The Lyapunov rank of an improper cone

Michael Orlitzky

University of Maryland Baltimore County, Baltimore, MD 21250, USA

(Received 00 Month 20XX; final version received 00 Month 20XX)

Let K be a closed convex cone with dual K^* in a finite-dimensional real inner-product space V. The complementarity set of K is

$$C(K) = \{(x, s) \in K \times K^* \mid \langle x, s \rangle = 0\}.$$

We say that a linear transformation $L : V \to V$ is Lyapunov-like on K if

$$\langle L(x), s \rangle = 0 \text{ for all } (x, s) \in C(K).$$

The dimension of the space of all such transformations is called the Lyapunov rank of K. This number was introduced and studied by Rudolf et al. [11] for proper cones because of its connection to conic programming and complementarity problems. The assumption that K is proper turns out to be nonessential.

We first develop the basic theory for cones that are merely closed and convex. We then devise a way to compute the Lyapunov rank of any closed convex cone and show that the Lyapunov-like transformations on a closed convex cone are related to the Lie algebra of its automorphism group. Next we extend some results for proper polyhedral cones. Finally, we devise algorithms to compute both the space of all Lyapunov-like transformations and the Lyapunov rank of a polyhedral closed convex cone.

Keywords: Lyapunov rank, Lyapunov-like transformation, conic programming, Lie algebra, automorphism group

AMS Subject Classification: 22E60, 90C25, 52B05

1. Introduction

Let K be a closed convex cone in an n-dimensional real inner-product space V with dual

$$K^* = \{y \in V \mid \forall x \in K, \langle x, y \rangle \geq 0\}.$$ (1)
The complementarity set of K is then

$$C(K) = \{(x, s) \in K \times K^* \mid \langle x, s \rangle = 0\}.$$

Such a set arises in connection with complementarity problems [4] and as optimality conditions in conic programming [3].

It is known that $C(K)$ is an n-dimensional manifold within the $2n$-dimensional space $V \times V$. This inspired Rudolf et al. to investigate [11] the possibility of expressing the single equation $\langle x, s \rangle = 0$ in the complementarity set as a system of n or more independent equations, $\langle L_i(x), s \rangle = 0$ for $i = 1, 2, \ldots, n$. When this can be done, there is hope of solving the system using existing algorithms. To quantify this possibility, the authors introduced the \emph{bilinearity rank} of a cone.

Gowda and Tao [6] then noticed that the bilinearity rank of a cone K can be described in terms of its \emph{Lyapunov-like} transformations, $L : V \to V$ having the property that

$$\langle L(x), s \rangle = 0 \text{ for all } (x, s) \in C(K).$$

Gowda and Tao showed that the bilinearity rank of K is the dimension of the space of all Lyapunov-like transformations on K. These transformations are related to the Lyapunov transformations in the theory of dynamical systems; hence the term ‘Lyapunov rank’ was coined in place of ‘bilinearity rank.’ Gowda and Tao also connected the Lyapunov-like transformations on K to the Lie algebra of its automorphism group, showing that L is Lyapunov-like on K if and only if $L \in \text{Lie} \left(\text{Aut} \left(K \right) \right)$.

In all previous work, the cones were assumed to be \emph{proper}; that is: closed, convex, pointed (containing no lines), and solid (having nonempty interior). We ask what happens when the cones are merely closed and convex—one can still define the Lyapunov rank as the dimension of the space of all Lyapunov-like transformations on the cone. The assumption that the cones are proper turns out to be nonessential. We develop the theory for closed convex cones and revisit some important results. For the special case of polyhedral cones, we devise algorithms to compute Lyapunov-like transformations and the Lyapunov rank.

2. Preliminaries

2.1 Standard definitions

Let V and W be finite-dimensional real inner-product spaces. By $\mathcal{B}(V, W)$ we denote the space of all linear maps from V to W. We abbreviate $\mathcal{B}(V, V)$ by $\mathcal{B}(V)$. The adjoint of $L \in \mathcal{B}(V, W)$ is $L^* \in \mathcal{B}(W, V)$ and is defined by $\langle L(x), y \rangle_W = \langle x, L^*(y) \rangle_V$ for all $x \in V$.

and $y \in W$. We say that $L \in \mathcal{B}(V)$ is an automorphism of $X \subseteq V$ and write $L \in \text{Aut}(X)$ if L is invertible and $L(X) = X$. The composition of L_1 with L_2 is written $L_1 \circ L_2$.

For $x, s \in V$, we define $x \otimes s \in \mathcal{B}(V)$ as the map $y \mapsto \langle s, y \rangle x$. From this it follows that $x \otimes s$ has as its adjoint $(x \otimes s)^* = s \otimes x \in \mathcal{B}(V)$. Moreover, $x \otimes L^*(s) = (x \otimes s) \circ L$. Next we define the trace operator on $\mathcal{B}(V)$ as the sum-of-eigenvalues, $\text{trace}(L) := \sum_{\lambda \in \sigma(L)} \lambda$. It should be clear that

$$\text{trace}(x \otimes s) = \text{trace}(s \otimes x) = \langle x, s \rangle.$$

On $\mathcal{B}(V)$ we define the trace inner product

$$(L_1, L_2)_{\mathcal{B}(V)} := \text{trace}(L_1 \circ L_2^*).$$

Definition 1 (cone) A cone K in V is a nonempty set such that for all $\lambda \geq 0$ in \mathbb{R} we have $\lambda K = K$. A closed convex cone is a cone that is convex and topologically closed.

Our interest is restricted to closed convex cones.

Definition 2 (conic hull) Given a nonempty subset X of V, the conic hull of X is

$$\text{cone}(X) := \{ \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_m x_m | x_i \in X, \alpha_i \geq 0 \}.$$

When X is finite, the set $\text{cone}(X)$ is a closed convex cone in V.

Definition 3 (generators) We say that G generates K if $\text{cone}(G) = K$. If G generates K, then the elements of G are called generators of K.

Definition 4 (span, dimension, lineality) Let K be a closed convex cone. Then $\text{span}(K) = K - K$ is the subspace generated by K, and the dimension $\text{dim}(K)$ is defined to be $\text{dim}(\text{span}(K))$. The lineality of K is $\text{lin}(K) := \text{dim}(K \cap -K)$.

2.2 Cone-space pairs

In Section 1, some operations on K depend implicitly on the ambient space V. When K is a proper cone, there is no ambiguity—no smaller space contains K. But if K lives in a proper subspace W of V, then we will need to (for example) take the dual of K within W. The notation (1) does not allow this so we make the following definition.

