
What Works Best When? A Systematic Evaluation of
Heuristics for Max-Cut and QUBO

Iain Dunning, Swati Gupta, John Silberholz
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139,

idunning@mit.edu, swatig@mit.edu, josilber@mit.edu

Though empirical testing is broadly used to evaluate heuristics, there are shortcomings with how it is often

applied in practice. In a systematic review of Max-Cut and Quadratic Unconstrained Binary Optimization

(QUBO) heuristics papers, we found only 4% publish source code, only 14% compare heuristics with identical

termination criteria, and most experiments are performed with an artificial, homogeneous set of problem

instances. To address these limitations, we implement and release as open-source a code-base of 10 Max-

Cut and 27 QUBO heuristics. We perform heuristic evaluation using cloud computing on a library of 3,296

instances. This large-scale evaluation provides insight into the types of problem instances for which each

heuristic performs well or poorly. Because no single heuristic outperforms all others across all problem

instances, we use machine learning to predict which heuristic will work best on a previously unseen problem

instance, a key question facing practitioners.

Key words : computational testing, reproducible research, heuristics, binary quadratic optimization,

Max-Cut, hyper-heuristics, test bed, interpretable machine learning

1. Introduction

Many classical optimization problems encountered in operations research practice are NP-

hard; due to the exponential worst-case runtime of known exact approaches for such prob-

lems, heuristics and approximation algorithms are the main tools available to solve large-

scale problem instances. Theoretical justifications such as worst-case approximation ratios

are often used to evaluate the performance of approximation algorithms and are attractive

due to their generality — they apply across all possible problem instances. However, it is

well known that procedures will often significantly outperform their worst-case bounds on

real-world instances, and practitioners are often interested in how well a procedure will

perform in practice. As a result, many heuristics papers perform empirical testing, in which

a procedure is tested on a set of problem instances.

Though empirical testing is the major tool for evaluating heuristics, in this work we

highlight a number of shortcomings with how it is often applied in practice and address

these weaknesses for the Max-Cut and Quadratic Unconstrained Binary Optimization

1
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(QUBO) problems. Max-Cut (maxy∈{−1,1}n
1
4

∑n
i=1

∑n
j=1wij(1−yiyj), given weighted adja-

cency matrix W ∈ Rn×n) is one of Karp’s 21 NP-complete problems (Karp 1972), and

QUBO (maxx∈{0,1}n x′Qx, given Q∈Rn×n) is also a classical optimization problem; a sim-

ple transformation exists to reduce each problem to the other1. (Hammer 1965). Many

heuristics have been designed for these problems — in a systematic review completed as

part of this work (see Appendix C), we found that 95 papers have performed empirical

testing on such heuristics, 31 of which were published since 2010. These problems are also

of interest due to their broad practical applicability: Max-Cut applications include VLSI

design, network design, statistical physics, and image segmentation (Barahona et al. 1988,

Barahona 1996, de Sousa et al. 2013), and QUBO applications include capital budget-

ing and financial analysis, computer aided design, traffic message management problems,

machine scheduling, and molecular conformation (Merz and Freisleben 2002).

Despite the volume of heuristics research for Max-Cut and QUBO and the problems’

range of applications, empirical testing of new heuristics for these problems has a number

of deficiencies.

Reproducibility: To the best of our knowledge, only 4% of heuristics papers for Max-

Cut and QUBO have publicly accessible source code, meaning any attempt to replicate

empirical testing in one of the remaining papers would require either reimplementing that

heuristic from its pseudocode or requesting its source code from the paper’s authors. Even

if source code were obtained, other reporting limitations hinder reproducing the computa-

tional environment used for testing: 20% of papers do not report the processor used and

87% of papers with compiled languages do not report the compiler flags used.

Fair, broad comparison: Though 81% of heuristics papers for Max-Cut and QUBO

perform a comparison against a previously published procedure using a specified set of

instances, most do not do so in a fair or broad manner (see Figure 1). In 86% of comparisons,

solution qualities are compared across procedures run with different termination criteria,

often leaving readers unsure if one method had higher solution quality than another due

to its effectiveness or due to it being given a larger computational budget. Even though

1An n-variable QUBO instance (maxx∈{0,1}n x′Qx) can be reduced to an (n + 1)-node Max-Cut instance
(maxy∈{−1,1}n+1

1
4

∑n+1
i=1

∑n+1
j=1 wij(1−yiyj)) by assigning wij =−qij for all i, j ∈ {1, . . . , n} and by assigning wi,n+1 =

wn+1,i = qii +
∑n

j=1 qij for all i ∈ {1, . . . , n}. The optimal solution x∗i of QUBO relates to the optimal solution y∗i of

Max-Cut as x∗i = 1
2
(1− y∗i y∗n+1). Similarly, an n-node Max-Cut instance can be expressed as an n-variable QUBO

instance by considering qij = −wij for all i, j ∈ {1, . . . , n}, i 6= j and qii =
∑n

j=1wij for all i ∈ {1, . . . , n}, and the
optimal solutions relate as y∗i = 2x∗i − 1
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Figure 1 Histogram of the number of previously published heuristics with which a comparison was performed

across the 77 Max-Cut and QUBO papers that compare against previously published heuristics.

more than 90 papers have published heuristics for Max-Cut and QUBO, papers that per-

form comparative testing between heuristics have compared their procedures against a

median of three previously published heuristics; none have compared against more than

10 other procedures (even though we show in Section 4 that 30 out of 37 heuristics that

we consider in this work outperformed all others on at least one problem instance in our

test bed). Though Max-Cut and QUBO are considered a test bed for new ideas in heuris-

tic design (Mart́ı et al. 2009), the limited scope of comparative testing prevents authors

from taking advantage of this by determining how their new procedure performs against

a diverse set of previously published heuristics.

Appropriate problem instances: Standard instance libraries provide a convenient way

to compare the performance of heuristics, and 69% of Max-Cut and QUBO heuristics test

using all or part of the Max-Cut or QUBO standard libraries. Unfortunately, all 231 prob-

lem instances in these libraries are randomly generated, so empirical testing cannot be used

to evaluate how well heuristics can be expected to perform in real-world settings. Further,

the instances in standard instance libraries are homogeneous in structure. For instance, as

displayed in Figure 2, the Max-Cut standard instance library only contains sparse graphs

while the QUBO standard instance library only contains dense matrices (50% and above for

the largest instances). The standard instance libraries are homogeneous with respect to a

range of other problem instances properties (see Section 2.2), and this homogeneity harms
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Figure 2 Distribution of size and density of graphs in the Max-Cut standard instance library (left) and number

of variables and density of matrices in the QUBO standard instance library (right).

the generalizability of conclusions drawn from empirical testing using these instances (see

Section 4.2).

Some of these concerns have been raised about other problems in the literature. For

instance, an examination of the commonly used multi-dimensional knapsack benchmark

instances from the OR Library (Beasley 1990) revealed that they are homogenous in terms

of metrics such as correlations between instance parameters and constraint slackness ratios,

leading Hill and Reilly (2000) to develop a broader set of instances.

Why do we see these limitations in empirical testing? Though best practices for empirical

testing have long been published in both the industrial engineering/OR literature (Barr

et al. 1995, Rardin and Uzsoy 2001, Silberholz and Golden 2010) and the computer science

literature (Johnson 2002, Eiben and Jelasity 2002, Bartz-Beielstein 2006, McGeoch 2012),

these best practices are difficult to follow because researchers rarely publish source code for

new heuristics. This happens for a number of reasons, including concerns about scrutiny

of a paper’s results, fears of being “scooped” on future papers based on the code, company

rules, a status quo of heuristics researchers not publishing code, and most journals not

requiring published code. As a result, fair comparison to other heuristics typically requires

reimplementation or contacting authors of previous studies. While this is clearly a barrier

to comparison between a large number of heuristics, it also discourages instance library
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expansion because it is difficult to evaluate how previously published heuristics perform

on new problem instances.

In this work, we systematically perform empirical testing of heuristics for Max-Cut and

QUBO, addressing each weakness identified in current empirical testing. The first part

of our work involves performing a reproducible, fair comparison of previously published

heuristics over a heterogeneous problem instance database at a large scale:

• Large-scale, heterogeneous instance library: We perform experiments with a

heterogeneous, publicly accessible instance library with 3,296 problem instances. This

library combines both real-world problem instances and random problem instances from

multiple random generators. No previous work on Max-Cut or QUBO heuristics has done

empirical testing on more than 134 publicly accessible problem instances.

