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Abstract. In this paper we consider a transportation problem under uncertainty related to gypsum
replenishment for a cement producer. The problem is to determine the number of vehicles to book at
the beginning of each week to replenish gypsum at all the cement factories of the producer in order to
minimize the total cost, given by the sum of the transportation costs and buying cost from external
sources in extreme situations. Two sources of uncertainty are considered: the demand of gypsum at
cement factories of the producer and the buying costs from external sources. We solve the problem
both via a two-stage stochastic programming and different robust optimization models. The proposed
robust formulations have the advantage to be solvable in polynomial time and to have theoretical
guarantees for the quality of their solutions, which is not the case for the stochastic formulation.
Numerical experiments show that the robust approach results in larger objective function values
than the stochastic approach due to the certitude of constraints satisfaction and more conservative
decision strategies on the number of booked vehicles. Conversely, the computational complexity is
higher for the stochastic approach.
Keywords. stochastic programming, robust optimization, adjustable robust optimization, supply,
transportation.

1 Introduction

The problem of transporting goods or resources from a set of supply points (production plants) to a
set of demand points (destination factories or customers) is an important component of the planning
activity of a manufacturing firm. Critical parameters such as customer demands, row material prices,
and resource capacity are quite uncertain in real problems. An important issue is then represented
by the decision on quantities to acquire and store at each destination factory before actual demands
reveal themselves. This is involved in the tactical planning of the firm supply chain operations. The
significance of uncertainty has prompted a number of works addressing random parameters in tactical
level supply chain planning involving distribution of raw material and products (see for example [9],
[23], [20], [10], [11] and [24]).

In this paper we analyze the effect of two modelling approaches, stochastic programming (SP)
and robust optimization (RO), to a real case of a transportation problem under uncertainty. To the
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best of our knowledge, a direct comparison between SP and RO on such a class of problems has
not been addressed yet in literature. SP and RO are the main alternative techniques to deal with
uncertain data both in a single period and in a multi-period decision making process. The main
difficulty associated with the former is the need to provide the probability distribution functions of
the underlying stochastic parameters. This requirement creates a heavy burden on the user because
in many real world situations, such information is unavailable or hard to obtain (see for example [8]
and [21]).

On the other hand RO addresses the uncertain nature of the problem without making specific
assumptions on probability distributions: the uncertain parameters are assumed to belong to a deter-
ministic uncertainty set. RO adopts a min-max approach that addresses uncertainty by guaranteeing
the feasibility and optimality of the solution against all instances of the parameters within the un-
certainty set. A vast literature about the hypotheses that have to be imposed on the structure of
the uncertainty set in order to have computationally tractable problems are available, see [22] and
[6] for polyhedral uncertainty sets and [3] for ellipsoidal uncertainty sets. For some interesting dis-
cussions of the robust optimization modeling framework see [19] and [12]. The original RO model
deals with static problems where all the decision variables have to be determined before any of the
uncertain parameters are realized. This is not the typical situation in most transportation problems
that are multiperiod in nature, and where a decision for any period can and should account for data
realizations in previous periods. An extension of RO to a dynamic framework was introduced in
[3] via the concept of Affinely Adjustable Robust Counterpart (AARC), where part of the decision
variables, the so-called adjustable variables, have to be determined after a portion of the uncertain
data is realized. The dependence of the adjustable variables on the realized data is represented by
an affine function. Other contributions along this line may be found in [2] and in [7]. In [13] the
authors discuss the gap between primal and dual formulations of stochastic linear program when
recourse decisions are modeled as linear decision rules.

The transportation problem considered, is inspired by a real case of gypsum replenishment in
Italy, provided by the primary Italian cement producer. The problem consists in determining the
number of vehicles to book, at the end of each week, from each plant of the set of suppliers, to
replenish gypsum at cement factories in order to minimize the total cost, given by the sum of the
transportation costs from origin to destinations (including the discount for vehicles booked but not
used) and the cost of buying units of product from external sources in case of inventory shortage. The
uncertainty comes from gypsum demand and buying costs from external sources in case of inventory
shortage.

The problem described can be classified as a transportation problem under uncertainty where a
set of retailers is served by a set of suppliers. A particular case is given by the so-called single-sink
transportation problem, in which a single retailer is served by a set of suppliers. This problem
has been extensively studied, in particular when the total cost is given by the sum of a variable
transportation cost and a fixed charge cost to use the supplier ([15], [14], [1] and [17]).

We solve the problem both via a two-stage stochastic programming and robust optimization
models with different uncertainty sets. For the former the goal is to compute the minimum expected
cost based on the specific probability distribution of the uncertain demand of gypsum at the cement
factories and buying cost from external sources based on a set of possible scenarios. Scenarios of
demand, for all destinations are built on historical data directly. On the other hand, scenarios of
buying costs have been generated sampling from a uniform distribution.

Since the gypsum demand is highly affected by the economic conditions of the public and private
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medium and large-scale construction sector, a reliable forecast and reasonable estimates of probability
distributions are difficult to obtain. This is the main reason that lead us to consider also robust
optimization approaches. First we consider static approaches where the uncertain parameters belong
to box or box-ellipsoidal uncertainty sets, and then dynamic approaches, via the concept of AARC.
A robust solution at the tactical level allows to find a feasible solution for the operational planning
problem for each possible realization of demand in the uncertainty set considered.

The choice of the box uncertainty set is preferable only if the feasibility of all the constraints is
highly required. In order to get a less conservative outcome, a box-ellipsoid uncertainty set which
considers a box for the demand and an ellipsoid for the buying cost is also implemented.

Both SP and RO allow us to determine the nonadjustable variables, i.e., the number of vehicles to
book at the end of each week, using the information available at that time. During the following week,
as new information on gypsum demand and buying costs from external sources become available,
the adjustable (or recourse) decision variables have to be determined using the new information. We
describe six strategies for updating the adjustable variables given the values of the already determined
values of the nonadjustable variables and the newly available data and report the respective costs.

The paper is organized as follows: Section 2 describes the supply transportation problem and
its deterministic formulation. Section 3 discusses the two-stage stochastic programming formulation,
while Section 4 deals with the robust formulation with linear uncertainty set, ellipsoidal and mixed
uncertainty set. An adjustable robust optimization approach has been described in Section 5 with
several methods to determine the adjustable variables. Finally, Section 6 discusses the numerical
results. Conclusions follow.

2 Problem description: a supply transportation problem

This problem is inspired by a real case of gypsum replenishment in Italy, provided by the primary
Italian cement producer. The logistic system is organized as follows: a set K of suppliers, each of
them composed of a set of several plants Ok, k ∈ K (origins) located all around Italy have to satisfy
the demand of gypsum of a set D of cement factories (destinations) belonging to the same cement
company producer. The demand dj of gypsum at cement factory j ∈ D is considered stochastic. We
assume a uniform fleet of vehicles with capacity q and allow only full-load shipments. Shipments
are performed by capacitated vehicles which have to be booked in advance, before the demand is
revealed. When the demand becomes known, there is an option to discount vehicles booked but not
actually used xijk − zijk from supplier i ∈ Ok, k ∈ K to plant j ∈ D . The cancellation fee is given
as a proportion α, 0 ≤ α ≤ 1, of the transportation costs tijk, so the transportation cost of each
vehicle from the supplier i ∈ Ok to destination j ∈ D is qtijk if the vehicle is booked and then used,
or αqtijk if the vehicle is booked, but later cancelled. If the quantity shipped from the suppliers
using the booked vehicles is not enough to satisfy the demand of factory j, residual product qyj is
purchased from an external company at a higher price bj , j ∈ D , which is considered stochastic. The
problem is to determine the number of vehicles xijk to book from each plant i ∈ Ok, of the set of
suppliers k ∈ K , to replenish gypsum at cement factory j in order to minimize the total cost, given
by the sum of the transportation costs tijk from origin i to destination j (including the discount α
for vehicles booked but not used) and the cost of buying q · yj units of product from external sources
in extreme situations.
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Figure 1: Location of destinations j ∈ D (cement factories) all around Italy.

2.1 The expected value model

We first consider a deterministic model, which does not take into account of the uncertainty on
demand and buying cost. The notation adopted is the following:
Sets:

K = {k : k = 1, . . . ,K} , set of suppliers;

Ok = {i : i = 1, . . . , Ok} , set of plant locations of supplier k ∈ K ;

D = {j : j = 1, . . . , D} , set of destination plants (cement factories);

Parameters:

tijk , unit transportation cost from supplier i ∈ Ok, k ∈ K to plant j ∈ J ;

b̄j , average buying cost from an external source for plant j ∈ J ;

q , vehicle capacity;

gj , unloading capacity at the customer j ∈ D ;
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vk , maximum requirement capacity of supplier k ∈ K ;

rk , minimum requirement capacity of supplier k ∈ K ;

l0j , initial inventory of product at customer j ∈ D ;

α , discount;

d̄j , average demand of customer j .

Variables:

xijk ∈ N , number of vehicles booked from supplier i ∈ Ok, k ∈ K to plant j ∈ D ;

zijk ∈ N , number of vehicles actually used from supplier i ∈ Ok, k ∈ K to plant j ∈ D ;

yj ∈ R
+ , volume of product(normalized by q), to purchase from an external source

for plant j ∈ D ;

Above we have denoted by N the set of all nonnegative integers and by R
+ the set of all nonnegative

real numbers.
When the demand and the buying cost from external sources are fully known, we get the following

linear model:

min
(xijk),(yj),(zijk)

q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+


q

D∑

j=1

b̄j yj− αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)


 (1)

s.t. q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (2)

l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
− d̄j ≥ 0 , j ∈ D , (3)

zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , (4)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (5)

xijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (6)

yj ∈ R
+ , j ∈ D , (7)

zijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (8)

The first sum in the objective function (1) denotes the expected booking costs of the vehicles,
while the second sum represents the expected recourse actions, consisting of buying gypsum from
external sources (qyj); Constraint (2) guarantees that the total quantity delivered from the suppliers
to customer j is not greater than the j-customer’s unloading capacity gj , inducing thus an upper
bound on the total number of vehicles. Constraint (3) ensures that the j-customer’s demand is
satisfied. Constraint (4) guarantees that the number of vehicles actually used at most equal to the
number booked in advance. Constraint (5) ensures that the number of vehicles serving supplier k
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does not exceed the production capacity vk of supplier k ∈ K and satisfies the lowest requirement
capacity rk established in the contract. Finally, (6)–(8) define the decision variables of the problem.