Definition 5 (cone-space pair) A cone-space pair (K, V) is a closed convex cone K paired with a finite-dimensional real inner-product space V containing K.

We avoid the cumbersome pair notation with the following useful device.

Definition 6 Suppose (K, V) is a cone-space pair and W is a subspace of V. Then we can define a new cone-space pair $K_W := (K \cap W, W)$. We extend this ‘operation’ to cone-space pairs by $(K_W)_U = (K_U)_W = K_UW := (K \cap U \cap W, U \cap W)$.

3
Note that $K_V = (K \cap V, V) = (K, V)$ whenever K is contained in V; this motivates an abuse of notation when we say ‘let K_V be a cone-space pair’ to mean ‘let (K, V) be a cone-space pair.’

The space in cone-space pair (that is, the subscript, from now on) is mainly a bookkeeping tool. Any operation defined on a closed convex cone K in a finite-dimensional real inner-product space V can be defined on the cone-space pair K_V in an obvious way: think of K as living in V, perform the operation, and if necessary, pair the result with the appropriate space. Here are a few important examples.

Definition 7 The dual cone-space pair of K_V is another cone-space pair defined by

$$K_V^* := \left\{ y \in V \mid \forall x \in K, \langle x, y \rangle \geq 0 \right\},$$

We define the codimension of K_V as the orthogonal complement of K in V:

$$\text{codim} (K_V) := \dim \left(\{ y \in V \mid \forall x \in K, \langle x, y \rangle = 0 \} \right).$$

We will freely perform operations on cone-space pairs that are traditionally defined only on subsets of vector spaces. There is no ambiguity if the space is treated as an annotation. For example, the function $\phi : V \to W$ acts on a cone-space pair by $\phi(K_V) = \phi(K)_W$. Vector spaces are themselves closed convex cones, but we will not belabor the notation. If W is a subspace of V, we write W^\perp and not W^\perp_V for its orthogonal complement in V.

Definition 8 Two cone-space pairs K_V and J_W are isomorphic, written $K_V \cong J_W$, if there exists an inner-product-space isomorphism $\phi : V \to W$ with $\phi(K) = J$. When ϕ is merely invertible and linear we say that the cone-space pairs are linearly isomorphic.

Definition 9 The cone-space pair K_V is pointed if $K \cap -K = \{0\}$ and solid if $\text{span} (K) = V$. A proper cone-space pair is both pointed and solid.

The next two results are well-known. The first is found in Ben-Tal and Nemirovski [2]. The second follows from the fact [10] that the dual of $K \cap -K$ in V is $\text{span} (K_V^*)$.

Proposition 1 A cone-space pair K_V is pointed if and only if K_V^* is solid. Moreover, $\text{lin} (K_V) = \text{codim} (K_V^*)$.

Definition 10 The complementarity set of the cone-space pair K_V is

$$C(K_V) := \{ (x, s) \mid x \in K_V, s \in K_V^*, \langle x, s \rangle = 0 \}.$$

The map $L \in \mathcal{B}(V)$ is Lyapunov-like on K_V if

$$\langle L(x), s \rangle = 0 \text{ for all } (x, s) \in C(K_V).$$

By $\mathbf{LL}(K_V)$ we denote the space of all Lyapunov-like transformations on K_V. The Lyapunov rank of K_V is defined to be $\dim (\mathbf{LL}(K_V))$ and is abbreviated $\beta(K_V)$.

The following fact is a consequence of our definitions.
Proposition 2. Let K_V be a cone-space pair and suppose that W is a subspace of V containing K. Then $(K_W)^* = (K_V^*)_W$.

3. Basic theory for closed convex cones

3.1 Lyapunov-like transformations on generators

When K_V is a proper cone-space pair, the Lyapunov-like property need only be checked [11] for pairs (x, s) of complementary extreme vectors with $x \in \text{Ext } (K_V)$ and $s \in \text{Ext } (K_V^*)$. So when K_V is proper, L is Lyapunov-like on K_V if

$$\langle L(x), s \rangle = 0 \text{ for all } (x, s) \in C(K_V) \cap (\text{Ext } (K_V) \times \text{Ext } (K_V^*)).$$ \quad (4)

When K_V is proper, $\text{Ext } (K_V)$ generates K_V by the Krein-Milman theorem. This motivates a similar result for closed convex cones. First we show that, by replacing $\text{Ext } (K_V)$ with generators of K_V, we obtain a formula that works for all closed convex cones. Then we give an example of a cone-space pair for which (4) fails.

Proposition 3. Let K_V be a cone-space pair. Suppose G_1 generates K_V and G_2 generates K_V^*. Then $L \in \mathbf{LL}(K_V)$ if and only if

$$\langle L(x), s \rangle = 0 \text{ for all } (x, s) \in C(K_V) \cap (G_1 \times G_2).$$ \quad (5)

Proof. Clearly, if $L \in \mathbf{LL}(K_V)$, then L satisfies (5). So suppose that L satisfies (5) and let $(x, s) \in C(K_V)$ be given. We show that $\langle L(x), s \rangle = 0$. Since G_1 generates K_V and G_2 generates K_V^*, we can write

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_\ell x_\ell$$

$$s = \gamma_1 s_1 + \gamma_2 s_2 + \cdots + \gamma_m s_m$$

where each $x_i \in G_1$, $s_j \in G_2$, and $\alpha_i, \gamma_j \geq 0$. Because $(x, s) \in C(K_V)$, we have

$$\langle x, s \rangle = 0 \iff \sum_{i=1}^{\ell} \sum_{j=1}^{m} \langle \alpha_i x_i, \gamma_j s_j \rangle = 0.$$

Notice that $\alpha_i x_i \in K_V$ and $\gamma_j s_j \in K_V^*$, so each term in this sum is zero, and thus,

$$\langle \alpha_i x_i, \gamma_j s_j \rangle \in C(K_V) \cap (G_1 \times G_2) \text{ for all } i, j.$$

Now by supposition,

$$\langle L(x), s \rangle = \sum_{i=1}^{\ell} \sum_{j=1}^{m} \langle L(\alpha_i x_i), \gamma_j s_j \rangle = 0.$$
Definition 11 (discrete complementarity set) If \(G_1 \) and \(G_2 \) generate \(K_V \) and \(K_V^* \) respectively, we refer to \(C(K_V) \cap (G_1 \times G_2) \) as a discrete complementarity set of \(K_V \). When \(K_V \) is polyhedral, it has a finite discrete complementarity set.

