Ambiguous Chance-Constrained Bin Packing under Mean-Covariance Information

Yiling Zhang, Ruiwei Jiang, Siqian Shen
Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, MI, USA
E-mail: {zyiling, ruiwei, siqian}@umich.edu

Abstract

The bin packing structure arises in a wide range of service operational applications, where a set of items are assigned to multiple bins with fixed capacities. With random item weights, a chance-constrained bin packing problem bounds, for each bin, the probability that the total weight of packed items exceeds the bin’s capacity. Different from the stochastic programming approaches relying on full distributional information of the random item weights, we assume that only the information of the mean and covariance matrix is available, and consider distributionally robust chance-constrained bin packing (DCBP) models in this paper. Using two types of ambiguity sets, we equivalently reformulate the DCBP models as 0-1 second-order cone (SOC) programs. We further exploit the submodularity of the 0-1 SOC constraints under special and general covariance matrices, and utilize the submodularity as well as lifting and bin-packing structure to derive extended polymatroid inequalities to strengthen the 0-1 SOC formulations. We incorporate the valid inequalities in a branch-and-cut algorithm for efficiently solving the DCBP models. Finally, we demonstrate the computational efficacy of our approaches and performance of DCBP solutions on diverse test instances.

Key words: chance-constrained binary program; distributionally robust optimization; conic integer program; submodularity; extended polymatroid

1 Introduction

The classical bin packing problem involves a list of \(J \) items and a list of \(I \) bins, where each item has a certain weight and each bin has a weight capacity. The deterministic bin packing problem aims to assign all \(J \) items to a minimum number of bins, while respecting the capacity of each bin. If we consider a slightly more general setting by introducing a cost for each assignment, then the deterministic bin packing problem is presented as

\[
\begin{align*}
\min_{z,y} & \quad \sum_{i=1}^{I} c_i^x z_i + \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij}^x y_{ij} \\
\text{s.t.} & \quad y_{ij} \leq \rho_{ij} z_i \quad \forall i = 1, \ldots, I, \; j = 1, \ldots, J \\
& \quad \sum_{i=1}^{I} y_{ij} = 1 \quad \forall j = 1, \ldots, J
\end{align*}
\]
\[y_{ij}, z_i \in \{0, 1\} \quad \forall i = 1, \ldots, I, \ j = 1, \ldots, J, \quad (1d) \]
\[
\sum_{j=1}^{J} t_{ij} y_{ij} \leq T_i \quad \forall i = 1, \ldots, I \quad (1e)
\]

where \(c_i^z \) represents the cost of opening bin \(i \) and \(c_j^y \) represents the cost of assigning item \(j \) to bin \(i \). For each \(i = 1, \ldots, I \) and \(j = 1, \ldots, J \), we let binary variables \(z_i \) represent if bin \(i \) is open (i.e., \(z_i = 1 \) if open and \(z_i = 0 \) otherwise), binary variables \(y_{ij} \) represent if item \(j \) is assigned to bin \(i \) (i.e., \(y_{ij} = 1 \) if assigned and \(y_{ij} = 0 \) otherwise), parameters \(\rho_{ij} \) represent if we can assign item \(j \) to bin \(i \) (i.e., \(\rho_{ij} = 1 \) if we can and \(\rho_{ij} = 0 \) otherwise), parameters \(t_{ij} \) represent the weight of item \(j \) accounts for in bin \(i \), and parameters \(T_i \) represent the weight capacity of bin \(i \). The objective function (1a) minimizes the total cost of opening bins and assigning items to bins. Constraints (1b) ensure that all items are assigned to open bins, constraints (1c) ensure that each item is assigned to one and only one bin, and constraints (1e) describe the capacity of each bin. The bin packing model (1) has a wide range of applications, including the cutting stock problem (Gilmore and Gomory, 1961), allocating surgeries to operating rooms (ORs) (Denton et al., 2010; Shylo et al., 2012), assigning computational jobs to servers in computing clouds (Shen and Wang, 2014), and scheduling crash tests on prototype vehicles (Reich et al., 2015).

In practice, the weights \(t_{ij} \) are often random when we decide the bin opening and item assignment. In this case, we denote the random weights \(\tilde{t}_{ij} \), for all \(i = 1, \ldots, I, \ j = 1, \ldots, J \). For example, in surgery planning, the operational time limit of each OR (i.e., \(T_i \)) is usually deterministic, but the processing time of each surgery (i.e., \(\tilde{t}_{ij} \)) is usually random due to the variety of patients, surgical teams, and surgery characteristics. As a consequence, the capacity constraints (1e) are subject to random violations. An effective and convenient way of controlling constraint violations employs chance constraints. In a chance-constrained bin packing model, we attempt to satisfy each capacity constraint by at least a pre-specified probability, i.e.,

\[
\mathbb{P}\left\{ \sum_{j=1}^{J} \tilde{t}_{ij} y_{ij} \leq T_i \right\} \geq 1 - \alpha_i \quad \forall i = 1, \ldots, I, \quad (2)
\]

where \(\mathbb{P} \) represents the joint probability distribution of the random weights \(\{\tilde{t}_{ij} : j = 1, \ldots, J\} \) and each \(\alpha_i \) represents an allowed risk tolerance of constraint violation that often takes a small value (e.g., \(\alpha_i = 0.05 \)). For example, in surgery allocation, chance constraints (2) make sure that each OR will not go overtime with a large probability, offering an appropriate “end-of-the-day” guarantee.

Chance-constrained programming models are difficult to solve, mainly because the feasible region described by constraints (2) is non-convex in general (Prékopa, 2003). Nonetheless, promising special cases have been identified to recapture the convexity of chance-constrained models. In particular, if \(\{\tilde{t}_{ij} : j = 1, \ldots, J\} \) are assumed to follow a Gaussian distribution with a known mean \(\mu_i \) and covariance matrix \(\Sigma_i \), then the chance constraints (2) are equivalent to the second-order
cone (SOC) constraints

\[\mu_i^\top y_i + \Phi^{-1}(1 - \alpha_i) \sqrt{y_i^\top \Sigma_i y_i} \leq T_i \quad \forall i = 1, \ldots, I, \]

where \(\Phi(\cdot) \) represents the cumulative distribution function of the standard Gaussian distribution and vector \(y_i := [y_{i1}, \ldots, y_{ij}]^\top \). In this case, the chance-constrained bin packing model becomes a 0-1 SOC program and so it can be effectively solved by using the off-the-shelf solvers. In another promising research stream, the probability distribution \(\mathbb{P} \) of \(\bar{t}_{ij} \) is replaced by a finite-sample approximation, leading to a sample average approximation (SAA) of the chance-constrained model (Luedtke and Ahmed, 2008; Pagnoncelli et al., 2009). The SAA model is then recast as a mixed-integer linear program (MILP), on which many strong valid inequalities can be derived to accelerate the branch-and-cut algorithm (see, e.g., Luedtke et al., 2010; Küçükyavuz, 2012; Luedtke, 2014; Song et al., 2014; Liu et al., 2016).

A basic challenge of the chance-constrained approach is that the perfect knowledge of probability distribution \(\mathbb{P} \) may not be accessible. Under many circumstances, we only have a series of historical data that can be considered as samples taken from the true (while ambiguous) distribution. As a consequence, the solution obtained from a chance-constrained model can be sensitive to the choice of distribution \(\mathbb{P} \) we employ in (2) and hence perform poorly in out-of-sample tests. This phenomenon is often observed when solving stochastic programs and is called the optimizer’s curse (Smith and Winkler, 2006). A natural way of addressing this curse is that, instead of a single estimate of \(\mathbb{P} \), we employ a set of plausible probability distributions, termed the ambiguity set and denoted \(\mathcal{D} \). Then, from a robust perspective, we ensure that chance constraints (2) hold valid with regard to all probability distributions belonging to \(\mathcal{D} \), i.e.,

\[\inf_{\mathbb{P} \in \mathcal{D}} \mathbb{P}\left\{ \sum_{j=1}^{J} \bar{t}_{ij} y_{ij} \leq T_i \right\} \geq 1 - \alpha_i \quad \forall i = 1, \ldots, I, \]

and accordingly we call (4) distributionally robust chance constraints (DRCCs). In this paper, we investigate the distributionally robust chance-constrained bin packing (DCBP) model, a variant of the formulation (1), where capacity constraints (1e) are replaced with their distributionally robust counterpart (4). Without making the Gaussian assumption on \(\mathbb{P} \), we show that DCBP is equivalent to a 0-1 SOC program when \(\mathcal{D} \) is characterized by the first two moments of \(\bar{t}_{ij} \). Furthermore, we exploit the (hidden) submodularity of the 0-1 SOC constraints. Accordingly, we derive extended polymatroid inequalities, whose separation can be efficiently done via a greedy algorithm (Edmonds, 1970). As demonstrated in extensive computational experiments, these valid inequalities significantly accelerate the branch-and-cut algorithm for solving DCBP. We also note that the branch-and-cut algorithm based on submodularity and extended polymatroid inequalities is general, and can be applied to accelerating the computation of general 0-1 SOC programs, but not only restricted to solving the ones for modeling DCBP in this paper.

The remainder of the paper is organized as follows. Section 2 reviews the literature in stochastic bin packing and the prior work related to the optimization techniques used in this paper. Section 3...
presents two 0-1 SOC representations, respectively, for the DCBP models under two moment-based ambiguity sets from the literature. Section 4 utilizes submodularity, lifting, and bin-packing structures to derive valid inequalities to strengthen the 0-1 SOC formulations. Section 5 demonstrates the computational efficacy of our approaches and compare the out-of-sample performance of different DCBP models based on test instances with diverse problem sizes, parameters, and item weight uncertainty. Section 6 summarizes the paper and discusses future research directions.

2 Prior Work

The stochastic bin packing models find a wide range of applications, ranging from surgery planning to job scheduling in data centers to bandwidth allocation in high-speed networks. Denton et al. (2010) optimized surgery block allocation to ORs, by minimizing the total cost of opening the ORs plus the expected penalty cost of having overtime in each OR. They solved a two-stage stochastic binary integer program via an integer L-shaped method, based on finite samples of the random surgery durations. Shylo et al. (2012) was among the first to use chance constraints for restricting the overtime in ORs. They assumed that the surgery durations follow a multivariate Gaussian distribution, and reformulated the chance-constrained model as an equivalent semidefinite program (SDP) based on convex analysis of probabilistic constraints dating back to Prékopa (1970). Deng et al. (2016) provided a summary of recent papers that utilized variants of stochastic bin packing for surgery planning optimization. Shen and Wang (2014) illustrated other stochastic bin packing applications for managing the quality of service and enhancing operational efficiency of server consolidation in cloud computing systems. Kleinberg et al. (2000) related stochastic bin packing to the problem of allocating bandwidth for bursty connections in high-speed networks, and proposed approximation algorithms for its chance-constrained variant.

Chance-constrained bin packing problems are computationally challenging, largely because (i) the non-convexity of chance constraints and (ii) the binary restrictions on decision variables. To address challenges (i)–(ii), the majority of existing literature requires full distributional knowledge of the random item weights, and applies the SAA approach to approximate the chance-constrained bin packing problem as an MILP. For example, Song et al. (2014) considered a generic chance-constrained binary packing problem given finite samples of the random item weights, and derived lifted cover inequalities for improving the computation. Zhang et al. (2015) applied branch-and-price and column generation approaches to optimize an SAA-based MILP for chance-constrained bin packing. For generic chance-constrained programs, the SAA model and the valid inequalities for its MILP formulation have been well studied in the literature (see, e.g., Luedtke and Ahmed, 2008; Pagnoncelli et al., 2009; Luedtke et al., 2010; Küçükyavuz, 2012; Luedtke, 2014; Liu et al., 2016). As compared to the existing work, this paper waives the assumption of full distributional information and only relies on the first two moments of the uncertainty.