• Open-source heuristic implementation: We perform a systematic literature

review and provide open-source implementations of 37 Max-Cut and QUBO heuristics

using shared code and data structures wherever possible. Prior to this work, no empirical

testing for Max-Cut or QUBO had compared a new heuristic to more than four previ-

ously published heuristics using the same hardware and termination criteria to test each

heuristic.

• Empirical testing on the cloud: We run all implemented heuristics on all instances

in the expanded instance library, giving each heuristic an identical computational budget

b(i) for a given instance i.

The second part of our work leverages our large-scale comparison of previously published

heuristics:

• Understanding heuristic performance: Evaluation of each heuristic across a het-

erogeneous set of problem instances enables us to build interpretable machine learning

models to identify certain types of problem instances for which a heuristic or class of

heuristics performs particularly well or poorly. Interpretable models can provide useful

insights to readers of papers presenting new heuristics and can also serve as a hypothesis

generation step for further scientific testing, in which researchers run controlled experi-

ments to identify the impact of problem instance and heuristic characteristics on heuristic

performance.

• State-of-the-art algorithm portfolio: The performance of different heuristics

across a range of problem instances can be used to train machine learning models that
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Figure 3 Our approach to systematic heuristic evaluation.

predict the best-performing heuristic or set of heuristics for a given problem instance based

on the instance’s characteristics. Using these models we build an algorithm portfolio (or a

hyper-heuristic) for Max-Cut and QUBO that selects the heuristic or set of heuristics to

run for a problem instance based on the instance’s properties. Our algorithm portfolio out-

performs any single heuristic for these problems in out-of-sample evaluation, and we show

how it can be used to improve the quality of Max-Cut solutions obtained by practitioners.

As displayed in Figure 3, we discuss the implementation and evaluation of a broad set

of Max-Cut and QUBO heuristics in Sections 2–4. We then build interpretable models to

understand the performance of heuristics and classes of heuristics in Section 5. In Section 6,

we build an algorithm portfolio and demonstrate how it could help practitioners solve the

Max-Cut problem in an image segmentation application. Finally, we discuss limitations

and future directions in Section 7.

2. Expanded Instance Library

A key component of any empirical testing is the problem instances used for evaluation,

and using an overly narrow set of problem instances might limit the generalizability of

the testing as well as the ability of researchers to identify classes of problem instances for

which a heuristic performs particularly well or poorly. In this section, we discuss the large-

scale, heterogeneous problem instance library we constructed for Max-Cut and QUBO and

provide a qualitative and quantitative comparison with the standard instance libraries for

both of these problems.
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Figure 4 Problem instances used in this work.

2.1. New Problem Instances

Given the simple reductions available between Max-Cut and QUBO, we decided to con-

struct a single library of Max-Cut problem instances (weighted graphs) for use in evaluating

all Max-Cut and QUBO heuristics. Throughout this work, QUBO heuristics are evaluated

on n-variable QUBO matrices corresponding to the n-node graph instances.

To construct a diverse set of problem instances, we obtained graphs from a variety of

sources. In addition to the Max-Cut and QUBO standard test beds, we obtained instances

from standard libraries for other graph-based optimization problems, from programming

challenges, and from Internet queries. Though an essential feature of an instance library

is its ability to capture the properties of real-world instances that practitioners might

encounter in practice, all instances in the Max-Cut and QUBO standard instance libraries

are randomly generated, making it unclear if they generalize to real-world scenarios. By

drawing from many sources, our new instance library includes real-world instances from

many areas including VLSI design, telecommunication networks, and integrative biological

network analysis, thereby covering a number of Max-Cut and QUBO application areas. Fur-

ther, we constructed a large number of random instances using graph generators inspired

by network science research (Watts and Strogatz 1998, Barabási and Albert 1999, Newman

et al. 2001, 2002) that capture many structural properties of biological and social networks.

In total we constructed an expanded library with 3,296 instances, as depicted in Figure 4.

Details of the standard and expanded instance libraries are provided in Appendix A.
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Figure 5 Visual comparison of the coverage of various graph metrics by the standard Max-Cut and QUBO

instance libraries (blue and red points respectively) and the expanded instance library (grey points).

2.2. Graph Metrics and Generalizability

Having constructed a large database of instances, we were faced with two related questions:

(i) what instance metrics are important for predicting heuristic performance, and (ii) how

well did we cover the space of possible instances with respect to these metrics? To answer

the first question, we consider various studies that characterize hard problems by showing

existence of phase transitions (Cheeseman et al. 1991, Hartmann and Weigt 2006), or by

performing landscape analysis of the instance space to infer hardness (Stadler and Schnabl

1992). Such studies have shown that certain instance metrics play an important role in

revealing algorithm performance, for instance, dominance features (standard deviation of

the matrix entries divided by their average value) for the quadratic assignment problem

(Vollmann and Buffa 1966), relation of average degree of the vertices to k for the k-

colorability problem (Krzkaka la et al. 2004), extent of connectivity for the minimum vertex

cover problem (Hartmann and Weigt 2003, Weigt and Hartmann 2000) and density of the

graph for the Euclidean traveling salesman problem (Gent and Walsh 1996). Other metrics

that have been considered to study heuristic performance on graph problems like Max-Cut,

coloring, covering and network flow include number of vertices, density of edges, statistical

properties of the vertex degree distribution, existence of regularity, triangle-freeness, and

the eigenvalues of the graph Laplacian (Smith-Miles et al. 2010, Smith-Miles and Lopes

2011, 2012, Wang et al. 2013).
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Drawing from these studies, we consider a comprehensive list of 58 fast-to-compute

instance metrics (see Appendix B for details) that have been shown to be important in

revealing instance hardness. Some of these metrics summarize properties of each edge

or node in the graph, such as the standard deviation of normalized edge weights, while

others capture global properties such as the degree assortativity2 of the graph. While most

properties are standard graph metrics, some are more creative; for instance, we include

the approximate size of the maximum independent set of the graph, as computed by a fast

greedy heuristic.

To answer the second question of how well we covered the instance space, we follow a

similar procedure to the one used in Smith-Miles et al. (2014) by plotting the distribution

of the most significant graph metrics within the set of instances. Figure 5 visually captures

that the expanded instance library (gray points) includes a wider range of instances than

the standard libraries (blue and red points) across the four most important metrics for

predicting instance-specific heuristic performance, as discussed in Section 6. To additionally

make a more quantitative comparison, we define the “coverage” of any non-binary metric

f by an instance i∈ I as the range

cε(f, i) = [f(i)− ε, f(i) + ε]∩ [0,1], (1)

where f(i) is normalized such that for all instances i∈ I in the expanded instance library,

f(i) varies between 0 and 1. We define the coverage of a metric f by an instance library I
as

cε(f,I) =
⋃
i∈I

cε(f, i) (2)

The length of cε(f,I) indicates the degree to which instances in I cover the full range

of values of f — lengths close to 1 indicate I contains a wide range of values for metric

f , while values close to 0 indicate I is homogeneous for metric f . Limiting to instances

with at least 500 nodes, the average length of metric coverage across our 45 non-binary

metrics was 0.97 for our expanded instance library and 0.53 for the standard library, with

ε= 0.05 (see Figure 11 in Appendix B for a comparison of the coverage by instances in the

two libraries). This difference cannot be attributed solely to the expanded library’s larger

size, as the expanded library has an average coverage of 0.84 (the 95% confidence interval

is [0.81, 0.87]) when randomly downsampled to the same size as the standard library.

2Degree assortativity is the correlation between the degrees of nodes that are linked in the graph (Foster et al.
2010).
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Query
databases

810
Max-Cut/

QUBO
papers

Inclusion/exclusion
criteria

62 heuristics
papers

Backward ref.
search

95 heuristics
papers

Highly
cited

19 implemented
papers

Figure 6 Results of the systematic review of the heuristics literature. Squares represent the number of papers

at each stage in the review process, and dotted lines represent the actions taken.

3. Heuristics

The next step in our approach is to implement relevant heuristics from the Max-Cut and

QUBO literature, which is large and growing. To identify and evaluate various contributions

in this body of work we took a systematic review approach, which was first popularized

in medicine but is now being applied in other areas, including computing (Kitchenham

et al. 2009). Key components of a systematic review include identifying a systematic and

exhaustive way to search for relevant literature and the use of objective inclusion and

exclusion criteria to determine which records are included in the review.

