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Abstract

In this work, we present an algorithmic framework based on Benders decomposition for
the Capacitated p-Cable Trench Problem with Covering. We show that our approach can be
applied to most variants of the Cable Trench Problem (CTP) that have been considered in the
literature. The proposed algorithm is augmented with a stabilization procedure to accelerate the
convergence of the cut loop and with a primal heuristic to derive high-quality primal solutions.
Three different variants of the CTP are considered in a computational study which compares the
Benders approach with two compact integer linear programming formulations that are solved
with CPLEX. The obtained results show that the proposed algorithm significantly outperforms
the two compact models and that it can be used to tackle significantly larger instances than
previously considered algorithms based on Lagrangean relaxation.
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1 Introduction

The cable trench problem which has been recently introduced by Vasko et al. [19] is a combinatorial
optimization problem that combines the minimum spanning tree problem and the shortest path
problem. Its objective is to connect a set of nodes of an undirected graph G = (V,E) to a predefined
central vertex at minimum overall costs. Thereby, fixed costs occur for each used edge in addition
to edge costs that depend on the number of paths between the central vertex and any of the other
nodes using an edge. While any feasible solution is a spanning tree of the input graph, including
the latter costs render the problem NP-hard [19] on the one hand and also induce that a minimum
spanning tree of G is usually not an optimal solution to the CTP. Vasko et al. [19] motivate the
problem from an application in telecommunication network design where a set of buildings (clients)
need to be connected to a central server. Fixed edge costs occur for establishing connections
between the buildings (i.e., for trenching) and additional costs occur per cable that is laid in each
established trench, hence the name cable trench problem.
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Since then, several variants of the CTP have been considered in the literature for modeling and
solving different optimization problems arising in the design of telecommunication or electricity
networks, see, e.g., Marianov et al. [15, 16]. Further applications arise in medical image analysis
for vascular reconstruction [12, 13]. The main additional aspects of these more general variants are
(i) the consideration of multiple central servers whose locations need to be chosen as part of the
optimization problem and (ii) the introduction of a covering aspect in the sense that cables do not
need to be laid to each node. Instead it suffices to connect a so-called secondary server that is close
to the set of clients it will supply.

In this article, we introduce an algorithmic framework based on Benders decomposition [4]
that can be used to solve most of the cable trench problems considered in the literature. To this
end, we introduce and study the Capacitated p-Cable Trench Problem with Covering (Cp-CTPC)
that generalizes previously considered problem variants. Cp-CTPC is defined on a directed graph
G = (V,A) where the node set V contains a set of clients J with demands qj ≥ 0, ∀j ∈ J , and
sets of potential primary and secondary servers S and I, respectively, such that S ⊆ I ⊆ V . For
each potential secondary server i ∈ I, parameter Qi ∈ N indicates its maximum capacity, i.e.,
the maximum demand of clients from J it can supply. Distances dij ≥ 0 are given between each
potential secondary server i ∈ I and each client j ∈ J . A client j ∈ J can be served by secondary
server i ∈ I if the associated distance is smaller than the given maximum covering radius r ≥ 0.
Parameter p ∈ N indicates the number of primary servers that shall be installed. Each installed
primary server automatically acts as a secondary server and may therefore supply clients within
the coverage radius up to its maximum capacity.

Finally, trenching (installation) costs fuv ≥ 0 for using a connection from u to v and cable costs
cuv ≥ 0 for installing one cable between u and v are given for each arc (u, v) ∈ A.

A feasible solution to the Cp-CTPC consists of selecting precisely p primary servers and an
arbitrary number of secondary servers each of which is connected by a dedicated cable to precisely
one selected primary server. Each client j ∈ J must be supplied by an open secondary server
i ∈ I within the given covering radius, i.e., dij ≤ r. Thus, from a topological perspective, the
graph induced by such a solution is a forest consisting of p connected components. Thereby, each
connected component forms an arborescence rooted at one of the chosen primary servers. For each
chosen secondary server i ∈ I, let Psi denote the arc set of the directed path from the primary server
s, to which secondary server i is connected. One cable dedicated to supply i needs to be placed
on each arc (u, v) ∈ Psi. Thus, the number of cables placed on each arc (u, v) corresponds to the
number of such paths to secondary servers routed along (u, v). The total client demand assigned
to each secondary server i ∈ I cannot exceed its capacity Qi. The objective is to simultaneously
minimize the costs for establishing the network connections (trenching costs) and for connecting
each chosen secondary server to a primary server (cable costs).

An exemplary instance and a feasible solution to this instance are given in Figure 1. In this
example, each client has a demand of one and each server has a capacity of five. The primary
servers (nested squares) and secondary servers (squares) are located on demand nodes and the
ratios given on the figure represent the proportion of clients served within the range of each server.

Outline. In the remainder of this section, we discuss related literature and show that the Cp-
CTPC generalizes most of the previously considered cable trench problems and provide more de-
tails regarding the above mentioned applications in telecommunications and medical image analy-
sis. Two Integer Linear Programming (ILP) formulations for the Cp-CTPC based on multi- and
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Figure 1: An example instance to the Cp-CTPC. Arcs included in a feasible solution to this instance
are indicated in bold.

single-commodity flows are introduced and discussed in Section 2. These are generalizations of
similar formulations considered in [15, 16] for the special cases of the Cp-CTPC. The formulations
by [15, 16] are used to develop Lagrangean relaxation based optimization algorithms whereas we
propose to project out the flow variables in our multi-commodity flow formulation using Benders
decomposition. Our Benders decomposition approach is introduced in Section 3 where we also
detail our stabilization approach in order to speed up the solution process. Section 4 contains a
detailed description of our primal heuristic that will be used to derive high-quality primal solutions
within the developed branch-and-cut algorithm. The results of our extensive computational study
are presented and discussed in Section 5. In this section, we also give a detailed description of
further implementation details of our algorithmic framework and of the considered benchmark in-
stances. Finally, our conclusions are drawn in Section 6 where we also summarize potential future
research topics.

Related works, special cases, and applications. As mentioned above, the cable trench prob-
lem has been first introduced by Vasko et al. [19] in the context of planning cost-optimal telecom-
munication networks. Vasko et al. assume that there is only one primary server whose location
is known and focus on the case when both the trenching and cable costs are proportional to the
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length of an edge. They show that the problem is NP-hard in general and also show that the CTP
may reduce to one of the following two polynomially solvable special cases: (i) the shortest path
problem when the trenching costs are equal to zero and (ii) the minimum spanning tree problem
when the cable costs are equal to zero. A compact, single-commodity flow based ILP formulation
and a heuristic algorithm for solving CTP instances are proposed. Besides explaining the latter
algorithm on a small numerical example, no computational study is performed.

The CTP is obtained as the special case of the Cp-CTPC when there is only one possible
primary server (i.e., p = 1 and |S| = 1), all other nodes are potential secondary servers and clients
at the same time (i.e., I = J = V \ S), the covering radius is zero and all distances dij are strictly
greater than zero if i 6= j (i.e., a secondary server needs to be placed at each client), and all capacity
constraints are non-binding (e.g., when qj = 1, ∀j ∈ J , and Qi ≥ 1, ∀i ∈ I).

Marianov et al. [15] introduce the p-cable-trench problem (p-CTP) in which p facilities (primary
servers) need to be located such that each other node of the input graph (i.e., each client) is
connected to one such facility. A multi-commodity flow formulation is introduced and subsequently
used to develop two Lagrangean relaxation based approaches for the p-CTP that are based on
relaxing either the flow conservation constraints or the linking inequalities between flow and arc
variables. These approaches are augmented with a two-stage Lagrangean heuristic to obtain primal
solutions. A computational study is performed on benchmark instances derived from the p-median
problem sets with up to 300 nodes and for p ∈ {0.1|V |, 0.2|V |} for instances obtained from the
OR-library Beasley [2] and for fixed values of p (usually around 0.1|V |) for a second instance set
based on a set of discrete location problems originally proposed by Sob [1]. Optimal solutions
obtained from solving the proposed ILP formulation with CPLEX are reported for instances with
at most 200 nodes. Results also show that the first Lagrangean approach based on relaxing the
flow-conservation constraints seems more efficient both in terms of computing time as well as with
respect to resulting optimality gaps. Marianov et al. [15] also conclude that even though the dual
bounds from this first approach are not too tight (gaps of at most 7.0%, 14.2%, and 24.1% for
instances with 100, 200, and 300 nodes, respectively), the quality of the derived primal solutions
seems to be quite good in general. Besides considering the concrete values of parameter p, the
p-CTP is obtained as a special case of the Cp-CTPC when S = I = J = V and when all other
parameters are set as in the previously mentioned transformation to the CTP.