Based on a bandwidth allocation problem, Kleinberg et al. (2000) pointed out the relations between stochastic bin packing and stochastic knapsack problems. In fact, the chance constraints in binary knapsack problems are equivalent to those in bin packing problems. Kosuch and Lisser
(2010), Goyal and Ravi (2010), and Han et al. (2016) considered knapsack chance constraints with Gaussian distributed random item weights. In particular, Kosuch and Lisser (2010) recast the chance constraint as an SOC constraint. Goyal and Ravi (2010) provided a polynomial-time approximation algorithm for the chance-constrained binary knapsack problem. Recently, Han et al. (2016) approximated the chance constraint from a robust optimization perspective and provided efficient solution approaches for the approximation. Different from these papers, this work derives an SOC representation of the chance constraint without assuming Gaussian random item weights. Meanwhile, we study solution approaches that achieve the global optimality of DCBP.

Distributionally robust optimization has received growing attention in recent years. It introduces effective modeling and computational approaches for handling ambiguous distributions of random variables in stochastic programming problems by using available distributional information. The concept was first introduced by Scarf et al. (1958) as a minimax stochastic program for managing inventory under uncertain demand with only moment information known to a manager. Moment information (e.g., mean and covariance) has been widely used for building ambiguity sets in various distributionally robust optimization models (see, e.g., Bertsimas et al., 2010; Delage and Ye, 2010; Wiesemann et al., 2014). Using moment-based ambiguity sets, El Ghaoui et al. (2003), Calafiore and El Ghaoui (2006), Wagner (2008), Chen et al. (2010), Zymler et al. (2013), Cheng et al. (2014), and Jiang and Guan (2016) derived exact reformulations and/or approximations for DRCCs, often in the form of SDPs. In special cases, e.g., when the first two moments are exactly matched in the ambiguity set, these SDPs can further be simplified as SOC programs that are even more computationally tractable. While many existing ambiguity sets exactly match the first two moments of uncertainty (see, e.g., El Ghaoui et al., 2003; Wagner, 2008; Zymler et al., 2013), Delage and Ye (2010) proposed a data-driven approach to construct an ambiguity set that can model moment estimation errors. In this paper, we consider both types of ambiguity sets. To the best of our knowledge, for the first time, we provide an SOC representation of DRCCs using the general ambiguity set proposed by Delage and Ye (2010).

Meanwhile, distributionally robust optimization has received much less attention in discrete optimization problems, possibly due to the difficulty of solving 0-1 nonlinear programs. For example, none of the off-the-shelf solvers can handle 0-1 SDPs, which often arise from discrete optimization problems with DRCCs. To the best of our knowledge, our results on chance constraints are most related to Cheng et al. (2014) that studied DRCCs in the binary knapsack problem and derived 0-1 SDP reformulations. As compared to their work, this paper investigates a different ambiguity set and derives a 0-1 SOC representation. Furthermore, we utilize submodularity and lifting to derive valid inequalities to solve the 0-1 SOC reformulation to global optimality, instead of considering an SDP relaxation of the binary restrictions as in Cheng et al. (2014).

The main contributions of the paper are three-fold. First, using the ambiguity set proposed by Delage and Ye (2010), we equivalently reformulate the DCBP model as a 0-1 SOC program that can readily be solved by solvers. Second, we exploit the (hidden) submodularity of the 0-1 SOC constraints and derive extended polymatroid valid inequalities to accelerate solving DCBP. In particular, we provide an efficient way of finding “optimal” submodular approximations of the
0-1 SOC constraints in the original variable space, and furthermore show that any 0-1 SOC constraint possesses submodularity in a lifted space. The valid inequalities in original and lifted spaces can both be efficiently separated via a greedy algorithm. Third, we conduct extensive numerical studies to demonstrate the computational efficacy of our solution approaches and the out-of-sample performance of DCBP.

3 DCBP Models and Reformulations

We study the DCBP model under two alternatives of ambiguity set \mathcal{D} based on the first two moments of \tilde{t}_{ij}. The first ambiguity set, denoted \mathcal{D}_1, exactly matches the mean and covariance matrix of \tilde{t}_{ij}. In contrast, the second ambiguity set, denoted \mathcal{D}_2, considers the estimation errors of sample mean and sample covariance matrix (see Delage and Ye, 2010). In Section 3.1, we introduce these two ambiguity sets and their calibration based on historical data. In Section 3.2, we derive SOC representations of DRCC (4) under \mathcal{D}_1 and \mathcal{D}_2, respectively. While the former case (i.e., (4) under \mathcal{D}_1) has been well studied (see, e.g., El Ghaoui et al., 2003; Calafiore and El Ghaoui, 2006; Zymler et al., 2013), to the best of our knowledge, this is the first work to show the SOC representation of the latter case based on general covariance matrices (i.e., (4) under \mathcal{D}_2).

3.1 Ambiguity Sets

For each bin $i = 1, \ldots, I$, we let vector $\tilde{t}_i := [\tilde{t}_{i1}, \ldots, \tilde{t}_{iJ}]^\top$ represent the random weight of each item in bin i. Suppose that a series of independent historical data samples $\{\tilde{t}_{ni}\}_{n=1}^N$ are drawn from the true probability distribution \mathbb{P} of \tilde{t}_i. Then, the first two moments of \tilde{t}_i can be estimated by the sample mean and sample covariance matrix

$$
\mu_i = \frac{1}{N} \sum_{n=1}^N \tilde{t}_{ni}, \quad \Sigma_i = \frac{1}{N} \sum_{n=1}^N (\tilde{t}_{ni} - \mu_i)(\tilde{t}_{ni} - \mu_i)^\top.
$$

Throughout this paper, we assume that both Σ_i and the true covariance matrix of \tilde{t}_i are symmetric and positive definite. As promised by the law of large numbers, as the data size N grows, μ_i and Σ_i converge to the true mean and true covariance matrix of \tilde{t}_i, respectively. Hence, when N takes a large value, a natural choice of the ambiguity set consists of all probability distributions that match the sample moments μ_i and Σ_i, i.e.,

$$
\mathcal{D}_1(\mu, \Sigma) = \left\{ \mathbb{P} \in \mathcal{M}_+^J : \begin{array}{l}
\mathbb{E}_\mathbb{P}[\tilde{t}_i] = \mu_i; \\
\mathbb{E}_\mathbb{P}[(\tilde{t}_i - \mu_i)(\tilde{t}_i - \mu_i)^\top] = \Sigma_i, \quad \forall i = 1, \ldots, I
\end{array} \right\},
$$

where \mathcal{M}_+^J represents the set of all probability distributions on \mathbb{R}^J, μ represents the collection of μ_i, and Σ represents the collection of Σ_i for all $i = 1, \ldots, I$. For notation brevity, we use $\mathcal{D}_1(\mu, \Sigma)$ and \mathcal{D}_1 interchangeably without necessarily specifying the means and covariance matrices.

Under many circumstances, however, the historical data can be inadequate. With a small N, there may exist considerable estimation errors in μ_i and Σ_i, which brings a layer of “moment
ambiguity” into D_1 and adds to the existing distributional ambiguity of P. To address the moment ambiguity and take into account the estimation errors, Delage and Ye (2010) proposed an alternative ambiguity set

$$D_2 = \left\{ P \in M^+_1 : \begin{align*}
(\mathbb{E}_P[\tilde{t}_i] - \mu_i)\Sigma_i^{-1}(\mathbb{E}_P[\tilde{t}_i] - \mu_i) \leq \gamma_1, \\
\mathbb{E}_P[(\tilde{t}_i - \mu_i)(\tilde{t}_i - \mu_i)^\top] \leq \gamma_2 \Sigma_i, \quad \forall i = 1, \ldots, I \end{align*} \right\},$$

where $\gamma_1 > 0$ and $\gamma_2 > \max\{\gamma_1, 1\}$ represent two given parameters. Set D_2 designates that (i) the true mean of \tilde{t}_i is within an ellipsoid centered at μ_i, and (ii) the true covariance matrix of \tilde{t}_i is bounded from above by $\gamma_2 \Sigma_i - (\mathbb{E}_P[\tilde{t}_i] - \mu_i)(\mathbb{E}_P[\tilde{t}_i] - \mu_i)^\top$ (note that $\mathbb{E}_P[(\tilde{t}_i - \mu_i)(\tilde{t}_i - \mu_i)^\top] = \mathbb{E}_P[(\tilde{t}_i - \mathbb{E}_P[\tilde{t}_i])(\tilde{t}_i - \mathbb{E}_P[\tilde{t}_i])^\top] + (\mathbb{E}_P[\tilde{t}_i] - \mu_i)(\mathbb{E}_P[\tilde{t}_i] - \mu_i)^\top$). Meanwhile, Delage and Ye (2010) offered a rigorous guideline for selecting γ_1 and γ_2 values (see Theorem 2 in Delage and Ye (2010)) so that D_2 includes the true distribution of \tilde{t}_i with a high confidence level. In practice, we can select the values of γ_1 and γ_2 via cross validation. For example, we can divide the N data points into two halves. We estimate sample moments (μ^1_i, Σ^1_i) based on the first half of the data and (μ^2_i, Σ^2_i) based on the second half. Then, we characterize D_2 based on (μ^1_i, Σ^1_i), and select γ_1 and γ_2 such that probability distributions with moments (μ^2_i, Σ^2_i) belong to D_2.

3.2 SOC Representations of the DRCC

Now we derive SOC representations of DRCC (4) for all $i = 1, \ldots, I$. For notation brevity, we define vector $y := [y_{i1}, \ldots, y_{iJ}]$ and omit the subscript i throughout this section. First, we review the celebrated SOC representation of DRCC (4) under ambiguity set D_1 in the following theorem.

Theorem 1. (Adapted from El Ghaoui et al. (2003), also see Wagner (2008)) The DRCC (4) with $D = D_1$ is equivalent to the following SOC constraint:

$$\mu^\top y + \sqrt{\frac{1 - \alpha}{\alpha}} \sqrt{y^\top \Sigma y} \leq T. \quad (5)$$

Theorem 1 shows that we can recapture the convexity of chance constraints (2) by employing ambiguity set D_1 to model the \tilde{t} uncertainty. Perhaps more surprisingly, in this case, the convex feasible region characterized by DRCC (4) is SOC representable. It follows that the continuous relaxation of the DCBP model is an SOC program, one of the most computationally tractable nonlinear programs nowadays.

Next, we show that DRCC (4) under the ambiguity set D_2 is also SOC representable. This implies that the computational complexity of the DCBP remains the same even if we take the moment ambiguity into account. We present the main result of this section in the following theorem.

Theorem 2. DRCC (4) with $D = D_2$ is equivalent to

$$\mu^\top y + \left(\sqrt{\gamma_1} + \sqrt{\left(\frac{1 - \alpha}{\alpha}\right)(\gamma_2 - \gamma_1)}\right) \sqrt{y^\top \Sigma y} \leq T. \quad (6a)$$
if $\gamma_1/\gamma_2 \leq \alpha$, and is equivalent to
\[
\mu^\top y + \sqrt{\frac{\gamma_2}{\alpha} y^\top \Sigma y} \leq T \tag{6b}
\]
if $\gamma_1/\gamma_2 > \alpha$.

