Nonoverlapping Domain Decomposition
for Optimal Control Problems governed by
Semilinear Models for Gas Flow in Networks

Günter Leugering1, Alexander Martin2,
Martin Schmidt2, Mathias Sirvent2

Abstract. We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order to further reduce the complexity, we consider an instantaneous control strategy. The main part of the paper is concerned with a nonoverlapping domain decomposition of the optimal control problem on the graph into local problems on smaller sub-graphs—ultimately on single edges. We prove convergence of the domain decomposition method on networks and study the wellposedness of the corresponding time-discrete optimal control problems. The point of the paper is that we establish virtual control problems on the decomposed subgraphs such that the corresponding optimality systems are in fact equal to the systems obtained via the domain decomposition of the entire optimality system.

1. Introduction

We consider a semilinear hyperbolic system for gas flow in a network of pipes that is derived from the Euler equations for compressible fluids in cylindrical pipes. The overall goal is to control the flow of gas in an optimal way such that at so-called entry nodes gas is provided at a certain pressure and at so-called exit nodes pressure and flow conditions are realized. The control instruments in the system are valves and compressors which, in turn, are modeled as switching boundary conditions followed by continuous control profiles. Indeed, the decision to open a valve is followed by a continuous opening of the valve, and, correspondingly, once a decision is made to close the valve, the valve actually closes continuously. A similar explanation holds for the action of compressors; see the mathematical description below. The control costs are taken to be tracking costs for the flow and the pressure plus a penalization of the control costs. The entire optimal control problem can be put into the framework of mixed integer nonlinear optimal control for partial differential equations (MINOC-PDE)—an extension of finite-dimensional mixed-integer nonlinear programming (MINLP). Clearly, there is no general theory available for this kind of problem; see, e.g., the recent survey paper [12] and the references therein for further information.

The aim of this article is to reduce the size and the complexity of the problem by a nonoverlapping domain decomposition procedure so that current methods from the literature become feasible in order to handle the problem. To the best knowledge of the authors, it is the first attempt in that direction towards systems of hyperbolic first-order semilinear equations.

1Date: November 16, 2017.
22010 Mathematics Subject Classification. 35Q31, 49J20, 49K20, 90C35.
3Key words and phrases. Optimal control, Gas networks, Euler’s equation, Semilinear PDE, Nonoverlapping domain decomposition.
The main strategy is as follows: The first step is to introduce a proper time discretization of the problem, namely a semi-implicit-explicit Euler discretization, which turns the problem into a sequence of static semilinear problems. The second step is to apply the concept of “instantaneous” or “rolling horizon control” that turns the problem into a sequence of one-step optimal control problems, each for a given time level; see also [11]. The third step, and this is the essence of this paper, is to apply a tailored nonoverlapping domain decomposition in a way similar to [19] and, more recently, [20], in order to reduce the size and the complexity of the problem to reasonably small networks—even to single pipes. This is done via an iterative scheme: first for the mere simulation problem and then for the corresponding optimality systems. We will show that, in both cases, the iterations converge so that in the limit the solutions satisfy the original problem or the original optimality system on the entire network. It is important to note that thereby the optimal control problem on the entire network is iteratively decoupled to optimal control problems on the smaller sub-networks by using so-called “virtual controls”. The paper therefore aims at both the parallelization of the optimal original control problem and a size reduction in order to finally apply tailored MINLP methods (as developed in, e.g., [10, 26]) to the smaller sub-networks. These actual MINLP techniques are, however, not in the scope of the present paper and, thus, we refer to a forthcoming publication for the fully discrete-continuous problem.

In [20] one of the authors followed the described concept for a scalar semilinear elliptic model, thereby extending corresponding results in [19]. This is extended by this paper to hyperbolic semilinear systems. However, the regularity results are different and so are the proofs. Moreover, in the current article we provide the modeling and the corresponding mathematical handling of “discrete elements” like valves and compressors. In this respect, the results obtained in the current article are novel and better tuned to the actual gas network problem arising in the considered application.

The remainder of the paper is structured as follows. The considered models of single pipes and entire gas networks are introduced in Section 2 and Section 3 then discusses the corresponding optimal control problems, tailored time discretization schemes, and an instantaneous control approach. Afterward, in Section 4 we review domain decomposition techniques, prove their convergence for semilinear and hyperbolic models of gas networks, and describe the decomposition of graphs into sub-graphs. In Section 5, the same is done for the corresponding optimality systems and the wellposedness of the problems on a discrete time level is shown in Section 6. The paper closes with some concluding remarks in Section 7.