Recently, Marianov et al. [16] study the p-cable trench problem with covering (p-CTPC). In con-
trast to the more general Cp-CTPC studied in this article, all nodes may be primary or secondary
servers and neither customer demands nor capacity restrictions on (secondary) servers are consid-
ered. Marianov et al. [16] consider an application in network design where an antenna (secondary
server) needs to be placed within the coverage radius of each client that will communicate with
this antenna using a wireless communication protocol. Each antenna is then connected to a central
router (primary server) using (fiber-optic) cables. The solution approach proposed is similar to the
one in Marianov et al. [15]: A multi-commodity ILP formulation is introduced which is then used
to derive two Lagrangean relaxations. Primal solutions are computed using a Lagrangean heuristic
and subsequent local search. In addition, an alternative heuristic based on solving a set covering
formulation is proposed. The authors apply their methods to those instances from Marianov et al.
[15] that are based on the OR-library with at most 200 nodes as well as to a real world scenario.
Computational results indicate that the problem variant with coverage is significantly harder to
solve than the p-CTP considered in Marianov et al. [15].

The p-CTPC is the special case of the Cp-CTPC when all capacity constraints are redundant,
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i.e., when Qi ≥
∑

j∈J :dij≤r qj , ∀i ∈ I. Consequently, in contrast to the Cp-CTPC when modeling
and solving the p-CTPC, it suffices to ensure that a secondary server is opened within the coverage
range of each client, but one does not need to explicitly consider the assignments between secondary
servers and their clients.

Schwarze [18] introduce the multi-commodity cable trench problem in which the trenching costs
on edges are reduced if multiple cables share the same trench. Such a cost reduction may apply if
different operators coordinate their activities and hence share the trenching costs for connections
that are created in joint activities. The problem is modeled as an ILP based on multi-commodity
flows and several strengthening valid inequalities are proposed. A computational study is performed
to analyze the impact of the valid inequalities and the influence of parameters controlling the amount
of cost sharing through jointly using trenches on instances originally proposed for the capacitated
minimum spanning tree problem by Gouveia [10].

Further applications of the CTP (and its variants) can be found within the area of medical image
analysis for vascular reconstruction [12, 13]. Given a set of blood vessel locations in R3 as well as
their thickness, which both can be obtained from a computer tomography scan, the goal is to infer
the structure of the associated vascular tree. Solution methods exploit physiological constraints
and the assumption that the vascular system is structured such that perfusion is performed with
approximately minimal effort. Jiang et al. [13] were the first to suggest modeling this problem as
CTP, where trenches represent blood vessels, cables represent blood volume and cost coefficients
are derived from various physical properties like length and thickness of the vessels. The availability
of a fixed root location is assumed, which forms the origin of the blood flow (e.g., the heart or main
artery, corresponding to the primary server). Each discrete vessel location of the resulting vascular
tree is assumed to supply its surrounding tissue via capillaries (corresponding to secondary server
and client). The authors apply a greedy heuristic to compute a feasible solution. Vasko et al. [20]
propose a metaheuristic approach to solve large-scale CTP instances for vascular reconstruction.

For simplification purposes, Jiang et al. [13] and Vasko et al. [20] do not consider false positives,
i.e., additional blood vessel locations that appear due to measurement errors. However, both
highlight their importance and recommend them to be addressed in future work. As the Cp-
CTPC represents a generalization of the CTP, an interpretation in the context of the vascular
reconstruction problem appears natural. Clearly, the concept of the coverage radius follows the
requirement that all tissue needs to be supplied by some nearby blood vessel. Moreover, the capacity
may be interpreted as the fact that each blood vessel can effectively supply only a limited amount
of its surrounding tissue. The formulation as Cp-CTPC also enables various other meaningful
applications, e.g., the joint estimation of multiple, disjoint vascular systems (e.g., arterial and
venous trees, as already suggested [13]) or scenarios where the root of the vascular tree is not
precisely known.

In addition to the CTP variants, the Cp-CTPC studied in this article can also be considered as a
generalization of the well-known p-median location problem originally defined by Hakimi [11]. The
p-median problem requires the location of p facilities on a given network and allocation of customers
to the selected facilities in such a way that the total distance (cable length in our context) between
the customers and their facilities is minimized. The Cp-CTPC reduces to the p-median problem
when capacity restrictions are not binding, locations of secondary servers are fixed, and the coverage
radius as well as the construction costs are equal to zero.
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2 ILP formulations

As mentioned above, Lagrangean relaxation approaches based on multi-commodity flow formula-
tions have been proposed in [15, 16] for different variants of the cable trench problem. In this
section, we introduce such a model for the Cp-CTPC. The formulation which is given by (1)–(11)
considers graph G0 = (V0, A0) which is obtained from G by adding an artificial root node 0 and arcs
from this root to all potential primary servers, i.e., V0 = V ∪ {0}, A0 = A ∪ {(0, s) | s ∈ S}. Each
solution to the Cp-CTPC will then be represented as an outgoing arborescence in G0 with root 0
and exactly p arcs incident to 0 are chosen that will indicate the selected primary servers. Binary
decision variables xuv ∈ {0, 1}, ∀(u, v) ∈ A0, will indicate whether arc (u, v) is included in a solution
and flow variables giuv ∈ {0, 1}, ∀i ∈ I, ∀(u, v) ∈ A0, will be equal to one if and only if a secondary
server is installed at node i and the path from the artificial root 0 to i contains arc (u, v). Moreover,
variables yi ∈ {0, 1}, ∀i ∈ I, indicate whether a secondary server is installed at node i whereas
assignment variables zij ∈ {0, 1}, ∀j ∈ J , ∀i ∈ Ij , are equal to one if and only if client j is served
by (assigned to) secondary server i. Thereby, for each client j ∈ J , notation Ij = {i ∈ I | dij ≤ r}
is used to refer to all secondary servers to which j may be assigned to. In what follows, we also use
notation Ji = {j ∈ J : dij ≤ r} for each secondary server i ∈ I, to denote the set of clients within
the radius. Furthermore, for a set of nodes W ⊆ V0, let δ+(W ) = {(u, v) ∈ A0 | u ∈W, v /∈W} and
δ−(W ) = {(u, v) ∈ A0 | u /∈ W, v ∈ W} denote the outgoing and ingoing cutset, respectively. For
singleton sets W = {u} we also write δ+(u) and δ−(u) instead of δ+({u}) and δ−({u}), respectively.

(MCF) min
∑

(u,v)∈A

fuvxuv +
∑
i∈I

∑
(u,v)∈A

cuvg
i
uv (1)

s.t.
∑

(v,u)∈δ+(v)

givu −
∑

(u,v)∈δ−(v)

giuv =


yi if v = 0

−yi if v = i

0 otherwise

∀i ∈ I, ∀v ∈ V0 (2)

giuv ≤ xuv ∀i ∈ I, ∀(u, v) ∈ A0 (3)∑
(u,v)∈A0

xuv ≤ 1 ∀v ∈ V (4)

∑
v∈S

x0v = p (5)∑
i∈Ij

zij ≥ 1 ∀j ∈ J (6)

∑
j:i∈Ij

qjzij ≤ Qiyi ∀i ∈ I (7)

giuv ∈ {0, 1} ∀i ∈ I, ∀(u, v) ∈ A0 (8)

xuv ∈ {0, 1} ∀(u, v) ∈ A0 (9)

zij ∈ {0, 1} ∀j ∈ J, ∀i ∈ Ij (10)

yi ∈ {0, 1} ∀i ∈ I (11)

The objective function (1) minimizes the sum of trenching and cable costs. Equations (2) are
flow conservation constraints ensuring that one unit of flow is sent to each open secondary server
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(and therefore one cable is routed to it). Linking constraints (3) ensure that we can only install
cables on arcs for which we also pay the trenching costs while indegree constraints (4) make sure
that the overall solution is an arborescence in G0 that is rooted at the artificial root 0 and therefore
a forest in G. Exactly p primary servers will be selected due to equation (5). Inequalities (6)
state that each client must be assigned to a secondary server while constraints (7) restrict the total
demand assigned to each secondary server by its capacity limit.