Rujeerapaiboon et al. (2015) considered an ambiguity set similar to D_2 and derived an SOC representation of DRCCs in portfolio optimization under an assumption of weak sense white noise, i.e., the uncertainty is stationary and mutually uncorrelated over time (see Definition 4 and Theorem 5 in Rujeerapaiboon et al. (2015)). In contrast, the SOC representation in Theorem 2 holds for general covariance matrices. We prove Theorem 2 in two steps. In the first step, we project the random vector \tilde{t} and its ambiguity set D_2 from \mathbb{R}^J to the real line, i.e., \mathbb{R}. This simplifies DRCC (4) as involving a one-dimensional random variable. In the second step, we derive optimal (i.e., worst-case) mean and covariance matrix in D_2 that attain the worst-case probability bound in (4).

We then apply Cantelli’s inequality to finish the representation. We present the first step of the proof in the following lemma.

Lemma 1. Let \tilde{s} be a random vector in \mathbb{R}^J and $\tilde{\xi}$ be a random variable in \mathbb{R}. For a given $y \in \mathbb{R}^J$, define ambiguity sets $D_{\tilde{s}}$ and $D_{\tilde{\xi}}$ as
\[
D_{\tilde{s}} = \left\{ \mathbb{P} \in \mathcal{M}_J^+ : \mathbb{E}[\tilde{s}^\top \Sigma^{-1} \tilde{s}] \leq \gamma_1, \mathbb{E}[\tilde{s}\tilde{s}^\top] \leq \gamma_2 \Sigma \right\} \tag{7a}
\]
and
\[
D_{\tilde{\xi}} = \left\{ \mathbb{P} \in \mathcal{M}_1^+ : |\mathbb{E}[\tilde{\xi}]| \leq \sqrt{\gamma_1 \sqrt{y^\top \Sigma y}}, \mathbb{E}[\tilde{\xi}^2] \leq \gamma_2 (y^\top \Sigma y) \right\}. \tag{7b}
\]
Then, for any Borel measurable function $f : \mathbb{R}^J \to \mathbb{R}$, we have
\[
\inf_{\mathbb{P} \in D_{\tilde{s}}} \mathbb{P}\{f(y^\top \tilde{s}) \leq 0\} = \inf_{\mathbb{P} \in D_{\tilde{\xi}}} \mathbb{P}\{f(\tilde{\xi}) \leq 0\}.
\]

Proof. We first show that $\inf_{\mathbb{P} \in D_{\tilde{s}}} \mathbb{P}\{f(y^\top \tilde{s}) \leq 0\} \geq \inf_{\mathbb{P} \in D_{\tilde{\xi}}} \mathbb{P}\{f(\tilde{\xi}) \leq 0\}$. Pick a $\mathbb{P} \in D_{\tilde{s}}$, and let \tilde{s} denote the corresponding random vector and $\tilde{\xi} = y^\top \tilde{s}$. It follows that
\[
\mathbb{E}[\tilde{\xi}] = y^\top \mathbb{E}[\tilde{s}]
\leq \max_{s : s^\top \Sigma^{-1} s \leq \gamma_1} y^\top s \tag{8a}
= \max_{z : ||z||_2 \leq \sqrt{\gamma_1}} (\Sigma^{1/2} y)^\top z = \sqrt{\gamma_1} \sqrt{y^\top \Sigma y},
\]
where inequality (8a) is because $\mathbb{E}[\tilde{s}^\top \Sigma^{-1} \tilde{s}] \leq \gamma_1$. Similarly, we have $\mathbb{E}[\tilde{\xi}] \geq -\sqrt{\gamma_1} \sqrt{y^\top \Sigma y}$. Meanwhile, note that
\[
\mathbb{E}[\tilde{\xi}^2] = y^\top \mathbb{E}[\tilde{s}\tilde{s}^\top] y \leq y^\top (\gamma_2 \Sigma) y = \gamma_2 (y^\top \Sigma y), \tag{8b}
\]
where inequality (8b) is because \(\mathbb{E}_P[\tilde{s}\tilde{s}^T] \leq \gamma_2 \Sigma \). Hence, the probability distribution of \(\tilde{\xi} \) belongs to \(D_{\tilde{\xi}} \). It follows that \(\inf_{P \in D_{\tilde{\xi}}} \mathbb{P}\{f(y^T\tilde{s}) \leq 0\} \geq \inf_{P \in D_{\tilde{\xi}}} \mathbb{P}\{f(\tilde{\xi}) \leq 0\} \).

Second, we show that \(\inf_{P \in D_{\tilde{\xi}}} \mathbb{P}\{f(y^T\tilde{s}) \leq 0\} \leq \inf_{P \in D_{\tilde{\xi}}} \mathbb{P}\{f(\tilde{\xi}) \leq 0\} \). Pick a \(P \in D_{\tilde{\xi}} \), and let \(\tilde{\xi} \) denote the corresponding random variable and \(\tilde{s} = [\tilde{\xi}/(y^T \Sigma y)] \Sigma y \). It follows that

\[
\mathbb{E}_P[\tilde{s}]^T \Sigma^{-1} \mathbb{E}_P[\tilde{s}] = \mathbb{E}_P[\tilde{\xi}]^2 y^T \Sigma y y^T \Sigma^{-1} \Sigma y = \frac{\mathbb{E}_P[\tilde{\xi}]^2}{y^T \Sigma y} \\
\leq \frac{\gamma_1 y^T \Sigma y}{y^T \Sigma y} = \gamma_1,
\]

where inequality (8c) is because \(|\mathbb{E}_P[\tilde{\xi}]| \leq \sqrt{\gamma_1} \sqrt{y^T \Sigma y} \). Meanwhile, note that

\[
\mathbb{E}_P[\tilde{s}\tilde{s}^T] = \mathbb{E}_P \left[\tilde{\xi}^2 \frac{\Sigma y}{y^T \Sigma y} \right] y^T \Sigma y \frac{\Sigma y}{y^T \Sigma y} \\
= \mathbb{E}_P[\tilde{\xi}^2] \frac{(\Sigma y)(\Sigma y)^T}{(y^T \Sigma y)^2} \\
\leq \gamma_2 (y^T \Sigma y) \frac{(\Sigma y)(\Sigma y)^T}{(y^T \Sigma y)^2} \\
\leq \gamma_2 (y^T \Sigma y) \frac{y^T \Sigma y y^T \Sigma y}{(y^T \Sigma y)^2} = \gamma_2 \Sigma,
\]

where inequality (8d) is because \(\mathbb{E}_P[\tilde{\xi}^2] \leq \gamma_2 (y^T \Sigma y) \) and inequality (8e) is because \((\Sigma y)(\Sigma y)^T \leq (y^T \Sigma y) \Sigma \), which holds because for all \(z \in \mathbb{R}^d \),

\[
z^T (\Sigma y)(\Sigma y)^T z = \left[(\Sigma^{1/2} z)(\Sigma^{1/2} y) \right]^2 \\
\leq ||\Sigma^{1/2} z||^2 ||\Sigma^{1/2} y||^2 \quad \text{(Cauchy-Schwarz inequality)} \\
= (y^T \Sigma y)(z^T \Sigma z) \\
= z^T (y^T \Sigma y) \Sigma z.
\]

Hence, the probability distribution of \(\tilde{s} \) belongs to \(D_s \). It follows that \(\inf_{P \in D_s} \mathbb{P}\{f(y^T\tilde{s}) \leq 0\} \leq \inf_{P \in D_{\tilde{\xi}}} \mathbb{P}\{f(\tilde{\xi}) \leq 0\} \) because \(\tilde{\xi} = y^T \tilde{s} \), and the proof is completed. \(\square \)

Remark 1. Popescu (2007) and Yu et al. (2009) showed a similar projection property for \(D_1 \), i.e., when the first two moments of \(\tilde{s} \) are exactly known. Lemma 1 employs a different transformation approach to show the projection property for \(D_2 \) when these moments are ambiguous in the sense of Delage and Ye (2010).

We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2: First, we define random vector \(\tilde{s} = \tilde{t} - \mu \), random variable \(\tilde{\xi} = y^T \tilde{s} \), constant \(b = T - \mu^T y \), and set \(S \) such that

\[
S = \{ (\mu_1, \sigma_1) \in \mathbb{R} \times \mathbb{R}_+ : |\mu_1| \leq \sqrt{\gamma_1} \sqrt{y^T \Sigma y}, \mu_1^2 + \sigma_1^2 \leq \gamma_2 y^T \Sigma y \}.
\]
It follows that
\[
\inf_{P \in \mathcal{D}_2} \mathbb{P}\{\tilde{t}^T y \leq T\} = \inf_{P \in \mathcal{D}_s} \mathbb{P}\{y^T \tilde{s} \leq b\} = \inf_{P \in \mathcal{D}_s} \mathbb{P}\{\xi \leq b\}
\]
(9a)
\[
= \inf_{P \in \mathcal{D}_s} \mathbb{P}\{y^T \tilde{s} \leq b\}
\]
(9b)
\[
= \inf_{(\mu_1, \sigma_1) \in S} \inf_{P \in \mathcal{D}_1(\mu_1, \sigma_1^2)} \mathbb{P}\{\xi \leq b\},
\]
where \(\mathcal{D}_s \) and \(\mathcal{D}_\xi \) are defined in (7a) and (7b), respectively, equality (9a) follows from Lemma 1, and equality (9b) decomposes the optimization problem in (9a) into two layers: the outer layer searches for the optimal (i.e., worst-case) mean and covariance, while the inner layer computes the worst-case probability bound under the given mean and covariance. For the inner layer, based on Cantelli’s inequality, we have
\[
\inf_{P \in \mathcal{D}_1(\mu_1, \sigma_1^2)} \mathbb{P}\{\xi \leq b\} = \begin{cases}
\frac{(b - \mu_1)^2}{\sigma_1^2 + (b - \mu_1)^2}, & \text{if } b \geq \mu_1, \\
0, & \text{o.w.}
\end{cases}
\]
As DRCC (4) states that \(\inf_{P \in \mathcal{D}_2} \mathbb{P}\{\tilde{t}^T y \leq T\} \geq 1 - \alpha > 0 \), we can assume \(b \geq \mu_1 \) for all \((\mu_1, \sigma_1) \in S\) without loss of generality. That is,
\[
b \geq \max_{(\mu_1, \sigma_1) \in S} \mu_1 = \sqrt{\gamma_1 \sqrt{y^T \Sigma y}}.
\]
It follows that
\[
\inf_{P \in \mathcal{D}_2} \mathbb{P}\{\tilde{t}^T y \leq T\} = \inf_{(\mu_1, \sigma_1) \in S} \frac{(b - \mu_1)^2}{\sigma_1^2 + (b - \mu_1)^2}
\]
\[
= \inf_{(\mu_1, \sigma_1) \in S} \frac{1}{\left(\frac{\sigma_1}{b - \mu_1}\right)^2 + 1}.
\]
(9c)
Note that the objective function value in (9c) decreases as \(\sigma_1/(b - \mu_1) \) increases. Hence, (9c) shares optimal solutions with the following optimization problem:
\[
\inf_{(\mu_1, \sigma_1) \in S} -\left(\frac{\sigma_1}{b - \mu_1}\right).
\]
(9d)
The feasible region of problem (9d) is depicted in the shaded area of Figure 1. Furthermore, we note that the objective function of (9d) equals to the slope of the straight line connecting points \((b, 0)\) and \((\mu_1, \sigma_1)\) (see Figure 1 for an example). It follows that an optimal solution \((\mu_1^*, \sigma_1^*)\) to problem (9d), and so to problem (9c), lies in one of the following two cases:

Case 1. If \(\sqrt{\gamma_1 \sqrt{y^T \Sigma y}} \leq b \leq (\gamma_2/\sqrt{\gamma_1}) \sqrt{y^T \Sigma y} \), then \(\mu_1^* = \sqrt{\gamma_1 \sqrt{y^T \Sigma y}} \) and \(\sigma_1^* = \sqrt{\gamma_2 - \gamma_1 \sqrt{y^T \Sigma y}} \).