We first constructed a search query to find all English-language publications from 2013

or earlier indexed in the Compendex and Inspec databases that mention either the Max-

Cut or QUBO problems. From this initial set of 810 papers, we selected 62 papers that

describe at least one heuristic with an element of randomness, don’t rely on specialized

software (e.g. a semidefinite program solver), and perform empirical testing. We performed

a backward reference search from this set of papers to obtain a final set of 95 papers, from

which we selected 19 of the most highly cited papers that described a total of 37 heuristics

(10 for Max-Cut, 27 for QUBO). This process is summarized in Figure 6, and further

details about the search process and identified heuristics are presented in Appendix C,

along with scaling analyses of their memory consumption.

While code is available for some of these heuristics, the majority are described only in

pseudocode in their respective papers. To enable evaluation over the new instance library,

we reimplemented all 37 heuristics in a high-performance language (C++), sharing code and

data structures between the heuristics wherever possible. Examples of shared components

include in-memory representation of problem instances and solutions as well as common

operations such as one-swap local search and efficient updates of objective values when
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changing the value of one node/variable (see Appendix C for details). Heuristic parameters

were set to the values used in empirical testing in their respective papers, and we leave

parameter tuning for the new instance library (which could be challenging due to its large

size) as an area of future research. All the implementations are available as open-source

code at https://github.com/MQLib/MQLib.

While we tried to implement all heuristics exactly as described in their respective papers,

we made some modifications to enable fair heuristic comparison. We use a runtime-based

termination criterion to ensure fair comparison, so we require that all algorithms be able

to be run indefinitely with a chance of continuing to make progress. When run indefinitely,

some heuristics may get stuck at a local optimum; for example, a simulated annealing

algorithm may eventually cool to the point where no more progress is likely no matter

how much longer it is run. Many heuristics address this situation by using mechanisms like

random restart whenever no further local improvement is likely or when some degree of

convergence is reached in a population of solutions. We modified the remaining heuristics

to enable indefinite execution with the chance of making progress by wrapping them in

random restarts. These modifications are detailed in Appendix C and more importantly

in the code itself, which can be critically reviewed and improved by the community over

time thanks to its open-source nature.

4. Large-Scale Evaluation

Given a set of implemented heuristics and a collection of instances, we can now move to

the empirical testing of each heuristic. Here we describe our testing methodology, which

enables fair, reproducible heuristic comparison by evaluating each heuristic with the same

termination criteria on the same cloud-computing hardware, and we present comparative

results across the 37 heuristics tested.

4.1. Evaluation Methodology

As stated in Section 1, more than 80% of heuristic comparisons in the literature do not

give each heuristic the same computational budget, often leaving readers unsure if one

procedure outperformed another because it is more effective or because it was run for

longer. To enable fair comparison, we give each heuristic the same instance-specific run-

time limit. For a given instance, the runtime limit was set to the amount of time needed to

generate 1,500 random solutions and to repeatedly apply a popular local search procedure
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(AllFirst1Swap; see Appendix C) until local optimality. Because for most heuristics the

majority of computational effort is spent on local search, we believe this runtime limit

captures the relative difficulty of different problem instances for the heuristics being eval-

uated. An advantage of defining the runtime limit in this way is that new heuristics can

be evaluated using different hardware by re-computing the runtime limit for the instance

on that hardware.

All empirical testing was performed using cloud computing resources, which provides

a practical benefit over private computing clusters for some users: A large amount of

computing power can be requisitioned on demand from a cloud computing provider without

any contention with other users for resources. We performed heuristic evaluation using

60 m3.medium Ubuntu machines from the Amazon Elastic Compute Cloud (EC2), which

have Intel Xeon E5-2670 processors and 4 GiB of memory; code was compiled with the

g++ compiler using the -O3 optimization flag. We evaluated each of the 37 heuristics over

all 3,296 problem instances in the expanded instance library, consuming 2.0 CPU-years of

processing power (20.1 CPU-days per heuristic), taking 12.4 days over the 60 machines (8.0

hours per heuristic), and costing $1,196 ($32.3 per heuristic). In experiments we evaluated

each heuristic 5 times for each problem instance with different random seeds.

4.2. Comparing heuristic performance

The large-scale evaluation provides us with a solution for each of the 37 heuristics on each

of the 3,296 instances in the expanded library. On some instances, particularly small ones,

all or nearly all heuristics had the same objective value, meaning these instances cannot

be used to differentiate heuristics. We take the view expressed by McGeoch (2012) and

others that presenting results on “uninteresting” instances has little utility, and all results

in the remainder of this paper were computed using the 2,635 instances for which no more

than half of the 37 heuristics attained the best solution. As expected, small instances were

much more likely to be uninteresting: 65% of instances with fewer than 100 nodes were

uninteresting, compared to 10% of instances with 100 or more nodes.

Given this set of interesting instances, we can define metrics for measuring and comparing

heuristic performance. We chose seven natural measures of heuristic performance, which

can be computed for a heuristic h in the set of all heuristics H using objective value xkh,i

for each replicate k of h on every instance i from the set of all 2,635 interesting instances

I:
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• The worst-of-5 deviation of a heuristic h, WD(h) := |I|−1
∑

i∈I
mink∈{1,...,5} x

k
h,i

maxr∈H,k∈{1,...,5} x
k
r,i

,

is the average percentage deviation (averaged across the set of interesting instances) of

the worst solution among the five replicates for h. Percentage deviation of a solution for

instance i is computed using the best solution obtained by any heuristic on i.

• The mean-of-5 deviation and best-of-5 deviation of a heuristic h, MD(h) :=

|I|−1
∑

i∈I

∑5
k=1 x

k
h,i/5

maxr∈H,k∈{1,...,5} x
k
r,i

and BD(h) := |I|−1
∑

i∈I
maxk∈{1,...,5} x

k
h,i

maxr∈H,k∈{1,...,5} x
k
r,i

, respectively, are

the average percentage deviations of the mean and best solutions of the five replicates of

h.

• The first-equal percentage of a heuristic h, FE(h) := |{i ∈ I :
∑5

k=1 x
k
h,i =

maxr∈H
∑5

k=1 x
k
r,i}|/|I|, is the percentage of interesting instances for which the mean solu-

tion of h across the five replicates was no worse than the mean solution of any of the 36

other heuristics.

• The first-strict percentage of a heuristic h, FS(h) := |{i ∈ I :
∑5

k=1 x
k
h,i >

maxr∈H\{h}
∑5

k=1 x
k
r,i}|/|I|, is the percentage of interesting instances for which the mean

solution of h across the five replicates outperformed the mean solution of any of the 36

other heuristics.

• The best achieved percentage of a heuristic h, BA(h) := |{i∈ I : maxk∈{1,...,5} x
k
h,i =

maxr∈H,k∈{1,...,5} x
k
r,i}|/|I|, is the percentage of interesting instances for which the heuristic

achieved the best-known heuristic solution in at least one replicate.

• The average rank of a heuristic h is defined as AR(h) := |I|−1
∑

i∈IR(h, i), where

R(h, i) is the rank of the mean-of-5 deviation of heuristic h on instance i among the mean-

of-5 deviations of all 37 heuristics in H on i. The mean-of-5 deviation of heuristic h on

instance i is defined as
∑5

k=1 x
k
h,i/5

maxr∈H,k∈{1,...,5} x
k
r,i

. In the case of ties, all heuristics are given the

minimum rank. Rank 1 indicates the best performance among all heuristics, and rank 37

indicates the worst performance.

While it would be preferable to compute the mean deviation from the optimal solution

for an instance instead of from the best-known heuristic solution for that instance, this is

not practical for our analysis due to the large number of interesting instances and their

sizes. However, results from a subset of the instances suggest the best-known heuristic

solutions may be of high quality — the best-known heuristic solution was optimal for all

29 QUBO standard test bed problem instances with optimal solutions reported in Rendl

et al. (2010) or Boros et al. (2016), which range in size from 100–250 variables.
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Instances with Top Performance (%) Deviation from Best Solution (%) Avg. Rank
First-Equal First-Strict Best Worst-of-5 Mean-of-5 Best-of-5

