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Abstract. The alternating direction method of multipliers (ADMM) is a popular method

for the separable convex programming with linear constraints, and the proximal ADMM is its

important variant. Previous studies show that the relaxation factor γ ∈ (0, 1+
√

5
2 ) by Fortin

and Glowinski for the ADMM is also valid for the proximal ADMM. In this paper, we further

demonstrate that the feasible region of γ depends on the proximal term added on the second

subproblem, and can be enlarged when the proximal factor is positive. We derive the exact

relationship between the relaxation factor γ and the proximal factor. Finally, we prove the

global convergence and derive a worst-case O(1/t) convergence rate in the ergodic sense for

this generalized scheme.
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1 Introduction

In this paper, we restrict our discussion to the canonical convex minimization model with separable

structure in the generic setting:

min{θ1(x) + θ2(y) | Ax+By = b, x ∈ X , y ∈ Y}, (1.1)

where A ∈ <m×n1 , B ∈ <m×n2 , b ∈ <m, X ⊂ <n1 and Y ⊂ <n2 are closed convex sets, θ1 : <n1 → <
and θ2 : <n2 → < are convex (not necessarily smooth) functions. Throughout, the solution set of

(1.1) is assumed to be nonempty; and the sets X and Y are assumed to be simple.

The augmented Lagrangian function of (1.1) is defined as

Lβ(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b) +
β

2
‖Ax+By − b‖2, (1.2)

where λ is the Lagrange multiplier and β > 0 is a penalty parameter for the linear constraints.

The augmented Lagrangian method (ALM) initially introduced in [25, 28] serves as a fundamental

algorithm for solving (1.1). It reads as{
(xk+1, yk+1) = arg min{Lβ(x, y, λk) |x ∈ X , y ∈ Y}, (1.3a)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.3b)
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In [29], it was shown that the ALM (1.3) is equivalent to the proximal point algorithm (PPA) to

the dual problem of (1.1); and thus the relaxation technique developed for PPA in [15] can also be

adapted to accelerate the original ALM. This results in the scheme:{
(xk+1, yk+1) = arg min{Lβ(x, y, λk) |x ∈ X , y ∈ Y}, (1.4a)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.4b)

where the parameter γ is chosen in the interval (0, 2). Empirical studies show that the ALM (1.4)

with over relaxation, i.e., γ ∈ (1, 2), is often advantageous to speed up the performance.

From the computational perspective, ALM has a major drawback: it requires to minimize the

augmented Lagrangian (1.2) with respect to (x, y) jointly, which can be prohibitively expensive when

the problem data is large and dense. On the other hand, we have encountered many problems arising

in sparse and low–rank optimization, the functions θ1 and θ2 usually have some specific properties,

and a natural ideal is to exploit the underling structure of the problem (1.1) in the algorithmic design.

The alternating directions method of multipliers (ADMM) proposed in [3, 14] is particularly suitable

for this purpose. Given an initial iterate (y0, λ0) ∈ Y × <m, ADMM generates the new iterate via

the scheme: 
xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X}, (1.5a)

yk+1 = arg min{Lβ(xk+1, y, λk) | y ∈ Y}, (1.5b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.5c)

From the update procedure, we can see that ADMM updates the variables in a Gauss-Seidel type

manner that each subproblem only involves one function in the original objective. Hence, the vari-

ables x and y are treated individually rather than together and the resulting subproblems can be

carried out distributively. This feature makes the ADMM algorithm quite attractive for solving a

wide range of large-scale problems, such as statistical learning, compressed sensing and semidefinite

programming. We refer the readers to, e.g., [1, 7, 13], for recent surveys on ADMM.

There exists a variety of modifications to accelerate the convergence of ADMM, see e.g., [2, 6,

19, 20]. One popular and simple modification proposed by Fortin and Glowinski in [9, 10], and

subsequently reported in [12], is to attach a relaxation factor to the Lagrange-multiplier-updating

step in (1.5). This gives rise to the following scheme:
xk+1 = arg min{Lβ(x, yk, λk) |x ∈ X}, (1.6a)

yk+1 = arg min{Lβ(xk+1, y, λk) | y ∈ Y}, (1.6b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.6c)

where γ is a stepsize parameter that can be chosen in the interval
(
0, 1+

√
5

2

)
. If choosing γ > 1 in

(1.6c), the step size of updating the Lagrange multiplier is enlarged; and it is usually beneficial to

induce faster convergence. We refer the reader to [12] and more in [5, 23] to the numerical verification.

In addition, observe that the modification (1.6) differs from the original ADMM (1.5) only in the fact

that the step size for updating the Lagrange multiplier can be larger than 1, and does not require

additional computation. Thus it enjoys the same advantages as ADMM we have illustrated before.