It is well known that a stronger formulation is obtained by adding the strong linking constraints

zij ≤ yi ∀j ∈ J, ∀i ∈ Ij (12)

We also add equations (13) that are obtained from the fact that every primary server is a
secondary server by definition.

gv0v = yv ∀v ∈ I (13)

Next, we detail modifications that are necessary to apply formulation (1)–(11) to the previously
mentioned special cases of the Cp-CTPC. To solve instances of the p-CTPC introduced by Marianov
et al. [16], we remove assignment variables z as well as inequalities (6) and (7). Instead, constraints
(14) are added to ensure that each client is assigned to a secondary server.∑

i∈Ij

yi ≥ 1 ∀j ∈ J (14)

No further modifications (except considering all nodes to be potential primary and secondary
servers) are necessary for applying formulation (1)–(11) to the p-CTPC, the p-CTP, or the CTP,
respectively.

An alternative formulation (15)–(20) with a smaller number of flow variables is obtained by
using single-commodity flow variables 0 ≤ guv ≤ |I|, ∀(u, v) ∈ A0.

(SCF) min
∑

(u,v)∈A

fuvxuv +
∑

(u,v)∈A

cuvguv (15)

s.t.
∑

(v,u)∈δ+(v)

gvu −
∑

(u,v)∈δ−(v)

guv =


∑

i∈I yi if v = 0

−yv if v ∈ I
0 if v ∈ V \ I

∀v ∈ V0 (16)

g0v ≤ |I − p+ 1| · x0v ∀v ∈ V (17)

guv ≤ |I − p| · xuv ∀(u, v) ∈ A (18)

(4)− (7), (9)− (11)

guv ∈ {0, . . . , |I − p|} ∀(u, v) ∈ A0 (19)

g0v ∈ {0, . . . , |I − p+ 1|} ∀v ∈ V (20)

Equations (16), (17), and (18) are the flow conservation and linking constraints that have
been transferred to the single-commodity case. The rest of the model corresponds to the multi-
commodity flow formulation (MCF) detailed above and we therefore refrain from repeating all
details.
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As above, inequalities (12) can be used to obtain a stronger formulation while (14) will be used
instead of (6) and (7) if the capacity constraints are not binding, i.e., to address the special cases
considered earlier in the literature.

3 Benders decomposition approach (BF)

The relatively large number of flow variables in formulation (1)–(11) is problematic when attempting
to solve medium or large-scale instances. Although the single-commodity flow formulation (15)–
(20) uses a significantly smaller number of variables and constraints, it will typically suffer from
weak linear programming (LP) relaxation bounds. Thus, too many branch-and-bound (B&B)
nodes need to be enumerated for solving instances to proven optimality and this will make the
formulation impractical to use on large instances. Therefore, we attempt to make use of the
stronger LP bounds obtained from the multi-commodity flow formulation while avoiding the need
of explicitly considering the associated flow variables. To this end, we start from formulation (1)–
(11) and project out the flow variables in a Benders fashion. In contrast to the previously proposed
formulations, connectivity of the solution is ensured using the arc design variables. Thus, the
resulting Benders master problem is defined by (21)–(23).

min
∑

(u,v)∈A

fuvxuv +
∑
i∈I

wi (21)

s.t. (4)− (7), (9)− (11)

x(δ−(W )) ≥ yi ∀W ⊂ V0, 0 /∈W, i ∈W ∩ I (22)

wi ≥ Θi(yi,x) ∀i ∈ I (23)

Cutset constraints (22) which can be interpreted as Benders feasibility cuts ensure that each
secondary server is connected to the artificial root. The Benders optimality cut (23) for each
secondary server i ∈ I is obtained by solving the Benders subproblem (24)–(27) for the current
values (ȳi, x̄) of variables (yi,x)).

Θi(ȳi, x̄) = min
∑

(u,v)∈A

cuvguv (24)

s.t.
∑

(v,u)∈δ+(v)

gvu −
∑

(u,v)∈δ+(v)

guv =


ȳi if v = 0

−ȳi if v = i

0 if v ∈ V \ {i}
∀v ∈ V0 (25)

guv ≤ x̄uv ∀(u, v) ∈ A0 (26)

guv ≥ 0 ∀(u, v) ∈ A (27)

It is easy to observe that, the Benders subproblem is a minimum-cost flow problem with source
0 and target i where the arc costs and capacities of each arc (u, v) ∈ A0 are set to cuv and x̄uv,
respectively. Our implementation solves the minimum-cost flow problems by simply solving above
linear program with CPLEX. We also note that the Benders subproblem is feasible for each i ∈ I
if the current candidate solution (ȳ, x̄) satisfies all cutset constraints (22). The latter observation
can be easily derived from the max-flow-min-cut theorem.
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Let π ≤ 0 and ρ be the vectors of dual variables associated to constraints (25) and (26),
respectively. Then, the dual of (24)–(27) is given by (28)–(30). Since one of the flow conservation
constraints (25) is redundant, we thereby assume without loss of generality that ρ0 = 0.

Θi(ȳi, x̄) = max
∑

(u,v)∈A

x̄uvπuv − ȳiρi (28)

s.t. ρu − ρv + πuv ≤ cuv ∀(u, v) ∈ A0 (29)

πuv ≤ 0 ∀(u, v) ∈ A0 (30)

Thus, if Θi(ȳi, x̄) > w̄i, we add the Benders optimality cut∑
(u,v)∈A

π̄uvxuv − ρ̄iyi ≤ wi

to the Benders master problem.

Finally, we notice that besides including the strong linking constraints (12), one can improve
the LP relaxation bounds obtained by strengthening the cutset constraints (22) to

x(δ−(W )) ≥ 1 ∀W ⊂ V0, 0 /∈W, ∃j ∈ J : Ij ⊆W (31)

whenever W contains all possible secondary servers of at least one client.

Separation and stabilization. Earlier studies in literature reveal that in some cases it is possible
to significantly improve the performance of cutting plane algorithms via careful choice of separation
points [3, 8]. Such techniques can be seen as a form of stabilization akin to those applied in
column generation. Our implementation includes a simple stabilization scheme similar to the in–
out approach presented by Ben-Ameur and Neto [3]. Instead of generating cuts based on the
optimal LP solution to the relaxed master problem, a separation point (xsep,ysep) in the space
of x and y variables is computed as convex combination between the optimal LP solution (x̄, ȳ)
and a stabilizing interior point (x̃, ỹ). In our implementation, (x̃, ỹ) is chosen as (1, . . . , 1). The
advantages of this approach are two-fold: Firstly, the generated inequalities are likely to cut off more
infeasible points as the separation point is closer to the feasible region. Secondly, combination with
the chosen stabilization point encourages feasibility w.r.t. constraints (22), allowing optimality cuts
to be separated much earlier, potentially avoiding many time-consuming cutting-plane iterations
in which only feasibility cuts can be separated.

Algorithm 1 shows a pseudocode representation of the stabilized separation procedure for the
Benders formulation. Given (x̄, ȳ, w̄), separation is performed for multiple iterations with different
separation points (xsep,ysep). The parameter λk determines the closeness of the separation point to
the optimal point at each iteration. For the first iteration, we chose λ0 = 0.5. In each subsequent
iteration, λk is moved closer to one by midpoint bisection of the interval [λk, 1]. Optimality cuts
are only separated if the current (xsep,ysep) yields no feasibility cuts. The number of iterations is
limited by a cut limit c̄ and an iteration limit k̄. We set c̄ = 0.1|I| and k̄ = 5. If the number of
generated cuts does not exceed the cut limit c̄ after k̄ iterations, we perform separation for (x̄, ȳ),
but still add ε × (1, . . . , 1), ε = 10−6, to the separation point. It has been observed that this
strategy significantly increases the strength of the separated optimality cuts. A similar technique
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Data: An optimal LP solution (x̄, ȳ, w̄).
Result: A set of violated inequalities C.