Case 2. If \(b > (\gamma_2/\sqrt{\gamma_1}) \sqrt{y^T \Sigma y} \), then \(\mu_1^* = (\gamma_2 y^T \Sigma y)/b \) and \(\sigma_1^* = \sqrt{\gamma_2 y^T \Sigma y - (\gamma_2 y^T \Sigma y)^2/b^2} \).
Denoting $\kappa(b, y) = \frac{b}{\sqrt{y^\top \Sigma y}}$, we have

$$
\inf_{P \in \mathcal{D}_2} P\{\tilde{t}^\top y \leq T\} = \begin{cases}
\frac{1}{(\sqrt{\frac{\gamma_2}{\gamma_1}} - \gamma_1) + 1}, & \text{if } \sqrt{\gamma_1} \leq \kappa(b, y) \leq \frac{\gamma_2}{\sqrt{\gamma_1}}, \\
\frac{\kappa(b, y)^2 - \gamma_2}{\kappa(b, y)^2}, & \text{if } \kappa(b, y) > \frac{\gamma_2}{\sqrt{\gamma_1}}.
\end{cases}
$$

(9e)

Second, based on (9e), the DRCC $\inf_{P \in \mathcal{D}_2} P\{\tilde{t}^\top y \leq T\} \geq 1 - \alpha$ has the following representations:

$$
\text{DRCC} \iff \begin{cases}
\frac{b}{\sqrt{y^\top \Sigma y}} \geq \sqrt{\gamma_1} + \sqrt{\frac{1 - \alpha}{\alpha}}(\gamma_2 - \gamma_1), & \text{if } \sqrt{\gamma_1} \leq \frac{b}{\sqrt{y^\top \Sigma y}} \leq \frac{\gamma_2}{\sqrt{\gamma_1}}, \\
\frac{b}{\sqrt{y^\top \Sigma y}} \geq \frac{\gamma_2}{\alpha}, & \text{if } \frac{b}{\sqrt{y^\top \Sigma y}} > \frac{\gamma_2}{\sqrt{\gamma_1}}.
\end{cases}
$$

It follows that DRCC (4) is equivalent to an SOC constraint by discussing the following two cases:

Case 1. If $\gamma_1 / \gamma_2 \leq \alpha$, then $\gamma_2 / \sqrt{\gamma_1} \geq \sqrt{\gamma_1} + \sqrt{\frac{(1 - \alpha)}{\alpha}(\gamma_2 - \gamma_1)}$ and $\gamma_2 / \sqrt{\gamma_1} \geq \frac{\gamma_2}{\alpha}$. It follows that (i) if $\sqrt{\gamma_1} \leq b / \sqrt{y^\top \Sigma y} \leq \gamma_2 / \sqrt{\gamma_1}$, then DRCC is equivalent to $b / \sqrt{y^\top \Sigma y} \geq \sqrt{\gamma_1} + \sqrt{\frac{(1 - \alpha)}{\alpha}(\gamma_2 - \gamma_1)}$ and (ii) if $b / \sqrt{y^\top \Sigma y} > \gamma_2 / \sqrt{\gamma_1}$, then DRCC always holds. Combining sub-cases (i) and (ii) yields that DRCC (4) is equivalent to $b / \sqrt{y^\top \Sigma y} \geq \sqrt{\gamma_1} + \sqrt{\frac{(1 - \alpha)}{\alpha}(\gamma_2 - \gamma_1)}$.

Case 2. If $\gamma_1 / \gamma_2 > \alpha$, then $\gamma_2 / \sqrt{\gamma_1} < \sqrt{\gamma_1} + \sqrt{\frac{(1 - \alpha)}{\alpha}(\gamma_2 - \gamma_1)}$ and $\gamma_2 / \sqrt{\gamma_1} < \frac{\gamma_2}{\alpha}$. It follows that (i) if $\sqrt{\gamma_1} \leq b / \sqrt{y^\top \Sigma y} \leq \gamma_2 / \sqrt{\gamma_1}$, then DRCC always fails and (ii) if $b / \sqrt{y^\top \Sigma y} > \gamma_2 / \sqrt{\gamma_1}$, then DRCC is equivalent to $b / \sqrt{y^\top \Sigma y} \geq \sqrt{\gamma_2 / \alpha}$. Combining sub-cases (i) and (ii)
yields that DRCC (4) is equivalent to \(b/\sqrt{\sum y} \geq \sqrt{\gamma_2/\alpha} \).

The proofs of the above two cases are both completed by the definition of \(b \).

To sum up, we derive exact 0-1 SOC program reformulations of the DCBP model under ambiguity sets \(D_1 \) and \(D_2 \). We summarize these reformulations in the following theorem.

Theorem 3. The DCBP model with \(D = D_1 \) is equivalent to the following 0-1 SOC program:

\[
\min_{z,y} \left\{ \sum_{i=1}^{I} c_i^x z_i + \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij}^y y_{ij} : (1b)-(1d), (5) \right\}.
\]

(10a)

When \(D = D_2 \) and \(\gamma_1/\gamma_2 \leq \alpha \), the DCBP model is equivalent to the following 0-1 SOC program:

\[
\min_{z,y} \left\{ \sum_{i=1}^{I} c_i^x z_i + \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij}^y y_{ij} : (1b)-(1d), (6a) \right\}.
\]

(10b)

When \(D = D_2 \) and \(\gamma_1/\gamma_2 > \alpha \), the DCBP model is equivalent to the following 0-1 SOC program:

\[
\min_{z,y} \left\{ \sum_{i=1}^{I} c_i^x z_i + \sum_{i=1}^{I} \sum_{j=1}^{J} c_{ij}^y y_{ij} : (1b)-(1d), (6b) \right\}.
\]

(10c)

4 Valid Inequalities for DCBP

In Section 3, we derive three 0-1 SOC reformulations (10a)–(10c) of the DCBP model. Although these reformulations can be directly handled by the off-the-shelf solvers, as we report in Section 5, these 0-1 SOC programs are often time-consuming to solve, primarily because of the binary restrictions on variables \(y \) and \(z \). In this section, we derive valid inequalities of the DCBP formulation, with the objective of accelerating the branch-and-cut algorithm for solving DCBP and also general 0-1 SOC programs in commercial solvers. To this end, we exploit (a) the submodularity of 0-1 SOC constraints and (b) the bin packing structure of DCBP. In Section 4.1, we derive a sufficient condition for submodularity and two approximations of the 0-1 SOC constraints that satisfy this condition. Using the submodular approximations, we derive extended polymatroid inequalities. In Section 4.2, we show the submodularity of the 0-1 SOC constraints in a lifted (i.e., higher-dimensional) space. Additionally, we derive valid inequalities in the lifted space based on the bin packing structure.

4.1 Submodularity of the 0-1 SOC Constraints

We consider SOC constraints of the form

\[
\mu^\top y + \sqrt{y^\top \Lambda y} \leq T,
\]

(11)
where \(\Lambda \) represents a \(J \times J \) positive definite matrix. Note that all SOC reformulations (5), (6a), and (6b) derived in Section 3, as well as the SOC reformulation (3) of a chance constraint with Gaussian uncertainty, possess the form of (11). Before investigating the submodularity of (11), we review the definitions of submodular functions and extended polymatroids.

Definition 1. Define set \(J := \{1, \ldots, J\} \) and the collection of its subsets \(\mathcal{C} := \{ R : R \subseteq J \} \). A set function \(h: \mathcal{C} \to \mathbb{R} \) is called submodular if and only if \(h(R \cup \{j\}) - h(R) \geq h(S \cup \{j\}) - h(S) \) for all \(R \subseteq S \subseteq J \) and all \(j \in J \setminus S \).

Throughout this section, we refer to a set function as \(h(R) \) and \(h(y) \) interchangeably, where \(y \in \{0, 1\}^J \) represents the indicating vector for subset \(R \subseteq J \), i.e., \(y_j = 1 \) if \(j \in R \) and \(y_j = 0 \) otherwise.

Definition 2. For a submodular function \(h(y) \), the polyhedron

\[
EP_h = \{ \pi \in \mathbb{R}^J : \pi(R) \leq h(R), \ \forall R \subseteq J \}
\]

is called an extended polymatroid associated with \(h(y) \), where \(\pi(R) = \sum_{j \in R} \pi_j \).

For a submodular function \(h(y) \) with \(h(\emptyset) = 0 \), inequality

\[
\pi^\top y \leq t,
\]

termed an *extended polymatroid inequality*, is valid for the epigraph of \(h \), i.e.,

\[
\{(y,t) \in \{0,1\}^J \times \mathbb{R} : t \geq h(y)\},
\]

if and only if \(\pi \in EP_h \) (see Edmonds, 1970).

Furthermore, the separation of (12) can be efficiently done by a greedy algorithm (Edmonds, 1970), which we briefly describe in Algorithm 1.

Algorithm 1 A greedy algorithm for separating extended polymatroid inequalities (12).

Input: A point \((\hat{y}, \hat{t})\) with \(\hat{y} \in [0, 1]^J \), \(\hat{t} \in \mathbb{R} \), and a function \(h(y) \) that is submodular on \(\{0, 1\}^J \).

1. Sort the entries in \(\hat{y} \) such that \(y_{(1)} \geq \cdots \geq y_{(J)} \). Obtain the permutation \(\{(1), \ldots, (J)\} \) of \(J \).
2. Letting \(R_{(j)} := \{(1), \ldots, (j)\}, \forall j \in J \), compute \(\hat{\pi}_{(1)} = h(R_{(1)}) \), and \(\hat{\pi}_{(j)} = h(R_{(j)}) - h(R_{(j-1)}) \) for \(j = 2, \ldots, J \).
3. if \(\hat{\pi}^\top \hat{y} > \hat{t} \) then
4. We generate a valid extended polymatroid inequality \(\hat{\pi}^\top y \leq t \).
5. else
6. The current solution \((\hat{y}, \hat{t})\) satisfies \(h(\hat{y}) \leq \hat{t} \).
7. end if
8. return either \((\hat{y}, \hat{t})\) is feasible, or a violated extended polymatroid inequality \(\hat{\pi}^\top y \leq t \).

The strength and efficient separation of the extended polymatroid inequality motivate us to explore the submodularity of function \(g(y) := \mu^\top y + \sqrt{y^\top \Lambda y} \). In a special case, \(\Lambda \) is assumed to be a diagonal matrix and so the item weights \(\tilde{t}_{ij} \) in the same bin are uncorrelated. In this case, Atamtürk and Narayanan (2008) successfully show that \(g(y) \) is submodular. As a result, we
can strengthen the DCBP formulation by incorporating extended polymatroid inequalities in the form \(\pi^\top y \leq T \), where \(\pi \in \text{EP}_g \). Unfortunately, the submodularity of \(g(y) \) quickly fades when the off-diagonal entries of \(\Lambda \) become non-zero, e.g., when \(\Lambda \) is associated with a general covariance matrix. We present an example as follows.

Example 1. Suppose that \(J = \{1, 2, 3\} \), \(\mu = 0 \), and

\[
\Lambda = \begin{bmatrix}
0.6 & -0.2 & 0.2 \\
-0.2 & 0.7 & 0.1 \\
0.2 & 0.1 & 0.6
\end{bmatrix}.
\]

The three eigenvalues of \(\Lambda \) are 0.2881, 0.7432, and 0.8687, and so \(\Lambda \succ 0 \). However, function \(g(y) = \mu^\top y + \sqrt{y^\top \Lambda y} \) is not submodular because \(h(R \cup \{j\}) - h(R) < h(S \cup \{j\}) - h(S) \), where \(R = \{1\} \), \(S = \{1, 2\} \), and \(j = 3 \).