Notice that since in a deterministic setting the future demand d̄j and the buying cost b̄j from
external sources are fully known, the number of actually used vehicles corresponds to the number of
ordered vehicles xijk = zijk, so the third term in the objective function is zero. The model (1)-(8)
reduces to:

min
(xijk),(yj)

q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk + q
D∑

j=1

b̄j yj (9)

s.t. q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (10)

l0j + q

(
K∑

k=1

Ok∑

i=1

xijk + yj

)
− d̄j ≥ 0 , j ∈ D , (11)

rk ≤ q
∑

i∈Ok

D∑

j=1

xijk ≤ vk , k ∈ K , (12)

xijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (13)

yj ∈ R
+ , j ∈ D . (14)

We refer to problem (1)-(8) as the expected value problem (EV).

3 A two stage stochastic optimization model

In this section we introduce a two-stage stochastic optimization model for the problem described
above. Besides the sets, parameters and variables introduced before, we consider the following
notation:
Sets:

S = {s : s = 1, . . . , S} , set of scenarios;

Stochastic Parameters:

ps , probability of scenario s ∈ S ;

dsj , demand of customer j at scenario s ∈ S ;

bsj , buying cost from external sources for customer j at scenario s ∈ S .

Variables:

xijk ∈ N , number of vehicles booked from supplier i ∈ Ok, k ∈ K to plant j ∈ D ,

(first stage decision variables);

zsijk ∈ N , number of vehicles actually used from supplier i ∈ Ok, k ∈ K to plant j ∈ D ,

at scenario s ∈ S (second stage decision variables);

ysj ∈ R
+ , volume of product to purchase from an external source normalized by q, for plant j ∈ D ,

at scenario s ∈ S (second stage decision variables);
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In the two-stage (one-period) case, we get the following mixed-integer stochastic programming model
with recourse:

min
(xijk),(y

s
j ),(z

s
ijk

)
q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+
S∑

s=1

ps




D∑

j=1

qbsj y
s
j− αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk
(
xijk−zsijk

)

 (15)

s.t. q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (16)

l0j + q

(
K∑

k=1

Ok∑

i=1

zsijk + ysj

)
− dsj ≥ 0 , j ∈ D , s ∈ S (17)

zsijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S , (18)

rk ≤ q
∑

i∈Ok

D∑

j=1

zsijk ≤ vk , k ∈ K , s ∈ S (19)

xijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (20)

ysj ∈ R
+ , j ∈ D , s ∈ S (21)

zsijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S (22)

The first sum in the objective function (15) denotes the expected booking costs of the vehicles, while
the second sum represents the expected recourse actions, consisting of buying gypsum from external
sources (qysj ) and canceling unwanted vehicles. The meaning of constraints (16)–(22) is similar to
the meaning of constraints (2)–(8).

From now on we will refer to problem (15)-(22) as the stochastic recourse problem (RP).

4 Robust optimization models

In this section we introduce several robust formulations (RO) for the problem described in Section
2. This would be the case when it is impossible, or not practical, to give reasonable estimates of
probability distributions for the random parameters given by the demand of gypsum at the cement
factories and the cost of buying from external sources. Moreover, some RO formulations can be
solved in polynomial time and have theoretical guarantees for the quality of the solution which
is not the case with the SP formulations. In order to achieve polynomial complexity we have to
properly choose the uncertainty sets and to relax the integer constraints on the variables in case of
an ellipsoidal formulation.

There are three well known formulations of RO problems in literature; these are given by [22],
[4]-[5] and [6]. They all share the advantage that minimal assumptions about the nature of the
uncertainties have to be made and they differ in the ways the uncertainty sets are represented. More
specifically, the formulations by Soyster [22] and by Bertsimas and Sim [6] use polyhedral uncertainty
sets, while the formulation by Ben-Tal and Nemirovski [4]-[5] considers an ellipsoidal uncertainty set,
transforming the original LP problem into a Second Order Cone Programming (SOCP) problem.

We consider different selections of the uncertainty set for the objective function and constraints
involving the uncertain demands and buying costs. More precisely we assume that b ∈ Ub and
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d ∈ Ud for some uncertainty sets Ub ⊂ R
D and Ud ⊂ R

D. For any such uncertainty sets the robust
optimization formulation of our problem becomes

min
(w),(xijk),(yj),(zijk)

w (23)

s.t. w ≥ q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk +




D∑

j=1

qbj yj−αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)


 ∀b ∈ Ub, (24)

q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (25)

l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
− dj ≥ 0 , j ∈ D , ∀d ∈ Ud, (26)

zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , (27)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (28)

xijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (29)

yj ∈ R
+ , j ∈ D , (30)

zijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D . (31)

where an auxiliary variable w has been introduced.

4.1 Box uncertainty

In this subsection we adopt the methodology from [5] to construct a box uncertainty model for the
cost vector b. We assume that this vector belongs to the uncertainty set

Ub,box,L =

{
b̄+

L∑

ℓ=1

ζℓb
ℓ : ∀ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖∞ ≤ 1

}
, (32)

where b1, . . . , bL are vectors representing possible perturbations of the vector average cost b̄. It is
easily shown that, for a given y

max yT b = yT b̄+ max
‖ζ‖∞≤1

L∑

ℓ=1

ζℓ(y
T bℓ) = yT b̄+

L∑

l=1

|yT bℓ| ∀b ∈ Ub,box,L. (33)

By introducing the auxiliary variables u1, . . . , uL, the robust optimization constraint (24), with
Ub,box,L instead of Ub, can be replaced by the constraints

w ≥ q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+




D∑

j=1

qb̄j yj−αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)


+ q

L∑

ℓ=1

uℓ, (34)

−uℓ ≤ yT bℓ ≤ uℓ, ℓ = 1, . . . , L. (35)
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If we choose L = D and the perturbation vectors

bℓ = ρ2Fℓe
ℓ, ℓ = 1, . . . , D , (36)

where eℓ is the ℓ−th vector from the standard basis of RD then yT bℓ = ρ2Fℓyℓ. Here the positive
number Fℓ represents the uncertainty scale and ρ2 > 0 is the uncertainty level. By making the
change of variables uj = ρ2FjWj , j = 1, . . . , D, (34)-(35) becomes

w ≥ q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+




D∑

j=1

qb̄j yj−αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)


+ qρ2

D∑

j=1

FjWj (37)

−Wj ≤ yj ≤ Wj , j = 1, . . . , D. (38)

Assume now that b ∈ Ub,box,L where the perturbation vectors are chosen as in (36). Then the
components of b are given by

bj = b̄j + ζjρ2F2, |ζj | ≤ 1 , j = 1, . . . , D .

This shows that with the choice (36) the uncertainty set (32) coincides with the simple box

Ub,box =
{
b ∈ R

D : |bj − b̄j | ≤ ρ2Fj , j ∈ D
}
. (39)

Of course, for other choices of the perturbation vectors we get different results.
Similarly, we assume that the demand vector d belongs to an uncertainty set of the form

Ud,box,L =

{
d̄+

L∑

ℓ=1

ζℓ d
ℓ : ∀ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖∞ ≤ 1

}
, (40)

for given perturbation vectors d1, . . . , dL. We have

max
d∈Ud,box,L

dj = d̄j + max
‖ζ‖∞≤1

L∑

ℓ=1

ζℓd
ℓ
j = d̄j +

L∑

l=1

|dℓj |. (41)

As above, it is easily seen that with the choice

L = D, dℓ = ρ1Gℓe
ℓ, ℓ = 1, . . . , D , (42)

the uncertainty set Ud,box,L reduces to the simple box

Ud,box =
{
d ∈ R

D : |dj − d̄j | ≤ ρ1Gj , j ∈ D
}
. (43)

We clearly have maxd∈Ud,box
dj = d̄j+ρ1Gj . Using the uncertainty sets (39) and (43) for the uncertain

vectors b and d, the robust formulation (23) of our problem can be written as the following linear
mixed-integer problem:

min
(w),(xijk),(yj),(zijk)

w (44)

s.t. w ≥ q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk +




D∑

j=1

(qb̄j yj+ qρ2Fj Wj)− αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)


 ,(45)
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q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (46)

l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
≥ d̄j + ρ1Gj , j ∈ D , (47)

zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , (48)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (49)

|yj | ≤ Wj , j ∈ D , (50)

xijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (51)

yj ∈ R
+ , j ∈ D , (52)

zijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (53)

Wj ∈ R
+ , j ∈ D . (54)

Because of the nonnegativity constraints (52) we can dispense of the auxiliary variables Wj , i ∈ D
and write the above optimization problem equivalently as

min
(w),(xijk),(yj),(zijk)

w (55)

s.t. w −



q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+




D∑

j=1

qb̄j yj− αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)






 ≥

D∑

j=1

qρ2Fjyj (56)

q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (57)

l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
≥ d̄j + ρ1Gj , j ∈ D , (58)

zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , (59)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (60)

xijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (61)

yj ∈ R
+ , j ∈ D , (62)

zijk ∈ N , i ∈ Ok, k ∈ K , j ∈ D , (63)

We note that the above model is very conservative. Indeed let us assume that

ζ1, . . . , ζL are zero mean independent random variables with values in the interval [−1, 1], (64)
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and let us consider the random vectors

b = b(ζ) = b̄+
D∑

ℓ=1

ζℓ b
ℓ, d = d(ζ) = d̄+

D∑

ℓ=1

ζℓ d
ℓ , (65)

where the perturbation vectors bℓ and dℓ are given by (36) and (42) respectively. Consider now a
feasible solution of the RO problem (44)-(54). Then

Probζ∼P



ζ : w ≥ q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+




D∑

j=1

qbj(ζ) yj−αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)






 = 1 (66)

and

Probζ∼P

{
ζ : l0j + q(

K∑

k=1

Ok∑

i=1

zijk + yj)− dj(ζ) ≥ 0

}
= 1 , j ∈ D (67)

for any probability distribution P that is compatible with (64). This certitude of constraints satisfac-
tion will result in a high cost for the optimal solution of the RO problem (44)-(54) (or, equivalently,
(55)-(63)).