1 λ0 ← 0.5
2 while k < k̄ ∧ |C| < c̄ do
3 (xsep,ysep) = λk (x̄, ȳ) + (1− λk) (x̃, ỹ)
4 Cf ← separateFeasibilityCuts(xsep,ysep)
5 if Cf = ∅ then Co ← separateOptimalityCuts(xsep,ysep)
6 C ← C ∪ Cf ∪ Co
7 λk+1 ← (λk + 1)/2
8 k ← k + 1

9 end

10 if |C| < c̄ then
11 (xsep,ysep)← (x̄, ȳ) + ε · (1, . . . , 1)
12 Cf ← separateFeasibilityCuts(xsep,ysep)
13 if Cf = ∅ then Co ← separateOptimalityCuts(xsep,ysep)
14 C ← C ∪ Cf ∪ Co
15 end

Algorithm 1: Stabilized separation procedure for the Benders approach.

is applied when separating feasibility cuts, which is done by applying the maximum flow algorithm
of Cherkassky and Goldberg [5]. It is well known that in this case adding a small value ε to all arc
capacities yields connectivity cuts that are of minimum cardinality.

For both feasibility and optimality cuts, separation is only performed for nodes i ∈ V where ȳi ≥
0.1. Note that when cuts are generated from alternative separation points during the stabilization
loop (Steps 1–9), violation is still checked w.r.t. the original point (x̄, ȳ, w̄), as a feasible separation
point might still produce a violated cut. Finally, since in some cases the stabilization loop is very
time consuming, we only execute the loop every fifth iteration, which in preliminary experiments
has been found a good trade-off between decreasing the number of cutting plane iterations until
convergence and the extra time spent.

The importance of avoiding naive separation with (x̄, ȳ) as separation point has to be stressed.
As an example, consider an instance of the p-CTP with |V | = 100, |A| = 400, p = 5 and r =
0 (details on the used benchmark instances are given in Section 5). If no ε is added during
the separation of Benders cuts, our implementation requires 166 seconds to solve the instance to
optimality. Adding ε decreases the solution time to 12 seconds, while applying the stabilization
further decreases it to 4 seconds.

4 Primal heuristic

Augmenting a branch-and-bound procedure by a primal heuristic is often crucial to find good
integer-feasible solutions early on during the search process and therefore effectively prune nodes
of the branch-and-bound tree. This holds especially true for the Benders decomposition approach,
where the simple structure of the master problem does not provide sufficient information to the
otherwise powerful LP-based heuristics of a modern ILP solver such as CPLEX.
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Algorithm 2 shows the pseudocode of our primal heuristic which constructs a feasible Cp-CTPC
solution from an LP solution with fractional variable values. It uses only the values of the trench
variables x from the LP solution and can therefore be applied directly to all of the formulations
discussed in the previous sections.

In the heuristic, a solution is represented as triple (S′, I ′, A′|I|), consisting of the sets of selected
primary servers S′ ⊆ S, selected secondary servers I ′ ⊆ I and arcs A′|I| ⊆ A|I| used to connect each
secondary server. The latter can also be interpreted as the set of cables connecting some possibly
active secondary server i ∈ I.

The heuristic consists of two phases. In the first phase (Step 5 of Algorithm 2) p primary servers
S′ are selected based on the highest LP solution values of their associated artificial root arcs. Ties
are broken arbitrarily. The second phase consists of Steps 6–17 of Algorithm 2. Thereby, at each
iteration, the partial solution is augmented by one secondary server from I∗ = I \ I ′. Besides the
(partial) solution (S′, I ′, A′|I|), the trenching costs f ′ of the current solution and the set of uncovered
clients J∗ ⊆ J is updated at each iteration.

Firstly, Step 7 computes combined arc costs c′ based on the current trenching costs f ′ and cable
costs c, scaled by the given LP solution x̄. In Step 8, for each i ∈ I∗ the shortest path Pi from any
s ∈ S′ to i is computed based on c′. Note that this step can be performed efficiently by a single
execution of Dijkstra’s algorithm [7], using the artificial root node 0 ∈ V0 as source and with arcs
(0, s) ∈ A0, s ∈ S \ S′ temporarily hidden. For each i ∈ I∗, c′(Pi) denotes the path’s length based
on c′. In Step 9, for each unselected secondary server i ∈ I∗, the largest set of currently uncovered
clients J ′i ⊆ Ji ∩ J∗ that i can cover without exceeding its capacity Qi is computed. This set is
obtained by simply assigning uncovered clients to i in ascending order w.r.t. qi.

Next, a score σi is computed for each i ∈ I∗, such that σi := c′(Pi)/|J ′i | for J ′i 6= ∅, and σi :=∞
otherwise. The secondary server i ∈ I∗ with the smallest score is added to the solution. Finally,
all data is updated according to this selection. The procedure is repeated until the solution covers
all clients. Note that the number of iterations performed by the main loop is bounded by |I|.
Therefore, if total coverage is not achieved after |I| iterations, the instance is clearly infeasible.
The worst-case time complexity of Algorithm 2 is thus O(|I| · (|A|+ |V | log |V |)).

5 Computational study

In this section, we first detail the benchmark instances used to test our algorithms in Section 5.1.
Subsequently, we report and discuss the results that we obtain from computational experiments
for solving different variants of the Cp-CTPC. All formulations and algorithms introduced in the
previous sections have been implemented in C++ and compiled with GCC 4.8.3. The implementa-
tion uses the OGDF library [6] for data structures and CPLEX 12.6.3 for solving the mathematical
formulations including the Benders subproblems, i.e., the minimum-cost flow problems. All exper-
iments have been performed single-threaded on an Intel Xeon CPU with 2.5 GHz. A time limit of
two hours and memory limit of 5 GB have been set. When computing average running times, those
instances that cannot be solved due to the memory limit are treated the same way as the instances
that hit the time limit, that is, the running time is counted as two hours.

We performed experiments for five different values of p (p ∈ {5, 10, |V |/10, |V |/5, |V |/3}) for
each instance in our benchmark set. In each of the tables of this section, every row reports average
results over a subset of instances. By default, instances with the same number of nodes but
which are based on different original graphs are grouped together. Thereby, column |A| gives the
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Data: An Instance of the CpCTPC and trenching-part x̄ of LP solution.
Result: A feasible solution (S′, I ′, A′|I|) to the CpCTPC.

1 (S′, I ′, A′|I|)← (∅, ∅, ∅|I|)
2 J∗ ← J, I∗ ← I
3 f ′ ← f

4 S′ ← selectPrimaryServers(x̄)
5 I∗ ← I∗ \ S′
6 while J∗ 6= ∅ do
7 c′uv ← (cuv + f ′uv) · (1− x̄uv) ∀(u, v) ∈ A
8 Pi ← computeShortestPath(S′, i, c′) ∀i ∈ I∗
9 J ′i ← computeMaximumCoverage(i, J∗, Ji, Qi) ∀i ∈ I∗

10 σi ← computeScore(i, J ′i , Pi) ∀i ∈ I∗
11 i′ ← selectSecondaryServer(I∗,σ)

12 J∗ ← J∗ \ J ′i′
13 I∗ ← I∗ \ {i′}
14 I ′ ← I ′ ∪ {i′}
15 A′i′ ← Pi′

16 f ′uv ← 0 ∀(u, v) ∈ Pi′
17 end

Algorithm 2: Primal heuristic.

corresponding average number of arcs (note that due to the random instance generation in [2], the
number of arcs per graph slightly varies between the instances with the same number of nodes).
Additional criteria for grouping instances are chosen based on the results reported in each table.
Column #inst. lists the number of instances grouped together. For each of our methods MCF, BF,
and SCF, column #solv. reports the number of instances solved, g[%] gives the average relative
optimality gap (computed as (UB−LB)/UB, where LB and UB denote the best lower and upper
bound values, respectively), and t[s.] lists the average running time in seconds. If the time limit is
exceeded for all instances of one group, the average running time is replaced by TL. Conversely, a
“-” in all three columns is used to indicate that all the root LP relaxation of all instances of one
group could not be solved due to the memory or time limit. The results of the best method are
marked in bold for each row.