Proposition 3 and a generating set for \(K_V \) will often allow us to describe its Lyapunov-like transformations and determine its Lyapunov rank. We illustrate this with an example, showing in the process that (4) no longer suffices in the general case.

Example 1 Let \(K \) be the \(xy \)-plane in \(V = \mathbb{R}^3 \). Then \(K_V \) is the \(z \)-axis in \(V \), and for \(K_V \) and \(K_V^* \) we have the respective generating sets

\[
G_1 = \left\{ (1, 0, 0)^T, (-1, 0, 0)^T, (0, 1, 0)^T, (0, -1, 0)^T \right\}, \quad G_2 = \left\{ (0, 0, 1)^T, (0, 0, -1)^T \right\}.
\]

Let \(\{E_{ij}\} \) for \(i, j = 1, 2, 3 \) be the standard basis in \(\mathbb{R}^{3 \times 3} \). Using Proposition 3, one can verify that neither \(E_{31} \) nor \(E_{32} \) is Lyapunov-like on \(K \) but that the remaining seven \(E_{ij} \) are. Thus, \(\beta(K_V) = \dim(\text{LL}(K_V)) = 7 \). Note that \(K_V \) in this example has no extreme vectors; if we use (4) instead of (5), we conclude incorrectly that every \(E_{ij} \) is Lyapunov-like on \(K_V \) and that \(\beta(K_V) = 9 \).

Finding a tight upper bound for the Lyapunov rank of a proper cone is an open problem. In an \(n \)-dimensional space, the best known [9] upper bound is \((n - 1)^2\). A similar search for closed convex cones is futile because the a priori bound of \(n^2 \) is achieved.

Example 2 Let \(K = V = \mathbb{R}^n \). Then \(K_V^* = \{0\}_V \) and \(C(K_V) = K \times \{0\} \), so every \(L \in \mathcal{B}(V) \) is Lyapunov-like on \(K_V \) and \(\dim(\mathcal{B}(V)) = n^2 \).

The following two results [11] generalize easily to closed convex cones.

Proposition 4 The Lyapunov ranks \(\beta(K_V) \) and \(\beta(K_V^*) \) are equal.

Proof. It follows from Definition 10 that \(L \in \text{LL}(K_V) \) if and only if \(L^* \in \text{LL}(K_V^*) \). The map \(L \mapsto L^* \) is an automorphism of \(\mathcal{B}(V) \), so \(\dim(\text{LL}(K_V)) = \dim(\text{LL}(K_V^*)) \). ■

Proposition 5 Let \(K_V \) be a cone-space pair, and let \(A : V \rightarrow W \) be a linear isomorphism. Then \(\beta(K_V) = \beta(A(K_V)) \).

Proof. Since \(A(K_V) = A(K)_W \), we first observe that \(A(K)^*_W = (A^*)^{-1}(K_V^*) \). Then it is evident that \(L \in \text{LL}(K_V) \iff ALA^{-1} \in \text{LL}(A(K_V)) \). The result follows from the fact that \(L \mapsto ALA^{-1} \) is a linear isomorphism between \(\mathcal{B}(V) \) and \(\mathcal{B}(W) \). ■

3.2 The codimension formula

The codimension formula [11] for a proper cone-space pair \(K_{\mathbb{R}^n} \) is

\[
\beta(K_{\mathbb{R}^n}) = \text{codim} \left(\text{span} \left\{ s x^T \mid (x, s) \in C(K_{\mathbb{R}^n}) \right\} \right).
\]

6
An analogous formula holds for all closed convex cones.

Theorem 1 Suppose \(K_V \) is a cone-space pair, and let \(G_1 \) and \(G_2 \) be any generating sets of \(K_V \) and \(K_V^* \) respectively. Then,

\[
\beta(K_V) = \text{codim} \left(\text{span} \left(\{ s \otimes x \mid (x, s) \in C(K_V) \cap (G_1 \times G_2) \} \right) \right).
\]

Proof. From (2) and (3) we obtain

\[
\langle L(x), s \rangle = \text{trace} \left(x \otimes L^*(s) \right) = \text{trace} (x \otimes s \circ L) = \langle x \otimes s, L^*_B(V) \rangle.
\]

Thus \(\langle L(x), s \rangle = 0 \) if and only if \(\langle x \otimes s, L^*_B(V) \rangle = 0 \), and this is easily seen to be equivalent to \(\langle s \otimes x, L \rangle_B(V) = 0 \). Now using (5), all of the following are equivalent:

- \(L \) is Lyapunov-like on \(K_V \).
- \(\langle L(x), s \rangle = 0 \) for all \((x, s) \in C(K_V) \cap (G_1 \times G_2) \).
- \(\langle x \otimes s, L^*_B(V) \rangle = 0 \) for all \((x, s) \in C(K_V) \cap (G_1 \times G_2) \).
- \(\langle s \otimes x, L \rangle_B(V) = 0 \) for all \((x, s) \in C(K_V) \cap (G_1 \times G_2) \).
- \(L \in \text{span} \left(\{ s \otimes x \mid (x, s) \in C(K_V) \cap (G_1 \times G_2) \} \right) \).

Therefore, \(\text{dim} \left(\text{LL}(K_V) \right) = \text{codim} \left(\text{span} \left(\{ s \otimes x \mid (x, s) \in C(K_V) \cap (G_1 \times G_2) \} \right) \right) \).

4. Lyapunov ranks of some cone-space pairs

The codimension formula (6) may allow us to compute the Lyapunov rank of a cone-space pair. As an example, we consider the cone given by a proper subspace.

Proposition 6 Let \(K_V \) be a cone-space pair where \(\text{dim} \left(V \right) = n \) and \(K \) is an \(m \)-dimensional subspace of \(V \). Then \(\beta(K_V) = n^2 - m(n - m) \).

Proof. Using Proposition 5, we can assume that \(V = \mathbb{R}^n \) with the standard basis \(\{ e_i \}_{i=1}^n \) and that \(K = \mathbb{R}^m \). Now \(G_1 := \{ \pm e_i \}_{i=1}^m \) and \(G_2 := \{ \pm e_i \}_{i=m+1}^n \) generate \(K_V \) and \(K_V^* = \mathbb{R}^{n-m} \) respectively. Thus,

\[
C(K_V) \cap (G_1 \times G_2) = \{ (\pm e_i, \pm e_j) \mid i \leq m; \ m+1 \leq j \leq n \}.
\]

As \(\text{span} \left(\{ s \otimes x \mid (x, s) \in C(K_V) \cap (G_1 \times G_2) \} \right) \) reduces to the span of products of the form \(e_j \otimes e_i \), it follows from (6) that \(\beta(K_V) = n^2 - m(n - m) \).