4.2 Box-Ellipsoidal Uncertainty

In this subsection we study the case were the uncertainty set for the buying costs is given by

Ub,ell =

{
b̄+

L∑

ℓ=1

ζℓ b
ℓ : ∀ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖2 ≤ Ω

}
, (68)

and the uncertainty set for the demand vector d is the box (43).
Using the Cauchy-Schwarz inequality we obtain, for a given y

max yT b = yT b̄+ max
‖ζ‖2≤Ω

L∑

ℓ=1

ζℓ(y
T bℓ) = yT b̄+Ω

√√√√
L∑

l=1

(yT bℓ)2 ∀b ∈ Ub,ell . (69)

By choosing the perturbation vectors as in (36) and relaxing the integer constraints on variables xijk
and zijk we obtain the following RO model with box and ellipsoidal uncertainty set for our problem:

min
(w),(xijk),(yj),(zijk)

w (70)

w −



q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+




D∑

j=1

qb̄j yj− αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)






 ≥

Ω ·

√√√√
D∑

j=1

(qρ2Fjyj)2, (71)
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q
K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (72)

l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
≥ d̄j + ρ1Gj , j ∈ D , (73)

zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , (74)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (75)

xijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D , (76)

yj ∈ R
+ , j ∈ D , (77)

zijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D . (78)

The nonlinear constraint (71) is a second order cone constraint so that the above optimization
problems is a SOCP that can be solved in polynomial time.
In fact, as shown in [5] any robust linear inequality constraint of the form

aTx ≤ β, ∀[a;β] ∈
{
[ā; β̄] +

L∑

ℓ=1

ζℓ[a
ℓ;βℓ] : ∀ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖2 ≤ Ω

}
,

can be written as [
(β̄ − āTx)/Ω;β1 − a1Tx; . . . ;βL − aLTx

]
∈ LL+1, (79)

where
LL+1 =

{
p = [p0; p1; . . . ; pL] ∈ R

L+1 : p0 ≥ ‖p1; . . . ; pL‖2
}

, (80)

is the second order (or Lorentz) cone of RL+1. A feasible solution x of (79) can be obtained via
interior point method in polynomial time. Moreover, any such feasible solution is also the solution
of a related chance constrained problem. Let us consider a random vector [a;β] defined by

[a;β] = [ā; β̄] +
L∑

ℓ=1

ζℓ[a
ℓ;βℓ], (81)

ζ1, . . . , ζL independent random variables with zero mean and taking values in [−1, 1] . (82)

The following result is contained in Corollary 2.3.2. of [5]:

Proposition 4.1 If [a, β] is the random vector given by (81)- (82) and x is a solution of (79) then

Prob
{
aTx > β

}
≤ e−

Ω2

2 . (83)

We note that the above result holds for any probability distribution for the random vector ζ =
[ζ1; . . . ; ζL] that satisfies (82). Let us denote by P the family of all probability distributions that
satisfy (82) and consider the ambiguous chance constrained problem where ε ∈ (0; 1) is a prespecified
small tolerance:

∀P ∈ P Probζ∼P

{
ζ : āTx+

L∑

ℓ=1

ζℓ[a
ℓ]Tx > β̄ +

L∑

ℓ=1

ζℓβℓ

}
≤ ε. (84)
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The above problem is called an ambiguous chance constrained problem because we do not have any
knowledge about the probability distribution P except the fact that it belongs to the class P. From
Proposition 4.1 it follows that any x satisfying the second order cone constraint (79) is a solution of
(84).

Consider again the random vectors b(ζ) and d(ζ) from (65). By virtue of Proposition 4.1 it follows
that for any feasible solution of the RO problem (70)-(78) we have

Probζ∼P



ζ : w ≥ q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+




D∑

j=1

qbj(ζ) yj−αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk)






 ≥ 1− e−

Ω2

2 ,

(85)
for all probability distributions P that are compatible with (64). Since we are using the same box
uncertainty for the demand, (67) is also satisfied. From the Cauchy-Schwarz inequality we have

D∑

j=1

qρ2Fjyj ≤
√
D

√√√√
D∑

j=1

(qρ2Fjyj)2. (86)

If follows that if Ω ≥
√
D then for any feasible solution of the RO problem (70)-(78) we have the

stronger probability result (66). This certitude of constraint satisfaction will result in a high cost for
the optimal solution of the RO problem (70)-(78).

5 Adjustable robust optimization

In the robust optimization models considered in the previous section, all the variables are treated in
the same way, while in the two-stage stochastic programming model the variables xijk are considered
first stage decision variables and the variables yj and zijk are considered second stage (recourse)
variables. This means that the variables xijk are to be determined “here and now”, before the actual
data “reveals itself”. On the other hand, once the uncertain data are known the variables yj , zijk
should be able to adjust themselves by means of some decision rules Yj(·) and Zijk(·). Therefore the
decision variables xijk are called nonadjustable variables while the decision variables yj and zijk are
called adjustable variables. In this paper we assume that decision rules Yj(·) and Zijk(·) are affine
function of their arguments.

In developing an adjustable robust optimization model for our problem we will follow the simple
model described in subsection 14.2.3.1 of [5], where it is assumed that all the coefficients of the
adjustable variables are certain. This is not the case for our problem where the coefficients bj of the
adjustable variables yj are uncertain. We will circumvent this difficulty by assuming as before that
the cost vector b belongs to the ellipsoidal uncertainty set Ub,ell (68). We have seen that in this case,
with the choice (36), our cost constraint can be written under the form (71). This is no longer a
linear constraint, but a second order cone constraint. On the other hand we assume that the demand
vector d belongs to the scenario-generated uncertainty set

U
d,∆̂ =

{
S∑

s=1

λsd̂
s : λ ∈ L

}
, (87)
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where,

L =

{
λ = [λ1; . . . ;λS ] ∈ R

S : λ1 ≥ 0, . . . , λS ≥ 0,
S∑

s=1

λs = 1

}
, (88)

and ∆̂ is a given set of scenarios

∆̂ =
{
d̂1, d̂2, . . . , d̂S

}
. (89)

In our applications ∆̂ is obtained from historical data.
Let us denote by u the vector composed of all “here and now” decision variables xijk,

u = vec (xijk, i ∈ Ok, k ∈ K , j ∈ D) ,

and by v the vector composed of all adjustable decision variables yj , zijk.

v = [y; vec (zijk, i ∈ Ok, k ∈ K , j ∈ D) ] .

We consider also the vector of decision rules

V (·) = [Y1(·); . . . ;YD(·); vec (Zijk(·), i ∈ Ok, k ∈ K , j ∈ D) ] .

Since decision rules Yj(·) and Zijk(·) were assumed to be affine, so is V (·). The deterministic con-
straints of our problem are:

C (u, v) :





q
∑K

k=1

∑Ok

i=1 xijk ≤ gj , j ∈ D ,
zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D ,

rk ≤ q
∑

i∈Ok

∑D
j=1 zijk ≤ vk , k ∈ K ,

xijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D ,

yj ∈ R
+ , j ∈ D ,

zijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D .

while our uncertain constraints are given by:

C̃b(u, v) : w ≥ q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+
D∑

j=1

qbj yj−αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk) ,

and

C̃d(u, v) : l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
− dj ≥ 0 , j ∈ D .

With the above notation our uncertain problem can be written as:

R = min
w,u,v

{
w : C (u, v), C̃b(u, v), C̃d(u, v), ∀b ∈ Ub,ell, ∀d ∈ U

d,∆̂

}
.

We note that with the choice (36) the infinite set of constraints C̃b(u, v), ∀b ∈ Ub,ell reduces to the
deterministic single second-order cone constraint

C̃ (u, v) : w − q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk−
D∑

j=1

qb̄j yj+ αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk) ≥ Ω

√√√√
D∑

j=1

(qρ2Fjyj)2.
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Therefore, our uncertain problem can be written equivalently as:

R : min
w,u,v

{
w : C (u, v), C̃ (u, v), C̃d(u, v), ∀d ∈ U

d,∆̂

}
. (90)

The adjustable version of this problem is

A : min
w,u,V (·)

{
w : C (u, V (d)), C̃ (u, V (d)), C̃d(u, V (d)), ∀d ∈ U

d,∆̂

}
, (91)

where the minimum is taken for all decision rules V (·) that are affine functions of their arguments. We
will show that this adjustable version is equivalent to the following tractable optimization problem

Q : min
w,u,{vs}S1

{
w : C (u, vs), C̃ (u, vs), C̃

d̂s
(u, vs), s = 1, 2, . . . , S

}
. (92)

The equivalence is understood in the sense that the optimal values of A and Q are equal and
that any feasible solution of Q can be augmented to a feasible solution of A . More specifically
let ŵ, û, {v̂s}S1 be a feasible solution of Q and consider a vector d ∈ U

d,∆̂. Then there is a vector
λ(d) = [λ1(d); . . . ;λS(d)] ∈ L such that

d =
S∑

s=1

λs(d)d̂
s, (93)

and the adjustable variables are defined by the decision rule

v = V̂ (d) :=
S∑

s=1

λs(d)v̂
s. (94)

The feasibility of ŵ, û, {v̂s}S1 means that the following constraints are satisfied

C (û, v̂s), C̃ (û, v̂s), C̃
d̂s
(û, v̂s), s = 1, 2, . . . , S.

Multiplying the constraints C (û, v̂s) and C̃
d̂s
(û, v̂s) by λs(d), adding, and using the linearity of those

constraints we deduce that the constraints C (û, V̂ (d)), and C̃d(û, V̂ (d)) are also satisfied. It also
follows that the next inequalities are satisfied for s = 1, 2, . . . , S:

ŵ − q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkx̂ijk−
D∑

j=1

qb̄j ŷ
s
j+ αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk
(
x̂ijk−ẑsijk

)
≥ Ω

√√√√
D∑

j=1

(qρ2Fj ŷsj )
2.

Multiplying each inequality by λs(d), adding, and using the convexity of
√∑D

j=1(qρ2Fjyj)2 as a

function of y1, . . . , yD we obtain successively

ŵ − q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkx̂ijk−
D∑

j=1

qb̄j

S∑

s=1

λs(d)ŷ
s
j+ αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk

(
x̂ijk−

S∑

s=1

λs(d)ẑ
s
ijk

)

=

S∑

s=1

λs(d)


ŵ − q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkx̂ijk−
D∑

j=1

qb̄j ŷ
s
j+ αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk
(
x̂ijk−ẑsijk

)



≥
S∑

s=1

λs(d)Ω

√√√√
D∑

j=1

(qρ2Fj ŷsj )
2 ≥ Ω

√√√√√
D∑

j=1

(
qρ2Fj

S∑

s=1

λs(d)ŷsj

)2

,
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which shows that the constraint C̃ (û, V̂ (d)) is also satisfied. Therefore ŵ, û, V̂ (·) is feasible for
A . In particular, this proves that the optimal solution of A is less than or equal to the optimal
solution of Q. To prove the reverse inequality, we remark that if (w, u, V (·)) is feasible for A , then

w, u,
{
V (d̂s)

}S

1
is clearly feasible for Q.