5.1 Data generation

To test the performance of our methods, we created a set of benchmark instances that are based
on the uncapacitated p-median data from OR-Library [2] and which are created in a similar way
as in Marianov et al. [16]. The data set contains 40 instances with |V | varying between 100 and
900, and p varying between 5 and |V |/3. For each instance, we are given a set of arcs and their
lengths. As suggested by [2], we refine the original data to eliminate multiple arcs between the same
ordered pair of nodes and calculate the shortest path distance value between each node pair i, j by
using the all pairs shortest path algorithm of Floyd [9]. The distance dij is obtained for each node
pair i, j by multiplying this shortest path value by 0.75 and rounding it up to the nearest integer.
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For every arc (u, v) ∈ A, cable costs cuv are generated uniformly at random from the interval
[1, d0.75luve] where luv is the length of the arc. Demand and capacity values are obtained in a
similar fashion as in Lorena and Senne [14]. Demand values of each node are generated uniformly

at random in the interval [1, 20] and the capacity values are set to d
∑

i∈V qi
M×α e for α ∈ {0.8, 0.9} and

M ∈ {0.05|V |, 0.1|V |, 0.2|V |}. As the original instances do not distinguish different node types, we
set I = J = S = V .

Finally, we need to identify meaningful radius values r to impose in our computational ex-
periments. To this end, we first observe that an upper bound rpC for reasonable values of r is
obtained by solving an uncapacitated p-center problem on the network with primary servers be-
ing the potential centers. If we would consider rpC as the radius value to solve the p-CTPC, an
optimal solution would use primary servers only. Therefore, we consider smaller radius values in
our experiments, more precisely, we use r = β × rpC for β ∈ {0.1, 0.2, 0.3}. In order to solve the
p-center problem, we use the classical set covering formulation (SCr) given by (32)–(34) and follow
a search methodology similar to the one proposed by Minieka [17] to select the radius value at each
step. More specifically, we start solving SCr for r = 1, increment the r value by one if Zr > p and
repeat solving SCr with incremented values of r until we get Zr ≤ p which will be satisfied for the
first time by r = rpC .

(SCr) Zr = min
∑
i∈I

yi (32)

s.t.
∑
i∈Ij

yi ≥ 1 ∀j ∈ J (33)

yi ∈ {0, 1} ∀i ∈ I (34)

Assuming a radius coverage value of r for a Cp-CTPC problem instance, we observe that a lower
bound of the number of necessary secondary servers can be obtained by using any lower bound to
Zr. Let L be a lower bound on Zr. We conclude that at least L− p secondary servers that are not
primary servers need to be installed and thus, cables must be placed on at least L− p arcs. Thus,
the initial formulations to solve the Cp-CTPC can be tightened by introducing the corresponding
constraint (35).

∑
i∈I\S

yi ≥ L− p (35)

5.2 Results on the p-CTP

We first apply our methods to the p-CTP, i.e., we consider instances with r = 0 and for which all
capacity constraints are redundant. As mentioned in Section 2 we also remove assignment variables
z when solving the p-CTP.

An overview on numbers of solved instances and remaining optimality gaps after reaching
the time- or memory limit is given in Figure 2. We observe that our Benders decomposition
algorithm BF clearly outperforms the two considered alternatives, i.e., solving the MCF or SCF
formulation with CPLEX. BF manages to solve approximately 75% of the considered instances
and the remaining optimality gaps are typically smaller than 20% for the unsolved instances. In
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contrast, MCF could only solve slightly less than 40% of the instances and fails to derive reasonable
gaps for all other instances. SCF cannot solve any instances to proven optimality due to its weak
LP bounds and the resulting huge number of branch-and-bound nodes that need to be considered.
While it outperforms MCF for the largest and most difficult instances considered, its performance
cannot compete with BF.
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Figure 2: Graphical summary of test results on the p-CTP. Results show the relative numbers of
instances solved within a certain time and the relative numbers of instances for which the final
optimality gap is below a certain threshold.

Detailed results are reported in Table 1. We observe that MCF is able to solve all instances
with at most 300 nodes while its root relaxation cannot be solved for any instance with at least 400
nodes (due to the given memory limit). BF converges significantly faster than MCF on instances
with |V | ≤ 300 and is able to solve several significantly larger instances (up to 700 nodes). We
also observe that in general the computational difficulty decreases as p increases for all considered
methods. For instance, BF has difficulties in solving problems with p ∈ {5, 10} and |V | ≥ 400 while
it is able solve all the problems with up to 700 nodes optimally for p ∈ {|V |/5, |V |/3}.

Recall that the Lagrangean relaxation based method by Marianov et al. [15] has been tested on
similar instances with at most 300 nodes and for p ∈ {|V |/10, |V |/5, |V |/3}. While differences in
instance creation do not allow a direct comparison to our methods, the fact that the final optimality
gaps obtained by their method typically exceed 10% for |V | = 300 and p ∈ {|V |/5, |V |/3} demon-
strated the high potential for solving p-CTP instances of the Benders decomposition algorithm
developed in this article.

Finally, we observe that average gaps computed by SCF are significantly larger than those of
BF except for the instances with |V | = 900 and p = 300.

5.3 Results on the p-CTPC

In the second part of our computational study, we conduct experiments on our methods to solve
the p-CTP with coverage introduced by Marianov et al. [16]. Obtained results are summarized
in Figure 3 and in Tables 2 and 3. To keep their size reasonable, we give only results for p =
{5, |V |/5, |V |/3} in these tables.

From Figure 3, we first observe that BF outperforms both MCF and SCF for the considered
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Figure 3: Graphical summary of test results on the p-CTPC for different values of β. Results show
the relative numbers of instances solved within a certain time and the relative numbers of instances
for which the final optimality gap is below a certain threshold.

p-CTPC instances. Considering the numbers of solved instances, the difference between BF and
MCF does not seem to be as large as for the p-CTP, in particular for β ∈ {0.2, 0.3}. For instances
that could not be solved to optimality, the typical gaps obtained from BF are, however, typically
significantly smaller than of MCF. We also conclude that the computational difficulty seems to
increase with increasing coverage radii, i.e., with increasing values of β. Since the fraction of
instances solved within the given time and memory limits is much smaller than for the p-CTP, we
also conclude that the computational difficulty increases considerably by including the coverage
restrictions.

These observations are confirmed by the results given in Tables 2 and 3. The results verify
that BF scales generally much better w.r.t. the radius size than MCF on problems with |V | = 100
to 200. For |V | = 300, MCF outperforms BF for large values of p (p ∈ |V |/5, |V |/3}) while BF
performs better for p = 5. Similar to our observations when solving the p-CTP instances, MCF hits
the memory limit for the p-CTPC instances with at least 400 nodes and SCF cannot solve any of
the problems optimally within the time limit. Moreover, BF outperforms SCF in all the instances
except the ones with 900 nodes, p = 300, and β = 0.1 on the average. Finally, we observe that BF
can solve all instances with p = |V |/3 and β = 0.1 with at most 700 nodes.
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5.4 Results on the Cp-CTPC

Finally, we report the results of our computational experiments for solving Cp-CTPC instances in
Figure 4 as well as Tables 4 and 5. We consider instances with different capacity levels of secondary
servers represented by M and α combinations. Table 4 lists aggregated results for fixed values of p,
i.e., p = {5, 10}, while Table 5 lists aggregated results for values of p that are defined as percentage
of |V |, i.e., p = {|V |/10, |V |/5, |V |/3}. In both tables, results have been averaged over all considered
radius sizes.
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Figure 4: Graphical summary of test results on the Cp-CTPC for different values of β. Results
show the relative numbers of instances solved within a certain time and the relative numbers of
instances for which the final optimality gap is below a certain threshold.