2. Modeling of Single Pipes and Entire Networks

We now provide the modeling necessary in order to formulate the optimal control problems.

2.1. Modeling of Gas Flow in a Single Pipe. The Euler equations are given by a system of nonlinear hyperbolic partial differential equations (PDEs), which represent the motion of a compressible non-viscous fluid or gas. They consist of the continuity equation, the balance of moments, and the energy equation. The full set of equations is given by

\[\partial_t \rho + \partial_x (\rho v) = 0, \]
\[\partial_t (\rho v) + \partial_x (p + \rho v^2) = -\frac{\lambda}{2D} \rho v |v| - g \rho h', \]
\[\partial_t \left(\rho \left(\frac{1}{2} v^2 + e \right) \right) + \partial_x \left(\rho v \left(\frac{1}{2} v^2 + e \right) + pv \right) = -\frac{k_w}{D} (T - T_w); \]
see [4, 21, 22, 28]. Let ρ denote the density, v the velocity, and p the pressure of the gas. We further denote by λ the friction coefficient and by D the diameter of the pipe. The gas temperature is denoted by T, the temperature of the pipe’s wall by T_w, and c denotes the internal energy of the gas. Finally, g is the gravitational acceleration, $h' = h'(x)$ is the constant slope of the pipe, and k_w is the pipe’s heat transfer coefficient. The variables of the system are ρ, T, and the mass flow $q = \rho v$, where a is the cross-sectional area of the pipe. We also denote by c the speed of sound, i.e., $c^2 = \partial_p p$ (for constant entropy). In particular, in the subsonic case ($|v| < c$) that we consider in the sequel, two boundary conditions have to be imposed on the left end and one at the right end of the pipe. We consider here the isothermal case only. Thus, for horizontal pipes, i.e., $h' = 0$, we have

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0,$$

$$\frac{\partial}{\partial t} (\rho v) + \frac{\partial}{\partial x} (p + \rho v^2) = -\lambda \frac{\rho v}{2D} |v|.$$

In the particular case, where we have a constant speed of sound $c = \sqrt{\gamma \rho}$ and only consider small velocities $|v| \ll c$, we arrive at the semilinear model; cf. [23]:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0,$$

$$\frac{\partial}{\partial t} (\rho v) + \frac{\partial \rho}{\partial x} = -\lambda \frac{\rho v}{2D} |v|.$$

2.2. Network Modeling

Let $G = (V, E)$ denote the graph of the gas network with nodes $V = \{n_1, n_2, \ldots, n_{|V|}\}$ and edges $E = \{e_1, e_2, \ldots, e_{|E|}\}$. Node indices are denoted $j \in J = \{1, \ldots, |V|\}$ while edges are labeled with $i \in I = \{1, \ldots, |E|\}$. For the sake of uniqueness, we associate to each edge a direction. Accordingly, we introduce the edge-node incidence matrix with entries

$$d_{ij} = \begin{cases} -1, & \text{if node } n_j \text{ is the left node of the edge } e_i, \\ 1, & \text{if node } n_j \text{ is the right node of the edge } e_i, \\ 0, & \text{else.} \end{cases}$$

In contrast to the classical notion of graphs in discrete mathematics, the graphs considered here are known as metric graphs in the sense that the edges are continuous curves. In fact, we consider straight edges along which differential equations hold. The pressure variables $p_i(n_j)$ coincide for all edges incident at node n_j, i.e., for all edge indices $i \in I_j := \{i = 1, \ldots, |E|: d_{ij} \neq 0\}$. We express the transmission conditions at the nodes in the following way. We introduce the edge degree $\delta_j := |I_j|$ and distinguish between multiple nodes n_j with $\delta_j > 1$, whereas for simple nodes n_j we have $\delta_j = 1$. The corresponding index sets are denoted by J^M and J^S. The set of multiple nodes contains serial nodes, i.e., nodes with edge degree $\delta = 2$. The set of simple nodes further decomposes into those simple nodes J^S_{δ} at which Dirichlet (i.e., pressure) conditions hold and Neumann nodes J^S_{δ} that are flow-controlled. With this, the continuity conditions across an uncontrolled node reads