In conclusion, in order to solve our adjustable robust optimization model we first find the optimal
solution

x∗ijk, y
∗ s
j , z∗ sijk, i ∈ Ok, k ∈ K , j ∈ D , s ∈ S (95)

of the second order cone optimization problem

min
(w),(xijk),(y

s
j ),(z

s
ijk

)
w (96)

s.t.

w−q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk−
D∑

j=1

qb̄j y
s
j+ αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk
(
xijk−zsijk

)
≥Ω

√√√√
D∑

j=1

(qρ2Fjysj )
2, s ∈ S ,(97)

q

K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (98)

l0j + q

(
K∑

k=1

Ok∑

i=1

zsijk + ysj

)
− d̂sj ≥ 0 , j ∈ D , s ∈ S , (99)

zsijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S , (100)

rk ≤ q

Ok∑

i=1

D∑

j=1

zsijk ≤ vk , k ∈ K , s ∈ S , (101)

xijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D , (102)

ysj ∈ R
+ , j ∈ D , s ∈ S , (103)

zsijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D , s ∈ S . (104)

When the uncertain demand d reveals itself we try to find a vector λ(d) = [λ1(d); . . . ;λS(d)] ∈ L
satisfying (93) by solving the following optimization problem in λ

min
λ∈L

f(λ) :=
D∑

j=1

(
dj −

S∑

s=1

λsd̂
s
j

)2

. (105)

The optimal value of the objective function is equal to zero, i.e., f(λ(d)) = 0, if and only if d ∈ U
d,∆̂.

In this case the adjustable variables are given by

y∗j =
S∑

s=1

λs(d)y
∗ s
j , z∗ijk =

S∑

s=1

λs(d)z
∗ s
ijk i ∈ Ok, k ∈ K , j ∈ D . (106)

From the above considerations it follows that

x∗ijk, y
∗
j , z

∗
ijk, i ∈ Ok, k ∈ K , j ∈ D , (107)
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is an optimal solution of the robust adjustable optimization problem (91). This is no longer the case
when f(λ(d)) > 0. As noted in [5], the scenario-generated uncertainty set U

d,∆̂ from (87) usually
“too small” to be of much interest. Nevertheless, as shown in the next section the values

x∗ijk, i ∈ Ok, k ∈ K , j ∈ D , (108)

could be used to find a solution of our transportation problem even when d /∈ U
d,∆̂.

5.1 Determining the adjustable variables

Suppose that the values (108) of the nonadjustable (or first stage) variables have been obtained
by one of the optimization problems considered in the previous sections of this paper. When the
previously unknown cost and demand vectors, b and d become available we can always try to compute
the values of the adjustable (or second stage) variables as the optimal solutions of the following linear
optimization problem:

min
(yj),(zijk)

q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkx
∗
ijk+ q

D∑

j=1

bj yj− αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk
(
x∗ijk−zijk

)
(109)

s.t.

q
K∑

k=1

Ok∑

i=1

x∗ijk ≤ gj , j ∈ D , (110)

l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
− dj ≥ 0 , j ∈ D , (111)

zijk ≤ x∗ijk , i ∈ Ok, k ∈ K , j ∈ D , (112)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (113)

yj ∈ R
+ , j ∈ D , (114)

zijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D . (115)

Depending on the values of b, d and the way the “optimal” values (108) of the nonadjustable variables
were obtained, the above optimization problem may be feasible or not. If it is feasible then it has an
optimal solution

y∗j , z
∗
ijk, i ∈ Ok, k ∈ K , j ∈ D . (116)

The values (108) and (116) are then feasible for our transportation problem

min
(xijk),(yj),(zijk)

q
K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk+ q
D∑

j=1

bj yj− αq
K∑

k=1

Ok∑

i=1

D∑

j=1

tijk(xijk−zijk) (117)

s.t.

q

K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (118)
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l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
− dj ≥ 0 , j ∈ D , (119)

zijk ≤ xijk , i ∈ Ok, k ∈ K , j ∈ D , (120)

rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (121)

xijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D , (122)

yj ∈ R
+ , j ∈ D , (123)

zijk ∈ R
+ , i ∈ Ok, k ∈ K , j ∈ D . (124)

Therefore the optimal cost given by the optimization problem (109)-(115) is greater or equal than the
optimal cost given by the optimization problem (117)-(124) and in some cases it may be significantly
larger. However we have to remember that (117)-(124) can be solved only when the vectors b and d
are known, while the nonadjustable (or first stage, or here-and-now) decision variables xijk have to
be determined before b and d are known. As we mentioned before the nonadjustable variables can
be computed by any of the methods described in the previous sections of this paper. In order to
have a fair comparison we will relax the integer constraints in all the methods. Namely, whenever a
variable is constrained to belong to N we will require that it to belong to R

+. Let us define precisely
the methods under consideration.

There are many ways in which we can compare the performance of the various methods. In what
follows we will compare them in a scenario based framework. As in (89), let

∆̂ =
{
d̂1, d̂2, . . . , d̂S

}
(125)

a given set of demand scenarios of dimension D from historical data. We consider a set of indices

S̄ =
{
1, . . . , S̄

}
⊂ S , (126)

with cardinality S̄ < S. For each such τ = S̄, . . . , S − 1 we compute the quantities

d̄ =
1

S̄

S̄∑

s=1

d̂s, ρ1Gj = max
s∈S̄

d̂sj − d̄j , j ∈ D . (127)

We do not have historical data for the cost vectors, but we know a D-dimensional vector b̄ of
average costs. Then we generate a set of vectors

B̂ =
{
b̂1, b̂2, . . . , b̂S

}
, (128)

with components b̂sj obtained by sampling from a uniform distribution in the interval
[
b̄j − σ · b̄j , b̄j + σ · b̄j

]

with a given deviation level of σ. For each τ = S̄, . . . , S − 1 we compute the following quantities

ρ2Fj = max
s∈S̄

b̂sj − b̄j , j ∈ D . (129)

With the above notation we are ready to describe the methods that we want to compare:
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M1 is the EV optimization problem (9)-(14) without integer constraints;

M2 is the RP stochastic optimization problem (15)-(22) without integer constraints;

M3 is the robust optimization problem with box constraints (44) -(54) without integer constraints;

M4 is the robust optimization problem with box-ellipsoidal constraints (70) -(78);

M5 is the adjustable robust optimization problem (96) -(104),

For each τ = S̄, . . . , S − 1 and for each method Mm, m = 1, . . . ,5 we find the optimal solution
of the corresponding optimization problem using only the information contained in the vectors

d̂1, d̂2, . . . , d̂τ , b̂1, b̂2, . . . , b̂τ . (130)

From this optimal solution we obtain the nonadjustable decision variables

x∗ijk, i ∈ Ok, k ∈ K , j ∈ D .

They are determined by using only the information contained in (130). Assume now that the vec-
tors d̂τ+1, b̂τ+1 become available. Then we can solve the optimization problem (109)-(115) with
d = d̂τ+1, b = b̂τ+1 to obtain the adjustable variables (116). The optimal value of the objective func-
tion (109) is denoted by costm,τ . It represents the optimal cost of our transportation problem with
the adjustable strategy considered in this section when using method Mm for determining the non-
adjustable variables. If the optimization problem (109)-(115) is infeasible we set costm,τ = ∞. We
also denote by CPUm,τ the total CPU time, in seconds, spent in solving the optimization problems
Mm and (109)-(115), including the possible infeasibility detection of the latter.

We will also consider the following affinely adjustable robust optimization problem:

M6 :

(a) Solve the optimization problem (96) -(104) using only the information (130);

(b) Solve the optimization problem (105) with S = τ and d = d̂τ+1;

(c) Define the adjustable variables as in (106).

This method has the advantage that the adjustable variables are obtained by solving only the very
simple optimization problem (105). However this method only works if the optimal objective function

of the latter problem f
(
λ
(
d̂τ+1

))
is equal to zero. In this case the optimal cost given by this method,

cost6,τ , is equal to the optimal value of the objective function (96). If f
(
λ
(
d̂τ+1

))
> 0 we set

cost6,τ = ∞. The CPU time required for running M6 is denoted by CPU6,τ .

Of course, when d̂τ+1, b̂τ+1 become available we can also solve the optimization problem (117)-
(124) with d = d̂τ+1, b = b̂τ+1. However, this optimization problem determines the optimal values of
both the adjustable and nonadjustable variables, while in our setting the nonadjustable variables have
to be determined before the d̂τ+1, b̂τ+1 become available. We note that the optimization problem
(117)-(124) is always feasible as long as the deterministic constraints (118), (120), (121) are not
contradictory, because the uncertain constraint (119) is always satisfied for yj large enough. We
denote by costτ the optimal value of the objective function (117) and by CPUτ the total CPU time,
in seconds, spent in solving the optimization (117)-(124). The results of our numerical experiments
are reported in Table 17 and 18 at the end of the next section.
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6 Numerical results

In this section we discuss numerical results for the deterministic, stochastic and robust modelling
approaches applied to the supply transportation problem. Deterministic and stochastic parameters
values for the problem are reported below: Table 1 lists the set of suppliers K and the set of their
plants Ok, k ∈ K . The list of destinations (cement factories) are shown in Table 2 with relative
emergency costs and unloading capacities (see the points in Figure 1). Table 3 refers to the minimum
and maximum requirement capacity of supplier k ∈ K in the expected value problem. We suppose
to have an initial inventory level l0j = 0 at all the destinations j ∈ D and to use vehicles with fixed
capacity q = 31 Ton. The cancellation fee α is fixed to the value of 0.7.

Table 1: Set of suppliers K and set of their plants Ok, k ∈ K .
Supplier k ∈ K Plant i ∈ Ok

1) SAINT-GOBAIN PPC ITALIA SPA Guglionesi
Montenero Bisaccia
Montiglio
Murisengo
Novafeltria di Sassofeltrio
Riolo Terme

2) F.LLI CORTESE SRL Canolo
3) DAMOS SRL Pieve di Cadore
4) ESTRAZIONE GESSO SNC Murisengo
5) F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo
6) LAGES SPA Pisogne

Riolo Terme
7) AUTOTRASPORTI PIGLIACELLI SPA Guglionesi
8) AUTOTRASP. CARMINE SALERNO SRL Guglionesi

Montenero Bisaccia
9) SIEM INDUSTRIA DEL GESSO SRL Marcellinara
10) FOGLIA GIUSEPPE Giffoni Valle Piana
11) SAMA SRL Cava Ripari
12) FASSA SPA Cava di Calliano
13) LOGISTICA BOCCATO GHIAIA SRL Secchiano
14) SOMEL PICCOLA SOC.COOP. A RL Giffoni Valle Piana
15) NUOVA DARSENA SRL Pieve di Cadore
16) BAIGUINI ALBERTO & C SNC Rogno
17) GESSI ROCCASTRADA SRL Roccastrada
18) BONACIA SRL Mineo
19) VOLANO SRL Novafeltria di Sassofeltrio

Secchiano
20) MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio
21) VITO ALTERIO GESSI SNC Anzano di Puglia
22) PADUA ANGELO Licodia Eubea
23) ITALSAB SRL Canolo
24) FOGLIA GROUP SRL Giffoni Valle Piana

Table 2: List of destinations (cement factories) with relative expected emergency costs b̄j and un-
loading capacities gj , j ∈ D .