In this section, we provide a sufficient condition for function \(g(y) \) being submodular for general \(\Lambda \). To this end, we apply a necessary and sufficient condition derived in Nemhauser et al. (1978) for quadratic function \(y^\top \Lambda y \) being submodular (see the second paragraph on Page 276 of Nemhauser et al. (1978), following Proposition 3.5). We summarize this condition in the following theorem and provide a proof for completeness.

Theorem 4. Define function \(h : \{0, 1\}^J \to \mathbb{R} \) such that \(h(y) := y^\top \Lambda y \), where \(\Lambda \in \mathbb{R}^{J \times J} \) represents a symmetric matrix. Then, \(h(y) \) is submodular if and only if \(\Lambda_{rs} \leq 0 \) for all \(r, s = 1, \ldots, J \) and \(r \neq s \).

Proof. (If) Pick any \(R, S \subseteq J \) and \(k \in J \) such that \(R \subseteq S \) and \(k \in J \setminus S \). Then, \(h(R) = e_R^\top \Lambda e_R \), where \(e_R \in \{0, 1\}^J \) is such that \([e_R]_j = 1 \) if \(j \in R \) and \([e_R]_j = 0 \) otherwise. Similarly, we have \(h(S) = e_S^\top \Lambda e_S \), \(h(R \cup \{k\}) = (e_R + e_k)^\top \Lambda (e_R + e_k) = e_R^\top \Lambda e_R + 2e_R^\top \Lambda e_k + e_k^\top \Lambda e_k \), and \(h(S \cup \{k\}) = (e_S + e_k)^\top \Lambda (e_S + e_k) = e_S^\top \Lambda e_S + 2e_S^\top \Lambda e_k + e_k^\top \Lambda e_k \). It follows that

\[
\left[h(R \cup \{k\}) - h(R) \right] - \left[h(S \cup \{k\}) - h(S) \right] = 2 \sum_{j \in R} \Lambda_{jk} - 2 \sum_{j \in S} \Lambda_{jk} = -2 \sum_{j \in S \setminus R} \Lambda_{jk} \geq 0,
\]

where the second equality is due to the definition of vectors \(e_R \) and \(e_S \), and the last inequality is due to \(\Lambda_{jk} \leq 0 \) because \(j \in S \setminus R \) and \(k \in J \setminus S \), and so \(j \neq k \). Hence, \(h(R \cup \{k\}) - h(R) \geq h(S \cup \{k\}) - h(S) \) and so function \(h(y) \) is submodular.

(Only If) We prove by contradiction. Suppose that function \(h(y) \) is submodular and there exist \(r, s \in J \) such that \(r \neq s \) and \(\Lambda_{rs} > 0 \). Let \(R = \emptyset \), \(S = \{s\} \). Then, \(h(R) = 0 \), \(h(S) = \Lambda_{ss} \),
which contradicts that function \(h(y) \) is submodular.

Note that Theorem 4 does not assume \(\Lambda \succeq 0 \) and so can be applied to general (convex or non-convex) quadratic functions. Theorem 4 leads to a sufficient condition for function \(g(y) \) being submodular. We summarize this result in the following theorem.

Theorem 5. Let \(\Lambda \in \mathbb{R}^{J \times J} \) represent a symmetric and positive semidefinite matrix that satisfies

(i) \(2 \sum_{s=1}^{J} \Lambda_{rs} \geq \Lambda_{rr} \) for all \(r = 1, \ldots, J \) and (ii) \(\Lambda_{rs} \leq 0 \) for all \(r, s = 1, \ldots, J \) and \(r \neq s \). Then, function \(g(y) = \mu^\top y + \sqrt{y^\top \Lambda y} \) is submodular.

Proof. As \(\mu^\top y \) is submodular in \(y \), it suffices to prove that \(\sqrt{y^\top \Lambda y} \) is submodular. Hence, we can assume \(\mu = 0 \) without loss of generality. We let \(f(x) = \sqrt{x} \) and \(h(y) = y^\top \Lambda y \). Then, \(g(y) = f(h(y)) \).

First, we note that \(h(y \lor e_r) \geq h(y) \) for all \(y \in \{0,1\}^J \) and \(r = 1, \ldots, J \), where \(a \lor b = [\max\{a_1, b_1\}, \ldots, \max\{a_J, b_J\}]^\top \) for \(a, b \in \mathbb{R}^J \). Indeed, if \(y_r = 1 \) then \(y \lor e_r = y \) and so \(h(y \lor e_r) = h(y) \). Otherwise, if \(y_r = 0 \), then \(y \lor e_r = y + e_r \) and so

\[
\begin{align*}
 h(y \lor e_r) &= y^\top \Lambda y + 2e_r^\top \Lambda y + e_r^\top \Lambda e_r \\
 &= y^\top \Lambda y + 2 \sum_{s: y_s = 1} \Lambda_{rs} + \Lambda_{rr} \\
 &\geq y^\top \Lambda y + 2 \sum_{s=1, s \neq r}^{J} \Lambda_{rs} + \Lambda_{rr} \\
 &\geq y^\top \Lambda y = h(y),
\end{align*}
\]

where the first inequality is due to \(y_r = 0 \) and condition (ii), and the second inequality is due to condition (i). It follows that \(h(y') \geq h(y) \) for all \(y, y' \in \{0,1\}^J \) such that \(y' \geq y \). Hence, \(h(y) \) is increasing.

Second, based on Theorem 4, \(h(y) \) is submodular due to condition (ii). It follows that \(g(y) = f(h(y)) \) is submodular because function \(f \) is concave and nondecreasing and function \(h \) is submodular and increasing (see, e.g., Proposition 2.2.5, Simchi-Levi et al., 2014)\(^1\).

Theorem 5 generalizes the sufficient condition in Atamtürk and Narayanan (2008) because conditions (i)–(ii) are automatically satisfied if \(\Lambda \) is diagonal and positive definite. For general \(\Lambda \succ 0 \) that does not satisfy sufficient conditions (i)–(ii), we can approximate SOC constraint (11) by replacing \(\Lambda \) with a matrix \(\Delta \) that satisfies these conditions. We derive relaxed and conservative submodular approximations of constraint (11) in the following theorem.

\(^1\)Proposition 2.2.5 in Simchi-Levi et al. (2014) assumes that \(y \in \mathbb{R}^n \) and provides a sufficient condition for \(g \) being supermodular. It can be shown that a similar proof of this proposition applies to our case.
Theorem 6. Constraint (11) implies the SOC constraint

$$\mu^\top y + \sqrt{y^\top \Delta^L y} \leq T,$$

where function $g^L(y) := \mu^\top y + \sqrt{y^\top \Delta^L y}$ is submodular and Δ^L is an optimal solution of SDP

$$\begin{align*}
\min_{\Delta} & \quad \|\Delta - \Lambda\|_2 \\
\text{s.t.} & \quad 0 \preceq \Delta \preceq \Lambda, \\
& \quad 2 \sum_{s=1}^J \Delta_{rs} \geq \Delta_{rr}, \quad \forall r = 1, \ldots, J, \\
& \quad \Delta_{rs} \leq 0, \quad \forall r, s = 1, \ldots, J \text{ and } r \neq s.
\end{align*}$$

(14a)–(14d)

Additionally, constraint (11) is implied by the SOC constraint

$$\mu^\top y + \sqrt{y^\top \Delta^U y} \leq T,$$

where function $g^U(y) := \mu^\top y + \sqrt{y^\top \Delta^U y}$ is submodular and Δ^U is an optimal solution of SDP

$$\begin{align*}
\min_{\Delta} & \quad \|\Delta - \Lambda\|_2 \\
\text{s.t.} & \quad \Delta \succeq \Lambda, \quad (14c)–(14d).
\end{align*}$$

(16a)–(16b)

Proof. By construction, $g^L(y)$ is submodular because Δ^L satisfies constraints (14c)–(14d) and so conditions (i)–(ii). Additionally, constraint (11) implies (13) because Δ^L satisfies constraint (14b) and so $\Delta^L \preceq \Lambda$. Similarly, we obtain that $g^U(y)$ is submodular and constraint (11) is implied by (15).

Remark 2. There exist matrices Δ^L and Δ^U that are feasible to SDPs (14a)–(14d) and (16a)–(16b), respectively. For example, diag($\lambda_{\min}^1, \ldots, \lambda_{\min}^1$) $\in \mathbb{R}^{J\times J}$ satisfy constraints (14b)–(14d), where λ_{\min} represents the smallest eigenvalue of matrix Λ. Additionally, diag($\lambda_{\max}^1, \ldots, \lambda_{\max}^1$) $\in \mathbb{R}^{J\times J}$ satisfy constraints (16b), where λ_{\max} represents the largest eigenvalue of matrix Λ.

Remark 3. Theorem 6 holds for general 0-1 SOC constraints. We can apply the relaxed and conservative submodular approximations (13) and (15) on any 0-1 SOC programs, e.g., the knapsack problem with DRCCs.

Note that by minimizing the ℓ^2 distance between Δ and Λ in objective functions (14a) and (16a), we find “optimal” approximations of Λ that satisfies sufficient conditions (i)–(ii) in Theorem 5. Accordingly, we obtain “optimal” submodular approximations of the 0-1 SOC constraint (11). There are many possible alternatives of the ℓ^2 norm in (14a) and (16a). For example, formulations (14a)–(14d) and (16a)–(16b) remain SDPs if the ℓ^2 norm is replaced by the ℓ^1 norm or the ℓ^∞ norm. We have empirically tested ℓ^1, ℓ^2, and ℓ^∞ norms based on a server allocation problem (see Section 5.1 for a brief description) and the ℓ^2 norm leads to the largest improvement on CPU time.
In computation, we only need to solve these two SDPs once to obtain Δ^L and Δ^U. Then, extended polymatroid inequalities can be obtained from the relaxed approximation (13). Additionally, the conservative approximation (15) leads to an upper bound of the optimal objective value of DCBP. We summarize these observations in the following theorem.

Theorem 7. The optimal objective value of formulation

$$\min_{z,y} \left\{ \sum_{i=1}^{I} c_i z_i + \sum_{i=1}^{J} \sum_{j=1}^{J} c_{ij} y_{ij} : (1b)-(1d), (13) \right\}$$

(17)

is less than or equal to that of the DCBP formulation with SOC constraint (11). Extended polymatroid inequalities $\pi^\top y \leq T$ are valid for the DCBP formulation for all $\pi \in \text{EP}_g$. Additionally, the optimal objective value of formulation

$$\min_{z,y} \left\{ \sum_{i=1}^{I} c_i z_i + \sum_{i=1}^{J} \sum_{j=1}^{J} c_{ij} y_{ij} : (1b)-(1d), (15) \right\}$$

(18)

is greater than or equal to that of the DCBP formulation with SOC constraint (11). Extended polymatroid inequalities $\pi^\top y \leq T$ are valid for (18) for all $\pi \in \text{EP}_g$.

4.2 Valid Inequalities in a Lifted Space

In Section 4.1, we derive extended polymatroid inequalities for DCBP based on a relaxed approximation of SOC constraint (11). These valid inequalities might not be facet-defining if matrix Λ does not satisfy sufficient conditions (i)-(ii) in Theorem 5. In this section, we show that the submodularity of (11) holds for general Λ in a lifted (i.e., higher-dimensional) space. Accordingly, we derive extended polymatroid inequalities in the lifted space.