Figure 4 shows similar trends as for the previously discussed case without capacity constraints,
i.e., the p-CTPC. BF slightly outperforms MCF with respect to the numbers of solved instances,
and clearly outperforms MCF when considering the remaining optimality gaps. Again the difficulty
of instances increases with increasing size of the coverage radius.

From Tables 4 and 5, we observe that the root node relaxation of MCF cannot be solved for
instances with more than 300 nodes due to the memory limit and that SCF cannot solve any
instance to optimality. These conclusions hold for all three problem variants considered in our
computational study. Table 4 reveals that BF solves more instances with |V | ≤ 300 to proven
optimality than MCF and almost always terminates with smaller average gap values than MCF.
On the other hand, from Table 5, we observe that MCF solves a larger number of instances with
|V | = 300 than BF when the number of primary servers is large. Nevertheless, BF still performs

16



better with respect to the average gap values. Thus, we conclude that BF dominates the other
approaches for the fixed, small values of p and also for relative, large values of p up to |V | = 200.
For the second case, it is not clear whether MCF or BF achieves an overall better performance.
BF is, however, the only considered method that can be reasonably applied to instances with more
than 300 nodes. We note that even BF is not able to solve instances with p ∈ {5, 10} and |V | ≥ 400
while it could solve between 9% and 100% of the instances with up to 700 nodes for larger p values.
Moreover, we also realize that instances with smaller capacities (i.e., larger M and α) tend to be
solved faster.

6 Conclusions

This work considers the Capacitated p-Cable Trench Problem with Covering (Cp-CTPC) that
generalizes most variants of the Cable Trench Problem (CTP) that have been considered in the
literature. An algorithmic framework based on Benders decomposition for solving the Cp-CTPC
is presented. This framework contains a stabilization procedure to speed up the convergence of
the cutting plane loop and a primal heuristic to compute high-quality primal solutions. Simple
modifications that allow to apply the framework to most previously considered variants of the CTP
are detailed. Two flow-based integer programming formulations are introduced as alternatives to
the Benders framework.

An extensive computational study is performed in which the Cp-CTPC and two further variants
of the CTP are considered. Results show that the proposed framework clearly outperforms the
two alternatives given by directly solving the flow-based formulations. It is also shown that the
framework allows to tackle and solve significantly larger instances than those previously considered.

This study also opens several directions for future research. In particular, it would be interesting
to consider a formulation of the Cp-CTPC in which one variable for each possible assignment
between a secondary server and its clients is considered instead of the standard way to model the
capacity constraints used in this work. Such a model would clearly dominate the current formulation
from the theoretical perspective and it would be utile to analyze its practical performance by
developing a corresponding Branch-Price-and-Benders-Cut approach. Finally, from an application
point of view it could be relevant to consider a problem variant that additionally considers capacity
constraints on the arcs.
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Table 1: Test results of solving the p-CTP. Reported values are averaged and aggregated by |V |.
MCF BF SCF

|V | |A| #inst. p #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 5 5 5 0.00 7 5 0.00 5 0 25.76 TL
100 396 5 10 5 0.00 5 5 0.00 3 0 20.30 TL
100 396 5 10 5 0.00 6 5 0.00 3 0 20.40 TL
100 396 5 20 5 0.00 5 5 0.00 2 0 15.21 TL
100 396 5 33 5 0.00 6 5 0.00 2 0 12.46 TL
200 1585 5 5 5 0.00 385 5 0.00 81 0 44.54 TL
200 1585 5 10 5 0.00 187 5 0.00 36 0 41.82 TL
200 1585 5 20 5 0.00 108 5 0.00 23 0 38.92 TL
200 1585 5 40 5 0.00 99 5 0.00 18 0 36.80 TL
200 1585 5 66 5 0.00 99 5 0.00 16 0 31.30 TL
300 3561 5 5 5 0.00 1631 5 0.00 545 0 43.75 TL
300 3561 5 10 5 0.00 1318 5 0.00 410 0 43.05 TL
300 3561 5 30 5 0.00 533 5 0.00 227 0 40.80 TL
300 3561 5 60 5 0.00 392 5 0.00 192 0 37.75 TL
300 3561 5 100 5 0.00 398 5 0.00 253 0 37.23 TL
400 6338 5 5 - - - 3 0.06 5305 0 50.13 TL
400 6338 5 10 - - - 4 0.28 3204 0 46.71 TL
400 6338 5 40 - - - 5 0.00 1255 0 41.77 TL
400 6338 5 80 - - - 5 0.00 749 0 39.60 TL
400 6338 5 133 - - - 5 0.00 759 0 39.29 TL
500 9900 5 5 - - - 0 9.68 TL 0 51.09 TL
500 9900 5 10 - - - 1 1.75 7007 0 50.48 TL
500 9900 5 50 - - - 5 0.00 2433 0 41.91 TL
500 9900 5 100 - - - 5 0.00 1346 0 41.62 TL
500 9900 5 166 - - - 5 0.00 1909 0 40.86 TL
600 14263 5 5 - - - 0 19.38 TL 0 52.02 TL
600 14263 5 10 - - - 0 13.30 TL 0 51.67 TL
600 14263 5 60 - - - 3 0.04 6023 0 46.74 TL
600 14263 5 120 - - - 5 0.00 3102 0 44.97 TL
600 14263 5 200 - - - 5 0.00 3993 0 39.83 TL
700 19394 4 5 - - - 0 25.00 TL 0 57.39 TL
700 19394 4 10 - - - 0 22.89 TL 0 58.01 TL
700 19394 4 70 - - - 2 7.88 6800 0 49.43 TL
700 19394 4 140 - - - 4 0.00 4929 0 44.76 TL
700 19394 4 233 - - - 4 0.00 6458 0 38.42 TL
800 25345 3 5 - - - 0 30.12 TL 0 56.33 TL
800 25345 3 10 - - - 0 23.77 TL 0 56.38 TL
800 25345 3 80 - - - 0 16.32 TL 0 50.95 TL
800 25345 3 160 - - - 0 12.65 TL 0 43.86 TL
800 25345 3 266 - - - 0 2.40 TL 0 42.10 TL
900 32103 3 5 - - - 0 29.59 TL 0 57.40 TL
900 32103 3 10 - - - 0 27.76 TL 0 53.89 TL
900 32103 3 90 - - - 0 14.84 TL 0 50.46 TL
900 32103 3 180 - - - 0 21.53 TL 0 43.80 TL
900 32103 3 300 - - - 0 43.22 TL 0 34.59 TL
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Table 2: Test results of solving the p-CTPC (|V | = 100− 500). Reported values are averaged and
aggregated by |V |.