Destination j ∈ D Expected emergency cost b̄j Unloading capacity gj
1) BORGO SAN DALMAZZO 72.61 422.95
2) CALUSCO D’ADDA 70.58 2054.55
3) REZZATO 68.01 1330.67
4) MONSELICE 64.94 453.64
5) TRIESTE 73.52 613.41
6) SALERNO 58.57 695.24
7) SARCHE DI CALAVINO 69.83 443.14
8) CASTROVILLARI 66.32 815.36
9) MATERA 62.63 933.33
10) NOVI LIGURE 68.22 319.79
11) SCAFA 48.92 443.11
12) COLLEFERRO 50.04 760.11
13) VIBOVALENTIA 73.07 381.20
14) RAVENNA 59.93 498.33
15) GUARDIAREGIA 55.63 232411.75

Scenarios of demand at the first week of March 2014, are built on historical data directly, using
all the weekly values in March, April, May and June of the years 2011, 2012 and 2013 (see Figure
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Table 3: Minimum rk and average maximum vk requirement capacity of supplier k ∈ K .
Supplier k ∈ K rk vk

1) SAINT-GOBAIN PPC ITALIA SPA 1057.69 1500
2) F.LLI CORTESE SRL 0 200
3) DAMOS SRL 0 200
4) ESTRAZIONE GESSO SNC 0 66
5) F.LLI FUSCA’ AUTOTRASPORTI SNC 0 200
6) LAGES SPA 0 376.92
7) AUTOTRASPORTI PIGLIACELLI SPA 0 100
8) AUTOTRASP. CARMINE SALERNO SRL 0 100
9) SIEM INDUSTRIA DEL GESSO SRL 0 150
10) FOGLIA GIUSEPPE 0 94
11) SAMA SRL 0 280
12) FASSA SPA 0 100
13) LOGISTICA BOCCATO GHIAIA SRL 0 100
14) SOMEL PICCOLA SOC.COOP. A RL 0 100
15) NUOVA DARSENA SRL 0 100
16) BAIGUINI ALBERTO & C SNC 0 100
17) GESSI ROCCASTRADA SRL 0 100
18) BONACIA SRL 0 100
19) VOLANO SRL 0 100
20) MATERIA SERVIZI DI PROTTI DENIS 0 100
21) VITO ALTERIO GESSI SNC 0 100
22) PADUA ANGELO 0 100
23) ITALSAB SRL 0 50
24) FOGLIA GROUP SRL 0 100

2). Values of ρ1Gj as in (127) are reported in Table 14. On the other hand, scenarios of buying
costs from external sources have been generated sampling from a uniform distribution in the interval[
b̄j − σ · b̄j , b̄j + σ · b̄j

]
with a given deviation level of σ = 20%. Values of ρ2Fj as in (129) are

reported in Table 14.
In this way a scenario tree composed of 48 leaves has been built. Scenarios are supposed to be

equiprobable. The considered models aim to find, for each plant of the 24 suppliers, the number of
vehicles to be booked for replenishing gypsum in order to minimize the total cost, during the first
week of March 2014.
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Figure 2: Demand scenarios dsj of cement factories j ∈ D .
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Both the Expected Value EV problem and stochastic optimization problem SP are modeled in
AMPL and solved using the CPLEX 12.5.1.0. solver. The expected value problem, (1)-(8) (with a
unique scenario of demand, d̄j) converges to the solution in 51 MIP iterations. It is composed of 975
variables of which 960 are integer. AMPL presolve eliminates 23 constraints, the remaining ones are
535, all linear. The computing time is negligible (see the first line of Table 7).

On the other side, the two-stage stochastic programming problem (15)-(22), converges to the
solution in 16 609 MIP iterations. The computing time is much higher than the EV (see the second
line of Table 7). The RP problem is composed of 24 240 variables of which 23 520 integer. AMPL
presolve eliminates 1261 constraints, the remaining ones are 24 818, all linear inequalities.

Solution of the stochastic model, (15)-(22) RP, is compared with the solution of the expected
value problem, (1)-(8) EV (see Table 7). Solutions to the deterministic mixed-integer model EV are
reported in Table 5: the model will always book the exact number of vehicles needed for the next
period (so x̄ijk = z̄sijk, i ∈ Ok, k ∈ K , j ∈ J , s ∈ S ); it sorts the suppliers and their plants
according to the transportation costs and books a full production capacity from the cheapest one,
following by the next-cheapest. As long as we have enough transportation capacity, the model will
never purchase extra gypsum from external sources (i.e. yj = 0 for some destinations, see Table 4).

Table 4: Optimal solutions yj for the deterministic “supply transportation problem” with mixed-
integer variables.

Destinations yj
Calusco D’Adda 0.34
Guardiaregia 0.12
Rezzato 0.09
Trieste 0.28

First stage solutions for the stochastic mixed-integer model are reported in Table 6.

Table 5: Optimal solution of the expected value model EV with mixed-integer variables. The table
shows the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination
j ∈ D .

Destination Supplier Plant xijk

BORGO SAN DALMAZZO SAINT-GOBAIN PPC ITALIA SPA Montiglio 7
CALUSCO D’ADDA ESTRAZIONE GESSO SNC Murisengo 2
CALUSCO D’ADDA FASSA SPA Cava di Calliano 3
CALUSCO D’ADDA SAINT-GOBAIN PPC ITALIA SPA Montiglio 18
CALUSCO D’ADDA BAIGUINI ALBERTO & C SNC Rogno 3
CASTROVILLARI PADUA ANGELO Licodia Eubea 3
COLLEFERRO SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 7
COLLEFERRO VOLANO SRL Novafeltria di Sassofeltrio 1
GUARDIAREGIA FOGLIA GIUSEPPE Giffoni Valle Piana 2
GUARDIAREGIA VITO ALTERIO GESSI SNC Anzano di Puglia 3
MATERA F.LLI CORTESE SRL Canolo 6
MATERA FOGLIA GROUP SRL Giffoni Valle Piana 3
MONSELICE SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 4
NOVI LIGURE SAINT-GOBAIN PPC ITALIA SPA Montiglio 4
RAVENNA SAINTGOBAIN Novafeltria di Sassofeltrio 4
REZZATO LAGES SPA Pisogne 12
REZZATO MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio 3
REZZATO VOLANO SRL Novafeltria di Sassofeltrio 1
SALERNO FOGLIA GIUSEPPE Giffoni Valle Piana 1
SALERNO SOMEL PICCOLA SOC.COOP.A RL Giffoni Valle Piana 3
SARCHE DI CALAVINO SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 4
SCAFA SAMA SRL Cava Ripari 5
TRIESTE MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio 0
VIBO VALENTIA SIEM INDUSTRIA DEL GESSO SRL Marcellinara 4
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Table 6: Optimal solution of the stochastic model RP with mixed-integer variables. The table shows
the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination j ∈ D .

Destination Supplier Plant xijk

BORGO SAN DALMAZZO SAINT-GOBAIN PPC ITALIA SPA Montiglio 9
CALUSCO D’ADDA FASSA SPA Cava di Calliano 3
CALUSCO D’ADDA SAINTGOBAIN PPC ITALIA SPA Montiglio 22
CALUSCO D’ADDA DAMOS SRL Pieve di Cadore 1
CALUSCO D’ADDA ESTRAZIONE GESSO SNC Murisengo 2
CALUSCO D’ADDA BAIGUINIALBERTOCSNC Rogno 3
CALUSCO D’ADDA LAGES SPA Pisogne 4
CASTROVILLARI PADUA ANGELO LicodiaEubea 3
CASTROVILLARI BONACIA SRL Mineo 1
CASTROVILLARI F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 1
CASTROVILLARI SIEM INDUSTRIA DEL GESSO SRL Marcellinara 3
COLLEFERRO MATERIA SERVIZI Novafeltria 1
COLLEFERRO SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 4
COLLEFERRO SAMA SRL Cava Ripari 2
COLLEFERRO GESSI ROCCASTRADA SRL Roccastrada 3
GUARDIAREGIA FOGLIA GROUP SRL Giffoni Valle Piana 1
GUARDIAREGIA FOGLIA GIUSEPPE Giffoni Valle Piana 1
GUARDIAREGIA AUTOTRASP. CARMINE SALERNO SRL Montenero Bisaccia 3
GUARDIAREGIA VITO ALTERIO GESSI SNC Anzano di Puglia 3
MATERA FOGLIA GIUSEPPE Giffoni Valle Piana 1
MATERA FOGLIA GROUP SRL Giffoni Valle Piana 1
MATERA F.LLI CORTESE SRL Canolo 6
MATERA F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 3
MATERA ITALSAB SRL Canolo 1
MATERA SIEM INDUSTRIA DEL GESSO SRL Marcellinara 1
MONSELICE MATERIA SERVIZI Novafeltria di Sassofeltrio 1
MONSELICE SAINT GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 1
MONSELICE DAMOS SRL Pieve di Cadore 1
MONSELICE LOGISTICA BOCCATO GHIAIA SRL Secchiano 3
NOVI LIGURE SAINT-GOBAIN PPC ITALIA SPA Montiglio 6
RAVENNA MATERIA SERVIZI Novafeltria di Sassofeltrio 1
RAVENNA SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 3
RAVENNA VOLANO SRL Novafeltria di Sassofeltrio 3
REZZATO SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 8
REZZATO NUOVA DARSENA SRL Pieve di Cadore 3
REZZATO LAGES SPA Pisogne 8
REZZATO DAMOS SRL Pieve di Cadore 2
SALERNO FOGLIA GIUSEPPE Giffoni Valle Piana 2
SALERNO FOGLIA GROUP SRL Giffoni Valle Piana 2
SALERNO SOMEL PICCOLA SOC.COOP A RL Giffoni Valle Piana 3
SARCHE DI CALAVINO MATERIA SERVIZI Novafeltria di Sassofeltrio 1
SARCHE DI CALAVINO SAINT-GOBAIN PPC ITALIA SPA Novafeltria di Sassofeltrio 4
SARCHE DI CALAVINO DAMOSSRL Pieve di Cadore 1
SCAFA SAMA SRL Cava Ripari 7
TRIESTE MATERIA SERVIZI Novafeltria di Sassofeltrio 1
VIBOVALENTIA SIEM INDUSTRIA DEL GESSO Marcellinara 3
VIBOVALENTIA BONACIA SRL Mineo 2
VIBOVALENTIA F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 3

Table 7: Optimal solutions for the “supply transportation problem” with mixed-integer variables
where total optimal costs and CPU costs are reported.