$$p_i(n_j, t) = p_k(n_j, t), \quad j \in J^M \setminus (J^c \cup J^s), \quad i, k \in I_j,$$

where J^c and J^s denote the serial nodes of compressors and valves that we interpret as controlled transmission conditions; see below for the details. The nodal balance equation for the flows can be written as a classical Kirchhoff-type condition

$$\sum_{i \in I_j} d_{ij} q_i(n_j, t) = 0, \quad j \in J^M.$$
As already mentioned, we assume that valves and compressors are serial nodes n_j, i.e., $j \in J^M$ with $\delta_j = 2$. At such a node we have an incoming edge with unique index $i \in I^+_j$, where $I^+_j := \{i \in I^+_j: d_{ij} = 1\}$, and an outgoing edge with unique index $k \in I^-_j := \{k \in I^-_j: d_{kj} = -1\}$.

We now provide the network model of (1), cf. System 1. It is obvious from System 1 that for $s^j(t) = 1$, i.e., the case in which the valve at node n_j is open, the classical transmission conditions hold, while for $s^j(t) = 0$, the outgoing flow and—according to the Kirchhoff condition, which still holds—the incoming flow is zero. Similarly, for $s^j(t) = 1$, the compressor is active, resulting in pressure control such that the pressure in the outgoing pipe is increased with respect to (w.r.t.) the pressures of the incoming pipes. To the best knowledge of the authors, System 1 that for $s^j(t) = 1$, no published result seems to be available.

System 1. Gas network model; $x \in (0, \ell_i)$ and $t \in (0, T)$

$$
\partial_t p_i(x, t) + \frac{C^2}{a_i} \partial_x q_i(x, t) = 0, \quad i \in I
$$

$$
\partial_t q_i(x, t) + \partial_x p_i(x, t) = -\frac{\lambda e_i^2}{2Da_i^2} \frac{q_i(x, t)|q_i(x, t)|}{p_i(x, t)}, \quad i \in I
$$

$$
p_i(n_j, t) = p_k(n_j, t), \quad j \in J^M \setminus (J_c \cup J_v), \quad i, k \in I_j
$$

$$
g_j(p_i(n_j, t), q_i(n_j, t)) = u_j(t), \quad j \in J^S, \quad i \in I_j
$$

$$
\sum_{i \in I_j} d_{ij} q_i(n_j, t) = 0, \quad j \in J^M
$$

$$
(1 - s^j(t))(p_i(n_j, t) - p_k(n_j, t)) = 0, \quad j \in J_c, \quad i \in I^+_j, \quad k \in I^-_j
$$

$$
(1 - s^j(t))(p_i(n_j, t) - p_k(n_j, t)) = 0, \quad j \in J_v, \quad i \in I^+_j, \quad k \in I^-_j
$$

$$
u_j(t) = C \left(\frac{p_k(n_j, t)}{p_i(n_j, t)} \right)^{\text{sign}(q_k(n_j, t))\kappa} - 1 = 0
$$

$$
\iff \left(\frac{u_j(t) + C}{C} \right)^{\text{sign}(q_k(n_j, t))\kappa} = \frac{p_k(n_j, t)}{p_i(n_j, t)}.
$$

For more details on the compressor model see, e.g., [25, 27] or the chapter [8] of the recent book [17]. Note that we can replace the transmission conditions at the compressor node by the bilinear transmission conditions as follows:

$$
u_j(t) = C \left(\frac{p_k(n_j, t)}{p_i(n_j, t)} \right)^{\text{sign}(q_k(n_j, t))\kappa} - 1 = 0
$$

$$
\iff \left(\frac{u_j(t) + C}{C} \right)^{\text{sign}(q_k(n_j, t))\kappa} = \frac{p_k(n_j, t)}{p_i(n_j, t)}.
$$

If we replace $u_j(t)$ by

$$
u_j(t) = \left(\frac{u_j(t) + C}{C} \right)^{\text{sign}(q_k(n_j, t))\kappa}
$$

and ensure $u_j \geq 1$, the original transmission condition at the compressor node can be replaced with

$$
p_i(n_j, t)u_j(t) - p_k(n_j, t) = 0
$$

if the compressor is active. Otherwise, the classical continuity condition for the pressure holds. This results in a bilinear boundary control.
3. The Optimal Control Problem, Time Discretizations, and an Instantaneous Control Approach