The efficiency of ADMM relies on the fact that its subproblems have exact solutions or can be

solved effectively to high precision. In many applications, the subproblems of ADMM may be not
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easy to evaluate, see e.g., [31, 32]. To treat the ADMM more sophisticatedly, it was suggested in [18]

to regularize the subproblems with quadratic proximal terms. This leads to the proximal ADMM

that reads as 
xk+1 = arg min

{
Lβ(x, yk, λk) + ‖x− xk‖2D1

∣∣ x ∈ X}, (1.7a)

yk+1 = arg min
{
Lβ(xk+1, y, λk) + ‖y − yk‖2D2

∣∣ y ∈ Y}, (1.7b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.7c)

where D1 and D2 are given positive semidefinite matrices that play the role of the proximal metric.

When D1 and D2 are appropriately chosen, the difficulty in solving the ADMM subproblems can be

greatly alleviated. One particularly useful choice is the linearized ADMM [21, 32, 33] that choosing

D2 = rI − βBTB with r > β‖BTB‖ to linearize the augmented terms. With this setting of Di, the

resulting subproblems reduce to estimating the resolvent operator of the function θi in the objective,

and enjoy efficient solvability, see e.g., [4, 27, 31] for some applications.

In the previous work [30], the author extended the convergence result of ADMM to the proximal

ADMM and proved that the relaxation parameter γ ∈ (0, 1+
√

5
2 ) for the ADMM is also valid for the

proximal ADMM (1.7). We refer the reader to [16, 20] for the iteration-complexity of this scheme.

This paper further studies this issue and shows that the feasible region of γ depends on the proximal

term equipped on the y-subproblem. More specially, we show that γ can be larger than 1+
√

5
2 for the

proximal ADMM (1.7) when D2 is positive definite. For notational simplicity, we use the following

proximal ADMM to conduct our analysis
xk+1 = arg min

{
Lβ(x, yk, λk)

∣∣ x ∈ X}, (1.8a)

yk+1 = arg min
{
Lβ(xk+1, y, λk) +

τβ

2
‖B(y − yk)‖2

∣∣ y ∈ Y}, (1.8b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.8c)

where τ ≥ 0 is a proximal factor. Our main purpose of this paper is to show that the proximal

ADMM (1.8) is convergent for

D =

{
(τ, γ) | τ ≥ 0 & 0 < γ <

1− τ +
√
τ2 + 6τ + 5

2

}
. (1.9)

To the best of our knowledge, it is the first time that such a formulation is presented. We plot the

specified domain D in Figure 1. As we can see, when the value of τ increases, the parameter γ can

be chosen in the interval that is larger than
(
0, 1+

√
5

2

)
. While when τ → +∞, we have

lim
τ→+∞

1− τ +
√
τ2 + 6τ + 5

2
= 2,

and thus γ can be chosen in the interval (0, 2), which is very similar with the relaxation stepsize for

the ALM (1.4). We will use this interesting phenomenon to establish a connection between ADMM

and relaxed ALM (1.4) in Section 6. We remark that the convergent domain for (1.8) can be easily

extended to the general proximal ADMM scheme (1.7). Indeed, if we want to estimate the feasible

region of γ with a given matrix D2, we only need to find a maximal value of τ such that D2 < τβBTB.
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Fig. 1. convergent domain D for the proximal ADMM (1.8)

The rest of this paper is organized as follows. In Section 2, we characterize the model (1.1) as a

variational inequality. We then interpret the proximal ADMM as a prediction-correction algorithm

in Section 3 and show its convergence in Section 4. The convergence rate is analyzed in Section 5.

The relationship between relaxed ALM and proximal ADMM is established in Section 6. Finally

some conclusions are made in Section 7.

2 Variational inequality characterization of (1.1)

In this section, we present some preliminaries that will be used in our subsequent analysis. We first

show how to characterize the optimality condition of the model (1.1) in the variational inequality

(VI) context, which serves as a basis of the convergence analysis to be presented.

The Lagrangian function of the problem (1.1) is

L(x, y, λ) = θ1(x) + θ2(y)− λT (Ax+By − b), (2.1)

which is defined on X × Y × <m. In the above equality, (x, y) and λ are primal and dual variables,

respectively. Let
(
(x∗, y∗), λ∗

)
∈ X × Y × <m be a saddle point of L(x, y, λ). Then we have:

Lλ∈<m(x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ Lx∈X ,y∈Y(x, y, λ∗).

Using (2.1), the above inequality can be expressed as
x∗ ∈ X , θ1(x)− θ1(x∗) + (x− x∗)T (−ATλ∗) ≥ 0, ∀x ∈ X ,
y∗ ∈ Y, θ2(y)− θ2(y∗) + (y − y∗)T (−BTλ∗) ≥ 0, ∀ y ∈ Y,
λ∗ ∈ <m, (λ− λ∗)T (Ax∗ +By∗ − b) ≥ 0, ∀ λ ∈ <m.

(2.2)

We can write (2.2) more compactly by the following variational inequality:

VI(Ω, F, θ) w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.3a)

where

w =

 x

y

λ

 , u =

(
x

y

)
, F (w) =

 −ATλ
−BTλ

Ax+By − b

 ,

θ(u) = θ1(x) + θ2(y), and Ω = X × Y × <m.