Objective value (e) CPU seconds

EV 75 425.54 0.109
RP (with |S | = 48) 107 244.67 16.19
EEV infeasible
WS 84 472.21 4.47
RO box constraints 391928.16 0.109

A direct comparison of the total number of booked vehicles at each destination plant
∑

k∈K

∑
i∈Ok

xijk ∀ j ∈
D , in the expected value solution and in the stochastic one is shown in Table 8. The deterministic
model books much fewer vehicles, resulting in a solution costing 70.33% of the stochastic counterpart
(see Table 7). However, when using the EV solution, the expectation expected value problem EEV is
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Table 8: Comparison of the total number of booked vehicles
∑

k∈K

∑
i∈Ok

xijk ∀ j ∈ D in the
expected value solution EV and in the stochastic solution RP with mixed-integer variables.

Destination deterministic solution x̄ijk stochastic solution xijk

BORGO SAN DALMAZZO 7 9
CALUSCO D’ADDA 26 35
CASTROVILLARI 3 8
COLLEFERRO 8 10
GUARDIAREGIA 6 8
MATERA 9 13
MONSELICE 4 6
NOVI LIGURE 4 6
RAVENNA 4 7
REZZATO 16 21
SALERNO 4 7
SARCHE DI CALAVINO 4 6
SCAFA 5 7
TRIESTE 0 1
VIBO VALENTIA 4 8

infeasible (see Table 7) resulting in an infinite Value of Stochastic Solution

V SS = EEV −RP = ∞ . (131)

The infinite VSS value shows that the expected value solution is not appropriate in a stochastic
setting since constraint (19) is no longer satisfied because the number of vehicles booked from the
supplier SAINT-GOBAIN PPC ITALIA SPA along scenarios 31, 41 and 42 is too low. This results
in a violation of the minimum requirement capacity rk = 1057.69 (see [16] and [18]).

Figure 3 shows the objective function values of the deterministic problems solved separately over
each scenario s ∈ S from the historical data. The total cost of the worst scenario is 205 705.09.
The corresponding Wait-and-See value WS is reported in Table 7 showing the advantage of having
the information about future demand at the first stage. The Expected Value of Perfect Information
EVPI reduces to:

EV PI = RP −WS = 107 244.67− 84 472.21 = 22 772.46 . (132)

Notice that the RP problem considered above uses only 48 scenarios. Another important issue
in SP is to check how the value of the total cost varies with the number of scenarios. For this reason
figure 4 shows the convergence of the optimal function value (total cost) of the stochastic model
where the integrality constraints have been relaxed, for an increasing number of scenarios. From
the results we note that the optimal function value stabilizes for scenario trees with more than 200
scenarios.

Since the gypsum demand is highly affected by the economic conditions of the public and private
medium and large-scale construction sector, a reliable forecast and reasonable estimates of probabil-
ity distributions are difficult to obtain. This is the main reason that lead us to consider also robust
optimization approaches. In the following results we first consider static approaches with uncer-
tainty parameters respectively belonging to box, ellipsoidal uncertainty sets or mixture of them, and
secondly dynamic approaches, via the concept of adjustable robust counterpart.

We first considered the robust optimization model with box uncertainty, (55)-(63). As done for
the previous approaches, the problem is modeled in AMPL and solved using the CPLEX 12.5.1.0.
solver. It converges to the solution in 83 MIP iterations. The problem is composed of 976 variables
of which 960 are integer. AMPL presolve eliminates 23 constraints, the remaining ones are 521
inequality constraints, all linear. Robust solution of the mixed-integer model with box constraints
are reported in Table 7 at the last line. Results show that the approach is very conservative having
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Figure 3: Objective function values of the deterministic problems over 48 scenarios with mixed-integer
variables.
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Figure 4: Convergence of the optimal function value of the stochastic model with all continuous
variables for an increasing number of scenarios.

a total cost of about 365% larger than the expected cost obtained by solving RP. Tables 9 and 10
report the optimal solutions of the mixed-integer robust problem with box constraints given by the
normalized volume yj for destination plant j ∈ D and number of booked vehicles xijk from plant
i ∈ Ok of supplier k to destination j ∈ D . Due to the suppliers’ maximum requirement constraint
and largest demand, the model forces the company to buy from external sources. This happens for
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almost all the destinations, with exception of Trieste and Vibovalentia where the demand is fully
satisfied by the orders xijk. On the other hand, the demand of Colleferro, Guardiaregia and Rezzato,
are satisfied only by external orders yj > 0 with a consequent larger cost. The choice of the box
uncertainty set is preferable only if the feasibility of all the constraints is highly required. One can
try to use a different uncertainty set in order to get a less conservative outcome. We show the results
obtained by using a box-ellipsoid uncertainty set which, as mentioned in Section 4.2, requires the
solution of a second-order cone program. To make a fair comparison with the previous models, we
need to relax the integer variables hypothesis on xijk and zijk.

Table 9: Optimal solution of the robust mixed-integer box optimization model. The table shows the
optimal normalized volume yj for destination plant j ∈ D .

Destination yj
BORGO SAN DALMAZZO 0.643847
CALUSCO D’ADDA 17.2759
CASTROVILLARI 0.931387
COLLEFERRO 22.1082
GUARDIAREGIA 23.3377
MATERA 15.7849
MONSELICE 8.7287
NOVI LIGURE 0.542244
RAVENNA 6.09235
REZZATO 29.9154
SALERNO 0.705345
SARCHE DI CALAVINO 0.595318
SCAFA 1.83631
TRIESTE 0
VIBO VALENTIA 0

Table 10: Optimal solution of the robust mixed-integer box optimization model. The table shows
the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination j ∈ D .

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk

BORGO SAN DALMAZZO SAINT-GOBAIN PPC ITALIA SPA Montiglio 13
CALUSCO D’ADDA ESTRAZIONE GESSO SNC Murisengo 2
CALUSCO D’ADDA FASSA SPA Cava di Calliano 3
CALUSCO D’ADDA SAINT-GOBAIN PPC ITALIA SPA Montiglio 29
CALUSCO D’ADDA BAIGUINI ALBERTO CSNC Rogno 3
CALUSCO D’ADDA LAGES SPA Pisogne 12
CASTROVILLARI PADUA ANGELO Licodia Eubea 3
CASTROVILLARI F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 5
CASTROVILLARI SIEM INDUSTRIA DEL GESSO SRL Marcellinara 4
MATERA AUTOTRASP. CARMINE SALERNO SRL Montenero Bisaccia 3
MATERA VITO ALTERIO GESSI SNC Anzano di Puglia 1
MONSELICE LOGISTICA BOCCATO GHIAIA SR Secchiano 3
NOVI LIGURE SAINT-GOBAIN PPC ITALIA SPA Montiglio 6
NOVI LIGURE GESSI ROCCA STRADA SRL Roccastrada 3
RAVENNA MATERIA SERVIZI DI PROTTI DENIS Novafeltria 1
RAVENNA VOLANO SRL Novafeltria di Sassofeltrio 3
SALERNO FOGLIA GIUSEPPE Giffoni Valle Piana 3
SALERNO SOMEL PICCOLA SOC. COOP A RL Giffoni Valle Piana 3
SALERNO AUTOTRASPORTI PIGLIACELLI SPA Gugionesi 3
SALERNO FOGLIA GROUP SRL Giffoni Valle Piana 3
SARCHE DI CALAVINO DAMOS SRL Pieve di Cadore 4
SARCHE DI CALAVINO MATERIA SERVIZI DI PROTTI DENIS Novafeltria 2
SARCHE DI CALAVINO NUOVA DARSENA SRL Pieve di Cadore 3
SCAFA SAMA SRL Cava Ripari 9
TRIESTE DAMOS SRL Pieve di Cadore 2
VIBO VALENTIA BONACIA SRL Mineo 3
VIBO VALENTIA F.LLI CORTESE SRL Canolo 6
VIBO VALENTIA F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 1
VIBO VALENTIA ITALSAB SRL Canolo 1

Problem (70)-(78) with box-ellipsoidal uncertainty was modeled in AMPL and solved using the
MOSEK solver. The problem is composed of 976 variables. AMPL presolve eliminates 23 constraints,
the remaining ones are 518, all linear except one. Since in our application the number of destination
D = 15, condition (66) is satisfied for Ω ≥

√
15 = 3.873. Table 11 reports total costs of the robust
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Table 11: Optimal solutions (costs, probability of constraint satisfaction (Prob), and computing time
in CPU seconds) for the “supply transportation problem” with all continuous variables.