We are now in the position to formulate optimal control problems on the level of entire gas networks. There are many different approaches towards optimizing and/or control the flow of gas through pipeline networks. One of these approaches aims at optimizing discrete decision variables such as on-off-states for valves and compressors. We refer to [10–12, 26], refrain in the sequel from discussing issues of valves and compressors in detail, and focus on the continuous aspects of the problem. The combined discrete and continuous optimization will be the subject of future research. We now describe the general format of an optimal control problem associated with the semilinear model equations of the previous section:

\[
\min_{(p, q, u, s) \in \mathcal{E}} I(p, q, u, s) \quad \text{s.t.} \quad (p, q, u, s) \text{ satisfies System 1,}
\]

where

\[
I(p, q, u, s) := \sum_{i \in \mathcal{I}} \int_0^{\ell_i} \int_0^T I_i(p_i, q_i) \, dx \, dt + \frac{\nu}{2} \sum_{j \in \mathcal{J}^S \cup \mathcal{J}_c} \int_0^T |u_j(t)|^2 \, dt
\]

\[
+ \frac{1}{2} \int_0^T \sum_{j \in \mathcal{J}_c} |s_j^c(t)|^2 \, dt + \frac{1}{2} \int_0^T \sum_{j \in \mathcal{J}_c} |s_j^e(t)|^2 \, dt
\]

and

\[
\mathcal{E} := \{(p, q, u, s) : p_i \in [\hat{p}_i, \bar{p}_i], q_i \in [\hat{q}_i, \bar{q}_i], i \in \mathcal{I}, u_j \in [\bar{y}_j, \bar{u}_j], j \in \mathcal{J}^S \cup \mathcal{J}_c, s_j^e \in \{0, 1\}, j \in \mathcal{J}_c, s_j^c \in \{0, 1\}, j \in \mathcal{J}_c\}
\]

holds. In (3), \(\nu > 0 \) is a penalty parameter and \(I_i(\cdot, \cdot) \) is a continuous function on the pair \((p_i, q_i)\). In (4), the quantities \(\hat{p}_i, \bar{p}_i, \hat{q}_i, \bar{q}_i \) are given constants that determine the feasible pressures and flows in the pipes, while \(y_j, u_j \) describe control constraints. In the continuous-time case the inequalities are considered as being satisfied for all times and everywhere along the pipes. In the sequel, we will not consider control and state constraints and even reduce to a time semi-discretization.

To this end, we consider a time discretization of System 1 such that \([0, T] \) is decomposed into break points \(0 = t_0 < t_1 < \cdots < t_N = T \) with \(\Delta t_n := t_{n+1} - t_n \) for \(n = 0, \ldots, N-1 \). Accordingly, we abbreviate \(p_{i,n}(x) := p_i(x, t_n), q_{i,n}(x) := q_i(x, t_n) \). Next, we apply a semi-implicit Euler scheme, which takes \(p_i \) in the friction term in an explicit manner. The resulting semi-discretized system is given in System 2.

With this we obtain the optimal control problem on the time-discrete level:

\[
\min_{(p, q, u, s) \in \mathcal{E}} \hat{I}(p, q, u, s) := \sum_{i \in \mathcal{I}} \sum_{n=1}^N \int_0^{\ell_i} \hat{I}_i(p_{i,n}, q_{i,n}) \, dx + \frac{\nu}{2} \sum_{n=1}^N \sum_{j \in \mathcal{J}^S \cup \mathcal{J}_c} |u_{j,n}|^2
\]

\[
+ \frac{1}{2} \sum_{n=1}^N \sum_{j \in \mathcal{J}_c} |s_{j,n}^e|^2 + \frac{1}{2} \sum_{n=1}^N \sum_{j \in \mathcal{J}_c} |s_{j,n}^c|^2
\]

s.t. \((p, q, u, s) \text{ satisfies System 2.} \)