(2.3b)
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Note that the mapping F (w) is affine with a skew-symmetric matrix, and thus is monotone with

respect to Ω. The solution set of VI(Ω, F, θ) is denoted by Ω∗, and it is nonempty under the nonempty

solution set assumption of (1.1).

Below we present a lemma to show how to characterize the optimality condition of an optimization

model as a variational inequality. The proof is obvious and omitted here.

Proposition 2.1. Let θ(x) : <n → < and f(x) : <n → < be convex functions defined on a closed

convex set X ⊂ <n. Suppose f(x) is differentiable and the solution set of the minimization problem

min{θ(x) + f(x) |x ∈ X} is nonempty. Then,

x∗ = arg min{θ(x) + f(x) |x ∈ X}, (2.4a)

if and only if

x∗ ∈ X , θ(x)− θ(x∗) + (x− x∗)T∇f(x∗) ≥ 0, ∀x ∈ X . (2.4b)

3 A prediction-correction interpretation

In this section, we interpret the proximal ADMM (1.8) as a prediction-correction method in VI form.

With this interpretation, we can easily present the convergence proof more compactly.

First, for the iterate (xk+1, yk+1, λk+1) generated by the proximal ADMM (1.8), we define an

auxiliary vector w̃k = (x̃k, ỹk, λ̃k) as

x̃k = xk+1, ỹk = yk+1, (3.1a)

and

λ̃k = λk − β(Axk+1 +Byk − b). (3.1b)

In (1.8), we can see that xk is not involved to execute the new iteration while (yk, λk) are essentially

required. Following [1], we call xk an intermediate variable and (y, λ) essential variables, respectively.

Accordingly, for w = (x, y, λ) and wk = (xk, yk, λk) generated by (1.8), we use the notations

v =

(
y

λ

)
, and vk =

(
yk

λk

)

to denote the essential parts of w and wk, respectively. We denote the essential part of w∗ in Ω∗ by

use v∗ = (y∗, λ∗) and let V∗ denote all the collection of v∗.

Now, we present a lemma to show how to generate the auxiliary vector w̃k with given vk in the

proximal ADMM (1.8) via using VI. It also measures the discrepancy between w̃k and a solution

point of VI(Ω, F, θ).

Lemma 3.1. For given vk = (yk, λk), let wk+1 be generated by the proximal ADMM (1.8) and w̃k

be defined by (3.1). Then, we have

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − ṽk)TQ(vk − ṽk), ∀w ∈ Ω, (3.2a)

where

Q =

(
(1 + τ)βBTB 0

−B 1
β Im

)
. (3.2b)
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Proof. According to (2.4), the optimality condition of the x-subproblem in (1.8) is

xk+1 ∈ X , θ1(x)− θ1(xk+1) + (x− xk+1)T {−ATλk + βAT (Axk+1 +Byk − b)} ≥ 0, ∀ x ∈ X .

Using the auxiliary vector w̃k defined in (3.1), it can be further written as

x̃k ∈ X , θ1(x)− θ1(x̃k) + (x− x̃k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X . (3.3a)

Similarly, the optimality condition of the y-subproblem can be written as

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T
{
−BTλk + βBT (Axk+1 +Byk+1 − b)

+τβBTB(yk+1 − yk)
}
≥ 0, ∀y ∈ Y.

Now, consider the {·} term in the last inequality, we have

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T
{
−BT

(
λk − (Axk+1 +Byk − b)

)
+(1 + τ)βBTB(yk+1 − yk)

}
≥ 0, ∀y ∈ Y.

Using the notations defined in (3.1), we obtain

ỹk ∈ Y, θ2(y)− θ2(ỹk) + (y − ỹk)T
{
−BT λ̃k + (1 + τ)βBTB(ỹk − yk)

}
≥ 0, ∀y ∈ Y. (3.3b)

For the definition of λ̃k given by (3.1), we have

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk) = 0,

and it can be written as

λ̃k ∈ <m, (λ− λ̃k)T
{

(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk)
}
≥ 0, ∀λ ∈ <m. (3.3c)

Combining (3.3a), (3.3b) and (3.3c), and using the notations of (2.3), the assertion of this lemma is

proved. 2

Lemma 3.2. For given vk = (yk, λk), let wk+1 be generated by the proximal ADMM (1.8) and w̃k

be defined by (3.1). Then, we have

vk+1 = vk −M(vk − ṽk), (3.4a)

where

M =

(
I 0

−γβB γIm

)
. (3.4b)

Proof. It follows from (1.8) and (3.1) that

λk+1 = λk − γβ(Ax̃k +Bỹk − b)
= λk − γ

[
β(Ax̃k +Byk − b)− βB(yk − ỹk)

]
= λk − γ(λk − λ̃k) + γβB(yk − ỹk).

Together with yk+1 = ỹk, we have the following relationship(
yk+1

λk+1

)
=

(
yk

λk

)
−

(
I 0

−γβB γIm

)(
yk − ỹk

λk − λ̃k

)
.