Note that this result agrees with Example 1 where \(n = 3, m = 2 \), and \(\beta(K_V) = 7 \).

Proposition 7 Let \(K_V \) be a cone-space pair with \(\text{dim} \left(V \right) = n \) and \(K = \text{cone} \left(\{ v \} \right) \) for some nonzero \(v \in V \). Then \(\beta(K_V) = n^2 - n + 1 \).
Proof. Without loss of generality, we can take K to be cone $(\{e_1\})$ and V to be \mathbb{R}^n. Then K_V is the right half-space containing e_1 in \mathbb{R}^n. It is obvious that $G_1 := \{e_1\}$ generates K_V and $G_2 := \{e_1\} \cup \{\pm e_j \mid j > 1\}$ generates K^*_V. By considering the pairs (e_1, e_2) through (e_1, e_n) in (6), we see that $\beta(K_V) = n^2 - (n - 1)$.

Corollary 1 The Lyapunov rank of any ray, half-space, line, or hyperplane in an n-dimensional real inner-product space is $n^2 - n + 1$.

Proof. The half-space is dual to a single ray, and we can apply Proposition 7 to the set containing a single ray. The line/hyperplane are also duals, and their complementarity sets differ only in sign from those of the ray/half-space.

The Lyapunov rank is additive on a cartesian product [11] when its factors are proper cone-space pairs. Proposition 7 draws a contrast with this result.

Proposition 8 Let K_V and J_W be proper. Then $\beta(K_V \times J_W) = \beta(K_V) + \beta(J_W)$.

Surprisingly, this does not hold in the general case. Suppose $K = \text{cone} (\{e_1\})$ in \mathbb{R}^n. Informally, K can be written as the product cone $(\{e_1\})_{\mathbb{R}} \times \{0\}_{\mathbb{R}^{n-1}}$. If we apply Proposition 8 to this product, we deduce

$$\beta(\text{cone}(\{e_1\})_{\mathbb{R}} \times \{0\}_{\mathbb{R}^{n-1}}) = n^2 - 2(n - 1),$$

contradicting Proposition 7. So β is not generally additive on cartesian products.

5. The Lyapunov rank of a closed convex cone

The failure of the product formula in Proposition 8 motivates us to find a similar formula that works for all closed convex cones. In our last example, we informally wrote K_V as a product of two cone-space pairs. The first factor was solid in span (K), and the second factor was trivial in span $(K)^\perp$. This is a common theme in what follows.

Proposition 9 Let K_V be a cone-space pair and let $W = \text{span} (K)$. Then V is isomorphic to $W \times W^\perp$, and $K_V \cong K_W \times \{0\}_{W^\perp}$.

Proof. Suppose $\{e_i\}_{i=1}^m$ and $\{f_j\}_{j=m+1}^n$ are bases for W and W^\perp respectively. Define ϕ by $\phi(e_i) = (e_i, 0)^T$ and $\phi(f_j) = (0, f_j)^T$. Evidently $\phi : V \to W \times W^\perp$ is an inner-product-space isomorphism and $\phi(K_V) = K_W \times \{0\}_{W^\perp}$.

Proposition 9 and Proposition 5 show that we can find $\beta(K_V)$ by computing $\beta(K_W \times \{0\}_{W^\perp})$ instead. When K_V is non-solid, the latter is simpler.

Lemma 1 Let K_V be a cone-space pair and $S = \text{span} (K)$. Then K_S is solid and

$$\beta(K_V) = \beta(K_S) + \text{codim}(K_V) \cdot \dim(V).$$
Proof. Through Proposition 9, we can work with $K_S \times \{0\}_{S^\perp}$ instead of K_V. We will connect the Lyapunov-like transformations on K_S to those on $K_S \times \{0\}_{S^\perp}$. First observe that the complementarity sets of these cone-space pairs are related:

$$\forall t \in S^\perp, \ \big((x,0)^T, (s,t)^T\big) \in C(K_S \times \{0\}_{S^\perp}) \iff (x,s) \in C(K_S).$$

Now suppose that $L \in \text{LL}(K_S \times \{0\}_{S^\perp})$ is expressed in block form,

$$L : S \times S^\perp \rightarrow S \times S^\perp$$

$$L := \begin{bmatrix} A & B \\ Z & D \end{bmatrix},$$

where $A \in B(S)$, $B \in B(S^\perp, S)$, $Z \in B(S, S^\perp)$, and $D \in B(S^\perp)$. Since K_S is solid, we must have $Z = 0$; otherwise we can choose $x \in K$ having $\langle Z(x), t \rangle \neq 0$ for some $t \in S^\perp$ and contradict the Lyapunov-like property of L.

We claim that $L \in \text{LL}(K_S \times \{0\}_{S^\perp})$ if and only if $A \in \text{LL}(K_S)$. This is obvious after we note that $\langle L \big((x,0)^T\big), (s,t)^T\rangle = \langle A(x), s \rangle$ and we recall the relationship between the two complementarity sets. If we desire an $L \in \text{LL}(K_S \times \{0\}_{S^\perp})$, then we are free to choose $A, B,$ and D from their respective spaces having dimensions $\beta(K_S), \text{dim}(S^\perp) \text{dim}(S),$ and $\text{dim}(S^\perp)^2$. Thus,

$$\beta(K_V) = \beta(K_S) + \text{dim}(S^\perp) \left(\text{dim}(S) + \text{dim}(S^\perp)\right).$$

Lemma 1 is only half the story—we need to be able to deal with non-pointed cone-space pairs as well. Fortunately these problems are dual to one another.

Lemma 2 Let K_V be a cone-space pair and $P = \text{span}(K_V^*)$. Then K_P is pointed and

$$\beta(K_V) = \beta(K_P) + \text{lin}(K_V) \cdot \text{dim}(V).$$

Proof. Applying Lemma 1 to K_V^*, we have

$$\beta(K_V^*) = \beta((K_V^*)^p) + \text{codim}(K_V^*) \cdot \text{dim}(V).$$

Now $(K_V^*)^p$ is solid and, by Proposition 2, equal to K_P^p. If we take its dual and apply Proposition 1, then K_P is pointed. Substituting $\beta(K_V^*) = \beta(K_V)$ and $\beta(K_P) = \beta(K_P)$ by Proposition 4, we obtain the result.

The preceding lemmas combine to handle any closed convex cone.