In (5), we consider discretized and edge-wise given cost functions, e.g.,

\[
\hat{I}_i(p_{i,n}, q_{i,n})(x) := \frac{1}{2} \left(|p_{i,n}(x) - p_{i,n}^d(x)|^2 + |q_{i,n}(x) - q_{i,n}^d(x)|^2 \right)
\]

for \(x \in (0, \ell_i), i \in \mathcal{I} \), and tracking targets \(p_{i,n}^d \) and \(q_{i,n}^d \). Moreover, \(\mathcal{E} \) is the discretized version of \(\mathcal{E} \). It is clear that (5) involves all time steps in the cost functional. We like to reduce the complexity of the problem even further. To this aim, we consider
what has come to be known as instantaneous control; cf. [6, 7]. This approach has also been used for the control of vibrating string networks in [16], for the control of wave equations in networks in [14], for traffic flows in [13], or for the control of linear wave equations in [2]. Very recently, a similar approach has been applied for MPEC-type optimal control problems in [3] and for mixed-integer optimal control problems with PDEs in [11]. The approach amounts to reducing the sums in the cost function of (5) to the time-level t_{n+1}. This strategy is known as rolling horizon approach, the simplest case of the moving horizon paradigm; cf., e.g., [15, 16]. Thus, for each $n = 0, \ldots, N - 1$ and given p_n, q_n, we consider the problems

$$
\min_{(p, q, u, s) \in \Xi} \bar{I}(p, q, u, s) := \sum_{i \in J} \int_0^{t_i} \bar{I}_i(p_{i,n+1}, q_{i,n+1}) \, dx
$$

$$
+ \frac{\nu}{2} \sum_{j \in J_k} |u_{j,n+1}|^2 + \frac{1}{2} \sum_{j \in J_c} |s_{j,n+1}^y|^2 + \frac{1}{2} \sum_{j \in J_c} |s_{j,n+1}^s|^2
$$

s.t. \quad (p, q, u, s) \text{ satisfies System 2 at time level } n + 1.

It is now convenient to discard the actual time level index $n + 1$ and redefine the states at the former time as input data. To this end, we introduce

$$
\alpha_i := \frac{1}{\Delta t_i}, \quad \beta_i = \frac{\alpha_i a_i}{c_i^2}, \quad f_i^1 := \beta_i p_{i,n}(x),
$$

$$
\quad f_i^2 := \alpha_i q_{i,n}(x), \quad g_i(x; q_i(x)) := \frac{\lambda c_i^2}{2D_i a_i^2} \frac{q_i(x) |q_i(x)|}{p_{i,n}(x)},
$$

and rewrite System 2 as System 3.

This results in the final optimal control problem to be discussed below:

$$
\min_{(p, q, u, s) \in \Xi} \bar{I}(p, q, u, s) \quad \text{s.t.} \quad (p, q, u, s) \text{ satisfies System 3.} \tag{7}
$$

4. Domain Decomposition

In this section, we provide an iterative nonoverlapping domain decomposition that can be interpreted as an Uzawa method; cf. Algorithm 3 in [9] and see the monograph
We obtain the relation

\[\beta p_i(x) + \partial_s q_i(x) = f_i^1, \quad i \in \mathcal{I} \]

\[\alpha p_i(x) + \partial_s p_i(x) + g_i(x; q_i(x)) = f_i^2, \quad i \in \mathcal{I} \]

\[p_i(n_j) = p_k(n_j), \quad j \in \mathcal{J}^M \setminus (\mathcal{J}_i \cup \mathcal{J}_k), \quad i, k \in \mathcal{I}_j \]

\[g_i(p_i(n_j), q_i(n_j)) = u_j, \quad j \in \mathcal{I}^k, \quad i \in \mathcal{I}_j \]

\[\sum_{s \in \mathcal{J}_j} d_{ij} q_i(n_j) = 0, \quad j \in \mathcal{J}^M \]

Then, (8) reduces to

\[S \]

\[\sum_{s \in \mathcal{J}_j} (p_i(n_j) - p_k(n_j)) + (1 - s_j^j) q_i(n_j) = 0, \quad j \in \mathcal{J}_i, \quad i \in \mathcal{I}_j^+, \quad k \in \mathcal{I}_j^- \]

\[s_j^j (p_i(n_j) - p_k(n_j)) + (1 - s_j^j) (p_k(n_j) - p_k(n_j)) = 0, \quad j \in \mathcal{J}_i, \quad i \in \mathcal{I}_j^+, \quad k \in \mathcal{I}_j^- \]

System 3. Constraint system of Problem (7); \(x \in (0, \ell) \)