The proof is complete. 2

According to the above lemmas, the proximal ADMM (1.8) can be characterized as a prediction-

correction method in VI framework which consists of the prediction step (3.2) and the correction

step (3.4).
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4 Contraction property

This section presents the contraction property of the proximal ADMM (1.8), which is the basis for

the convergence proof. Towards this goal, we first define a matrix:

H = QM−1. (4.1)

We prove a simple fact for the matrix H.

Lemma 4.1. The matrix H defined in (4.1) is positive definite for any τ > 0 and γ > 0 when the

matrix B in (1.1) is full column rank.

Proof. For the matrix M given in (3.4b), we have

M−1 =

(
I 0

βB 1
γ Im

)
.

Thus, it follows from (4.1) and (3.2b) that

H = QM−1 =

(
(1 + τ)βBTB 0

−B 1
β Im

)(
I 0

βB 1
γ Im

)

=

(
(1 + τ)βBTB 0

0 1
γβ Im

)
. (4.2)

Because the matrix B in (1.1) is assumed to be full column rank, the positive definiteness of H

follows immediately. 2

According to (4.1), we have Q = HM . Recalling the correction step (3.4a), we can easily rewrite

the right-hand side of (3.2a) as

(v − ṽk)TQ(vk − ṽk) = (v − ṽk)TH(vk − vk+1). (4.3)

Since H is positive definite, applying the identity

(a− b)TH(c− d) =
1

2
{‖a− d‖2H − ‖a− c‖2H}+

1

2
{‖c− b‖2H − ‖d− b‖2H},

to the right-hand side in (4.3) with

a = v, b = ṽk, c = vk, and d = vk+1,

we obtain

(v − ṽk)TH(vk − vk+1) =
1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
(‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H). (4.4)

Combining (4.4) with (4.3), we obtain

(v − ṽk)TQ(vk − ṽk) =
1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
(‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H). (4.5)

With the above analysis, we now present the following theorem, which is the basis for proving

the strict contraction property of the scheme (1.8). It is also useful for estimating the convergence

rate for the sequence generated by (1.8).
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Theorem 4.2. Let the sequence {wk} be generated by the proximal ADMM (1.8) and w̃k be defined

by (3.1). Then we have

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
‖vk − ṽk‖2G, ∀w ∈ Ω, (4.6)

where H is defined in (4.1) and

G = QT +Q−MTHM. (4.7)

Proof. Substituting (4.5) into the right-hand side of (3.2a), we obtain

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k)

≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2

(
‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H

)
, ∀w ∈ Ω, (4.8)

The last term on the right-hand side of (4.8) can be represented as

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk)− (vk − vk+1)‖2H

(3.4a)
= ‖vk − ṽk‖2H − ‖(vk − ṽk)−M(vk − ṽk)‖2H
= 2(vk − ṽk)THM(vk − ṽk)− (vk − ṽk)TMTHM(vk − ṽk)

(4.1)
= (vk − ṽk)T (QT +Q−MTHM)(vk − ṽk).

Substituting this equation into (4.8) and recalling the definition of the matrix G given by (4.7), the

assertion of this theorem is proved. 2

Then, we have the following theorem.

Theorem 4.3. For the sequence {wk} generated by the proximal ADMM (1.8) and w̃k be defined by

(3.1), we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − ṽk‖2G, ∀v∗ ∈ V∗. (4.9)

Proof. Setting w = w∗ in (4.6), we get

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ ‖vk − ṽk‖2G + 2{θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k)}. (4.10)

Then, using the optimality of w∗ and the monotonicity of F (w), we have

θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0,

and thus

‖vk − v∗‖2H − ‖vk+1 − v∗‖2H ≥ ‖vk − ṽk‖2G. (4.11)

The assertion (4.9) follows directly. 2

Obviously, when the matrix G defined in (4.7) is positive definite, the inequality (4.9) indicates

that the sequence {vk} generated by (1.8) is strictly contractive with respect to the solution set

V∗, and the convergence of the sequence can be easily established. Thus the symmetric matrix G
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plays a key role in the convergence analysis. Now let us make a further investigation of the positive

definiteness for G. Since HM = Q (see (4.1)), we have MTHM = MTQ. Note that

MTQ =

(
I −γβBT

0 γIm

)(
(1 + τ)βBTB 0

−B 1
β Im

)
=

(
(1 + τ + γ)βBTB −γBT

−γB γ
β Im

)
.

Using (3.2b) and the above equation, we have

G = (QT +Q)−MTHM

=

(
2(1 + τ)βBTB −BT

−B 2
β Im

)
−

(
(1 + τ + γ)βBTB −γBT

−γB γ
β Im

)

=

(
(1 + τ − γ)βBTB −(1− γ)BT

−(1− γ)B 1
β (2− γ)Im

)
. (4.12)

According to (4.12), when the matrix B is full column rank and γ ∈ (0, 1], the matrix G is positive

definite, and the proximal ADMM (1.8) is convergent under Theorem 4.3. In fact, the convergence

of the commonly used ADMM and its proximal part in case of γ = 1 is obtained by Theorem 4.3 ;

see e.g., [24]. However, for the Glowinski’s case (e.g., γ > 1), G may not be positive definite, and

the contraction property for (1.8) can not be obtained by only using (4.9). The remaining task is to

further investigate the term ‖vk − ṽk‖2G. This is the main difficulty of the convergence analysis for

(1.8).