Heuristic (Mean-of-5) (Mean-of-5) Achieved Deviation Deviation Deviation

BUR02 22.9 16.2 32.7 0.5 0.3 0.2 10.7
FES02GVP 21.3 4.1 29.9 0.6 0.5 0.4 10.1
PAL04T3 19.4 2.3 30.5 0.8 0.6 0.5 7.5
FES02GP 19.3 5.5 27.1 0.9 0.7 0.6 14.2
FES02GV 18.0 1.5 26.0 0.8 0.7 0.6 11.2
PAL04T2 17.0 8.1 33.3 0.9 0.6 0.3 8.5
BEA98TS 16.4 5.0 22.4 2.6 2.4 2.1 16.6
LU10 14.9 2.7 23.9 1.7 1.5 1.2 13.1
FES02G 14.5 2.6 19.6 1.4 1.3 1.1 18.2
MER04 14.4 3.2 24.4 0.7 0.6 0.5 8.6
PAL04T1 14.0 2.7 21.7 2.4 2.2 1.9 15.2
MER99LS 12.8 6.9 30.9 0.7 0.5 0.3 10.0
MER02GRK 12.6 0.6 19.2 0.8 0.6 0.5 11.9
MER02LSK 11.3 0.4 19.3 1.0 0.8 0.7 13.3
PAL04T5 9.6 2.4 21.1 3.0 2.5 2.0 18.6
PAL06 9.4 0.9 21.9 2.4 1.9 1.4 17.3
ALK98 7.5 2.9 15.6 0.8 0.6 0.5 12.5
PAL04T4 7.3 0.2 18.4 3.8 3.2 2.6 21.7
GLO10 6.1 0.3 21.7 2.2 1.7 1.3 16.6
FES02V 6.0 0.3 15.1 1.3 1.1 0.9 13.8
KAT00 6.0 0.1 16.2 1.5 1.2 0.9 16.9
FES02VP 5.8 0.1 16.1 1.1 0.9 0.7 12.4
PAL04MT 5.1 0.2 16.8 4.0 3.4 2.8 24.1
MER02GR 3.5 0.0 5.7 3.2 3.0 2.8 24.3
GLO98 2.5 0.1 8.1 2.1 1.8 1.5 23.4
HAS00TS 2.2 0.4 7.2 1.6 1.3 1.1 20.3
HAS00GA 2.1 0.2 10.6 2.2 1.9 1.6 20.9
MER02LS1 1.8 0.0 6.3 3.0 2.8 2.6 25.1
PAR08 1.7 0.1 11.2 3.0 2.5 2.1 17.9
KAT01 1.6 0.6 4.0 2.7 2.4 2.1 26.3
DUA05 0.8 0.2 6.1 2.1 1.7 1.4 17.4
LOD99 0.7 0.0 3.4 5.7 5.3 4.9 30.2
LAG09HCE 0.4 0.3 4.1 2.3 1.9 1.6 20.4
BEA98SA 0.4 0.0 1.3 4.8 4.0 3.2 30.8
MER99CR 0.0 0.0 0.0 15.9 14.4 12.9 34.6
MER99MU 0.0 0.0 0.0 24.8 23.3 21.7 35.7
LAG09CE 0.0 0.0 0.0 30.8 30.1 29.2 36.9

Table 1 Summary of results for each heuristic across the 2,635 interesting instances. The best heuristic under

each metric is marked in bold.

The performance of the selected 37 heuristics on these seven measures are presented in

Table 1. The best overall heuristic on the expanded instance library with respect to the

performance of its mean solution across the five replicates for each instance was Max-Cut

heuristic BUR02, which not only matched the best performance on 22.9% of instances but

also had strictly better performance than any other heuristic on 16.2% of instances and a

mean deviation of only 0.3%. Heuristics showed significant differences in their variability

to seed; for instance, QUBO tabu search procedure PAL04T2 nearly matched BUR02’s

best-of-5 deviation but had significantly higher mean-of-5 and worst-of-5 deviations. As

no heuristic matched the best mean-of-5 performance on more than 22.9% of problem

instances and 30 of the 37 outperformed all other heuristics on at least one instance, no

single heuristic dominated all the others across the instance library. This motivates our

approach in Section 6, in which we use machine learning to predict which heuristic will

achieve the best solution for a given problem instance.
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Figure 7 Comparison of the performance of the 37 heuristics across the “interesting” instances in the standard

and expanded instance libraries. (Top left) Percentage of instances for which each heuristic matches

the best solution over the 37 heuristics. (Top right) Percentage of instances for which each heuristic

is strictly best (outperforms all other heuristics). (Bottom left) Mean deviation percentage from the

best solution. (Bottom right) Average rank of the mean-of-5 deviation of each heuristic.

As depicted in Figure 7, results on the standard instance library did not always generalize

well to the broader set of problem instances used in this work. For instance, MER99LS, a

genetic algorithm for QUBO, was the sole best-performing heuristic on 6.9% of instances

on the expanded library (the third highest first-strict rate), despite not being the sole

best-performing heuristic on a single instance in the standard library and only attaining

the best solution on 2.6% of standard library instances (rank 23/37). In total, 23 heuristics

had first-strict value 0 on the standard instance library but a positive first-strict value on

the expanded library, and three of those heuristics had a first-strict value exceeding 5% on

the expanded library.
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5. Interpreting Heuristic Performance

The results presented to this point represent a large-scale, fair comparison between previ-

ously published heuristics, a necessary step to identify state-of-the-art procedures. How-

ever, aggregate error measures commonly used in comparative evaluation like mean devi-

ation from the best-known solution provide no insight into where heuristics perform par-

ticularly well or poorly, and therefore cannot be used to address the title question “what

works best when?” As a result, some have argued that it is equally or more important to

evaluate heuristics using scientific testing (Hooker 1995, Johnson 2002, McGeoch 2012), in

which a controlled experiment is performed to quantify the impact of one or more problem

instance or heuristic characteristics on performance.

In this section, we use techniques that exploit the rich set of instances and heuristics we

have collected to identify what works well when. For individual heuristics, we use inter-

pretable machine learning models (regression trees) to identify types of problem instances

for which a given heuristic performs particularly well or poorly, which could further be used

to generate hypotheses for scientific testing. Further, we identify types of problem instances

for which broader classes of heuristics perform particularly well or poorly, gaining insights

into the benefits and drawbacks of different heuristic ideas. Such ideas have been recently

popular in the literature through the study of “algorithmic footprints,” which identify parts

of the instance space where an algorithm performs well or poorly (Corne and Reynolds

2010, Smith-Miles and van Hemert 2011). Various studies have employed different tech-

niques for dimension reduction of the feature space (to identify regions of performance visu-

ally) like self-organizing maps (Insani et al. 2013, Smith-Miles and van Hemert 2011) and

principal component analysis (Smith-Miles et al. 2014). These approaches identify regions

in the reduced space where one heuristic performs better than the other. Interpretable

models like decision trees have been used to generate rules to decide which heuristic variant

of the Lin-Kernighan heuristic works best for a given instance of the traveling salesman

problem (Smith-Miles and van Hemert 2011) and for deciding between two heuristics for

the single machine scheduling problem (Smith-Miles et al. 2009), to name a few. In this

work, we build heuristic-specific models that explain the most significant instance prop-

erties that affect heuristic performance. An advantage of this approach is that results are

presented in the space of the original instance features instead of in a less interpretable



Dunning, Gupta, and Silberholz: Systematic Evaluation of Heuristics for Max-Cut and QUBO
17

dimensionally reduced space, though a disadvantage of this approach is that different fea-

tures may be more important in predicting the performance of different heuristics, making

it harder to directly compare the footprints of different heuristics.

5.1. Understanding where a heuristic performs well or poorly

To identify types of problem instances for which a heuristic h performs well or poorly, we

label its performance on each of the 2,635 interesting instances identified in Section 4 using

the rank of its mean-of-5 deviation R(h, i) on each instance i. As in Section 4.2, in the case

of ties in mean-of-5 deviation we assign the smallest rank for all tied heuristics. As there

are 37 heuristics, ranks take values in the range 1–37.

For each heuristic, we fitted a CART model (Breiman et al. 1994) to predict the rank of

that heuristic on each instance based on the instance metrics as defined in Section 2, using

the rpart package in R (Therneau et al. 2015). To ensure simple fitted models, we limited

trees to maximum depth 3 and required each leaf to contain at least 100 observations.

Fitted trees had average R2 of 0.51 (range: 0.19–0.78).

For any heuristic, we can build a regression tree to gain insight into the relationship

between problem instance characteristics and the rank of the heuristic on that instance.