Optimization method Objective value (e) Prob CPU seconds
EV 72 751.90 0.015
RP (with |S | = 48) 104 971.09=RP 12.2461
RP (with |S | = 100) 133 499.31 32.94
RP (with |S | = 150) 141 015.19 98.32
RP (with |S | = 200) 144 189.72 114.13
RP (with |S | = 250) 139 277.54 196.60
RP (with |S | = 300) 138 347.25 214.84
RP (with |S | = 400) 140 493.67 383.98
RP (with |S | = 500) 141 311 593.84
RP (with |S | = 600) 138 466.34 711.87
RP (with |S | = 700) 138 051.99 826.97
RP (with |S | = 800) 142 047.69 769.13
RP (with |S | = 900) 139 410.84 1762.14
RP (with |S | = 1000) 141 258.22 1851.25
RO box constraints 381 634.90 1 0.015
RO with b̄j and box constraints for dj 343 849.19 0 0.015

RO box-ellipsoidal constraints (Ω = 0) 343 849.19 0 0.2028
RO box-ellipsoidal constraints (Ω = 0.2) 346 986.47 0.0198 0.2028
RO box-ellipsoidal constraints (Ω = 0.4) 349 992.72 0.0769 0.2028
RO box-ellipsoidal constraints (Ω = 0.6) 352 963.73 0.1647 0.2028
RO box-ellipsoidal constraints (Ω = 0.8) 355 840.43 0.2739 0.2028
RO box-ellipsoidal constraints (Ω = 1) 358 616.46 0.3935 0.2028
RO box-ellipsoidal constraints (Ω = 1.2) 361 347.71 0.5132 0.2028
RO box-ellipsoidal constraints (Ω = 1.4) 364 056.06 0.6247 0.2028
RO box-ellipsoidal constraints (Ω = 1.6) 366 735.70 0.7220 0.2028
RO box-ellipsoidal constraints (Ω = 1.8) 369 385.09 0.8021 0.2028
RO box-ellipsoidal constraints (Ω = 2) 372 002.76 0.8647 0.2028
RO box-ellipsoidal constraints (Ω = 2.2) 374 591.53 0.9111 0.2028
RO box-ellipsoidal constraints (Ω = 2.4) 377 141.44 0.9439 0.2028
RO box-ellipsoidal constraints (Ω = 2.6) 379 655.26 0.9660 0.2028
RO box-ellipsoidal constraints (Ω = 2.75) 381 520.16 0.9772 0.2028
RO box-ellipsoidal constraints (Ω = 3.873) 395 095.068 1 0.2028
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Figure 5: Total cost of robust optimization model with all continuous variables and ellipsoidal
constraint. The figure shows for increasing values of Ω the total cost and probability of satisfaction
of constraint (71).
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Table 12: Optimal solution of the robust box optimization model with all continuous variables. The
table shows the optimal normalized volume yj for destination plant j ∈ D .

Destination yj
BORGO SAN DALMAZZO 0
CALUSCO D’ADDA 17.1097
CASTROVILLARI 0
COLLEFERRO 22.1082
GUARDIAREGIA 23.3333
MATERA 13.2951
MONSELICE 8.5029
NOVI LIGURE 0
RAVENNA 5.513
REZZATO 29.9154
SALERNO 0
SARCHE DI CALAVINO 0
SCAFA 1.80405
TRIESTE 0
VIBO VALENTIA 0

Table 13: Optimal solution of the robust box optimization model with all continuous variables. The
table shows the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination
j ∈ D .

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk

BORGO SAN DALMAZZO SAINT-GOBAIN PPC ITALIA SPA Montiglio 13.6438
CALUSCO D’ADDA ESTRAZIONE GESSO SNC Murisengo 2.12903
CALUSCO D’ADDA FASSA SPA Cava di Calliano 3.22581
CALUSCO D’ADDA SAINT-GOBAIN PPC ITALIA SPA Montiglio 28.4268
CALUSCO D’ADDA BAIGUINI ALBERTO & C SNC Rogno 3.22581
CALUSCO D’ADDA LAGES SPA Pisogne 12.1587
CASTROVILLARI PADUA ANGELO Licodia Eubea 3.22581
CASTROVILLARI F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 4.86687
CASTROVILLARI SIEM INDUSTRIA DEL GESSO SRL Marcellinara 4.83871
GUARDIAREGIA AUTOTRASPORTI PIGLIACELLI SPA Guglionesi 0.00433257
MATERA AUTOTRASP. CARMINE SALERNO SRL Montenero Bisaccia 3.22581
MATERA F.LLI CORTESE SRL Canolo 0.425199
MATERA ITALSAB SRL Canolo 1.6129
MATERA VITO ALTERIO GESSI SNC Anzano di Puglia 3.22581
MONSELICE LOGISTICA BOCCATO GHIAI ASR Secchiano 3.22581
NOVI LIGURE SAINT-GOBAIN PPC ITALIA SPA Montiglio 6.31644
NOVI LIGURE GESSI ROCCA STRADA SRL Roccastrada 3.22581
RAVENNA MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio 3.22581
RAVENNA VOLANO SRL Novafeltria 1.35355
SALERNO FOGLIA GIUSEPPE Giffoni Valle Piana 3.03226
SALERNO SOMEL PICCOLA SOC. COOP A RL Giffoni Valle Piana 3.22581
SALERNO AUTOTRASPORTI PIGLIACELLI SPA Gugionesi 3.22147
SALERNO FOGLIA GROUPSRL Giffoni Valle Piana 3.22581
SARCHE DI CALAVINO DAMOS SRL Pieve di Cadore 4.49725
SARCHE DI CALAVINO VOLANO SRL Novafeltria di Sassofeltrio 1.87226
SARCHE DI CALAVINO NUOVA DARSENA SRL Pieve di Cadore 3.22581
SCAFA SAMA SRL Cava Ripari 9.03226
TRIESTE DAMOS SRL Pieve di Cadore 1.95436
VIBO VALENTIA BONACIA SRL Mineo 3.22581
VIBO VALENTIA F.LLI CORTESE SRL Canolo 6.02641
VIBO VALENTIA F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 1.58474

box-ellipsoidal optimization with the probability of satisfaction of the second order cone constraint
(71) and CPU seconds, for increasing values of the parameter 0 ≤ Ω ≤ 3.873 (see also Figure 5).

For a fair comparison, total costs and CPU time of EV and RP models refer to the case in which
the integrality on the decision variables is relaxed.

The results show that for Ω = 0, the total cost of the RO box-ellipsoidal approach is the same
than the RO model with average buying cost b̄j and box constraint requirement for the demand
dj . As Ω increases to 2.75 the total cost reaches approximately the same value, 381 520.16, of the
box model case with a probability of constraint satisfaction close to one. In this case the optimal
cost of the box-ellipsoidal model is only 114.74 lower than the box model, where the probability of
constraint satisfaction is exactly one.

For a comparative analysis, tables 15 and 16 report the solution variables xijk and yj in the
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Table 14: Values used in defining the box constraints (43) for the demand and (39) for buying cost.
Destination ρ1Gj ρ2Fj

BORGO SAN DALMAZZO 226.288561 9.702845442
CALUSCO D’ADDA 1237.994565 11.17820427
REZZATO 428.5384258 10.75140176
MONSELICE 241.6982616 10.19631396
TRIESTE 92.40921985 11.28079203
SALERNO 264.6183199 10.96670549
SARCHE DI CALAVINO 174.0835254 11.6578062
CASTROVILLARI 312.291651 10.32202013
MATERA 397.6409753 10.65633647
NOVI LIGURE 175.7510858 9.943717501
SCAFA 181.3741261 12.39780253
COLLEFERRO 326.825566 10.03871316
VIBO VALENTIA 228.3892089 9.799237344
RAVENNA 191.7861022 10.97611094
GUARDIAREGIA 564.6712725 10.94525171

case of the box-ellipsoidal robust approach with Ω = 2.75 whereas tables 12 and 13 refer to the
optimal solutions of the continuous box case. While the two approaches have approximately the
same total costs, their solution strategies have some differences: the box-ellipsoidal solution do not
make any order only for Colleferro, deciding to satisfy their maximum demand by external sources
y12 = 22.10. On the other side the box solution does not make any order both for Rezzato and
Colleferro making orders from external sources. The box solution tries to satisfy the demand of
Borgo San Dalmazzo, Castrovillari, Novi Ligure, Salerno, Sarche di Calavino, Trieste and Vibo
Valentia only by booking vehicles xijk from the set of suppliers while the box-ellipsoidal solution
requires for all the destinations, with exception of Vibo Valentia, to buy from external sources.

The solution of the box-ellipsoidal model with Ω =
√
D = 3.873 is guaranteed to satisfy the second

order cone constraint with probability one. This fact has been remarked at the end of Section 4. In
this case, the ellipsoidal uncertainty set Ub,ell, given by (68) and (36), includes the box uncertainty
set Ub,box defined in (39). Therefore the RO with box-ellipsoidal constraints results in a cost that is
13 575 larger than the RO with box constraints.

In terms of CPU complexity, column 4 of Table 11 shows that the stochastic approach is signifi-
cantly more expensive than the conservative robust one. The stochastic approach with 200 scenarios,
where the stability of the solution is reached (see Figure 4), requires 114 CPU seconds versus 0.2 of
the box-ellipsoidal formulation.

In order to make a fair comparison with the stochastic programming methodology, as proposed
in Section 5, we compute total costs associated to a dynamic approach via the concept of adjustable
robust counterpart.

Table 17 and Figure 6 show total costs cost1,τ , . . . , cost6,τ obtained by solving model (109)-
(115) using the nonadjustable decision variables xijk respectively given by methods M1, . . . ,M6, for
τ = 24, . . . , 47. Results are average values over 1000 simulations. In general the number of booked
vehicles xijk (nonadjustable variables) from the stochastic approach M2 is higher than the one from
the expected value approach M1. This implies an interesting behaviour of the two solutions in terms
of cost1,τ and cost2,τ : for τ = 24, . . . , 31, cost1,τ > cost2,τ , since the low orders xijk from M1 force
the model to buy from external sources with an higher cost. On the contrary, for τ = 32, . . . , 47,
since the observed demand dt+1 is lower than the ones observed in the scenario set S̄ , a cancellation
fee has to be paid for all vehicles booked from model M2 but not actually used and consequently
cost2,τ > cost1,τ .

Larger costs are observed for the robust methods with box constraintsM3 and with box-ellipsoidal
constraints M4 (Ω = 3.873). An intermediate cost is obtained for the adjustable robust optimization
M5. On the other hand, an affinely adjustable approach is no longer obtained since f

(
λ
(
d̄τ+1

))
> 0
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Table 15: Optimal solution of the robust box-ellipsoidal optimization model with Ω = 2.75. The
table shows the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination
j ∈ D .