Lemma 4.4. Let the sequence {wk} be generated by the proximal ADMM (1.8) and w̃k be defined

by (3.1). Then we have

‖vk − ṽk‖2G = (1 + τ)β‖B(yk − yk+1)‖2 + (2− γ)β‖Axk+1 +Byk+1 − b‖2

+2β(Axk+1 +Byk+1 − b)TB(yk − yk+1). (4.13)

Proof. Because G =

(
(1 + τ − γ)βBTB −(1− γ)BT

−(1− γ)B 1
β (2− γ)Im

)
(see (4.12)), v =

(
y

λ

)
and ỹk = yk+1,

we have

‖vk − ṽk‖2G = (1 + τ − γ)β‖B(yk − yk+1)‖2 − 2(1− γ)(yk − yk+1)TBT (λk − λ̃k)

+(2− γ)
1

β
‖λk − λ̃k‖2. (4.14)

Notice that (see (3.1))

λk − λ̃k = β(Axk+1 +Byk − b) = β
{

(Axk+1 +Byk+1 − b) +B(yk − yk+1)
}
.

Thus, we have

‖λk − λ̃k‖2 = β2‖(Axk+1 +Byk+1 − b) +B(yk − yk+1)‖2

= β2‖Axk+1 +Byk+1 − b‖2 + 2β2(Axk+1 +Byk+1 − b)TB(yk − yk+1)

+β2‖B(yk − yk+1)‖2. (4.15)
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Substituting (4.15) into the right-hand side of (4.14), we obtain

‖vk − ṽk‖2G = (1 + τ − γ)β‖Byk −Byk+1‖2 − 2(1− γ)β(yk − yk+1)TBT (Axk+1 +Byk+1 − b)
−2(1− γ)β‖Byk −Byk+1‖2 + (2− γ)β‖Axk+1 +Byk+1 − b‖2

+(2− γ)β‖Byk −Byk+1‖2 + 2(2− γ)β(yk − yk+1)TBT (Axk+1 +Byk+1 − b)
= (1 + τ)β‖Byk −Byk+1‖2 + (2− γ)β‖Axk+1 +Byk+1 − b‖2

+2β(yk − yk+1)TBT (Axk+1 +Byk+1 − b).

This completes the proof. 2

In the following we will treat the crossing term in the right-hand side of (4.13), namely,

β(Axk+1 +Byk+1 − b)TB(yk − yk+1).

For given τ > 0, we restrict the parameter γ to satisfy

γ > 0 and γ +
(1− γ)2

1 + τ
< 2. (4.16)

The solution of the inequalities (4.16) is

0 < γ <
1− τ +

√
τ2 + 6τ + 5

2
, (4.17)

which specifies the domain of (τ, γ) defined in (1.9) and depicted in Figure 1. For each pair of τ and

γ chosen in (1.9), it is trivial to select a constant T such that

T ∈
(
γ +

(1− γ)2

1 + τ
, 2
)
. (4.18)

In the following, we will use the constant T to make our analysis.

Lemma 4.5. Let the sequence {wk} be generated by the proximal ADMM (1.8). Then, for any

(τ, γ) ∈ D (1.9), we have

β(Axk+1 +Byk+1 − b)TB(yk − yk+1)

≥ − (1− γ)2

2(T − γ)
β‖B(yk+1 − yk)‖2 − T − γ

2
β‖Axk +Byk − b‖2

+
τ

2
β‖B(yk+1 − yk)‖2 − τ

2
β‖B(yk − yk−1)‖2, (4.19)

where T is a constant defined in (4.18).

Proof. Note that the optimality condition of the y-subproblem (1.8b) is

yk+1 ∈ Y, θ2(y)− θ2(yk+1) + (y − yk+1)T
{
−BTλk + βBT (Axk+1 +Byk+1 − b)

+τβBTB(yk+1 − yk)
}
≥ 0, ∀y ∈ Y. (4.20)

Analogously, for the previous iteration, we have

yk ∈ Y, θ2(y)− θ2(yk) + (y − yk)T
{
−BTλk−1 + βBT (Axk +Byk − b)

+τβBTB(yk − yk−1)
}
≥ 0, ∀y ∈ Y. (4.21)
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Setting y = yk and y = yk+1 in (4.20) and (4.21), respectively, and then adding them, we get

(yk − yk+1)TBT
{

(λk−1 − λk)− β(Axk +Byk − b) + β(Axk+1 +Byk+1 − b)

−τβB(yk − yk−1) + τβB(yk+1 − yk)
}
≥ 0. (4.22)

Note that in the {k−1}-th iteration (see (1.8c)), we have

λk = λk−1 − γβ(Axk +Byk − b). (4.23)

Substituting (4.23) into (4.22) and with a simple manipulation, we have

(yk − yk+1)TBT
{
β(Axk+1 +Byk+1 − b)− (1− γ)β(Axk +Byk − b)

−τβB(yk − yk−1) + τβB(yk+1 − yk)
}
≥ 0.