While this provides useful information about all heuristics, of particular interest are pairs

of heuristics for which the same instance characteristics are predictive of performance, such

as a pair of heuristics where the same variables (whatever they might be) are used in splits

near the top of the regression tree. For such heuristics, we can visualize areas of the problem

instance space where both heuristics perform well, where both perform poorly, or where

one performs well while the other performs poorly. Figure 8 presents such a visualization

for GLO98 (top) and PAR08 (bottom), both tabu search procedures for QUBO. The

two heuristics had the highest R2 amongst any CART models that used the same two

variables for their initial splits (R2 = 0.54 for GLO98 and 0.61 for PAR08), excluding pairs

of heuristics from the same paper. PAR08 has its best performance on instances with a

large number of nodes and a small maximum independent set size (normalized by the

number of nodes in the instance). Meanwhile, GLO98 has its worst performance on those

problem instances and its best performance on problem instances with a small number

of nodes. These differences in the types of instances where each heuristic performs best

motivates the algorithm portfolio approach taken in Section 6.
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Figure 8 Interpretable models identifying the instances on which GLO98 (top) and PAR08 (bottom) perform

particularly well or poorly. (Left) A regression tree that predicts the heuristic’s rank (range: 1–37) for

each of the “interesting” problem instances in the expanded instance library. (Right) The distribution

of rank across the two problem instance characteristics identified as most important in the regression

trees; blue indicates the heuristic performed well (rank near 1) and red indicates the heuristic performed

poorly (rank near 37).

We include the CART models for the remaining 35 heuristics considered in this study

in the supplementary material, and we believe that heuristic papers that develop new

heuristics would be enhanced by presenting results of this nature.

Interpretable machine learning models can help solve a key challenge of scientific testing:

identifying hypotheses to test (Hooker 1995). For instance, the regression trees in Figure 8

suggest further controlled testing to assess the impact of the maximum independent set

size versus the number of nodes on the performances of GLO98 and PAR08.
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Figure 9 Performance of evolutionary algorithms (left) and tabu search procedures (right) on the 1,878 instances

for which only one heuristic attains the best solution, broken down by instance node and edge counts.

Blue regions indicate instances for which the specified heuristic class performed best, and red regions

indicate instances for which the heuristic class did not perform best.

5.2. Understanding where heuristic ideas perform well or poorly

Many ideas have been tested in heuristic development, with inspiration ranging from natu-

ral selection to relaxations of exact algorithms to local searches to random restarts. In this

section, we consider classes of heuristics that use the same subroutines or idea, for example

tabu searches or genetically evolving populations of candidate solutions. Note that this

view is different from an algorithm footprint as we consider classes of algorithms (instead

of a single algorithm) to identify instances spaces where some styles of heuristics perform

better than others. In this section, we identify instance spaces where certain heuristic ideas

perform well or poorly by analyzing the results of all heuristics that use a particular idea.

Using the 1,878 instances for which only one heuristic attains the best mean-of-5 devia-

tion, we investigate the sorts of problem instances for which evolutionary algorithms and

tabu search procedures outperform all other heuristics. These two classes of heuristics were

selected because they are broad, popular classes of heuristics and because they both have

a significant number of instances for which they gave the sole best solution. In Figure 9 we

capture types of instances for which each class of heuristics tends to perform best, break-

ing down instances by number of nodes and edges. Points in the plot for each heuristic

class are colored on a gradient from blue to red based on the proportion of the 20 nearest
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problem instances for which a heuristic from that class was the best-performing heuristic

(nearest instances are defined with respect to the Euclidean distance in the 2-dimensional

space of the log of the number of nodes and the log of the number of edges in the instance).

Dark blue regions of Figure 9 represent instances for which evolutionary algorithms (left)

or tabu search procedures (right) are best, dark red regions indicate other types of pro-

cedures performed best, and colors in between dark blue and dark red indicate a mix of

best-performing heuristic classes. Additionally, colors in the plot lie on a gradient from

the blue/red mix to white depending on the proportion of the 20 nearest instances that

are within distance 1 in the instance space: Points with no instances within distance 1 are

completely white.

Instance density has a profound impact on the performance of tabu search procedures,

as they are often the top procedure on dense graphs but rarely for sparse ones. The story is

more complex for evolutionary algorithms: They perform best on sparse and dense mid-size

instances, but non-evolutionary algorithms seem to succeed on the largest instances.

Many such plots can be produced for various heuristic components and problem instance

characteristics, providing insights into the impact of those ideas on heuristic performance.

6. Algorithm Portfolio

In Section 4, we saw that no single heuristic outperformed all others across the expanded

problem instance library, and in Section 5 we saw that problem instance characteristics can

be used to differentiate where a heuristic will likely perform well or poorly. The natural

next step is to construct a method that selects the heuristic or set of heuristics to use

for a given instance based on that instance’s characteristics, termed an offline learning

heuristic selection hyper-heuristic (Burke et al. 2010) or an algorithm portfolio. This is

also referred to in the literature as the algorithm selection problem, and has been used

to create solvers for satisfiability testing (Xu et al. 2008, Nikolić et al. 2013), quantified

Boolean formulas (Pulina and Tacchella 2009), constraint programming (O’Mahony et al.

2008), and planning problems (Howe et al. 2000). Unlike many hyper-heuristics found in

the literature, our procedure does not change the heuristic used during the solution process,

nor does it construct a heuristic by selecting from a set of heuristic components. We show

that our algorithm portfolio outperforms each of the 37 Max-Cut and QUBO heuristics it

combines, and we apply it to an important problem in vision: image segmentation.
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6.1. Constructing an algorithm portfolio

There is significant multi-disciplinary literature on creating algorithm portfolios. In 1976,

Rice defined the algorithm selection problem as learning the mapping from instance fea-

tures to the best algorithm to run on an instance (Rice 1976). This framework is simple yet

very general, and multiple studies in the operation research (OR), artificial intelligence,

and machine learning literatures have been viewed under the same lens (Smith-Miles 2008).

On one hand, the machine learning community views the algorithm selection problem as

a learning problem, and various studies have used regression (Leyton-Brown et al. 2002,

2003, Xu et al. 2008), Bayesian networks (Horvitz et al. 2001), k-nearest neighbor rankings

(Brazdil et al. 2003), neural networks (Smith et al. 2001), and decision trees (Ali and Smith

2006, Vilalta and Drissi 2002) to predict the performance of a set of algorithms given a

set of instance features. Meanwhile, the OR community has focused more on identifying

phase transitions and on landscape analysis to develop deeper insights into the relation-

ship between instances and algorithms (Stützle and Fernandes 2004, Smith-Miles 2008).

In recent years, however, there has been a greater cross-pollination of ideas, and the best

algorithm for a given set of instances for various OR problems like the traveling salesman

problem (Smith-Miles and van Hemert 2011), timetabling (Smith-Miles and Lopes 2011),

quadratic assignment problem (Smith-Miles et al. 2010), and job shop scheduling problem

(Smith-Miles et al. 2009) has been prescribed using machine learning algorithms.

We take the machine learning approach to the algorithm selection problem, attempting

to select a heuristic or set of heuristics that attain the best expected solution quality when

run in parallel on a given problem instance. To do so, we use the following approach:

• We first build a random forest model (Breiman 2001) for each of the 37 heuristics

that predicts whether the heuristic will achieve the highest mean-of-5 solution for a given

instance, using the 58 instance characteristics from Section 2.2 as predictor variables. Each

of these models performs a binary classification. Random forest models for classification

are ensemble learning models in which multiple (ntree, a parameter) classification trees

are built with training sets that are randomly sampled with replacement from the original

training set. When building these classification trees, each split is made by randomly sam-

pling a subset of the variables (of size mtry, a parameter) and limiting the split to one of

those variables. Splitting is terminated by the specified minimum size of a leaf (nodesize,

a parameter). In practice, random forests often have better out-of-sample predictive per-

formance than classification trees, motivating their use for our algorithm portfolio.
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• For a new problem instance, we obtain the predicted probability that each of the

37 heuristics will achieve the best solution using the random forest models. In a random

forest for classification, the predicted probability that an observation is of some class is

the proportion of trees predicting that class for that observation.

• If one heuristic is desired, we select the heuristic with the highest predicted probability,

breaking ties randomly, and return the solution of that heuristic. If k heuristics are desired,

we select the k heuristics with the highest predicted probabilities, run them in parallel,

and report the best solution obtained among the k heuristics for the instance.

To validate this method works well on unseen instances, we use a standard training-

testing split approach in which we build our random forest models using only the training

set and evaluate them using only the testing set. We split the 2,635 “interesting” instances

into a training set of size 1,844 (70%) and a testing set of size 791 (30%). All random

forest models were fitted using the R randomForest package (Liaw and Wiener 2002). We

selected the number of metrics used in each split when constructing the random forest

(the mtry parameter) using five-fold cross-validation on the training set, and we used the

default parameter values from the randomForest package, setting ntree, the number of

trees to build, to 500 and nodesize, the minimum number of observations in leaves, to 1.

