inf{exp(—0)E[tr(exp(fv)] : 6 > 0}.
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Proof. We have:
Pr(Amaz(v) > t) = Pr(exp(Amaz(0v)) > exp(0t)) <

exp(—0t)E[exp(Amaz (60)].

The last inequality is just the standard Markov inequality. Furthermore, given
we X,

exp(Amaz (0v(w))) = Amaz(exp(fv(w))) <
D " Aj(exp(Bu(w))) = tr(exp(fv(w))).
j=1

Here \j(exp(fv(w)) are eigenvalues of exp(fv(w)). Hence,
Pr(Amax(v) > t) < exp(—00)E[tr exp(6v)),
for every 6 > 0. O
Proposition 4.2. Let h€ V and v : X — V be a random variable. Then
E[trexp(h + v)] < trexp(h + In(E[exp(v)])).
Proof. By Theorem 3.3 the function ¢y, : 2 - R,
on(a) =trexp(h +1na)
is concave. By Jensen’s inequality
Elpn(expv)] < ¢n(Elexp]),

ie.,
Eftrexp(h + v)] < trexp(h + In E[exp(v)]).

O

Proposition 4.3. Let vi,...,vpr @ X — V be independent random variables.
Then for any 6 € R

M M
Eltr(exp(d Z v;))] < tr exp(z In E[exp(6v;)]).

Proof. Without loss of generality we may assume 6 = 1. Let
hi =In€lexp(vi)],i =1,... M.

Since v; are independent, we can write &£,, for the expectation with respect to
v; (i.e., the expectation conditional on vi,...,vi—1,Vi41,...var). Using Fubini
theorem, we obtain:

M—-1

M
A= S[tr(exp(z 0i))] = Evy Evy « - Evpy [t exp( Z vi + o))

i=1 i=1
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By Proposition 4.2

M—1
A< Eyy o Eupyy [trexp( Z vy + InElexp(vm)])] =
i=1
M—2
Evy .- -gVM,l[tT exp( Z vy +hy + ’UMfl)] <
i=1
M—2 M
Evy o Eupy,[trexp( Z vit+hy +hv_1)] <. . <tr exp(z hi),
i=1 i=1
where we repeatedly used Proposition 4.2. O
Proposition 4.4. Let v1,...vp — V' be independent random variables. Suppose

that there exists a function g : (0,00) — [0,00) and fixred u1,...up € V such that
Elexp(0:)] < exp(g(@)ui),i =1,... M,
(u = v for u,v € V means that v —u € (_2). Let p = Amam(zij\il u;). Then

M
Pr()\maz(z v;) > t) < rinf{exp(—60t + g(0)p) : 6 > 0}.

i=1
Lemma 4.1. Let z,y €V and x =y > 0,i.c., x —y € 2,y € £2. Then

Inz > lny

Proof. By Proposition 3.3

+oo
lna:/o [le—(a—FTe)_l]dT,CLEQ.

Hence, it suffices to show that
(z+71e) ' X (y+7e)" (12)
for any 7 > 0. But x —y € 2 is equivalent to (z+7¢) — (y+7e) € 2. Consequently,
Ply+7e) V% (x+7e)—ec 2, (13)
since P(u) € GL(£2),Vu € V.(see Theorem 2.3. Similarly, (12) is equivalent to
e—Py+1e)*(x+7e) ' € 0. (14)
Let .
P(y+ T€)71/2(x + Te) = Z)\ici, Ai>0,0=1,...7,
i=1
be the spectral decomposition. Then (13) is equivalent to A\; > 1,2 = 1,...,r
whereas (14) is equaivalent to 1 — 1/A; > 0,i = 1,...r, since P(y + 1e)~ /2 (z +

Te) = Py + Te)_l/Q(az +71e) =Py + 76)1/2(32 + 7€) 71~ by Proposition 2.4 ii).
However, these are the same conditions. O
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Lemma 4.2. Ifx,y € V,z > y, then
trexp(z) = trexp(y). (15)

Proof. Each Euclidean Jordan algebra is a direct sum of simple Euclidean Jordan
algebras, i.e. ,
V:V1@---@VS7

where V; are simple Fuclidean Jordan algebras. Note that
9191@~~~®Qs;

where (2; is the cone of invertible squares in V;. Moreover, if

s
T = E z,
i=1

the corresponding decomposition of x € V, then

tr(exp(z) = Z tr(exp(z).