To this end, we reformulate constraint (11) as $\mu^\top y \leq T$ and $y^\top \Lambda y \leq (T - \mu^\top y)^2$, i.e., $y^\top (\Lambda - \mu \mu^\top) y + 2T \mu^\top y \leq T^2$. Note that $\mu^\top y \leq T$ is because $T - \mu^\top y \geq \sqrt{y^\top \Lambda y} \geq 0$ by (11). Then, we define $w_{jk} = y_j y_k$ for all $j,k = 1, \ldots, J$ and augment vector y to vector $v = [y_1, \ldots, y_J, w_{11}, \ldots, w_{1J}, w_{21}, \ldots, w_{JJ}]^\top$. We can incorporate the following McCormick inequalities to define each w_{ij}:

$$w_{jk} \leq y_j, \quad w_{jk} \leq y_k, \quad w_{jk} \geq y_j + y_k - 1, \quad w_{ij} \geq 0. \quad (19)$$

Accordingly, we rewrite (11) as $[\mu^\top,0^\top] v \leq T$ and

$$a^\top v + v^\top B_N v \leq T^2,$$

(20)

where we decompose $(\Lambda - \mu \mu^\top)$ to be the sum of two matrices, one containing all positive entries and the other containing all nonpositive entries. Accordingly, we define vector $a := [2T\mu; B_P]^\top$ with $B_P \in \mathbb{R}_+^{J^2}$ representing all the positive entries after vectorization, and matrix $B_N \in \mathbb{R}_{-}^{(J+J^2) \times (J+J^2)}$.
collects all nonpositive entries, i.e., \(B_N = \begin{bmatrix} -A - \mu \mu^\top \mu & 0 \\ 0 & 0 & 0 \end{bmatrix} \), where \((x)_- = \min\{0, x\}\) for \(x \in \mathbb{R}\).

As \(a^\top v + v^\top B_N v \) is a submodular function of \(v\) by Theorem 4, we can incorporate extended polymatroid inequalities to strengthen the lifted SOC constraints (11). We summarize this result in the following theorem.

Theorem 8. Define function \(h : \{0,1\}^{J+J_2} \to \mathbb{R} \) such that \(h(v) := a^\top v + v^\top B_N v \). Then, \(h \) is submodular. Furthermore, inequality \(\pi^\top v \leq T^2 \) is valid for set \(\{v \in \{0,1\}^{J+J_2} : h(v) \leq T^2\} \) for all \(\pi \in \mathbb{EP}_h \) and the separation of this inequality can be done by Algorithm 1.

Note that this lifting procedure introduces \(J^2 \) additional variables \(w_{ijk} \) for each bin \(i\). Although (a) \(w_{ijk} \) can be treated as continuous variables when solving DCBP in view of the McCormick inequalities (19), and (b) the number of \(w_{ijk} \) variables can be reduced by half because \(w_{ijk} = w_{ikj} \), we have by far omitted the bin packing structure (e.g., constraints (1b)–(1d)) of the DCBP model. Here, we derive valid inequalities in the lifted space containing variables \(z_i, y_{ij} \), and \(w_{ijk} \) to further strengthen the DCBP formulation. We summarize the main results in the following two theorems.

Theorem 9. For all extended polymatroid inequalities \(\pi^\top y_i \leq T \) with regard to bin \(i\), \(\forall i = 1, \ldots, I \), inequality

\[
\pi^\top y_i \leq Tz_i
\]

(21a)

is valid for the DCBP formulation. Similarly, for all extended polymatroid inequalities \(\pi^\top v_i \leq T^2 \) with regard to bin \(i\), \(\forall i = 1, \ldots, I \), inequality

\[
\pi^\top v_i \leq T^2z_i
\]

(21b)

is valid for the DCBP formulation.

Proof. When \(z_i = 1 \), inequality (21a) reduces to the extended polymatroid inequality. When \(z_i = 0 \), we have \(y_{ij} = 0 \) for all \(j = 1, \ldots, J \) due to constraints (1b). It follows that inequality (21a) holds valid.

When \(z_i = 1 \), inequality (21b) reduces to the extended polymatroid inequality. When \(z_i = 0 \), we have \(y_{ij} = 0 \) for all \(j = 1, \ldots, J \) due to constraints (1b) and so \(w_{ijk} = 0 \) for all \(j, k = 1, \ldots, J \). It follows that \(v_i = 0 \) by definition. Hence, inequality (21b) holds valid.

Theorem 10. Consider set

\[
L = \{(z,y,w) \in \{0,1\}^{I \times (IJ) \times (IJ_2)} : (1b)-(1d), \ w_{ijk} = y_{ij}y_{ik}, \ \forall j,k = 1, \ldots, J \}
\]
Without loss of optimality, the following inequalities are valid for L:

\[w_{ijk} \geq y_{ij} + y_{ik} + \sum_{l=1}^{J} w_{ljk} - 1 \quad \forall j, k = 1, \ldots, J \quad (22a) \]

\[w_{ijk} \geq y_{ij} + y_{ik} - z_i \quad \forall i = 1, \ldots, I, \forall j, k = 1, \ldots, J \quad (22b) \]

\[\sum_{j=1}^{J} w_{ijk} \leq \sum_{j=1}^{J} y_{ij} - z_i \quad \forall i = 1, \ldots, I, \forall k = 1, \ldots, J \quad (22c) \]

\[\sum_{j=1}^{J} \sum_{k=j+1}^{J} w_{ijk} \geq \sum_{j=1}^{J} y_{ij} - z_i \quad \forall i = 1, \ldots, I. \quad (22d) \]

Proof. (Validity of inequality (22a)) If $j = k$, then $w_{ijk} = y_{ij}^2 = y_{ij}$. In this case, inequality (22a) reduces to $y_{ij} \geq 2y_{ij} + \sum_{l=1, l \neq i}^{I} y_{lj} - 1$, which clearly holds because $y_{ij} + \sum_{l=1, l \neq i}^{I} y_{lj} = \sum_{l=1}^{I} y_{lj} \leq 1$. If $j \neq k$, then we discuss the following two cases:

1. If $\max\{y_{ij}, y_{ik}\} = 1$, then we assume $y_{ij} = 1$ without loss of generality. It follows that $y_{ij} = 0$ due to constraints (1c) and so $w_{ijk} = y_{lj}y_{lk} = 0$ for all $l \neq i$. Hence, $\sum_{l=1, l \neq i}^{I} w_{ljk} = 0$ and inequality (22a) reduces to $w_{ijk} \geq y_{ij} + y_{ik} - 1$, which holds valid.

2. If $\max\{y_{ij}, y_{ik}\} = 0$, then $y_{ij} = y_{ik} = 0$ and $w_{ijk} = 0$. It remains to show $\sum_{l=1, l \neq i}^{I} w_{ljk} \leq 1$.

Indeed, since $w_{ljk} \leq y_{lj}$, we have $\sum_{l=1, l \neq i}^{I} w_{ljk} \leq \sum_{l=1, l \neq i}^{I} y_{lj} \leq \sum_{l=1}^{I} y_{lj} = 1$, where the last equality is due to constraints (1c).

(Validity of inequality (22b)) This inequality clearly holds valid when $z_i = 1$. When $z_i = 0$, we have $y_{ij} = y_{ik} = 0$ due to constraints (1b). It follows that $w_{ijk} = y_{ij}y_{ik} = 0$ and so the inequality holds valid.

(Validity of inequality (22c)) This inequality holds valid when $z_i = 0$. When $z_i = 1$, this inequality is equivalent to $y_{ik} \sum_{j=1}^{J} y_{ij} \leq \sum_{j=1}^{J} y_{ij} - 1$. We discuss the following two cases:

1. If $y_{ik} = 0$, then $\sum_{j=1}^{J} y_{ij} \geq 1$ without loss of optimality because $z_i = 1$. Inequality (22c) holds valid.

2. If $y_{ik} = 1$, then $y_{ik} \sum_{j=1}^{J} y_{ij} = \sum_{j=1}^{J} y_{ij}$. Meanwhile, $\sum_{j=1}^{J} y_{ij} - 1 = \sum_{j=1}^{J} y_{ij} + y_{ik} - 1 = \sum_{j=1}^{J} y_{ij}$. Inequality (22c) holds valid.

(Validity of inequality (22d)) This inequality holds valid when $z_i = 0$. When $z_i = 1$, we have $\sum_{j=1}^{J} y_{ij} \geq 1$ without loss of optimality. It follows that $\sum_{j=1}^{J} y_{ij} = 1$ or $\sum_{j=1}^{J} y_{ij} \geq 2$, and so
\[
(\sum_{j=1}^{J} y_{ij} - 1)(\sum_{j=1}^{J} y_{ij} - 2) \geq 0. \quad \text{Hence,}
\]
\[
\left(\sum_{j=1}^{J} y_{ij} - 1\right) \left(\sum_{j=1}^{J} y_{ij} - 2\right) = \sum_{j=1}^{J} y_{ij}^2 + 2 \sum_{j=1}^{J} \sum_{k=j+1}^{J} y_{ij} y_{ik} - 3 \left(\sum_{j=1}^{J} y_{ij}\right) + 2
\]
\[
= \sum_{j=1}^{J} y_{ij} + 2 \sum_{j=1}^{J} \sum_{k=j+1}^{J} w_{ijk} - 3 \left(\sum_{j=1}^{J} y_{ij}\right) + 2
\]
\[
= 2 \sum_{j=1}^{J} \sum_{k=j+1}^{J} w_{ijk} - 2 \left(\sum_{j=1}^{J} y_{ij}\right) - 1 \geq 0. \quad \text{Inequality (22d) follows.}
\]

Remark 4. We note that valid inequalities (22a)–(22d) are *polynomially many* and all coefficients are in *closed-form*. Hence, we do not need any separation processes for these inequalities, and we can incorporate them in the DCBP formulation without dramatically increasing its size.

5 Numerical Studies

In this section, we numerically evaluate the performance of our proposed models and solution approaches. Our results consist of two parts, which report the CPU time (Section 5.2) and the out-of-sample performance of various methods (Section 5.3), respectively. More specifically, Section 5.2 demonstrates the computational efficacy of the valid inequalities we derived in Section 4 for the original or lifted SOC constraints. Section 5.3 demonstrates that DCBP solutions can well protect against the distributional ambiguity as opposed to the solutions obtained by following the Gaussian distribution assumption or by the SAA method. The DCBP solutions have very low probabilities of exceeding the capacities of open bins in all the out-of-sample tests, even when the distributional information is misspecified.

5.1 Computational Setup

We study DCBP in the context of server allocation for completing a set of appointments, each having random service time on different servers. We first consider \(I = 6 \) servers (i.e., bins) and \(J = 32 \) appointments (i.e., items) to test the DCBP model under various distributional assumptions and ambiguity sets. The daily operating time limit (i.e., capacity) \(T_i \) of each server \(i \) varies in between \([420, 540]\) minutes (i.e., 7–9 hours). We let the opening cost \(c^z_i \) of each server \(i \) be an increasing function of \(T_i \) such that \(c^z_i = T_i^2/3600 + 3T_i/60 \), and let all assignment costs \(c^y_{ij}, \forall i = 1, \ldots, I, j = 1, \ldots, J \) vary in between \([0, 18]\), so that the total opening cost and the total assignment cost have similar magnitudes. The above problem size and parameter settings follow the literature of surgery block allocation (see, e.g., Denton et al., 2010; Shylo et al., 2012; Deng et al., 2016).