Suppose for a given test-set problem instance the algorithm portfolio described above

selects a set Hs of heuristics to run (Hs ⊆ H). Let Xh for h ∈ Hs be a random variable

indicating the percentage deviation of h from the best-known solution for that instance;

we model Xh to take the percentage deviation of a (uniform) randomly selected replicate

of h on the instance. The portfolio returns the best solution returned by any heuristic

h∈Hs; the selected solution has percentage deviation minh∈HsXh. We assess the quality of

the selected set Hs using the expected percentage deviation from the best-known heuristic

solution, E[minh∈HsXh], and the probability that the best-known solution is returned by

the algorithm portfolio, P[minh∈HsXh = 0].3 Given the heuristics selected for each test-set

3As an illustrative example, assume that on a given problem instance heuristic A’s five replicates had percentage
deviations {0%, 0%, 0%, 1%, 1%} from the best-known solution, while heuristic B’s five replicates had percentage
deviations {0%, 0%, 2%, 2%, 2%}. If only heuristic A is run on the instance then there is a 60% probability the best-
known solution is returned and a 40% chance a solution with deviation 1% is returned, yielding expected deviation
0.4%. If both heuristics are run in parallel, then the percent deviations of A and B will take values (0%, 0%),
respectively, with probability 24%, (0%, 2%) with probability 36%, (1%, 0%) with probability 16%, and (1%, 2%)
with probability 24%. This 2-heuristic algorithm portfolio returns the best-known solution 76% of the time and has
deviation 1% the remainder of the time, meaning it has expected deviation 0.24%.
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Figure 10 A comparison of the performance of k parallel heuristics, either selected by the algorithm portfolio

(dashed line) or by selecting the k heuristics with the highest number of best solutions for training-

set instances (solid line). (Left) The percentage of test-set instances for which one of the parallel

heuristics found the best solution. (Right) The average deviation from the best solution.

instance by the algorithm portfolio, we use the mean expected deviation and mean prob-

ability of achieving the best-known solution to evaluate the performance of the algorithm

portfolio over the test set.

When configured to select a single heuristic for each problem instance, the algorithm

portfolio selected 27 of the 37 heuristics for at least one test-set problem instance, achieving

a mean probability of obtaining the best solution of 37% and a mean expected deviation

of 0.09%. This represents an improvement over running BUR02 over all test-set instances,

where it achieved a mean probability of obtaining the best solution of 15% and a mean

expected deviation of 0.34%. As a result, the algorithm portfolio represents a state-of-the-

art procedure, outperforming any of the 37 heuristics it combines. Figure 10 reports the

performance of an algorithm portfolio running k heuristics in parallel, compared to the

naive approach of always running the k heuristics that attained the highest number of

best solutions on the training set. For all k ∈ {1, . . . ,8}, the algorithm portfolio obtains

the best solution on a higher proportion of instances and a lower mean deviation. Running

with eight heuristics in parallel, the algorithm portfolio achieved a mean probability of

obtaining the best solution of 48% and a mean expected deviation of 0.05%.

To assess the importance of each instance feature in identifying where different heuris-

tics perform best, we computed the mean decrease in Gini impurity variable importance
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measure for every fitted random forest model used in the algorithm portfolio (Breiman

et al. 1994). The four most important instance features in terms of the average variable

importance rank across the random forest models were: log of the number of nodes, log

of the number of edges, log of the normalized second eigenvalue of the graph Laplacian,

and log of the ratio of the first eigenvalue of the graph Laplacian to the second eigenvalue.

These instance features had average rank 7.9, 8.1, 8.5, and 10.0, respectively, in the ranked

lists of variable importance. Meanwhile, 12 features were not in the top 10 most important

features for any random forest model, indicating they might be removed without signif-

icant loss in algorithm portfolio performance. The full summary of variable importance

measures is reported in Appendix D.

6.2. Application to image segmentation

Our algorithm portfolio provides practitioners with access to a state-of-the-art procedure

for Max-Cut and QUBO, and in this section we investigate whether it could improve the

quality of heuristics used in applied work. In recent work, de Sousa et al. (2013) developed

a new Max-Cut heuristic for use in an image segmentation application. In this application,

an image is divided into regions of adjacent pixels with similar colors, and each region is

represented by a node in the Max-Cut input graph. Nodes corresponding to adjacent image

regions are connected by edges with edge weights that capture similarity of the average

colors in these regions — edges linking regions with very dissimilar average colors are

assigned larger weights. After solving Max-Cut on the graph corresponding to an image,

regions that are not separated by the cut are merged into a single larger region, yielding

an image segmentation.

To test the usefulness of our algorithm portfolio (limited to selecting one heuristic per

instance) to practitioners in this application area, we ran it on 100 randomly selected

images from the training set of the Berkeley Segmentation Dataset and Benchmark

300 (Martin et al. 2001), the image segmentation database used in de Sousa et al. (2013)

to test their procedure. To evaluate how our algorithm portfolio would perform in a fully

out-of-sample setting (which is how it would be applied in a new application area), we did

not use any of the above-mentioned image segmentation problem instances in the train-

ing set of the algorithm portfolio. Instead, we used the same portfolio trained on 1,844

instances that is described in Section 6.1 for all the image segmentation experiments. We

compared our algorithm portfolio against the new heuristic proposed in de Sousa et al.
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(2013), which was developed specifically for the image segmentation application. For each

instance, we ran five replicates of the new procedure and all 37 heuristics to obtain a best-

known solution for each problem instance, using the runtime limit specified in Section 4.

The algorithm portfolio had mean expected deviation of 1.22% and 0.07% after 10% and

100% of the runtime limit, respectively, while the procedure from de Sousa et al. (2013) had

a mean expected deviation of 34.45% and 32.70%, respectively. Computing graph metrics

for the algorithm portfolio introduced relatively little overhead, taking an average of just

0.013 seconds per instance (range: 0.001–0.061).

For image segmentation, our algorithm portfolio obtained significantly higher quality

solutions than a procedure developed specifically for problem instances from that appli-

cation area. This highlights the potential benefit of open-source algorithm portfolios to

practitioners — these procedures could yield high-quality solutions in the application area

of interest, and an open-source implementation made available could save significant imple-

mentation effort compared to developing a new heuristic.

7. Discussion and Future Work

In this work, we performed a systematic evaluation of heuristics for Max-Cut and QUBO

that addresses the irreproducibility, lack of fair comparison, and homogeneous problem

instances observed in the empirical testing of heuristics for these problems. We evalu-

ated heuristics for these problems by assembling a heterogeneous problem instance library,

constructing an open-source implementation of many previously published heuristics, and

evaluating these heuristics using cloud computing resources. We demonstrate that this

enables reproducible, fair comparison of heuristics at large scale. Further benefits include

providing better insights into when heuristics perform well or poorly and enabling the

construction of a state-of-the-art algorithm portfolio that could be useful to practitioners.

Our systematic heuristic evaluation for Max-Cut and QUBO has several limitations.

In the context of instance generation, there have been a number of studies that explore

instance generation by genetically evolving a population of instances to find hard instances

for a set of algorithms (Smith-Miles and van Hemert 2011). It would be interesting to

see such instance space exploration techniques integrated into this work. Next, our work

relies on the reimplementation of previously published heuristics, which may differ from

the original authors’ implementations either due to mistakes/underspecification in the
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published pseudocode describing that procedure or due to programming errors. However,

making the code base open source reduces this problem since implementation errors can be

more easily identified and addressed. Secondly, we were only able to implement heuristics

from 19 of the 95 previously published heuristic papers for Max-Cut and QUBO, so we

may have missed the best-performing procedure for a subset of the problem instances.

Further, this work does not include heuristics that rely on external libraries or on complex

subroutines such as a semidefinite program or mixed-integer linear program solver. Given

that our code base has been made open source and easily accessible to the community,

additional important heuristics (that may use external libraries) can be added to the

code base. Next, the data structures that we use in this work are well suited for sparse

representation of graphs. It might be beneficial to explore specialized data structures that

are more suitable for very dense graphs. There have been a number of studies that consider

a class of heuristics indexed by parameters and have used an algorithm selection approach

to perform parameter tuning. We believe this to be an interesting direction of future work.

Finally, we do not consider the performance of algorithm portfolios that run the same

heuristic more than once in Section 6. This is because we simply select the most promising

set of k heuristics while constructing the portfolio, a design decision that could be changed

in future work.

We hope that the source code and evaluation performed in this work will be useful

in improving the quality of future Max-Cut and QUBO evaluation. The runtime limit

defined in Section 4 enables other researchers to compare their heuristics to this work

without rerunning all the 37 heuristics again on the expanded instance library. Such testing

can also be performed using the same cloud computing hardware that we used, which is

accessible to anybody. We provide a script in our code base to enable parallel testing on

the cloud. Testing a new Max-Cut or QUBO heuristic with the interesting instances from

our expanded instance library would take approximately 24.0 wall-clock hours (using 20

parallel cloud computing machines) and cost $32.5 on the Amazon cloud.