MCF BF SCF
|V | |A| #inst. p β #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 5 5 0.1 5 0.00 52 5 0.00 34 0 28.71 TL
100 396 5 5 0.2 5 0.00 1183 5 0.00 137 0 32.91 TL
100 396 5 5 0.3 3 0.31 3264 5 0.00 502 0 33.73 TL
100 396 5 10 0.1 5 0.00 20 5 0.00 18 0 23.28 TL
100 396 5 10 0.2 5 0.00 120 5 0.00 38 0 29.62 TL
100 396 5 10 0.3 5 0.00 243 5 0.00 127 0 31.51 TL
100 396 5 33 0.1 5 0.00 8 5 0.00 5 0 15.50 TL
100 396 5 33 0.2 5 0.00 16 5 0.00 15 0 17.42 TL
100 396 5 33 0.3 5 0.00 26 5 0.00 25 0 21.58 TL
200 1585 5 5 0.1 2 0.89 4787 3 0.29 4101 0 43.24 TL
200 1585 5 5 0.2 1 3.37 6601 2 1.27 4837 0 46.50 TL
200 1585 5 5 0.3 0 6.76 TL 1 3.30 6274 0 48.71 TL
200 1585 5 20 0.1 5 0.00 519 5 0.00 407 0 39.08 TL
200 1585 5 20 0.2 4 0.22 2073 4 0.16 1682 0 41.40 TL
200 1585 5 20 0.3 2 0.79 6181 4 0.22 2620 0 44.14 TL
200 1585 5 66 0.1 5 0.00 122 5 0.00 31 0 30.74 TL
200 1585 5 66 0.2 5 0.00 255 5 0.00 334 0 32.08 TL
200 1585 5 66 0.3 5 0.00 400 5 0.00 609 0 34.49 TL
300 3561 5 5 0.1 0 1.29 TL 2 0.59 6317 0 43.01 TL
300 3561 5 5 0.2 0 3.60 TL 1 1.70 6267 0 45.62 TL
300 3561 5 5 0.3 0 5.30 TL 0 7.20 TL 0 47.41 TL
300 3561 5 30 0.1 5 0.00 1087 5 0.00 1959 0 40.71 TL
300 3561 5 30 0.2 1 0.47 6976 1 0.66 6480 0 42.45 TL
300 3561 5 30 0.3 0 2.69 TL 0 1.08 TL 0 45.96 TL
300 3561 5 100 0.1 5 0.00 477 5 0.00 1260 0 36.80 TL
300 3561 5 100 0.2 5 0.00 746 5 0.00 2458 0 36.50 TL
300 3561 5 100 0.3 5 0.00 2693 1 0.56 7195 0 38.80 TL
400 6338 5 5 0.1 - - - 0 5.83 TL 0 47.08 TL
400 6338 5 5 0.2 - - - 0 10.23 TL 0 49.34 TL
400 6338 5 5 0.3 - - - 0 18.70 TL 0 54.32 TL
400 6338 5 40 0.1 - - - 3 0.23 5229 0 42.14 TL
400 6338 5 40 0.2 - - - 0 4.86 TL 0 44.97 TL
400 6338 5 40 0.3 - - - 0 9.55 TL 0 47.16 TL
400 6338 5 133 0.1 - - - 5 0.00 3864 0 39.89 TL
400 6338 5 133 0.2 - - - 1 0.31 6929 0 41.45 TL
400 6338 5 133 0.3 - - - 0 1.60 TL 0 44.33 TL
500 9900 5 5 0.1 - - - 0 8.44 TL 0 49.87 TL
500 9900 5 5 0.2 - - - 0 13.27 TL 0 52.79 TL
500 9900 5 5 0.3 - - - 0 27.37 TL 0 55.69 TL
500 9900 5 50 0.1 - - - 2 0.22 6612 0 42.30 TL
500 9900 5 50 0.2 - - - 0 6.64 TL 0 45.44 TL
500 9900 5 50 0.3 - - - 0 12.04 TL 0 48.28 TL
500 9900 5 166 0.1 - - - 5 0.00 1905 0 40.87 TL
500 9900 5 166 0.2 - - - 0 1.00 TL 0 41.84 TL
500 9900 5 166 0.3 - - - 0 2.31 TL 0 45.73 TL
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Table 3: Test results of solving the p-CTPC (|V | = 600− 900). Reported values are averaged and
aggregated by |V |.

MCF BF SCF
|V | |A| #inst. p β #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

600 14263 5 5 0.1 - - - 0 17.47 TL 0 53.98 TL
600 14263 5 5 0.2 - - - 0 23.21 TL 0 52.86 TL
600 14263 5 5 0.3 - - - 0 38.03 TL 0 58.48 TL
600 14263 5 60 0.1 - - - 0 1.67 TL 0 45.72 TL
600 14263 5 60 0.2 - - - 0 7.62 TL 0 49.32 TL
600 14263 5 60 0.3 - - - 0 13.90 TL 0 52.94 TL
600 14263 5 200 0.1 - - - 5 0.00 4016 0 39.82 TL
600 14263 5 200 0.2 - - - 0 1.32 TL 0 40.84 TL
600 14263 5 200 0.3 - - - 0 2.67 TL 0 45.30 TL
700 19394 4 5 0.1 - - - 0 19.61 TL 0 56.90 TL
700 19394 4 5 0.2 - - - 0 27.04 TL 0 57.40 TL
700 19394 4 5 0.3 - - - 0 41.52 TL 0 61.92 TL
700 19394 4 70 0.1 - - - 0 11.22 TL 0 49.07 TL
700 19394 4 70 0.2 - - - 0 5.05 TL 0 49.93 TL
700 19394 4 70 0.3 - - - 0 13.83 TL 0 54.54 TL
700 19394 4 233 0.1 - - - 4 0.00 6344 0 39.32 TL
700 19394 4 233 0.2 - - - 0 2.23 TL 0 42.89 TL
700 19394 4 233 0.3 - - - 0 2.28 TL 0 42.96 TL
800 25345 3 5 0.1 - - - 0 22.60 TL 0 56.58 TL
800 25345 3 5 0.2 - - - 0 27.51 TL 0 58.63 TL
800 25345 3 5 0.3 - - - 0 43.80 TL 0 60.62 TL
800 25345 3 80 0.1 - - - 0 12.70 TL 0 47.53 TL
800 25345 3 80 0.2 - - - 0 6.97 TL 0 49.94 TL
800 25345 3 80 0.3 - - - 0 16.62 TL 0 54.21 TL
800 25345 3 266 0.1 - - - 0 10.47 TL 0 41.27 TL
800 25345 3 266 0.2 - - - 0 4.30 TL 0 42.74 TL
800 25345 3 266 0.3 - - - 0 4.30 TL 0 42.81 TL
900 32103 3 5 0.1 - - - 0 22.80 TL 0 56.53 TL
900 32103 3 5 0.2 - - - 0 28.17 TL 0 58.05 TL
900 32103 3 5 0.3 - - - 0 41.21 TL 0 61.21 TL
900 32103 3 90 0.1 - - - 0 15.88 TL 0 47.70 TL
900 32103 3 90 0.2 - - - 0 18.20 TL 0 47.68 TL
900 32103 3 90 0.3 - - - 0 15.99 TL 0 50.99 TL
900 32103 3 300 0.1 - - - 0 34.67 TL 0 33.92 TL
900 32103 3 300 0.2 - - - 0 16.97 TL 0 42.05 TL
900 32103 3 300 0.3 - - - 0 5.58 TL 0 42.19 TL

20



Table 4: Test results of solving the Cp-CTPC. Reported values are averaged and aggregated by
|V |, p = {5, 10} and β = {0.1, 0.2, 0.3}.