=1

Thus, to prove (15) it suffices to consider the case where V is simple. Let spec(x)

(resp. spec(y)) = {A1(x),... A\r(2)} (resp. {A1(y),... Ar(y)}, where A1 (z) > A2(x) ... Ar(2)
(resp. A1(y) > A2(y) ... Ar(y)). Then x = y implies A;(z) > Ai(y),i = 1,...r (see
[11]). Consequently,

r

trexp(@) = 3 exp(Mi(x) > 3 exp(Ni(y)) = tr(exp(y).

=1 i=1

We are now in position to prove Proposition 4.4.

Proof. By Propositions 4.1,4.3

M M
A= Pr()\max(z v;) > t) < inf{exp(—0t)tr exp(z In E[exp(fv;)] : 6 > 0}.

i=1 i=1
Using Lemma 4.1 and Lemma 4.2, we obtain:

M

A < inf{exp(—0t)tr exp(z g(0)u;) : 0 > 0}.
i=1

Now,
M M

tr(exp(g(8) Y ui) < rAmax(exp(g(6) Y ui)) =

i=1 i=1

rexp(g(é’))\maz(z ui)) = rexp(pg(0)).

1=1



18 Leonid Faybusovich

Fix 6 > 0 and consider the function
F) = A2 (exp(ON) — X — 1), (16)
for X # 0, £(0) = 6%/2.
Lemma 4.3. Function f is monotonically nondecreasing on R.

For a proof see [9], p. 222.

Hence, f(A) < f(1) if A < 1. We will assume that in the formulation of Theorem
4.1 K =1 (otherwise, substitute v; by v;/K). Since all eigenvaues of v; are bounded
by one from above, we have:

foiw) < f(De,w € X,i=1,... M.
The identity exp(6A) = 1 4+ 0X + A2 f()) implies
exp(0vi(w)) = € + Ovi(w) + v} (w) f (vi(w)) =
e+ 0vi(w) + P(vi(w)) f(vi(w)) =< e+ Ovi(w) + P(vi(w)) f(1)e =
e+ 0vi(w) + f(1)o] (w).

Hence,
A = Elexp(6v)] = 1+ F(1)E[v] = exp(f(1)EV]]),

where we used an obvious inequality exp(A > 1+ X, A € R. Recalling the definition
of f (see (16), we obtain:

A < exp((exp(d) — 0 — 1)E[w7]),i=1,... M.

By Proposition 4.4:

M
Pr(Amax(D>_vi) > 1) < rinf{exp(—0t + g(0)o®) : 0 > 0}, (17)
=1
where g(0) = exp(0) — 0 — 1. Here

M M

0® = Amax(Y_ EWED) = 1D €07 oo

i=1 i=1
Lemma 4.4. Let h(A) = (1 +A)In(1+A) — A\, A > —1,
g(0) = exp(0) — 0 — 1.
Then, for > 0,7 >0

inf{0n + g(O)p : 0 > 0} = —ph(n/p)

and )
A°/2
> — > 0.
W) 2 5 20

For a proof see [9], Lemma 8.21 . Combining (17) and Lemma 4.4, we obtain
Theorem 4.1.
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5 Proof of the main theorem

Several proofs of the original version of Theorem lt1 are known (see [14],[12],[5],[7]).
However, it seems none of them admits an immediate generalization to Jordan-
algebraic setting. We have chosen an approach developed in[5] mostly for the case
of finite-dimensional C*-algebras. C*-algebras are associative but not necessarily
commutative, whereas Jordan algebras are commutative but typically nonassocia-
tive. However, both classes are power associative which makes spectral theory quite
similar for both of them. We provide (almost) all details for the Jordan-algebraic
case. Let V' be an Euclidean Jordan algebra. We define its complexification VC as
the set V' with the following operations:

(z,9) + (&', y) = (x+ 2",y +9).