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk

BORGO SAN DALMAZZO SAINTGOBAIN Montiglio 9.27
CALUSCO D’ADDA FASSA SPA Cava di Calliano 3.23
CALUSCO D’ADDA ESTRAZIONE GESSO SNC Murisengo 2.13
CALUSCO D’ADDA SAINT-GOBAIN PPC ITALIA SPA Montiglio 38.05
CALUSCO D’ADDA LAGES SPA Pisogne 10.52
CALUSCO D’ADDA BAIGUINI ALBERTO & C SNC Rogno 3.23
CASTROVILLARI PADUA ANGELO Licodia Eubea 3.23
CASTROVILLARI F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 1.96
CASTROVILLARI BONACIA SRL Mineo 1.26
CASTROVILLARI SIEM INDUSTRIA DEL GESSO SRL Marcellinara 4.84
GUARDIAREGIA AUTOTRASP CARMINE SALERNO SRL Montenero Bisaccia 3.21
GUARDIAREGIA SAMA SRL Cava Ripari 5.19
GUARDIAREGIA AUTOTRASPORTI PIGLIACELLI SPA Guglionesi 3.23
MATERA F.LLI CORTESE SRL Canolo 2.89
MATERA FOGLIA GIUSEPPE Giffoni Valle Piana 1.21
MATERA FOGLIA GROUP SRL Giffoni Valle Piana 1.26
MATERA ITALSAB SRL Canolo 0.86
MATERA SOMEL PICCOLA SOC COOP A RL Giffoni Valle Piana 1.26
MATERA VITO ALTERIO GESSI SNC Anzano di Puglia 3.23
MONSELICE LOGISTICA BOCCATO GHIAIA SR Secchiano 3.23
NOVI LIGURE SAINT-GOBAIN PPC ITALIA SPA Montiglio 1.06
RAVENNA MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio 0.11
RAVENNA VOLANO SRL Novafeltria di Sassofeltrio 0.11
REZZATO SAMA SRL Cava Ripari 2.16
REZZATO DAMOS SRL Pieve di Cadore 5.88
REZZATO LAGES SPA Pisogne 1.64
REZZATO MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio 0.84
REZZATO NUOVA DARSENA SRL Pieve di Cadore 2.72
REZZATO VOLANO SRL Novafeltria di Sassofeltrio 0.84
REZZATO GESSI ROCCA STRADA SRL Roccastrada 3.23
SALERNO FOGLIA GIUSEPPE Giffoni Valle Piana 1.83
SALERNO FOGLIA GROUP SRL Giffoni Valle Piana 1.96
SALERNO SOMEL PICCOLA SOC COOP A RL Giffoni Valle Piana 1.97
SARCHE DI CALAVINO MATERIA SERVIZI DI PROTTI DENIS Novafeltria di Sassofeltrio 2.27
SARCHE DI CALAVINO VOLANO SRL Novafeltria di Sassofeltrio 2.27
SCAFA SAMA SRL Cava Ripari 1.68
TRIESTE DAMOS SRL Pieve di Cadore 0.57
TRIESTE NUOVA DARSENA SRL Pieve di Cadore 0.5
VIBO VALENTIA F.LLI CORTESE SRL Canolo 3.56
VIBO VALENTIA ITALSAB SRL Canolo 0.82
VIBO VALENTIA BONACIA SRL Mineo 1.97
VIBO VALENTIA F.LLI FUSCA’ AUTOTRASPORTI SNC Mineo 4.49

Table 16: Optimal solution of the robust box-ellipsoidal optimization model with Ω = 2.75. The
table shows the optimal normalized volume yj for destination plant j ∈ D .

Destination yj
BORGO SAN DALMAZZO 4.36
CALUSCO D’ADDA 9.12
CASTROVILLARI 1.64
COLLEFERRO 22.10
GUARDIAREGIA 11.70
MATERA 11.13
MONSELICE 8.50
NOVI LIGURE 8.48
RAVENNA 9.86
REZZATO 12.60
SALERNO 6.94
SARCHE DI CALAVINO 5.05
SCAFA 9.15
TRIESTE 2.18
VIBO VALENTIA 0.00

and consequently cost6,τ = ∞ for τ = 24, . . . , 47. As expected the lowest cost (costτ ) is given by
the problem (117)-(124), since a full information on the realization of vectors b and d is available.

Total CPU time, in seconds, spent in solving the optimization problems Mm, m = 1, . . . , 6 and
(109)-(115) are reported in Table 18. Results show the higher computational complexity of the
stochastic approach M2 and adjustable M5 and M6 with respect to the robust box M3 or the
box-ellispoidal M4.
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Table 17: Optimal value of the objective function (117) with the adjustable strategy considered
in the previous section where method Mm m = 1, . . . , 6 is adopted to determine the nonadjustable
variables xijk. Last column (costτ ) refers to the cost of problem (117)-(124) where a full information
on the realization of vectors b and d is available. Results are average values over 1000 simulations.

τ cost1,τ cost2,τ cost3,τ cost4,τ cost5,τ cost6,τ costτ
24 112887 106268 149596 131733 139920 ∞ 76464
25 86156 78537 108328 99046 105893 ∞ 53386
26 122055 113678 157730 139411 146097 ∞ 80399
27 111713 101405 138061 130867 140536 ∞ 70792
28 125465 112587 156452 145235 147368 ∞ 83548
29 98605 91334 144716 125087 128931 ∞ 65283
30 104883 96586 151069 139699 137865 ∞ 73541
31 97507 92735 147384 133558 133085 ∞ 70808
32 56512 66738 84055 76295 72009 ∞ 37361
33 51712 61685 69863 68364 66863 ∞ 30987
34 50320 58994 71826 70761 64654 ∞ 29690
35 56012 65425 78257 79132 71442 ∞ 39029
36 49406 59721 75545 73450 66142 ∞ 28702
37 54452 62597 77775 75307 67223 ∞ 30513
38 58937 69873 83871 84397 78665 ∞ 39240
39 50336 60691 72534 73205 68384 ∞ 28646
40 49092 58604 78762 74779 69311 ∞ 26157
41 50588 60879 86342 75022 69542 ∞ 31475
42 103184 107178 127786 114733 110211 ∞ 65190
43 81849 93369 117811 99104 94021 ∞ 54748
44 80367 88607 113692 87892 92033 ∞ 49120
45 79641 84985 113013 97798 98013 ∞ 51223
46 66136 72613 105263 78852 83042 ∞ 40894
47 54122 66353 98546 84675 81543 ∞ 36623

Table 18: Total CPU time, in seconds, spent in solving the optimization problems Mm, m = 1, . . . , 6
and (109)-(115). Last column (costτ ) refers to the CPU time of problem (117)-(124) where a full
information on the realization of vectors b and d is available. Results are average values over 1000
simulations.

τ CPU1,τ CPU2,τ CPU3,τ CPU4,τ CPU5,τ CPU6,τ CPUτ

24 0.0312 8.8356 0.0312 0.2156 32.0156 32.0156 0.0156
25 0.0312 9.1856 0.0312 0.1856 29.8856 29.8856 0.0156
26 0.0312 8.1656 0.0312 0.2156 30.0156 30.0156 0.0156
27 0.0312 9.8856 0.0312 0.2256 32.9856 32.9856 0.0156
28 0.0312 10.0156 0.0312 0.2256 77.2756 77.2756 0.0156
29 0.0312 10.9756 0.0312 0.1956 83.5056 83.5056 0.0156
30 0.0312 11.8956 0.0312 0.2156 31.1456 31.1456 0.0156
31 0.0312 11.1456 0.0312 0.1956 59.3956 59.3956 0.0156
32 0.0312 10.7456 0.0312 0.2156 73.3956 73.3956 0.0156
33 0.0312 12.1756 0.0312 0.1956 71.2056 71.2056 0.0156
34 0.0312 11.4256 0.0312 0.2156 76.5256 76.5256 0.0156
35 0.0312 10.8256 0.0312 0.2156 65.4056 65.4056 0.0156
36 0.0312 11.5856 0.0312 0.1856 58.2256 58.2256 0.0156
37 0.0312 12.3156 0.0312 0.1956 91.2756 91.2756 0.0156
38 0.0312 11.3956 0.0312 0.2256 53.5856 53.5856 0.0156
39 0.0312 10.7256 0.0312 0.2156 83.5456 83.5456 0.0156
40 0.0312 11.1056 0.0312 0.2156 39.6156 39.6156 0.0156
41 0.0312 10.9856 0.0312 0.2026 65.8256 65.8256 0.0156
42 0.0312 10.9656 0.0312 0.2156 62.3156 62.3156 0.0156
43 0.0312 11.2756 0.0312 0.2156 89.1056 89.1056 0.0156
44 0.0312 11.2856 0.0312 0.2026 75.4256 75.4256 0.0156
45 0.0312 11.6056 0.0312 0.2156 89.4656 89.4656 0.0156
46 0.0312 11.3356 0.0312 0.2026 73.7656 73.765 0.0156
47 0.0312 14.0056 0.0312 0.2156 104.4256 104.4256 0.0156

7 Conclusions

In this paper we have discussed the effect of two modelling approaches, stochastic programming (SP)
and robust optimization (RO) to a real case of a transportation problem under uncertainty. The
problem consists in determining the number of vehicles to book at the beginning of each week to
replenish gypsum at all the cement factories of the producer so that the total cost is minimized. The
uncertainty comes from the demand of gypsum and buying costs from external sources in case of
inventory shortage. The problem has been solved both via a two-stage stochastic programming and
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Figure 6: Adjustable total costs cost1,τ , . . . , cost5,τ obtained by solving model (117)-(124) using the
nonadjustable decision variables xijk respectively given by methods M1, . . . ,M5, for an increasing
value of τ = 24, . . . , 47. Results are compared with the cost of problem (117)-(124) where a full
information on the realization of vectors b and d is available (costτ ). Results are average values over
1000 simulations.

robust optimization models with different uncertainty sets.
The goal of SP is to compute the minimum expected cost based on the specific probability

distribution of the uncertain parameters based on a set of scenarios. The optimal solution is firstly
compared with the Expected Value (EV) problem under the unique average scenario. The Value of
Stochastic Solution VSS, and the Expected Value of Perfect Information EVPI are then computed.

For RO we have firstly considered static approaches with random parameters belonging to box or
ellipsoidal uncertainty sets, and secondly dynamic approaches, via the concept of affinely adjustable
robust counterpart. The choice of the box uncertainty set is preferable only if the feasibility of all
the constraints is highly required, but this certainty of constraint satisfaction results in a higher
cost of the transportation problem. A less conservative outcome has been obtained with a box-
ellipsoidal uncertainty set that requires the solution of a second-order cone program SOCP. The
main advantage of the RO formulations considered, is that they can be solved in polynomial time
and theoretical guarantees for the quality of the solution are provided, which is not the case with
the aforementioned SP formulations. In order to make a fair comparison between the robust and
the stochastic programming methodology, a dynamic approach via the concept of adjustable robust
counterpart has been also considered. The variables have been partitioned in nonadjustable and
adjustable variables and several methods to find the nonadjustable variables have been proposed
and compared in terms of total cost and CPU time. Numerical experiments show that the robust
approach results in larger objective function values at the optimal solutions due to the certitude
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of constraint satisfaction. Conversely, the computational complexity is higher for the stochastic
approach which has no guarantees for the quality of the provided solution.
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