Given the importance of heuristics in applied areas and the rapidly growing literature

on empirical testing to evaluate heuristics, we believe it is important to get the most value

possible from computational evaluation. Though in this work we focused on heuristics for

Max-Cut and QUBO, there are still a large number of problems where there do not exist

projects that provide access to the state-of-the-art heuristics. Many of the weaknesses we
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noted in Section 1 also apply to experimental evaluation of heuristics for other problems.

Among the first 12 heuristics papers published in the INFORMS Journal of Computing

since 2013 that compared to previously published heuristics, only five used the same com-

puter for all comparisons and only two allocated the same computational budget to all

heuristics. Further, only three of the 12 released the source code or an executable for their

heuristic, eight evaluated with fewer than 100 problem instances (often randomly gener-

ated), and none of the published works compared to more than eight prior heuristics. We

hope that open-source implementation and large-scale evaluation will be applied widely

to heuristic evaluation to (i) make empirical testing of heuristics more fair, broad, and

reproducible, (ii) provide better insights into where heuristics perform well or poorly, and

(iii) make state-of-the-art heuristics accessible to practitioners.
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Appendix A: Standard and Expanded Instance Libraries

We consider the standard instance library for Max-Cut and QUBO to be the set of instances used for

computational experiments by at least four papers out of the 95 papers identified in Section 3; the six sources

that make up this library are described in Table 2. All QUBO instances were converted to Max-Cut instances

using the reduction from Hammer (1965), and node counts and densities in Table 2 are for the resulting

Max-Cut instances.

Description
Problem Name Count Nodes Density Reference

Max-Cut
G-set 71 800–20,000 0.0%–6.0% Helmberg and Rendl (2000)

Spin Glass 30 125–2,744 0.2%–4.8% Burer et al. (2002)
Torus 4 512–3,375 0.2%–1.2% 7th DIMACS Implementation Challenge

QUBO
GKA 45 21–501 8.0%–99.0% Glover et al. (1998)

Beasley 60 51–2,501 9.9%–14.7% Beasley (1998)
P3-7 21 3,001–7,001 49.8%–99.5% Palubeckis (2006)

Table 2 Sources of instances considered to be the standard instance library for Max-Cut and QUBO.
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The expanded instance library includes the standard library but also draws from a wide collection of

additional sources, including ORLib (Beasley 1990), SteinLib (Koch et al. 2001), the 2nd, 7th, and 11th

DIMACS implementation challenges, TSPLib (Reinelt 1991), and additional instances from the Biq Mac

library that are not used extensively in testing Max-Cut and QUBO heuristics (Wiegele 2007). We also

generated a number of random graphs using Culberson random graph generators (Culberson et al. 1995),

the Python NetworkX library (Hagberg et al. 2008), and the machine-independent random graph generator

rudy (Rinaldi 1996). Many different types of graphs were constructed, including Erdös-Rényi graphs (Erdös

and Rényi 1960), Barabási-Albert graphs (Barabási and Albert 1999), Watts-Strogatz graphs (Watts and

Strogatz 1998), and their variants. To add another dimension to our test instances, we considered edge weights

sampled from 65 different probability distributions including uniform, triangular, beta, and exponential. We

provide the full set of parameters for our database in the instance library at https://github.com/MQLib.

Appendix B: Graph Metrics

We calculated 58 metrics describing each instance in our library. Ten of these metrics are “global” metrics

that consider the graph as a whole, and the remainder are “local” metrics that are summary statistics of

various node- and edge-specific quantities. Figure 11 shows the complete list of metrics and how well they

are covered by our expanded instance library versus the standard library. Each of the metrics in the figure

is referred to by a short name, which we provide in the following descriptions.

Global metrics The first four metrics are simple to calculate: the logarithm4 of the number of nodes

and edges in the graph (log n and log m, respectively), the proportion of edges with a positive weight

(percent pos), and a zero-one indicator for whether the graph is disconnected or not (disconnected). The

next three metrics are all more complex measures of structure: the approximate chromatic number of the

graph as computed by the Welsh-Powell heuristic (Welsh and Powell 1967), normalized by the number of

nodes (chromatic); the degree assortativity of the graph, a measure of correlation in the degree of linked

nodes5 (assortativity); and the approximate size of the maximum independent set of the graph calculated

by a fast heuristic,6 normalized by the number of nodes (mis). The final three metrics are all calculated from

the weighted graph Laplacian matrix: the logarithm of the first and second largest eigenvalues normalized by

the average node degree (log norm ev1 and log norm ev2, respectively) and the logarithm of the ratio

of the two largest eigenvalues (log ev ratio).

Local metrics Six different local quantities were calculated, and for each quantity eight statistical measures

were calculated to give a total of 48 local metrics. The first quantity is simply the weight of each edge,

normalized by the maximum absolute value across all the edge weights (weight). Next, we computed the

average degree connectivity (avg deg conn), where the degree connectivity of degree k is the average degree

of the neighbors of nodes with degree k. If no nodes have a particular degree value that degree is ignored in

the computation. The last four local quantities were specific to nodes and their neighbors:

4It is a standard practice to take the logarithm for some features with highly varied values to reduce the effect
of outliers.

5Degree assortativity is computed as
∑

(i,j)∈E 2(d(i)−d̄)(d(j)−d̄)∑
(i,j)∈E(d(i)−d̄)2+(d(j)−d̄)2

, where d̄=
∑

(i,j)∈E
d(i)+d(j)

2|E| .

6We use a greedy heuristic for finding an approximate maximum independent set by at each step choosing a
vertex with the minimum degree and removing its neighbors.
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Figure 11 Coverage of each metric by instances with 500 or more nodes in the standard instance library (gray)

versus the expanded instance library (gray and black together). Binary metrics are not included.

• the degree of each node (deg), normalized by the maximum possible degree.

• the local clustering coefficient of a random subset of size 3dln(n)e out of the n nodes (clust), computed

as the number of triangles a node forms with its neighbors divided by the total number of possible triangles.

Nodes with fewer than two neighbors are not included.

• the average degree of the neighbors of each node, (avg neighbor deg), normalized by the maximum

possible degree. Nodes with no neighbors are not included.

• the core number for each node in the graph (core), normalized by the the number of nodes minus one.7

7A k-core of the graph is a maximal subgraph in which all nodes in the subgraph have degree k or more. The
maximum k such that the graph has a k-core is called its core number. The core number for a node is the maximum
k such that the node lies in a k-core.
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The first four statistical measures are simply the minimum ( min), maximum ( max), mean ( mean),

and standard deviation ( stdev) of each of the vectors of local quantities. We also considered the skewness

of the quantities using the logarithm of one plus the absolute value of skewness ( log abs skew) and a

zero-one indicator if the skewness was non-negative ( skew positive). Further, we captured the logarithm

of four plus the excess kurtosis of each vector of local quantities ( log kurtosis). Finally we included a

zero-one indicator to capture whether all values for a quantity were the same ( const).

Appendix C: Identification and Implementation of Heuristics

As described in Section 1, one of the steps of our process is to identify and implement heuristics described in

the literature. Here we elaborate on the description in Section 3 of our methodology for identifying heuristics

in a systematic way, our approach to implementing them, the modifications made to include some heuristics,

and the memory scaling of the heuristics.

Selection of heuristics We searched all English-language publications indexed in the Compendex and

Inspec databases published in 2013 or earlier with the query

maxcut∨max-cut∨ “max cut”∨ (quadratic∧binary∧unconstrained)

which identified an initial set of 810 results. For a paper to be considered relevant it had to satisfy the

following criteria:

1. The paper must describe at least one new heuristic for Max-Cut or QUBO.

2. The paper must have computational experiments for the new heuristic(s) it describes.

3. Heuristics must contain an element of randomness. For example, a deterministic greedy heuristic to

construct a solution would not be accepted. We added this criterion as deterministic heuristics do not support

arbitrary running times, making head-to-head comparisons with a pre-determined runtime limit challenging.

4. Heuristics must not rely on external libraries or rely on complex subroutines such as a semidefinite

program or mixed-integer linear program solver.

Table 3 lists the final set of 19 papers selected and the 37 heuristics they describe, including their asymptotic

memory consumption in terms of the number of nodes/variables n, the number of edges/non-zero matrix

elements m and various heuristic-specific parameters. The asymptotic memory consumption displayed in

Table 3 assumes only the most recent best-known solution is stored for each heuristic. Our software library

also gives an option to store the history of all best-known solutions encountered throughout the run of a

heuristic. In general, heuristics may encounter any number of best-known solutions as they are run, and each

requires O(n) memory if they are stored.