MCF BF SCF
|V | |A| #inst. M α #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 30 5 0.8 28 0.10 994 30 0.00 187 0 30.19 TL
100 396 30 5 0.9 28 0.08 1006 30 0.00 190 0 30.08 TL
100 396 30 10 0.8 28 0.10 961 30 0.00 201 0 30.16 TL
100 396 30 10 0.9 28 0.09 880 30 0.00 159 0 30.05 TL
100 396 30 20 0.8 29 0.05 1049 30 0.00 223 0 30.53 TL
100 396 30 20 0.9 27 0.05 1147 30 0.00 415 0 30.04 TL
200 1585 30 10 0.8 7 2.95 5972 16 1.33 4247 0 45.37 TL
200 1585 30 10 0.9 8 2.91 5876 16 1.23 4129 0 45.44 TL
200 1585 30 20 0.8 7 2.86 5936 16 1.33 4085 0 45.36 TL
200 1585 30 20 0.9 9 2.53 5795 17 1.41 4113 0 45.42 TL
200 1585 30 40 0.8 7 3.40 5956 15 1.68 4481 0 45.17 TL
200 1585 30 40 0.9 8 3.00 5771 15 3.21 4594 0 45.24 TL
300 3561 30 15 0.8 1 7.02 7167 3 2.32 6815 0 45.13 TL
300 3561 30 15 0.9 2 5.57 7032 4 2.23 6821 0 45.25 TL
300 3561 30 30 0.8 1 6.82 7074 4 2.26 6802 0 44.99 TL
300 3561 30 30 0.9 1 3.54 7053 3 2.23 6890 0 44.95 TL
300 3561 30 60 0.8 2 8.63 7072 4 2.81 7010 0 45.39 TL
300 3561 30 60 0.9 1 5.04 7055 3 3.01 6944 0 45.48 TL
400 6338 30 20 0.8 - - - 0 5.55 TL 0 49.73 TL
400 6338 30 20 0.9 - - - 0 5.71 TL 0 49.69 TL
400 6338 30 40 0.8 - - - 0 5.50 TL 0 49.43 TL
400 6338 30 40 0.9 - - - 0 5.65 TL 0 49.57 TL
400 6338 30 80 0.8 - - - 0 6.52 TL 0 50.22 TL
400 6338 30 80 0.9 - - - 0 8.54 TL 0 49.92 TL
500 9900 30 25 0.8 - - - 0 8.42 TL 0 51.69 TL
500 9900 30 25 0.9 - - - 0 8.16 TL 0 52.15 TL
500 9900 30 50 0.8 - - - 0 8.49 TL 0 51.93 TL
500 9900 30 50 0.9 - - - 0 8.07 TL 0 51.76 TL
500 9900 30 100 0.8 - - - 0 9.42 TL 0 52.25 TL
500 9900 30 100 0.9 - - - 0 9.64 TL 0 52.28 TL
600 14263 30 30 0.8 - - - 0 16.59 TL 0 54.43 TL
600 14263 30 30 0.9 - - - 0 15.98 TL 0 54.26 TL
600 14263 30 60 0.8 - - - 0 16.05 TL 0 53.89 TL
600 14263 30 60 0.9 - - - 0 14.97 TL 0 53.66 TL
600 14263 30 120 0.8 - - - 0 19.16 TL 0 54.34 TL
600 14263 30 120 0.9 - - - 0 17.56 TL 0 54.32 TL
700 19394 24 35 0.8 - - - 0 19.67 TL 0 57.82 TL
700 19394 24 35 0.9 - - - 0 19.58 TL 0 57.37 TL
700 19394 24 70 0.8 - - - 0 20.21 TL 0 57.75 TL
700 19394 24 70 0.9 - - - 0 19.67 TL 0 58.02 TL
700 19394 24 140 0.8 - - - 0 21.20 TL 0 58.17 TL
700 19394 24 140 0.9 - - - 0 21.14 TL 0 58.34 TL
800 25345 18 40 0.8 - - - 0 21.65 TL 0 58.23 TL
800 25345 18 40 0.9 - - - 0 21.59 TL 0 57.94 TL
800 25345 18 80 0.8 - - - 0 21.53 TL 0 57.94 TL
800 25345 18 80 0.9 - - - 0 21.65 TL 0 57.69 TL
800 25345 18 160 0.8 - - - 0 22.83 TL 0 58.72 TL
800 25345 18 160 0.9 - - - 0 22.39 TL 0 58.62 TL
900 32103 18 45 0.8 - - - 0 20.92 TL 0 57.25 TL
900 32103 18 45 0.9 - - - 0 20.81 TL 0 57.11 TL
900 32103 18 90 0.8 - - - 0 21.10 TL 0 57.30 TL
900 32103 18 90 0.9 - - - 0 20.96 TL 0 57.14 TL
900 32103 18 180 0.8 - - - 0 22.99 TL 0 57.45 TL
900 32103 18 180 0.9 - - - 0 22.42 TL 0 57.40 TL
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Table 5: Test results of solving the Cp-CTPC. Reported values are averaged and aggregated by
|V |, p = {|V |/10, |V |/5, |V |/3} and β = {0.1, 0.2, 0.3}.

MCF BF SCF
|V | |A| #inst. M α #solv. g[%] t[s.] #solv. g[%] t[s.] #solv. g[%] t[s.]

100 396 45 5 0.8 45 0.00 115 45 0.00 48 0 23.34 TL
100 396 45 5 0.9 45 0.00 146 45 0.00 49 0 23.33 TL
100 396 45 10 0.8 45 0.00 95 45 0.00 47 0 23.28 TL
100 396 45 10 0.9 45 0.00 94 45 0.00 46 0 23.25 TL
100 396 45 20 0.8 45 0.00 180 45 0.00 42 0 23.15 TL
100 396 45 20 0.9 45 0.00 98 45 0.00 42 0 23.43 TL
200 1585 45 10 0.8 42 0.12 1348 43 0.06 861 0 37.71 TL
200 1585 45 10 0.9 41 0.15 1444 43 0.06 875 0 37.69 TL
200 1585 45 20 0.8 41 0.14 1278 43 0.06 919 0 37.67 TL
200 1585 45 20 0.9 42 0.12 1227 43 0.06 801 0 37.70 TL
200 1585 45 40 0.8 41 0.12 1286 42 0.06 1033 0 37.62 TL
200 1585 45 40 0.9 42 0.10 1253 43 0.06 970 0 37.58 TL
300 3561 45 15 0.8 26 0.98 3933 19 0.70 4908 0 39.97 TL
300 3561 45 15 0.9 25 1.11 4166 18 0.74 4961 0 39.89 TL
300 3561 45 30 0.8 25 0.84 4017 19 0.70 4927 0 40.00 TL
300 3561 45 30 0.9 25 0.81 3912 19 0.67 4909 0 40.03 TL
300 3561 45 60 0.8 26 0.77 3827 21 0.67 4883 0 39.93 TL
300 3561 45 60 0.9 27 0.69 3724 21 0.68 4731 0 39.91 TL
400 6338 45 20 0.8 - - - 15 1.62 6005 0 42.92 TL
400 6338 45 20 0.9 - - - 15 1.61 6086 0 42.98 TL
400 6338 45 40 0.8 - - - 15 1.71 6043 0 42.94 TL
400 6338 45 40 0.9 - - - 15 1.60 6019 0 42.85 TL
400 6338 45 80 0.8 - - - 14 1.73 6015 0 42.85 TL
400 6338 45 80 0.9 - - - 14 1.55 5981 0 42.98 TL
500 9900 45 25 0.8 - - - 10 2.26 6504 0 44.32 TL
500 9900 45 25 0.9 - - - 9 2.32 6557 0 44.41 TL
500 9900 45 50 0.8 - - - 9 2.25 6497 0 44.35 TL
500 9900 45 50 0.9 - - - 10 2.25 6477 0 44.31 TL
500 9900 45 100 0.8 - - - 9 2.31 6512 0 44.25 TL
500 9900 45 100 0.9 - - - 10 2.24 6448 0 44.43 TL
600 14263 45 30 0.8 - - - 5 3.29 6878 0 47.58 TL
600 14263 45 30 0.9 - - - 4 3.44 6869 0 47.14 TL
600 14263 45 60 0.8 - - - 4 3.33 6887 0 47.54 TL
600 14263 45 60 0.9 - - - 5 3.27 6878 0 46.91 TL
600 14263 45 120 0.8 - - - 5 3.28 6832 0 46.94 TL
600 14263 45 120 0.9 - - - 5 3.61 6819 0 47.37 TL
700 19394 36 35 0.8 - - - 6 3.65 7004 0 47.86 TL
700 19394 36 35 0.9 - - - 6 4.23 6929 0 47.60 TL
700 19394 36 70 0.8 - - - 6 4.09 6941 0 47.48 TL
700 19394 36 70 0.9 - - - 8 4.08 6864 0 47.61 TL
700 19394 36 140 0.8 - - - 7 3.40 6917 0 47.31 TL
700 19394 36 140 0.9 - - - 8 3.81 6890 0 47.52 TL
800 25345 27 40 0.8 - - - 0 9.95 TL 0 47.68 TL
800 25345 27 40 0.9 - - - 0 16.04 TL 0 47.54 TL
800 25345 27 80 0.8 - - - 0 10.96 TL 0 47.20 TL
800 25345 27 80 0.9 - - - 0 10.20 TL 0 47.55 TL
800 25345 27 160 0.8 - - - 0 13.32 TL 0 47.38 TL
800 25345 27 160 0.9 - - - 0 7.02 TL 0 47.80 TL
900 32103 27 45 0.8 - - - 0 17.41 TL 0 46.32 TL
900 32103 27 45 0.9 - - - 0 20.53 TL 0 46.45 TL
900 32103 27 90 0.8 - - - 0 18.92 TL 0 45.75 TL
900 32103 27 90 0.9 - - - 0 18.95 TL 0 45.20 TL
900 32103 27 180 0.8 - - - 0 15.49 TL 0 46.54 TL
900 32103 27 180 0.9 - - - 0 17.73 TL 0 45.76 TL
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