Then VC is a vector space over C (and hence it makes sense to talk about holo-
morpic functions on open subsets of VC. One considers V as a subset of V€ under
the identification z ~ (z,0). The elements of VC can be written as x + iy with
xz,y € V. The vector space VC has a distinguished conjugation operation:

T +iy = T — iy.

We define on V€ the structure of Jordan algebra over C:
(z+iy) (=" + ) = (22’ —yy') +iyz" +2y).
Each R-linear map A : V — V can be extended to C-linear map:
Az + iy) = A(z) +iA(y).

Recall that on V there exists the canonical scalar product:

(x,2") = tr(za’).
We can extend it to C-bilinear form on VC :

(z+iy, 2’ +iy') = ((z,2") = (y,9") +i({z, ) + (y,2")).
We define a Hermitian scalar product on Ve
{w, w")) = (w, @), w,w’ € VC.

Then
lwl| = ((w, w))"/>.

Consider
To=V+i2cVC.

Each w € V€ has a unique representation
w = Rw + iSw

with Rw, Sw € V. Hence, w € Ty, if and only if Sw € (2.
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Theorem 5.1. The map w — —w ™' is an involutive holomorphic automorphism
of T, having ie as its unique fixed point. In particular, w € Tgq implies w is
inverible and —(w™') € 1.

This is Theorem X.1.1 in [8]. Let w € Ty, and A € C, S\ < 0. Then S(w—Ae) =
Sw — (SN)e € Rjie., w— Ae € Ty, and consequently is invertible. In particular,

spec(w) C {A € C: S\ > 0}. (18)
Let R- ={A € C:3\=0,R\ <0}, and
U={veVC®:spec(v) c C\R_}.

Theorem 5.2. Let f : U — C be a holomorphic function with the following
properties:

() f(v) >0, if Sv € £2;

(ir) f(v) = f(v),v € U;

(ii) f(pv) = pf(v),p>0,v € U.

Then the restriction of f on §2 is concave. More precisely, let a € 2,h € V.
Then for sufficiently small real t and integers n > 1

d2n¢
dt2n

(t) <0,

where ¢(t) = f(a + th).

Remark 5.1. A more general version of this Theorem is considered in [5] in
C™-algebras settings. The corresponding Jordan-algebraic counterpart is also true.

Proof. Given a € £2,h € V, consider two holomorphic functions
F(X\) = f(a+ Ah),G(A\) = f(h+ Xa).

Note that F' is defined for A € C such that | A |[< 1/7 and G is defined for A € C
such that RA > 7 or S # 0. Here

-1
7= |hlllla” "]

Indeed, consider
A(p) = a+ Ah —ipe, p € R.

Then RA() = a 4+ RA\w = P(a*/?)(e + RAP(a"Y?)h). Let A1,... A be (real!)
eigenvalues of P(a™1/2)h. Then 1+R\1, . .. 1+RA\, are eigenvalues of P(a~Y/2)RA(p).
If | RA || Aj |< 1 for all 5, then RA(u) € 2 and hence A(p) is invertible by The-
orem 5.1. Hence, a + Ah € U. The conditions | R\ || A; |< 1 for all j are satisfied
if

1

A< - .
[ max{| A; |: j € [1,7]}

But
max{| Aj | j € [Lr]} < [|P(a”/*)hl < [P(a™"?)[l[IR]] < [[A]llla™|
Hence, a+ Ah e U if | X |< m Similarly, for Aa + h, consider

Ai(p) =Xa+h —ipe,pu € R.
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Since
RAL (1) = RAa + h = P(a*/?)(RAe + P(a”V?)h),

we have: RA1(n) € 2 if RX+ A; > 0 for all j. This condition is satisfied if
R > max{| A; |: j € [1,7]}. But max{| A\; |: 5 € [1,7]} < 7. Consequently, A;(u)
is invertible for A\ > 7. This means that Aa + h € U if R\ > 7. Furthermore,

SA1 () = SAa — pe.