Theorem 2 Let K_V be a cone-space pair, $S = \text{span}(K)$, and $P = \text{span}(K_V^*)$. Then K_{SP} is proper and

$$\beta(K_V) = \beta(K_{SP}) + \text{lin}(K) \cdot \text{dim}(K) + \text{codim}(K_V) \cdot \text{dim}(V).$$
Proof. Apply Lemma 1 to K_V so that we have
\[
\beta(K_V) = \beta(K_S) + \text{codim}(K_V) \cdot \dim(V) \tag{7}
\]
where K_S is solid. Now apply Lemma 2 to K_S:
\[
\beta(K_S) = \beta((K_S)_P) + \text{lin}(K_S) \cdot \dim(S) \tag{8}
\]
where $(K_S)_P = K_{SP}$ is pointed. The lineality of K_S and dimension of S are the same as those of K itself, so combining (7) and (8), we have
\[
\beta(K_V) = \beta(K_{SP}) + \text{lin}(K) \cdot \dim(K) + \text{codim}(K_V) \cdot \dim(V).
\]
Since K_S was solid, the cone-space pair K_{SP} is solid (and thus proper) as well.

The literature states that for any proper K_V, the identity transformation is Lyapunov-like on K_V and that therefore $\beta(K_V) \geq 1$. However, the trivial cone in the trivial space is both solid and pointed with Lyapunov rank zero. We caution that the K_{SP} obtained in Theorem 2 can be trivial, as our next example shows.

Example 3 Suppose $K = \mathbb{R}^m$ in $V = \mathbb{R}^n$. Then $\text{lin}(K) = \dim(K) = m$, $\text{codim}(K_V) = n - m$, and K_{SP} is trivial. Theorem 2 then gives $\beta(K_V) = n^2 - m(n - m)$.

Example 4 Suppose $K = \text{cone}(\{v\})$ in the n-dimensional space V (cf. Proposition 7). Then $\text{lin}(K) = 0$, $\dim(K) = 1$, and $\text{codim}(K_V) = n - 1$. The proper cone-space pair K_{SP} that we obtain is $K_S = \text{cone}(\{v\})$, $\text{span}(\{v\})$, so by Theorem 2, $\beta(K_V) = n^2 - n + 1$.

Example 5 Suppose that K_V is proper. Then $S = P = V$, so $K_{SP} = K_V$ and $\text{lin}(K) = \text{codim}(K_V) = 0$. Theorem 2 reduces to $\beta(K_V) = \beta(K_{SP})$.

Theorem 2 provides us with a way to ‘shrink’ the computation of $\beta(K_V)$ when K_V is improper. It can also be interpreted the other way around: given a proper cone-space pair K_V, we can ‘grow’ the space to increase its Lyapunov rank. Suppose K_V is proper in $V = \mathbb{R}^n$. Then the theorem states that $\beta(K_V \times \{0\}_\mathbb{R}) = \beta(K_V) + n + 1$. By embedding K in $V \times \mathbb{R}$, we have increased its Lyapunov rank by $n + 1$.

Example 6 Define a pyramid ℓ^3_1 in \mathbb{R}^3 by,
\[
\ell^3_1 := \left\{ (x_1, x_2, x_3)^T \mid x_3 \geq \|(x_1, x_2)^T\|_1 \right\}.
\]
Then the proper cone-space pair (ℓ^3_1, \mathbb{R}^3) has a generating set
\[
G = \left\{ (0, 1, 1)^T, (1, 0, 1)^T, (0, -1, 1)^T, (-1, 0, 1)^T \right\}
\]
and Lyapunov rank one [7, 11]. Append zeros to the end of each generator:
\[
\tilde{G} := \left\{ (0, 1, 1, 0)^T, (1, 0, 1, 0)^T, (0, -1, 1, 0)^T, (-1, 0, 1, 0)^T \right\}.
\]
The resulting $\left(\text{cone} (\tilde{G}), \mathbb{R}^4\right)$ has Lyapunov rank five; an increase of $\dim(\ell^3_1) + 1 = 4$.

The original motivation for studying $\beta(K_V)$ was to write the single equation $\langle x, s \rangle = 0$ in $C(K_V)$ as a system of $\beta(K_V) \geq \dim(V)$ equations. Cones where this can be done are called perfect cones [6, 9] because the associated problems may be amenable to solution by existing fast algorithms. Example 6 shows one way to construct these cones: working over the cone $K \times \{0\}$ essentially adds a slack variable to the problem involving K. Our next theorem thus shows that adding a slack variable will make the underlying cone perfect.

Theorem 3 Let K_W be a cone-space pair and $\dim(V) > \dim(W)$. Then K_V is perfect.

Proof. By construction $\text{codim}(K_V) \geq 1$, so Theorem 2 gives $\beta(K_V) \geq \dim(V)$. ■

6. **Characterization of Lyapunov-like transformations**

The main idea of Section 5 is that the structure of a non-solid cone-space pair K_V lets us describe its Lyapunov-like transformations, and that we can use the dual K_V^* to do the same for non-pointed cone-space pairs. This approach extends to the automorphism group of K_V in order to characterize $\text{LL}(K_V)$. The following interesting connection between $\text{LL}(K_V)$ and the Lie algebra of $\text{Aut}(K_V)$ was made [6] by Gowda and Tao.

Theorem 4 Suppose that K_V is a proper cone-space pair and that $L \in B(V)$. Then the following are equivalent:

- L is Lyapunov-like on K_V.
- $e^{tL} \in \text{Aut}(K_V)$ for all $t \in \mathbb{R}$.
- $L \in \text{Lie} (\text{Aut}(K_V))$.

The proof of this fact relies on a result of Schneider and Vidyasagar [12] who deal exclusively with proper cones, so we are left wondering whether or not the same result holds more generally. The equivalence $L \in \text{Lie}(G) \iff e^{tL} \in G$ for all $t \in \mathbb{R}$ is a known property [1] of matrix groups G. One half of the remaining equivalence is straightforward.

Proposition 10 Let K_V be a cone-space pair. If $e^{tL} \in \text{Aut}(K_V)$ for all $t \in \mathbb{R}$, then L is Lyapunov-like on K_V.