Then, we get

(yk − yk+1)TβBT (Axk+1 +Byk+1 − b)
≥ (1− γ)(yk − yk+1)TβBT (Axk +Byk − b)

+τβ(yk − yk+1)TBTB(yk − yk−1) + τβ‖B(yk+1 − yk)‖2. (4.24)

For the constant T selected by (4.18), we have T − γ > 0. Using the Cauchy-Schwarz inequality to

the crossing terms in the right-hand side of (4.24), we have

(1− γ)(yk − yk+1)TβBT (Axk +Byk − b)

≥ − (1− γ)2

2(T − γ)
β‖B(yk+1 − yk)‖2 − T − γ

2
β‖Axk +Byk − b‖2, (4.25)

and

τβ(yk − yk+1)TBTB(yk − yk−1) ≥ −τ
2
β‖B(yk+1 − yk)‖2 − τ

2
β‖B(yk − yk−1)‖2. (4.26)

Substituting (4.25) and (4.26) into (4.24), this lemma is proved. 2

Based on Lemma 4.4 and Lemma 4.5, we now establish the following results:

Lemma 4.6. Let the sequence {wk} be generated by the proximal ADMM (1.8) and w̃k be defined

by (3.1). Then, for any (τ, γ) ∈ D (1.9), we have

‖vk − ṽk‖2G ≥
[
(1 + τ)− (1− γ)2

T − γ

]
β‖B(yk − yk+1)‖2 + (2− T )β‖Axk+1 +Byk+1 − b‖2

+(T − γ)β‖Axk+1 +Byk+1 − b‖2 − (T − γ)β‖Axk +Byk − b‖2

+τβ‖B(yk+1 − yk)‖2 − τβ‖B(yk − yk−1)‖2, (4.27)

where T is a constant defined in (4.18).

Proof. Substituting (4.19) into (4.13), we obtain the assertion (4.27) immediately. 2

5 Convergence analysis

In this section, we show the global convergence and estimate the convergence rate in terms of the

iteration complexity for the proximal ADMM (1.8).
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5.1 Global convergence

Theorem 5.1. Let the sequence {wk} be generated by the proximal ADMM (1.8). Then, for any

(τ, γ) ∈ D (1.9), we have

‖vk+1 − v∗‖2H + (T − γ)β‖Axk+1 +Byk+1 − b‖2 + τβ‖B(yk+1 − yk)‖2

≤
(
‖vk − v∗‖2H + (T − γ)β‖Axk +Byk − b‖2 + τβ‖B(yk − yk−1)‖2

)
− β

{[
(1 + τ)− (1− γ)2

T − γ
]
‖B(yk − yk+1)‖2 + (2− T )‖Axk+1 +Byk+1 − b‖2

}
, ∀v∗ ∈ V∗,(5.1)

where T is a constant defined in (4.18).

Proof. The assertion follows from (4.9) and (4.27) directly. 2

We summarize the global convergence of (1.8) in the following theorem

Theorem 5.2. For the sequence {wk} generated by the proximal ADMM (1.8), we have

lim
k→∞

(
‖B(yk − yk+1)‖2 + ‖Axk+1 +Byk+1 − b‖2

)
= 0. (5.2)

Moreover, if the matrix B is assumed to be full column rank, then the sequence {vk} converges to a

solution point v∞ ∈ V∗.

Proof. According to (4.18), we have  1 + τ − (1− γ)2

T − γ
> 0,

2− T > 0.

Let (y0, λ0) be the initial point and x1 be the computational result of (y0, λ0). Using (5.1), we have

β
∞∑
k=1

([
1 + τ − (1− γ)2

T − γ
]
‖B(yk − yk+1)‖2 + (2− T )‖Axk+1 +Byk+1 − b‖2

)
≤

(
‖v1 − v∗‖2H + (T − γ)β‖Ax1 +By1 − b‖2 + τβ‖B(y1 − y0)‖2

)
.

The assertion (5.2) is proved.

Furthermore, we know from (5.1) that the sequence {vk} is bounded. Thus it must have a finite

cluster point v∞, and there exists a subsequence {vkj} convergent to this point. We will prove that

v∞ is a solution point of (2.3). Let x̃∞ be induced by (1.8a) with given (y∞, λ∞). Recall the matrix

B is assumed to be full column rank. From (5.2), we immediately have

B(y∞ − ỹ∞) = 0 and λ∞ − λ̃∞ = 0.