Thus,for 1 < 0,3A > 0, we have: IA1 () € 2 and hence, A1 (u) is invertible by
Theorem 5.1. This means that Aa+h € U, if S\ > 0. But then Aa + h = da+h € U,
ie., da+heU,if SA#0.

Note that due to condition (iii)

G(p) = pF(p™"),p > 0.
Hence, by the principle of analytic continuation
G = AF(ATY), (19)

if RA > 7 (both functions are analytic for X > 7 and coincide for real A greater
than 7). Note,further, that the function A — AF(A™') is analytic for | A\ |[> 7
and hence G can be analytically continued across the real axis from —oo to —7.
Consequently, G is analytic in the complement of the cut

{AeC:3A=0,| A< T}

Due to condition i), G is also the Herglotz function (i.e., A\ > 0 implies SG(\) >
0). Due to (19) G is bounded by a constant times | A | at the infinity. Hence, (see

e.g. [2], section V.4)
c=[ e

—T
for all A in the complement of the cut {A € C : S\ = 0,] XA |< 7}. Here v
is a positive finite measure with support in [—7, 7], and &, n are some constants.

However,

F() =GO = / R

—T

for all A in the complement of the cut{\ € C: A =0,| A |> 7~ '}. But then for

n>2
d"F Tt 2du(t)
A= - [ o)
v A =-n [T 1 tnn+
which is nonpositive when n is even and \ is real and | A |< 771, O

Let Z be a Jordan algebra over C. Given z € Z, let p(Y) € C[Y] be the
minimal polynomial of x,

k

p(Y) =[]V =2~

Jj=1
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Proposition 5.1. There exists a complete system of orthogonal idempotents ci . .. cy
in C[Y], i.e., c? =cj,cj0=0,7 #l,c1+...c, = e, such that for any polynomial
q € C[Y],

Futhermore,
(x —Aje)c; =0,j=1,...k.

This is Proposition 8.3.2 from [8].Note that spec(z) = {A1,..., Ax}.
An element x € Z is said to be semi-simple if its minimal polynomial has only
simple roots. For such an element

k k
T = ZAJ‘C]‘,Q(OC) = ZQ(Aj)ijq € Cly].
=1 j=1

An element x € Z is said to be nilpotent if 2™ = 0 for some integer m.

Proposition 5.2. Every element x € Z can be uniquely written in the form
T = ,/L'I + (I://
with ', 2" € Clx], 2" is semisimple and =" is nilpotent.

If f is holomorphic in an open set U of C containing spec(z), we can define
(following [8], p. 152)

k Vi—

¥ @ A0 005 (20)

j=1 1=0

Note thatf(x) € C[z] and if f, g are two such functions, then

(f9)(x) = f(x)g(@).
Proposition 5.3.

1) = 57 [ Feae—2)"a

where C' is a closed contour in U surrounding spec(z).

Proof. Consider the function

$-(N) = 5. A€C\ {2},

A
Then
Al

(l) : —

Hence, according to (20)

k l/7—1

I
(ze—a)" =3 Z z! (z—Aj)lHC]

j=1 1=0
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ijyj_l (x = Nje)'
j=1 1=0 (Z—/\j)l+103~
Hence,
k ov—1
%/Cf(z)(Ze_w)fldz _ ; ;(x_ )\je)lcj%/C%.

By residue theorem:

211 c z — )\j)l+1 o I

1 f@dz_ fO0)

O

Remark 5.2. Due to Proposition 5.3 one can develop a standard functional cal-
culus on Z similar to,e.g. , [10], chapter 9.