Proof. Let $e^{tL} \in \text{Aut}(K_V)$ for all $t \in \mathbb{R}$, and take any $(x, s) \in C(K_V)$. We show that $\langle L(x), s \rangle = 0$; then it follows that L is Lyapunov-like on K_V. First, since $e^{tL}(x) \in K$,

$$\left\langle \left[e^{tL} - I \right](x), s \right\rangle = \left\langle e^{tL}(x), s \right\rangle \geq 0 \text{ for all } t \in \mathbb{R}. $$

Considering only positive values of t, multiplication by $1/t > 0$ has no effect:

$$\left\langle \frac{1}{t} \left[e^{tL} - I \right](x), s \right\rangle \geq 0 \text{ for all } t > 0. $$
Take the limit as $t \to 0$, then,
\[
L = \lim_{t \to 0} \left\{ \frac{1}{t} \left[e^{tL} - I \right] \right\} = \frac{d}{dt} e^{tL} \bigg|_{t=0}
\]
giving $\langle L(x), s \rangle \geq 0$. Replace L by $-L$; the same reasoning gives $\langle L(x), s \rangle \leq 0$. ■

For the converse, it remains to be seen that $L \in \mathbf{L}(K_V)$ implies $e^{tL} \in \text{Aut} (K_V)$.

Proposition 11 Suppose K_V is a cone-space pair and that $S = \text{span} (K)$. Then the automorphism group of the cone-space pair $K_S \times \{0\}_{S^\perp}$ is
\[
\text{Aut} (K_S \times \{0\}_{S^\perp}) = \left\{ \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} \mid A \in \text{Aut} (K_S), \ B \in \mathcal{B} (S^\perp, S), \ D \in \text{Aut} (S^\perp) \right\}.
\]

Proof. Any transformation in the above set is invertible with
\[
\begin{bmatrix} A & B^* \\ 0 & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.
\]
Inclusion in one direction is now obvious:
\[
\begin{bmatrix} A & B \\ 0 & D \end{bmatrix} \begin{bmatrix} K_S \\ \{0\}_{S^\perp} \end{bmatrix} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} K_S \\ \{0\}_{S^\perp} \end{bmatrix} = \begin{bmatrix} K_S \\ \{0\}_{S^\perp} \end{bmatrix}.
\]
For the other direction, assume that we have an automorphism L in block form,
\[
L := \begin{bmatrix} A & B \\ Z & D \end{bmatrix} \in \text{Aut} (K_S \times \{0\}_{S^\perp}).
\]
We will show that $Z = 0$, $A \in \text{Aut} (K_S)$, and $D \in \text{Aut} (S^\perp)$. Invertibility of L requires invertibility of A and D, so those facts are immediate.

Suppose that $Z \neq 0$. Then $Z(x) \neq 0$ for some $x \in K_S$, because K_S is solid. Now $(x,0)^T \in K_S \times \{0\}_{S^\perp}$, but $L \left((x,0)^T \right) \notin K_S \times \{0\}_{S^\perp}$ since it has a nonzero second component. This contradicts the fact that $L \in \text{Aut} (K_S \times \{0\}_{S^\perp})$. Thus, $Z = 0$.

Two cases remain that would preclude L from being an automorphism of $K_S \times \{0\}_{S^\perp}$.

Case 1 ($A(K_S) \notin K_S$): We have an obvious contradiction in the fact that
\[
L(K_S \times \{0\}_{S^\perp}) = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} \begin{bmatrix} K_S \\ \{0\}_{S^\perp} \end{bmatrix} = \begin{bmatrix} A(K_S) \\ \{0\}_{S^\perp} \end{bmatrix} \notin \begin{bmatrix} K_S \\ \{0\}_{S^\perp} \end{bmatrix}.
\]

Case 2 ($A^{-1}(K_S) \notin K_S$): This contradiction is similar but using L^{-1}.

We have contradictions in both cases, so $A \in \text{Aut} (K_S)$. ■
Our inspiration for the converse is the following realization. Recall from Lemma 1 that \(LL (K_S \times \{0\}_{S^+}) \) is precisely the set,

\[
\left\{ \begin{bmatrix} A & B \\ 0 & D \end{bmatrix} \middle| A \in LL (K_S), \ B \in B \left(S^+, S \right), \ D \in B \left(S^+ \right) \right\}.
\]

(9)

Thus, any \(L \in LL (K_S \times \{0\}_{S^+}) \) can be exponentiated directly:

\[
e^{tL} = \sum_{k=0}^{\infty} \frac{t^k}{k!} \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}^k = \begin{bmatrix} \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k & B \\ 0 & \sum_{k=0}^{\infty} \frac{t^k}{k!} D^k \end{bmatrix} = \begin{bmatrix} e^{tA} & \tilde{B} \\ 0 & e^{tD} \end{bmatrix}.
\]

(10)

Here, \(\tilde{B} \) is unknown, but the form of the expression is suggestive.

Lemma 3 Suppose \(K_V \) is a pointed cone-space pair and that \(S = \text{span}(K) \). Then the equivalence from Theorem 4 holds for \(K_S \times \{0\}_{S^+} \equiv K_V \).

Proof. Take any \(L \in LL (K_S \times \{0\}_{S^+}) \) according to (9). Exponentiate it as in (10), and note that the cone \(K_S \) is proper, so \(e^{tA} \in \text{Aut}(K_S) \) by Theorem 4. The transformation \(e^{tD} \) is always invertible, and \(\tilde{B} \) is irrelevant by Proposition 11.

Now that we have the result for \(K_S \times \{0\}_{S^+} \), we extend it to any pointed cone-space pair. To dispose of the isomorphism, we use the following facts whose proofs are trivial.

Proposition 12 Let \(K_V \cong J_W \) be isomorphic cone-space pairs with \(K_V = \psi(J_W) \). Then \(\text{Aut}(J_W) = \psi \text{Aut}(K_V) \psi^{-1}, LL(J_W) = \psi LL(K_V) \psi^{-1}, \) and \(e^{t\psi} = \psi e^t \psi^{-1} \).

Corollary 2 Lemma 3 holds for any pointed cone-space pair \(K_V \).

Proof. Suppose \(K_V \) is a pointed cone-space pair. Then we know that we can write \(\phi(K_V) = K_S \times \{0\}_{S^+} \) where \(\phi \) is an inner-product space isomorphism and \(K_S \) is proper. Take any \(L \in LL(\tilde{K}_V) \). Then from Proposition 12, \(\phi L \phi^{-1} \in LL(K_S \times \{0\}_{S^+}). \) And from Lemma 3, \(e^{t\phi L \phi^{-1}} = \phi e^{tL} \phi^{-1} \in \text{Aut}(K_S \times \{0\}_{S^+}) \) for all \(t \in \mathbb{R} \).

Now using Proposition 12 we obtain \(e^{tL} \in \text{Aut}(K_V) \) for all \(t \in \mathbb{R} \).