To generate samples of random service time (i.e., random item weight), we consider “high mean (hM)” and “low mean (ℓM)” being 25 minutes and 12.5 minutes, respectively. We set the coefficient
of variation (i.e., the ratio of the standard deviation to the mean) as 1.0 for the “high variance (hV)” case and as 0.3 for the “low variance (ℓV)” case. We equally mix all four types of appointments with “hMhV”, “hMℓV”, “ℓMhV”, “ℓMℓV”, and thus have eight appointments of each type. We sample 10,000 data points as the random service time of each appointment on each server, following a Gaussian distribution with the above settings of mean and standard deviation. We will hereafter call them the in-sample data. To formulate the 0-1 SOC models with diagonal covariance matrices, we use the empirical mean and standard deviation of each t_{ij} obtained from the in-sample data and set $\alpha_i = 0.05$, $\forall i = 1, \ldots, I$. Using the same α_i-values, we formulate the 0-1 SOC models under general covariance matrices, for which we use the empirical mean and covariance matrix obtained from the in-sample data. The empirical covariance matrices we obtain have most of their off-diagonal entries being non-zero, and some being quite significant.

All the computation is performed on a Windows 7 machine with Intel(R) Core(TM) i7-2600 CPU 3.40 GHz and 8GB memory. We implement the optimization models and the branch-and-cut algorithm using commercial solver GUROBI 5.6.3 via Python 2.7.10. The GUROBI default settings are used for optimizing all the 0-1 programs, and we set the number of threads as one. When implementing the branch-and-cut algorithm, we add the violated extended polymatroid inequalities using GUROBI callback class by Model.cbCut() for both integer and fractional temporary solutions. For all the nodes in the branch-and-bound tree, we generate violated cuts at each node as long as any exists. The optimality gap tolerance is set as 0.01%. We also set the threshold for identifying violated cuts as 10^{-4}, and set the time limit for computing each instance as 3600 seconds.

5.2 CPU Time Comparison

We solve 0-1 SOC reformulations or approximations of DCBP, and use either a diagonal or a general covariance matrix in each model. Our valid inequalities significantly reduce the solution time of directly solving the 0-1 SOC models in GUROBI, while the extended polymatroid inequalities generated based on the approximate and lifted SOC constraints perform differently depending on the problem size. The details are presented as follows.

5.2.1 Computing 0-1 SOC models with diagonal matrices

We first optimize 0-1 SOC models with a diagonal matrix in constraint (11), of which the left-hand side function $g(y)$ is submodular, and thus we use extended polymatroid inequalities (21a) with $\pi \in EP_g$ in a branch-and-cut algorithm. Table 1 presents the CPU time (in seconds), optimal objective values, and other solution details (including “Server” as the number of open servers, “Node” as the total number of branching nodes, and “Cut” as the total number of cuts added) for solving the three 0-1 SOC models DCBP1 (i.e., (10a) using ambiguity set D_1), DCBP2 (i.e., (10b) or (10c) using ambiguity set D_2 with $\gamma_1 = 1, \gamma_2 = 2$), and Gaussian (assuming Gaussian distributed service time). We also implement the SAA approach (i.e., row “SAA”) by optimizing the MILP reformulation of the chance-constrained bin packing model based on the 10,000 in-sample
data points. We compare the branch-and-cut algorithm using our extended polymatroid inequalities (in rows “B&C”) with directly solving the 0-1 SOC models in GUROBI (in rows “w/o Cuts”).

Table 1: CPU time and solution details for solving instances with diagonal matrices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B&C</td>
<td>DCBP1</td>
<td>0.73</td>
<td>328.99</td>
<td>3</td>
<td>0.00%</td>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>DCBP2</td>
<td>27.50</td>
<td>366.54</td>
<td>3</td>
<td>0.00%</td>
<td>2146</td>
<td>2624</td>
</tr>
<tr>
<td></td>
<td>Gaussian</td>
<td>0.13</td>
<td>297.94</td>
<td>2</td>
<td>0.00%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w/o Cuts</td>
<td>DCBP1</td>
<td>95.73</td>
<td>328.99</td>
<td>3</td>
<td>0.01%</td>
<td>76237</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>DCBP2</td>
<td>LIMIT</td>
<td>380.09</td>
<td>2</td>
<td>9.15%</td>
<td>409422</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Gaussian</td>
<td>0.02</td>
<td>297.94</td>
<td>2</td>
<td>0.00%</td>
<td>16</td>
<td>N/A</td>
</tr>
<tr>
<td>SAA</td>
<td>MILP</td>
<td>21.20</td>
<td>297.94</td>
<td>2</td>
<td>0.00%</td>
<td>89</td>
<td>N/A</td>
</tr>
</tbody>
</table>

In Table 1, the branch-and-cut algorithm quickly optimizes DCBP1 and DCBP2. Especially, if being directly solved by GUROBI, DCBP2 cannot be solved within the 3600-second time limit and ends with a 9.15% optimality gap. Solving DCBP1 by using the branch-and-cut algorithm is much faster than solving the large-scale SAA-based MILP model, while the solution time of DCBP2 is similar to the latter. The two DCBP models also yield higher objective values, since they both provide more conservative solutions that open one more server than either the Gaussian or the SAA-based approach.

5.2.2 Computing 0-1 SOC models with general covariance matrices

In this section, we focus on testing DCBP2 yielded by the ambiguity set D_2 with parameters $\gamma_1 = 1$, $\gamma_2 = 2$, and $\alpha_i = 0.05$, $\forall i = 1, \ldots, I$. We use empirical covariance matrices of the in-sample data. Note that these covariance matrices are general and non-diagonal. We compare the time of solving the 0-1 SOC reformulations of DCBP2 on ten independently generated instances. We examine two implementations of the branch-and-cut algorithm: one uses extended polymatroid inequalities (21a) with $\pi \in EP_{g, L}$ based on the relaxed 0-1 SOC constraint (13), and the other uses the extended polymatroid inequalities (21b) based on the lifted SOC constraint.

Table 2 reports the CPU time (in seconds) and number of branching nodes (in column “Node”) for various methods. First, we directly solve the 0-1 SOC models of DCPB2 in GUROBI, without or with the linear valid inequalities (22a)–(22d), and report their results in columns “w/o Cuts” and “Ineq.”, respectively. We then implement the branch-and-cut algorithm, and examine the results of using extended polymatroid inequalities (21a) with $\pi \in EP_{g, L}$ (reported in columns “B&C-Relax”) and cuts (21b) based on lifted SOC constraints (reported in columns “B&C-Lifted”). For both B&C methods, we also present the number of extended polymatroid inequalities (see column “Cut”) added. Note that we do not report the optimal objective values obtained by different methods for presentation brevity. But these values are indeed the same in each instance, which confirms the correctness of the proposed valid inequalities.

In Table 2, we highlight the solution time of the method that runs the fastest for each instance. Note that without the extended polymatroid inequalities or the valid inequalities, the GUROBI
Table 2: CPU time of DCBP2 solved by different methods with general covariance matrices

<table>
<thead>
<tr>
<th>Instance</th>
<th>w/o Cuts</th>
<th>Ineq.</th>
<th>B&C-Relax</th>
<th>B&C-Lifted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (s)</td>
<td>Node</td>
<td>Time (s)</td>
<td>Node</td>
</tr>
<tr>
<td>1</td>
<td>286.29</td>
<td>10409</td>
<td>156.50</td>
<td>795</td>
</tr>
<tr>
<td>2</td>
<td>433.32</td>
<td>10336</td>
<td>167.91</td>
<td>687</td>
</tr>
<tr>
<td>3</td>
<td>284.17</td>
<td>10434</td>
<td>206.82</td>
<td>971</td>
</tr>
<tr>
<td>4</td>
<td>310.11</td>
<td>10302</td>
<td>139.06</td>
<td>656</td>
</tr>
<tr>
<td>5</td>
<td>329.32</td>
<td>10453</td>
<td>181.83</td>
<td>777</td>
</tr>
<tr>
<td>6</td>
<td>365.28</td>
<td>10300</td>
<td>168.26</td>
<td>652</td>
</tr>
<tr>
<td>7</td>
<td>296.55</td>
<td>10759</td>
<td>198.87</td>
<td>873</td>
</tr>
<tr>
<td>8</td>
<td>278.62</td>
<td>10490</td>
<td>211.05</td>
<td>900</td>
</tr>
<tr>
<td>9</td>
<td>139.24</td>
<td>7771</td>
<td>177.41</td>
<td>632</td>
</tr>
<tr>
<td>10</td>
<td>297.72</td>
<td>10330</td>
<td>159.52</td>
<td>822</td>
</tr>
</tbody>
</table>

solver takes the longest time for solving all the instances except instance #9. Adding the valid inequalities (22a)–(22d) to the solver reduces the solution time by 40% or more in almost all the instances, and drastically reduces the number of branching nodes. The extended polymatroid inequalities (21a)–(21b) further reduce the CPU time significantly (see columns “B&C-Relax” and “B&C-Lifted”). Moreover, for all the instances having 6 servers and 32 appointments, the algorithm using the extended polymatroid inequalities (21b) runs faster in eight out of ten instances than the algorithm using cuts (21a) based on relaxed SOC constraints without lifting. It indicates that the extended polymatroid inequalities generated by the lifted SOC constraints are more effective than those generated by the relaxed SOC constraints. This observation is overturned when we later increase the problem size.

In the following, we continue reporting the CPU time of solving DCBP2 with general covariance matrix. We vary the problem sizes (i.e., values of I and J) in Section 5.2.3, and vary the values of Λ in the SOC constraint (11) in Section 5.2.4.

5.2.3 Solving 0-1 SOC models under different problem sizes

We use the same problem settings as in Section 5.1, and vary $I = 6, 8, 10$ and $J = 32, 40$ to test DCBP2 instances with different sizes. We still keep an equal mixture of all the four appointment types in each instance. Table 3 presents the computational time (in seconds), the total number of branching nodes (“Node”), and the total number of extended polymatroid inequalities generated (“Cuts”; if applicable) for solving the 0-1 SOC reformulation of DCBP2 by directly using GUROBI (“w/o Cuts”) and by using the two implementations of the extended polymatroid inequalities (“B&C-Relax” and “B&C-Lifted”).

In Table 3, we again highlight the solution time of the method that runs the fastest in each instance. We keep the first five instances we reported in Table 2 for instances with $I = 6, J = 32$, and report five instances for other (I, J) combinations. From Table 3, we observe that both implementations of the extended polymatroid inequalities run significantly faster than directly using GUROBI, especially when we increase the problem sizes (i.e., I increased from 6 to 10, and...
Table 3: CPU time of DCBP2 with general covariance matrices for different problem sizes