Consider a holomorhic branch
InA=1In|X|+iarg), (21)
where —7m < arg\ < w. We ,then, can define
A =exp(plnN),pe C,A e C\R_.
Recall that R ={A € C: A =0,RA<0}. If U = {2z € Z : spec(z) C C\ R_,

we can define In z, 2P, using Proposition 5.1 or Proposition 5.3. Since, according
to our definitions,

— p’ (In \)?
A= STV o\ R,

we will have correspondingly (according to standard functional calculus; see e.g.[10],
chapter 9).

o J
2P = ZM =exp(plnz),z € U.

We will need yet another characterization of functions In z, 2P on U.

Proposition 5.4. We have:

+oo e .
Inz :/0 [T+ 7~ (te+2z)~"]dr, (22)
2% = sin(ma) +OO (& — (re + 2) " Ndr
) [ (e ) (23)

zelUlO0<a<.
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Proof. We will prove (23). Note that

. 4o
N sin(ra) / Ta(l 1 \dr,
o 0 T THA

A€ C\R_,0 < a < 1, since both sides are holomorphic functions on C \ R—
which coincide for real positive A (see e.g. [3], p. 106 ). Let z € Uli.e., spec(z) =
{M,..., A} C C\ R_. Then by Proposition 5.1:

r Vj-—1

_ z—
ret 7 =30 30 EEMT 000,
j=1 1=0
where )
+(A) = .
¥r(Y) T4+ A
Consequently,

Ll / ” (&~ (re+2) Myar =

in(ra) x~ [T A S
IS [ v = S B [T ey
=Jo : 0

j=1 1=1

(24)
By (23):
d"(\%) 51n(7ra) Foo d” o
I d/\” Y- (N, (25)
n > 1. Combining (23),(24),(25), we obtain:
L& (z=Aje)" )\ ie) (l)
a=3 e 305
j=1 I=1
where the last equality is due to Proposition 5.1. O
Lemma 5.1. For z € U,
In(z~') = —In(z).
Proof. By (22)
In(z"") = +°°[ C  (re+z Y Vdr= [ 2+ S+ S Nar
A T+1 )t o7 T T ’

Further,

Consequently,

oo e
ln(zl)—/o %[—Wﬂwem*l]dr

Making change of variables ¥ = 1/7, we obtain the result. O
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We now return to the case Z = VC (i.e. , the complexification of an Euclidean
Jordan algebra).

Lemma 5.2. If z € T, then In(—z) = —ime + Inz. If —z € Tq, then In(—z) =
ime 4+ 1n 2.

Proof. If p(Y) € C[Y] isa minimal polynomial for z, then p(—Y’) is a minimal
polynomial for —z. Consequently, by Proposition 5.1, if

r Vi—

=3 % Mln% Jessspec(z) = {As- -, Ark,
j=1 1=0
then 1
in(—z) = 3 3 A 0y,
j=1 1=0
But -1
—1) =1
m® () = %,z >1,A e C\R_.
Consequently,

s

In(z) = In(—2) = > _[InA; — In(=)]e;.

j=1
Since by (18), SA; > 0,5 =1,...,r for z € Ty, the result follows (see (21). O
Proposition 5.5. Given z € T, we have:
Inz €To,ire —Inz € Tq,.

Proof. If z € Tq, then Te + z € Tg; for all real 7. Hence, —(7e + z)_1 € To by
Theorem 5.1. But then Inz € T by (22). We also have that —z~' € Tp,. Hence,

In(—z""') = —In(—2) = —(—ime + Inz) = ire — Inz € Ty,
where we used Lemmas 5.1,5.2. O
Proposition 5.6. If z € T,0 < a < 1, then 2% € Tq, — exp(iam)z® € Tq.

Proof. By (23), 2* € Tq. Besides, u = —z~ ' € T,. Hence, u® € Tg. Consequently,
(—u®)~! € T,. However,

u® = exp(alnu) = exp(aln(—z"1)) = exp(a(ire — Inz)) =
exp(ami) exp(—aln 2).