Then, it follows from (3.2a) that

w̃∞ ∈ Ω, θ(u)− θ(ũ∞) + (w − w̃∞)TF (w̃∞) ≥ 0, ∀w ∈ Ω, (5.4)

we obtain that w̃∞ = w∞ is a solution point of (2.3). On the other hand, since (5.1) holds for any

solution point of (2.3) and w∞ ∈ Ω∗, we have

‖vk+1 − v∞‖2H + (T − γ)β‖Axk+1 +Byk+1 − b‖2 + τβ‖B(yk+1 − yk)‖2

≤ ‖vk − v∞‖2H + (T − γ)β‖Axk +Byk − b‖2 + τβ‖B(yk − yk−1)‖2. (5.5)

Because limk→∞ ‖Axk +Byk − b‖2 = 0 and limk→∞ ‖B(yk − yk−1)‖2 = 0, the sequence {vk} cannot

have another cluster point and thus it converges to a solution point v∗ = v∞ ∈ V∗. 2
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5.2 Convergence rate

In the following, we present a theorem to characterize the solution set of VI (2.3). With this theorem,

we can easily estimate the convergence rate in terms of the iteration complexity in the ergodic sense.

Its proof can be found in [8] (Theorem 2.3.5) or [24] (Theorem 2.1), here we omit it.

Theorem 5.3. The solution set of VI(Ω, F, θ) is convex and it can be characterized as

Ω∗ =
⋂
w∈Ω

{
w̃ ∈ Ω :

(
θ(u)− θ(ũ)

)
+ (w − w̃)TF (w) ≥ 0

}
. (5.6)

Therefore, for a given accuracy ε > 0, w̃ ∈ Ω is called an ε-approximate solution point of

VI(Ω, F, θ) if it satisfies

θ(u)− θ(ũ) + (w − w̃)TF (w) ≥ −ε, ∀ w ∈ D(w̃),

where

D(w̃) = {w ∈ Ω | ‖w − w̃‖ ≤ 1}.

To estimate the convergence rate in terms of the iteration complexity for a sequence {wk}, we need

to show that for given ε > 0, after t iterations, this sequence can offer a point w̃ ∈ Ω such that

w̃ ∈ Ω and sup
w∈D(w̃)

{
θ(ũ)− θ(u) + (w̃ − w)TF (w)

}
≤ ε. (5.7)

Before we present the analysis for estimating the convergence rate for (1.8), we notice that it

follows from the monotonicity of F that

(w − w̃k)TF (w) ≥ (w − w̃k)TF (w̃k).

Thus, substituting this inequality into (4.6), we obtain

θ(u)− θ(ũk) + (w − w̃k)TF (w) ≥ 1

2

(
‖v − vk+1‖2H − ‖v − vk‖2H

)
+

1

2
‖vk − ṽk‖2G, ∀w ∈ Ω. (5.8)

Notice that (see (4.27))

‖vk − ṽk‖2G ≥ (T − γ)β‖Axk+1 +Byk+1 − b‖2 − (T − γ)β‖Axk +Byk − b‖2

+τβ‖B(yk+1 − yk)‖2 − τβ‖B(yk − yk−1)‖2.

Substituting it in (5.8), we have

θ(u)− θ(ũk) + (w − w̃k)TF (w)

+
1

2

(
‖v − vk‖2H + (T − γ)β‖Axk +Byk − b‖2 + τβ‖B(yk − yk−1)‖2

)
≥ 1

2

(
‖v − vk+1‖2H + (T − γ)β‖Axk+1 +Byk+1 − b‖2 + τβ‖B(yk+1 − yk)‖2

)
, ∀w ∈ Ω. (5.9)

This enables us to derive the assertions in the following theorem.
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Theorem 5.4. Let the sequence {wk} be generated by the proximal ADMM (1.8) and w̃k be defined

by (3.1). Then, for (τ, γ) ∈ D (1.9) and any integer number t > 0, we have

θ(ũt)− θ(u) + (w̃t − w)TF (w)

≤ 1

2t

(
‖v − v1‖2H + (T − γ)β‖Ax1 +By1 − b‖2 + τβ‖B(y1 − y0)‖2

)
∀w ∈ Ω, (5.10a)

where

w̃t =
1

t

t∑
k=1

w̃k. (5.10b)

Proof. First, we rewrite the results in (5.9) in our desired forms:

θ(ũk)− θ(u) + (w̃k − w)TF (w)

+
1

2

(
‖v − vk+1‖2H + (T − γ)β‖Axk+1 +Byk+1 − b‖2 + τβ‖B(yk+1 − yk)‖2

)
≤ 1

2

(
‖v − vk‖2H + (T − γ)β‖Axk +Byk − b‖2 + τβ‖B(yk − yk−1)‖2

)
, ∀w ∈ Ω, (5.11)

Summarizing the inequalities (5.11) over k = 1, . . . , t, we obtain

t∑
k=1

θ(ũk)− tθ(u) +
( t∑
k=1

w̃k − tw
)T
F (w)

≤ 1

2

(
‖v − v1‖2H + (T − γ)β‖Ax1 +By1 − b‖2 + τβ‖B(y1 − y0)‖2

)
, ∀w ∈ Ω. (5.12)

Then, using the notation of w̃t in (5.10b), the last inequality can be written as

1

t

t∑
k=1

θ(ũk)− θ(u) + (w̃t − w)TF (w)

≤ 1

2t

(
‖v − v1‖2H + (T − γ)β‖Ax1 +By1 − b‖2 + τβ‖B(y1 − y0)‖2

)
, ∀w ∈ Ω. (5.13)

It follows from the definition of w̃t in (5.10b) that

ũt =
1

t

t∑
k=1

ũk.