<table>
<thead>
<tr>
<th>Method</th>
<th>Inst.</th>
<th>J = 32</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>B&C-Relax</td>
<td></td>
<td></td>
<td>51.99</td>
<td>26.63</td>
<td>70.43</td>
<td>15.37</td>
<td>56.53</td>
<td>6.87</td>
<td>12.76</td>
<td>1.59</td>
<td>2.36</td>
<td>12.73</td>
</tr>
<tr>
<td>Cut</td>
<td></td>
<td></td>
<td>702</td>
<td>668</td>
<td>621</td>
<td>623</td>
<td>733</td>
<td>617</td>
<td>632</td>
<td>641</td>
<td>609</td>
<td>602</td>
</tr>
<tr>
<td>B&C-Lifted</td>
<td></td>
<td></td>
<td>35.05</td>
<td>12.34</td>
<td>29.84</td>
<td>25.41</td>
<td>35.09</td>
<td>64.68</td>
<td>98.15</td>
<td>91.12</td>
<td>60.11</td>
<td>59.50</td>
</tr>
<tr>
<td>w/o Cuts</td>
<td></td>
<td></td>
<td>286.29</td>
<td>433.32</td>
<td>284.17</td>
<td>310.11</td>
<td>329.32</td>
<td>1654.31</td>
<td>268.12</td>
<td>1182.46</td>
<td>1680.41</td>
<td>1266.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10409</td>
<td>10336</td>
<td>10434</td>
<td>10302</td>
<td>10453</td>
<td>10525</td>
<td>1272</td>
<td>10732</td>
<td>10658</td>
<td>10642</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>823</td>
<td>235</td>
<td>729</td>
<td>617</td>
<td>921</td>
<td>470</td>
<td>690</td>
<td>688</td>
<td>462</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8342</td>
<td>29042</td>
<td>12267</td>
<td>49820</td>
<td>61334</td>
<td>2130</td>
<td>1240</td>
<td>1561</td>
<td>2607</td>
<td>1270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>678</td>
<td>502</td>
<td>647</td>
<td>634</td>
<td>125</td>
<td>1177</td>
<td>836</td>
<td>1397</td>
<td>457</td>
<td>529</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>737</td>
<td>770</td>
<td>742</td>
<td>803</td>
<td>790</td>
<td>714</td>
<td>199</td>
<td>728</td>
<td>702</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>637</td>
<td>972</td>
<td>659</td>
<td>549</td>
<td>2274</td>
<td>2336</td>
<td>7315</td>
<td>1870</td>
<td>1959</td>
<td>3406</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>241</td>
<td>552</td>
<td>390</td>
<td>230</td>
<td>741</td>
<td>767</td>
<td>714</td>
<td>729</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>987.92</td>
<td>1140.23</td>
<td>183.06</td>
<td>1113.09</td>
<td>1425.83</td>
<td>2382.97</td>
<td>2971.03</td>
<td>LIMIT</td>
<td>2052.42</td>
<td>2451.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10353</td>
<td>10357</td>
<td>4992</td>
<td>10307</td>
<td>10401</td>
<td>11015</td>
<td>1197</td>
<td>12101</td>
<td>10812</td>
<td>11001</td>
</tr>
</tbody>
</table>

J increased from 32 to 40). In particular, the CPU time of directly using GUROBI is consistently 1 or 2 orders of magnitude larger than that of our approaches. For smaller (I,J)-values (e.g., $(I,J) = (6, 32)$ or $(I,J) = (8, 32)$), we see that B&C-Lifted sometimes runs faster than B&C-Relax, but for all the other (I,J) combinations, the latter completely dominates the former. This is expected because the cuts (21b) are generated in a lifted space with J^2 additional variables for each server $i = 1, \ldots, I$. Therefore, it makes sense that the scalability of B&C-Lifted is worse than that of B&C-Relax, which uses cuts (21a) without lifting.

5.2.4 Solving 0-1 SOC models with different Λ-values in (11)

We again focus on instances with $I = 6$ and $J = 32$ under the same general covariance matrix Σ obtained from the in-sample data points. We let $\Lambda := \Omega^2 \Sigma$ in the 0-1 SOC constraint (11) and adjust the scalar Ω to obtain different Λ. We want to show how the computational time of directly using GUROBI increases as we increase Ω, as compared to using the branch-and-cut algorithm with extended polymatroid inequalities. (The results of B&C-Lifted are used here and similar observations can be made if the results of B&C-Relax are used.)

Considering specific cases of the SOC constraint (11) for modeling DCBP, we have $\Omega = \Phi^{-1}(1 - \alpha) = 1.64$ for the Gaussian approximation model when $\alpha = 0.05$, and $\Omega = \sqrt{\gamma^2 / \alpha} = 6.32$ for DCBP2 when $\gamma_2 = 2$ and $\alpha = 0.05$. We test four values of Ω equally distributed in between [1.64, 6.32] including the two end points.

Figure 2 depicts the average CPU time and the average number of branching nodes of solving five independent DCBP2 instances for each Ω-setting. Specifically, the four values 1.64, 3.20,
4.76, and 6.32 of Ω lead to 0.98, 97.68, 299.29, and 363.56 CPU seconds when directly using GUROBI, respectively, together with the significantly growing number of branching nodes 0, 909.8, 6662, and 10418, respectively. On the other hand, the branch-and-cut algorithm with the extended polymatroid inequalities respectively takes 1.03, 35.19, 16.09, and 26.63 CPU seconds on average for solving the same instances, and branches on average 0, 188.6, 247.2, and 374.6 nodes, respectively. This indicates that our approach is more scalable than directly using the off-the-shelf solvers.

5.3 Out-of-Sample Performance of DCBP

In this section, we evaluate the out-of-sample performance of the optimal solutions to the DCBP1, DCBP2, Gaussian-based 0-1 SOC models, and the SAA-based MILP model. To generate the out-of-sample reference scenarios, we consider either misspecified distribution type or misspecified moment information as follows.

- **Misspecified distribution type:** We sample 10,000 out-of-sample data points from a two-point distribution having the same mean and standard deviation of each random variable \tilde{t}_{ij} for $i = 1, \ldots, I$ and $j = 1, \ldots, J$ as the in-sample data. The service time is realized as $\mu_{ij} + \frac{(1-p)}{\sqrt{p(1-p)}} \sigma_{ij}$ with probability p ($0 < p < 1$) and as $\mu_{ij} - \frac{\sqrt{p(1-p)}}{(1-p)} \sigma_{ij}$ with probability $1 - p$, where μ_{ij} and σ_{ij} are the sample mean and standard deviation of \tilde{t}_{ij} obtained from the in-sample data. We set $p = 0.3$ so that we have smaller probability of having larger service time realizations.
• **Misspecified moments:** Alternatively, we sample 10,000 data points from the Gaussian distribution, but only consider the hM/F/V type of appointments, instead of an equal mixture of all the four types. In each sample and for each \(i = 1, \ldots, I \), we draw a standard-Gaussian random number \(\rho_i \), and for each \(j = 1, \ldots, J \), generate a service time realization as \(\mu_{ij} + \rho_i \sigma_{ij} \).

5.3.1 Performance of solutions under diagonal matrices

Under diagonal matrices, both of the two DCBP models open three servers (i.e., Servers 4, 5, 6 by DCBP1 and Servers 2, 4, 5 by DCBP2), while the Gaussian and SAA approaches only open Servers 4 and 6. We first use the 10,000 out-of-sample data points given by misspecified distribution type, namely, the two-point distribution. Table 4 reports each solution’s probability of having the total time of assigned appointments not exceeding the capacity of the server to which they are assigned.

<table>
<thead>
<tr>
<th>Model</th>
<th>Server 2</th>
<th>Server 4</th>
<th>Server 5</th>
<th>Server 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCBP1</td>
<td>N/A</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DCBP2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Gaussian</td>
<td>N/A</td>
<td>0.69</td>
<td>N/A</td>
<td>0.91</td>
</tr>
<tr>
<td>SAA</td>
<td>N/A</td>
<td>0.69</td>
<td>N/A</td>
<td>0.91</td>
</tr>
</tbody>
</table>

"N/A": the server is not opened by using the corresponding method.

Recall that \(\alpha_i = 0.05 \) for all \(i \) used in all four approaches. The reliability results of the Gaussian and SAA approaches are significantly lower than the desired probability threshold \(1 - \alpha_i = 0.95 \) on Server 4, and slightly lower than 0.95 on Server 6. On the other hand, the optimal solutions of DCBP1 and DCBP2 do not exceed the capacity of any open servers.

Next, we use the 10,000 out-of-sample data points given by misspecified moments. Table 5 reports the reliability performance of each optimal solution. The DCBP2 solution still outperforms solutions given by all the other approaches and achieves the desired reliability in all the three open servers. The Gaussian and SAA solutions perform poorly when the moment information is different from the empirical inputs. The DCBP1 solution respects the capacities of Servers 5 and 6 with sufficiently high probability (i.e., > 0.95), but yields a slightly lower reliability (0.94) than the threshold on Server 4.

<table>
<thead>
<tr>
<th>Model</th>
<th>Server 2</th>
<th>Server 4</th>
<th>Server 5</th>
<th>Server 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCBP1</td>
<td>N/A</td>
<td>0.94</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DCBP2</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
<td>N/A</td>
</tr>
<tr>
<td>Gaussian</td>
<td>N/A</td>
<td>0.59</td>
<td>N/A</td>
<td>0.89</td>
</tr>
<tr>
<td>SAA</td>
<td>N/A</td>
<td>0.59</td>
<td>N/A</td>
<td>0.89</td>
</tr>
</tbody>
</table>

"N/A": the server is not opened by using the corresponding method.
5.3.2 Performance of solutions under general matrices

We optimize all the models under general matrices by using the empirical covariance matrices of the in-sample data, and report their corresponding solutions in Table 6. Each entry illustrates the number of appointments assigned to an open server. Note that the Gaussian and SAA approaches yield the same solution of opening servers and assigning appointments.

Table 6: Optimal open servers and appointment-to-server assignments under general matrices

<table>
<thead>
<tr>
<th>Model</th>
<th>Server 3</th>
<th>Server 4</th>
<th>Server 5</th>
<th>Server 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCBP1</td>
<td>12</td>
<td>N/A</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>DCBP2</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>N/A</td>
</tr>
<tr>
<td>Gaussian</td>
<td>15</td>
<td>N/A</td>
<td>17</td>
<td>N/A</td>
</tr>
<tr>
<td>SAA</td>
<td>15</td>
<td>N/A</td>
<td>17</td>
<td>N/A</td>
</tr>
</tbody>
</table>

“N/A”: the server is not opened by using the corresponding method.

We test the solutions shown in Table 6 in the out-of-sample scenarios under misspecified distribution type, and present their reliability performance in Table 7. We again show that under general covariance matrices, the DCBP2 model yields the most conservative solution that does not exceed any open server’s capacity, while DCBP1 only ensures the desired reliability on Servers 3 and 6, but not on Server 5. The Gaussian and SAA approaches cannot produce solutions that can achieve the desired reliability threshold on any of their open servers.

Table 7: Solution reliability in out-of-sample scenarios with misspecified moments

<table>
<thead>
<tr>
<th>Model</th>
<th>Server 3</th>
<th>Server 4</th>
<th>Server 5</th>
<th>Server 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCBP1</td>
<td>1.00</td>
<td>N/A</td>
<td>0.91</td>
<td>1.00</td>
</tr>
<tr>
<td>DCBP2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>N/A</td>
</tr>
<tr>
<td>Gaussian</td>
<td>0.91</td>
<td>N/A</td>
<td>0.91</td>
<td>N/A</td>
</tr>
<tr>
<td>SAA</td>
<td>0.91</td>
<td>N/A</td>
<td>0.91</td>
<td>N/A</td>
</tr>
</tbody>
</table>

“N/A”: the server is not opened by using the corresponding method.

6 Conclusions

In this paper, we considered a DCBP model, where the true distributional information of the random item weights are unknown and only the empirical first and second moments are given. The goal is to minimize the total cost of opening bins and assigning items, while restricting the worst-case probability of exceeding each open bin’s capacity under a given threshold. We provided 0-1 SOC representations of the DCBP model under two types of ambiguity sets. Additionally, we derived extended polymatroid inequalities in both original and lifted space of the 0-1 SOC reformulation. Via extensive numerical studies, we demonstrated that (a) our solution approaches significantly accelerate solving the DCBP model as compared to the state-of-the-art commercial solvers, and (b) DCBP yields reliable out-of-sample performance even when the distributional information is misspecified. We also observed that the branch-and-cut algorithm with extended polymatroid inequalities in the original space scales very well as the problem size grows.
For future research, we plan to apply the SOC representation of DRCC in other application areas, e.g., appointment scheduling, production planning, and power system operation. We also plan to investigate DCBP models under other types of ambiguity sets, which could take into account not only the moment information of item weights but also density or structural information of their probability distribution. The connections between SOC program, SDP, and submodular optimization would also be interesting to study.

References