Hence,
(—u®) "' = — exp(—ami) exp(aln z) = — exp(—ian)z®.

Thus, — exp(—iam)z® € Tq,. O

Proposition 5.7. Let u,v € T, —exp(—ia)u € To,—exp(—if)v € To,a >
0,8>0,a+ 8 < 7. Then

tr(uv) C {\ = pexp(if),p > 0,0 < 6 < a + B}.
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Proof. Let uw = u1 +iu2,v = v1 +iv2;uj,v; € V,j =1,2. Then
Str(uv) = tr(uive) + tr(ugvr).
Furthermore,
exp(—ia)u = (cos a + sin a) + i(cos aug — sin auq).
Hence, the assumptions imply:
u1 — cot aug € 2,uz € §2,

and similarly
v1 — cot Bug € £2,v9 € (2.

Consequently,

tr(uive) = tT(P(v2)1/2u1) > cot atT(P(v2)1/2uz) = cot atr(uzv2).

Similarly,
tr(ugvy) > cot Str(uzvz).
Hence,
Str(uv) > (cot a + cotB)tr(ugve) = %tr(ugvg) > 0.

Consider
u' = exp(—ia)u,v’ = exp(—if)v.

Then by assumptions: —Su’ € 2, —Sv” inf2, S(exp(ia)u’) € 2, S(exp(if)v’) € £2.
Consequently,
u' = exp(ia)t, v’ = exp(iB)v

satisfy original assumptions. Hence, by what we have already proved:
Str(uw'v') > 0,

or
Str(u'v') < 0,

ie., Str(exp(—i(a + B))uv) < 0. Let tr(uv) = pexp(if),—7 < 6 < m. Since
Str(uv) > 0, we have 0 < 0 < 7. Then

tr(exp(—i(a + f))uv) = pexp(i(f — (o + f)),

Str(exp(—i(a + B))uv) = psin(f — (a+ ) <0
implies 0 < a + . O
Remark 5.3. Note that, if assumptions of proposition are satisfied, they also

satisfied for o — €, 8 — € for some small positive €. Consequently, proposition holds
true , if o + [ = .
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Example 5.1. Consider
fi(v) = tr(exp(h +Inv),h e V,ue U c VE.

If v € T, then Inv,ime — Inv € T by Proposition 5.5. But then, since Sh = 0,
we also have h 4+ Inwv,ire — (Inv + h) € Tq,. By (18)

spec(h+1Inv) C{A e C:m >3\ >0} (26)
If (26) is satisfied, then
spec(exp(h +Inv)) C {A € C: X > 0}.

This obviously implies that Sf1(v) > 0, if Sv € 2. It is also clear that f1(pv) =
pf1(v),¥p > 0,v € U. By Theorem 5.2 the restriction of fi on 2 is concave. This
is out Theorem 3.3.

Example 5.2. Let f2(u,v) = tr((P(k)uP)v'™P), (u,v) € UxU C VExVC = (Vx
V)C. Here 0 < p < 1,k € V are fized. If (u,v) € T x Tq, then uP € To,v' P €
To, —exp(—ipm)u? € Tq,—exp(—i(l — p)m)v' P € Tq by Proposition 5.6. It is
clear that P(k)uP possesses the same properties as uP. Hence, by Proposition 16
Sfa(u,v) > 0 for (u,v) € ToxTo = Taoxn. It is also clear that f2(4,v) = fa(u,v)
and f2(pu, pv) = pfa(u,v) for p > 0. Consequently, the restriction of fo on 2 x {2
is concave. This is our main Theorem 3.1.

6 Conclusions

In this paper we developed a Jordan-algebraic version of E. Lieb inequalities. As
an application, we proved a version of noncommutative Bernstein inequality. Pos-
sible further applications include optimization, statistics and quantum information
theory through the Jordan-algebraic version of quantum entropy. It also would be
interesting to see what asymptotic properties of random matrix ensembles admit
Jordan-algebraic generalizations.

This research was supported in part by Simmons Foundation Grant 275013.
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