Corollary 2 takes care of pointed cone-space pairs. For solid pairs, we work with the dual and therefore need a few more identities.

Proposition 13 Let \(K_V \) be a cone-space pair. Then \(\text{Aut}(K_V^+)) = \{ A^* \mid A \in \text{Aut}(K_V) \} \), \(LL(K_V^+) = \{ L^* \mid L \in LL(K_V) \} \), and \(e^{t(L^*)} = (e^{tL})^* \).

Lemma 4 The equivalence from Theorem 4 holds for a solid cone-space pair \(K_V \).

Proof. The cone-space pair \(K_V^+ \) is pointed. Applying Corollary 2 to \(K_V^+ \) we obtain,

\[L^* \in LL(K_V^+) \iff e^{t(L^*)} \in \text{Aut}(K_V^+) \].
Now apply Proposition 13 to both sides.

We combine these lemmas to handle the general case.

Theorem 5 Let K_V be a cone-space pair and $L \in \mathcal{B}(V)$. The following are equivalent:

- L is Lyapunov-like on K_V.
- $e^{tL} \in \text{Aut}(K_V)$ for all $t \in \mathbb{R}$.
- $L \in \text{Lie} (\text{Aut}(K_V))$.

Proof. The proof of Lemma 3 relies on the fact that K_S is proper. This in turn necessitates the pointedness of K_V. However, considering Lemma 4, we no longer need K_S to be pointed. Thus we can prove Lemma 3 and Corollary 2 without the pointedness of K_V.

A similar result (Theorem III.1.10) appears in Hilgert, Hofmann, and Lawson [8]. Using Theorem 5 we can redefine the Lyapunov rank of a cone-space pair.

Corollary 3 For any cone-space pair K_V, we have $\beta(K_V) = \dim (\text{Lie}(\text{Aut}(K_V)))$.

7. Polyhedral cone-space pairs

We now restrict ourselves to the class of polyhedral cones.

Definition 12 (polyhedral cone) We say that the cone-space pair K_V is polyhedral if there exists a finite set G such that $K = \text{cone}(G)$.

Since polyhedral cone-space pairs are finitely generated, they have a finite discrete complementarity set. The Lyapunov rank of a proper polyhedral cone-space pair has been studied [6] by Gowda and Tao. We revisit those results to see what holds in the general case. Later we devise algorithms to compute $\mathcal{LL}(K_V)$ and $\beta(K_V)$ for polyhedral K_V.

7.1 Miscellaneous results

First, a negative result.

Proposition 14 Let K_V be a proper polyhedral cone-space pair. Then $\beta(K_V) = 1$ if and only if K_V is irreducible.

A reducible cone-space pair K_V can be written as a Minkowski sum $I_V + J_V$ where

- I and J are nonempty.
- $I \neq \{0\}$ and $J \neq \{0\}$.
- $\text{span}(I) \cap \text{span}(J) = \{0\}$.

14
An irreducible cone-space pair is one that is not reducible. Note that in one dimension, all cone-space pairs are irreducible, since there exist no nontrivial sets whose spans do not overlap. We argue that Proposition 14 cannot hold for general cone-space pairs.

Proposition 15 Let V be a finite-dimensional real inner-product space with $\dim (V) \geq 2$. Then there exists an irreducible polyhedral cone-space pair K_V with $\beta (K_V) > 1$.

Proof. Take any nonzero $v \in V$, and let $K = \text{cone} \{ v \}$. Then K_V is irreducible. To see why, suppose that we can write $K_V = I_V + J_V$ for nonempty sets I and J with $\text{span} (I) \cap \text{span} (J) = \{ 0 \}$. Without loss of generality, $v \in I$, which means that $J = \{ 0 \}$. As a result, K_V is irreducible. Now apply Proposition 7.

The following result by the same authors does survive generalization.

Theorem 6 Suppose K_V is a polyhedral cone-space pair with finite generating set G.

(i) If every element of G is an eigenvector of L, then $L \in \text{LL} (K_V)$.

(ii) If $L \in \text{LL} (K_V)$, then every extreme vector of K_V is an eigenvector of L.

Proof. The first implication follows from the definition of Lyapunov-like and Proposition 3. Gowda and Tao use their Theorem 4 to prove the second implication for proper K_V. To extend that proof, substitute Theorem 5 as needed.

Finally, we extend the following theorem.

Theorem 7 (Gowda and Tao) For every proper polyhedral cone-space pair K_V in $V = \mathbb{R}^n$, we have $1 \leq \beta (K_V) \leq n$ and $\beta (K_V) \neq n - 1$.

As we noted subsequent to Theorem 2, the trivial cone-space pair is proper and polyhedral, so we must correct this statement to $0 \leq \beta (K_V) \leq n$ if we allow n to be zero.

Lemma 5 Let K_V be a polyhedral cone-space pair. Then $\beta (K_V) \neq \dim (V) - 1$.

Proof. Let $\dim (K) = m$, $\dim (V) = n$, and $\text{lin} (K) = l$. Then, from Theorem 2,

$$\beta (K_V) = \beta (K_{SP}) + n^2 + m (l - n).$$

Now we set $\beta (K_V) = n - 1$, and rule out all three cases for $\beta (K_{SP})$.

Case 1 ($m = n$ and $l = 0$): This gives $\beta (K_{SP}) = n - 1$ which is impossible by Theorem 7 because K_{SP} is polyhedral and proper.

Case 2 ($m = n$ and $l > 0$): Since l is an integer, this gives $\beta (K_{SP}) = n - 1 - ln < -1$.

Case 3 ($m < n$): We can maximize $\beta (K_{SP}) = n - 1 - n^2 + m (n - l)$ over l by setting $l = 0$. Then the largest that $\beta (K_{SP})$ could possibly be is $n - 1 - n^2 < 0$.

15
7.2 Algorithms

For polyhedral cone-space pairs, some generating set—and therefore the associated discrete complementarity set—is finite. This allows us to compute both $LL(K_V)$ and $\beta(K_V)$. Our first algorithm computes $LL(K_V)$ for any polyhedral cone-space pair K_V. It is based on the proof of the codimension formula (6), from which we recall

\[L \in LL(K_V) \iff \langle s \otimes x, L \rangle_{B(V)} = 0 \text{ for all } (x, s) \in C(K_V) \cap (G_1 \times G_2). \tag{11} \]

Let $\text{vec}(A) = x$ and $\text{mat}(x) = A$ be the inverse operations taking a matrix $A \in \mathbb{R}^{n \times n}$ to the vector $x \in \mathbb{R}^n$ and vice-versa. Then, given matrix representations for $s \otimes x$ and L, the trace inner product $\langle s \otimes x, L \rangle_{B(V)}$ is equal to $\langle \text{vec}(s \otimes x), \text{vec}(L) \rangle$. We leverage this to compute $LL(K_V)$ using existing linear algebra routines: finding all L satisfying (11) becomes the computation of an orthogonal complement.