Since θ(u) is convex, it follows that

θ(ũt) ≤
1

t

t∑
k=1

θ(ũk).

Substituting it into (5.13), the assertion (5.10) follows directly. 2

Recall (5.7), we can see from (5.10) that after t iterations, the proximal ADMM (1.8) is able to

generate an approximate solution point (i.e., w̃t given in (5.10b)) with an accuracy of O(1/t). A

worse-case O(1/t) convergence rate in the ergodic sense is thus established for the proximal ADMM

(1.8).
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6 Bridges between ADMM and ALM

In this section, we establish a bridge between the relaxation factor of ADMM and ALM by using

(1.9). Consider the following convex problems with linear constraints

min{θ1(x) | Ax = b, x ∈ X}. (6.1)

Although it is not separable, we can also employ ADMM to solve it. To make ADMM applicable, by

introducing a new variable y, the problem (6.2) converts to the following separable convex problem

min{θ1(x) + I(y) | Ax+ y = b, x ∈ X , y ∈ <m}, (6.2)

where I(·) is the indicator function that is defined as

I(y) =

{
0, y = 0,

+∞, y 6= 0.
(6.3)

We set the initial point (y0, λ0) = (0, 0). Since yk = 0 for all k ∈ {0, · · ·∞} in the ADMM iteration,

the ADMM (1.6) by Fortin and Glowinski for solving (6.2) reduces to
xk+1 = arg min

{
θ1(x)− (λk)TAx+

β

2
‖Ax− b‖2

∣∣ x ∈ X}, (6.4a)

λk+1 = λk − γβ(Axk+1 − b), (6.4b)

where γ ∈
(
0, 1+

√
5

2

)
.

The iteration scheme (6.4) is actually the relaxed ALM for solving (6.1). However, it is well

known that the relaxation parameter γ of ALM can be chosen in the interval
(
0, 2
)
. Thus Glowinski’s

ADMM is still theoretically insufficient to build bridges between ADMM and ALM.

Now we show how to repair this theoretically incompleteness. If we set the initial point (y0, λ0) =

(0, 0), the proximal ADMM (1.8) for solving (6.2) iterates as
xk+1 = arg min

{
θ1(x)− (λk)TAx+

β

2
‖Ax+ yk − b‖2

∣∣ x ∈ X}, (6.5a)

yk+1 = arg min
{
I(y)− (λk)T y +

τβ

2
‖y − yk‖2

}
, (6.5b)

λk+1 = λk − γβ(Axk+1 + yk+1 − b), (6.5c)

Let τ → +∞. Then lim
τ→+∞

1− τ +
√
τ2 + 6τ + 5

2
= 2. Since yk = 0 for all k ∈ {0, · · ·∞} in (6.5),

the algorithm (6.5) reduces to
xk+1 = arg min

{
θ1(x)− (λk)TAx+

β

2
‖Ax− b‖2

∣∣ x ∈ X}, (6.6a)

λk+1 = λk − γβ(Axk+1 − b), (6.6b)

where γ ∈
(
0, 2).

Thus the proximal ADMM (1.8) with τ → +∞ for solving (6.2) reduces to the relaxed ALM

(1.4) for solving (6.1).
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7 Conclusions

In this paper, we revisit the proximal alternating direction method of multipliers (ADMM). We show

that the feasible region of the relaxation factor γ attached on the dual updating step of the proximal

ADMM depends on the proximal term equipped on the y-subproblem; and can be enlarged when the

proximal factor is positive. We derive the exact relationship between these two terms. At last, we

provide a simple proof of the O(1/t) convergence rate for the proximal ADMM in ergodic sense. This

work also verifies the intuitive argument which we highlighted in [22]: If the primal subproblem is

solved more conservatively (using a larger value of τ), we can employ a larger step size for updating

the dual variable so that the dual subproblem is solved more aggressively; and vice versa.

During the finalization of this paper, we learned of a very recent work [17], in which the authors

obtained a partially similar result for the proximal ADMM. They found that when D2 is a sufficiently

large positive multiple of the identity, γ can be chosen in the interval (0, 2). However, our studies

differs from theirs in two important aspects. First, the analysis in [17] requires some restrictive

assumptions for θ2 and β, while our theoretical results are obtained without any further assumptions.

Secondly, we obtained an exact connection between the proximal term and the relaxation stepsize.

As a byproduct, for a given positive matrix of D2, we can determine a feasible interval of γ that is

larger than 1+
√

5
2 , which is more general than the results in [17].
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