Implementation of heuristics While implementing all the heuristics in C++ is important to reduce the

impact of implementation details on observed performance, perhaps even more important are the shared

components used across heuristics.

Instance We define classes MaxCutInstance (stores the instance as a graph adjacency list) and QUBOInstance

(stores the instance as a sparse matrix and dense diagonal vector), which both share file loading code.

Examples of functionality provided by the instance classes include efficient iterators, shuffled edge lists, and



Dunning, Gupta, and Silberholz: Systematic Evaluation of Heuristics for Max-Cut and QUBO
31

Paper Type Short name Description Space Req.

Alkhamis et al. (1998) Q ALK98 Simulated annealing O(n+m)

Beasley (1998) Q BEA98SA Simulated annealing O(n+m)
BEA98TS Tabu search O(n+m)

Burer et al. (2002) M BUR02 Non-linear optimization with local
search

O(n+m)

Duarte et al. (2005) M DUA05 Genetic algorithm with VNS as local
search

O(pn+m)

Festa et al. (2002) M

FES02G GRASP with local search O(n+m)
FES02GP GRASP with path-relinking O(λn+m)
FES02V VNS O(n+m)

FES02VP VNS with path-relinking O(λn+m)
FES02GV GRASP with VNS local search O(n+m)

FES02GVP GRASP & VNS with path-relinking O(λn+m)
Glover et al. (1998) Q GLO98 Tabu search O(tn+m)
Glover et al. (2010) Q GLO10 Tabu search with long-term memory O(λn+m)

Hasan et al. (2000) Q HAS00GA Genetic algorithm O((p+ τ)n+m)
HAS00TS Tabu search O(n+m)

Katayama et al. (2000) Q KAT00 Genetic algorithm with k-opt local
search

O(pn+m)

Katayama and Narihisa (2001) Q KAT01 Simulated annealing O(n+m)

Laguna et al. (2009) M LAG09CE Cross-entropy method O(5.87ρn2 +m)
LAG09HCE Cross-entropy method with local search O(0.031n2 +m)

Lodi et al. (1999) Q LOD99 Genetic algorithm O(pn+m)
Lü et al. (2010) Q LU10 Genetic algorithm with tabu search O(pn+m)

Merz and Freisleben (1999) Q
MER99LS Genetic algorithm, with crossover and

local search
O(βn+m)

MER99MU Genetic algorithm, with mutation only O(βn+m)
MER99CR Genetic algorithm, with crossover only O(βn+m)

Merz and Freisleben (2002) Q

MER02GR GRASP without local search O(n+m)
MER02LS1 1-opt local search with random restarts O(n+m)
MER02LSK k-opt local search with random restarts O(n+m)
MER02GRK k-opt local search with GRASP O(n+m)

Merz and Katayama (2004) Q MER04 Genetic algorithm, with k-opt local
search

O(αn+m)

Palubeckis (2004) Q

PAL04T1 Tabu search O(n+m)
PAL04T2 Iterated tabu search O(n+m)
PAL04T3 Tabu search with GRASP O(n+m)
PAL04T4 Tabu search with long-term memory O((λ+ γ)n+m)
PAL04T5 Iterated tabu search O(n+m)
PAL04MT Tabu search O(n+m)

Palubeckis (2006) Q PAL06 Iterated tabu search O(n+m)
Pardalos et al. (2008) Q PAR08 Global equilibrium search **

Table 3 Implemented heuristics for the Max-Cut (“M”) and QUBO (“Q”) problems with their asymptotic

space requirements. For the space requirements, n is the number of nodes, m is the number of edges (Max-Cut)

or number of non-zero matrix entries (QUBO), p is the initial population size, λ is the maximum number of elite

solutions maintained, γ is the maximum size of the set of solutions to be avoided that the algorithm maintains, t

is the number of tabu neighborhoods, τ is the number of tournaments, ρ is the fraction of the population

retained in each iteration, β is the recombination rate, and α is the crossover rate. For Pardalos et al. (2008), the

memory requirement is at least O(λn+m).

vertex degree counts. One caveat with our implementation is that if an instance is dense then the use of

sparse storage formats may introduce some inefficiency. As the internal instance data structure is hidden

from the heuristic code, dynamic selection of the correct storage format on a per-instance basis is a possible

extension.
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Solution The MaxCutSolution and QUBOSolution classes both inherit from an abstract ExtendedSolution

class that consists of the solution vector, the objective value, and a vector quantifying how much the objective

will change from flipping a vertex across the cut (Max-Cut) or flipping a variable’s value between 0 and 1

(QUBO). This is essential to the efficient implementation of a local search, as not only can the best swap

be found in O (n) time for an instance with n nodes/variables, but the vector of objective value changes can

also be updated efficiently. This data structure is described in some of the implemented papers, e.g. Pardalos

et al. (2008).

Operations The base solution class also implements commonly used subroutines. For example, we implement

the local search subroutines AllBest1Swap (repeatedly flip the node/variable that best improves the solu-

tion until no improving moves exist), AllFirst1Swap (repeatedly flip the lexicographically first occurring

node/variable that improves the solution until no improving moves exist), and AllShuffle1Swap (shuffle the

nodes/variables and then repeatedly flip the lexicographically first occurring node/variable that improves

the solution until no improving moves exist). An additional example is UpdateCutValues, which efficiently

flips a vertex across the cut (Max-Cut) or flips a variable’s value between 0 and 1 (QUBO).

In our work all heuristics need to be able to run indefinitely with a chance of continuing to make progress (if

not already optimal), as mentioned in Section 3. Many heuristics satisfy this property without modification:

BUR02, FES02*, KAT00, LOD99, MER99*, MER02*, MER04, PAR08, and half of the PAL04* variants.

We wrapped the remaining heuristics in random restarts.

Memory Scaling of Heuristics To complement the asymptotic memory consumption of each heuristic

displayed in Table 3, we also performed scaling analysis of the memory consumption of each heuristic. Because

in this work all heuristics are provided the same runtime limit, no scaling analysis was performed of heuristic

runtimes.

First, we tested each heuristic on randomly generated dense Max-Cut instances consisting of complete

graphs with each edge weight randomly selected with equal probability from the set {-1, 1}. To observe

memory scaling behavior on these dense problem instances, we randomly generated instances of size 100,

300, 1,000, and 3,000 nodes and tested each heuristic on each instance. For each instance, all heuristics

were given the same runtime limit, as described in Section 4.1. The peak memory consumption of each

heuristic for different dense instance sizes is plotted in Figure 12 (left). The observed scaling confirms an

O(n2) memory consumption for all heuristics on dense problem instances, as expected from the asymptotic

analysis. Heuristic PAL04T5 stands out as having more memory usage than the other heuristics, which is

because that heuristic constructs perturbed versions of the problem instance, a memory-intensive procedure.

Further, we tested each heuristic on randomly generated sparse Max-Cut instances. To construct an

instance with n nodes, we randomly generated an Erdős-Rényi graph with n nodes and edge probability

5/(n − 1), meaning each node in the graph has expected degree 5. Edge weights for selected edges were

again randomly selected with equal probability from the set {-1, 1}. To observe memory scaling behavior

on these sparse problem instances, we randomly generated instances of size 1,000, 3,000, 10,000, and 30,000

nodes and tested each heuristic on each instance. Again, we gave each heuristic the same runtime limit,

as described in Section 4.1. The peak memory consumption of each heuristic for different sparse instance
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Figure 12 A comparison of the memory scaling behavior of the heuristics (note the log-transformed axes).

(Left) Complete graphs with randomly selected edge weights. (Right) Sparse Erdős-Rényi graphs with

expected degree 5 and randomly selected edge weights.

sizes is plotted in Figure 12 (right). The observed scaling confirms an O(n) memory consumption for all

heuristics except LAG09CE, LAG09HCE, and PAR08 on sparse problem instances, as expected from the

asymptotic analysis. Further, LAG09CE and LAG09HCE exhibit expected O(n2) memory consumption on

sparse problem instances. Finally, heuristic PAR08 consumes more memory than any other heuristic. This

is because PAR08 stores all locally optimal solutions encountered during its tabu search procedure, which

can be quite memory intensive.

Appendix D: Random Forest Variable Importance

Table 4 lists the variable importance values for all the 58 metrics used in this work, averaged over the random

forest models for the 37 heuristics.
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