Algorithm 1 Compute a basis for $LL(K_V)$

Input: A cone-space pair K_V.

Output: A basis for $LL(K_V)$.

\[
\text{function } LL(K_V) \\
\begin{align*}
G_1 & \leftarrow \text{a minimal set of generators for } K_V \\
G_2 & \leftarrow \text{a minimal set of generators for } K_V^* \quad \triangleright \text{obtainable from } G_1 \\
C & \leftarrow \{ (x, s) \mid x \in G_1, s \in G_2, \langle x, s \rangle = 0 \} \quad \triangleright \text{discrete complementarity set} \\
W & \leftarrow \{ \text{vec}(s \otimes x) \mid (x, s) \in C \} \\
B & \leftarrow \text{a basis for } W^\perp \quad \triangleright \text{computed via e.g. Gram-Schmidt} \\
\text{return } \{ \text{mat}(b) \mid b \in B \}
\end{align*}
\]

At this point, we have a way to compute $\beta(K_V)$: simply call $LL(K_V)$ and count how many elements we get back. In fact this is the best algorithm known for proper cones. But if K_V is not guaranteed to be proper, Theorem 2 provides a more efficient approach.

To use Theorem 2, we need to implement the ‘restrict to subspace’ map $K_V \mapsto K_S$. If $\dim(V) = n$, then K will be input as a list of generators—essentially elements of \mathbb{Q}^n, tuples of rational numbers. Existing routines assume the dimension of V based on the length n of those generators, and make no provision for operating in a subspace (this is reminiscent of the problem that necessitated the introduction of cone-space pairs). The difficulty is best illustrated with an example.

Example 7 Suppose $v \in V$ and $(1,1)^T$ is its representation in terms of some basis. Then $K = \text{cone} \left(\{(1,1)^T\} \right)$ is interpreted as living in \mathbb{Q}^2 since its sole generator has two components. Now, $S = \text{span}(K)$ has dimension one, and we would like to compute $\beta(K_S) = 1$ within S. But if we pass $K_{\mathbb{Q}^2}$ to $LL()$, it operates in \mathbb{Q}^2 giving $|LL(K_{\mathbb{Q}^2})| = 3$ instead. What we need is to represent v as a tuple with one component, and of course this can be done: if we take $\{v\}$ as our basis for the space S, then v has the representation $(1)^T$ with respect to $\{v\}$. In this case it is clear that $|LL(\text{cone} \left(\{(1)^T\} \right)_{\mathbb{Q}})| = \beta(K_S) = 1$.

This approach will work insofar as we are interested in the Lyapunov rank. Starting
with a basis \(s = \{s_1, s_2, \ldots, s_m\} \) of \(W \), we can (via extension) suppose that \(b = s \cup \{b_{m+1}, b_{m+2}, \ldots, b_n\} \) is a basis of \(V \). If \(v \in V \) is input as an element \(v_e \in \mathbb{Q}^n \) with respect to some basis \(e \), then the change of basis map \(\rho : \mathbb{Q}^n \to \mathbb{Q}^n \) defined by \(\rho(v_e) = v_b \) is a linear isomorphism. And if \(v \in W \), its representation \(v_b \) will only require \(m \) components.

Thus, given \(K_{\mathbb{Q}^n} \), we are able to perform the operation \(K_{\mathbb{Q}^n} \mapsto \rho (K)_{\mathbb{Q}^m} \). We apply \(\rho \) and then drop the zero components, leaving a vector in \(\mathbb{Q}^m \). By Proposition 5, \(\beta (K_W) = \beta (\rho (K)_{\mathbb{Q}^m}) \) so this does not affect the result.

Algorithm 2 Restrict \(K_V \) to \(W \) (up to linear isomorphism)

Input: A cone-space pair \(K_V \) and a subspace \(W \) of dimension \(m \) containing \(K \).

Output: A new cone-space pair \(J_{\mathbb{Q}^m} \) linearly isomorphic to \(K_W \).

function restrict_to_space \((K_V, W)\)

\[
\begin{align*}
B &\leftarrow \text{a basis for } W \\
G &\leftarrow \text{a minimal set of generators for } K_V \\
J &\leftarrow \emptyset \\
\text{for } x \in G \text{ do} \\
&\quad q \leftarrow \text{the } B\text{-coordinates of } x \\
&\quad J \leftarrow J \cup \{w\} \\
\text{end for} \\
\text{return } \text{cone } (J)_{\mathbb{Q}^m} \\
\end{align*}
\]

We now present an efficient algorithm for calculating the Lyapunov rank of a cone-space pair \(K_V \). At the outset, the dimension \(n \) of \(V \) is inferred from the length of the generators of \(K_V \). Then \(\dim (K) \) and \(\lin (K) \) are computed using existing linear algebra routines (row reduction and convex polytope intersection, respectively).

Algorithm 3 is often an improvement over Algorithm 1 because the costly step in Algorithm 1 is performing Gram-Schmidt on vectors of length \(n^2 \). Theorem 2 throws out some complementary pairs in exchange for constant-time addition and multiplication. As a result, Algorithm 3 performs Gram-Schmidt in \(\mathbb{Q}^n \) instead, reducing the size of \(K_V \) before calling the expensive \{SLL\} \((K_V)\). To be fair, we must now also compute \(\dim (K) \) and \(\lin (K) \); however, these computations are fast relative to Gram-Schmidt in \(\mathbb{Q}^{n^2} \).
Algorithm 3 Compute the Lyapunov rank of K_V

Input: A cone-space pair K_V.

Output: The Lyapunov rank of K_V.

```matlab
function beta(K_V)
    beta ← 0; n ← dim (V); m ← dim (K); l ← lin (K)
    if m < n then
        K_V ← RESTRICT_TO_SPACE (K_V, span (K_V))
        beta ← beta + (n - m) n  \Comment{Lemma 1}
    end if
    if l > 0 then
        K_V ← RESTRICT_TO_SPACE (K_V, span (K_V))
        beta ← beta + lm  \Comment{Lemma 2}
    end if
    return beta + |LL (K_V)|  \Comment{K_V is proper here, so compute beta (K_V) the hard way}
end function
```

References