We concentrate on that case first in Section 4.1. After that, we decompose the full graph into sub-graphs in Section 4.2, where we cut the connecting edges at possibly artificial serial nodes. To this end, we define the flow vector \(q^k := (d_{ik} q_i(n_k))_{i \in \mathcal{I}_k} \) and the pressure vectors \(p^k := (p_i(n_k))_{i \in \mathcal{I}_k} \) at a given node \(n_k, k \in \mathcal{J}^M \). Moreover, given a vector \(z := (z_i)_{i \in \mathcal{I}_k} \), we define

\[S^k(z)_i := \frac{2}{d_k} \sum_{j \in \mathcal{I}_k} z_j - z_i. \]

Then, \((S^k)^2 = I \), i.e., the mapping is idempotent, and \(S^k(e) = 1 \) for \(e := (1, \ldots, 1)^\top \in \mathbb{R}^d \). Using this notation, we now establish the general concept. For any \(\sigma > 0 \) we set

\[q^k + \sigma p^k = \sigma S^k(p^k) + S^k(q^k). \]

Applying \(S^k \) to both sides of (8), we obtain

\[\sum_{i \in \mathcal{I}_k} d_{ik} q_i(n_k) = 0. \]

With this, (8) reduces to

\[p_i(n_k) = \frac{1}{d_k} \sum_{j \in \mathcal{I}_k} p_j(n_k) \quad i \in \mathcal{I}_k, \]

which, in turn, implies

\[p_i(n_k) = p_j(n_k), \quad k \in \mathcal{J}^M, \quad i, j \in \mathcal{I}_k. \]

Clearly, if the transmission conditions (9) and (10) hold at the multiple node \(n_k \), then (8) is also fulfilled. Thus, (8) is equivalent to the transmission conditions (9), (10). This new condition (8) is now relaxed in an iterative scheme (using \(l \) as iteration number) as follows:

\[- (q^k)^{l+1} + \sigma (p^k)^{l+1} = \sigma S^k((p^k)^l) + S^k((q^k)^l) =: (g^k)^{l+1}, \quad g^k = (g_k)_{i \in \mathcal{I}_k}. \]

We obtain the relation

\[(g^k)^{l+1} = S^k(2\sigma (p^k)^l - (g^k)^l). \]

This gives rise to the definition of a fixed point mapping. To this end, we need to look into the behavior of the interface, i.e., the transmission nodes, in terms of \(g^k \),

[19] for details. The idea for this algorithm originates from a decoupling of the transmission conditions at all multiple nodes. In order to present the main ideas, we concentrate on that case first in Section 4.1. After that, we decompose the full graph into sub-graphs in Section 4.2, where we cut the connecting edges at possibly artificial serial nodes. To this end, we define the flow vector \(q^k := (d_{ik} q_i(n_k))_{i \in \mathcal{I}_k} \) and the pressure vectors \(p^k := (p_i(n_k))_{i \in \mathcal{I}_k} \) at a given node \(n_k, k \in \mathcal{J}^M \). Moreover, given a vector \(z := (z_i)_{i \in \mathcal{I}_k} \), we define

\[S^k(z)_i := \frac{2}{d_k} \sum_{j \in \mathcal{I}_k} z_j - z_i. \]

Then, \((S^k)^2 = I \), i.e., the mapping is idempotent, and \(S^k(e) = 1 \) for \(e := (1, \ldots, 1)^\top \in \mathbb{R}^d \). Using this notation, we now establish the general concept. For any \(\sigma > 0 \) we set

\[q^k + \sigma p^k = \sigma S^k(p^k) + S^k(q^k). \]

Applying \(S^k \) to both sides of (8), we obtain

\[\sum_{i \in \mathcal{I}_k} d_{ik} q_i(n_k) = 0. \]

With this, (8) reduces to

\[p_i(n_k) = \frac{1}{d_k} \sum_{j \in \mathcal{I}_k} p_j(n_k) \quad i \in \mathcal{I}_k, \]

which, in turn, implies

\[p_i(n_k) = p_j(n_k), \quad k \in \mathcal{J}^M, \quad i, j \in \mathcal{I}_k. \]

Clearly, if the transmission conditions (9) and (10) hold at the multiple node \(n_k \), then (8) is also fulfilled. Thus, (8) is equivalent to the transmission conditions (9), (10). This new condition (8) is now relaxed in an iterative scheme (using \(l \) as iteration number) as follows:

\[- (q^k)^{l+1} + \sigma (p^k)^{l+1} = \sigma S^k((p^k)^l) + S^k((q^k)^l) =: (g^k)^{l+1}, \quad g^k = (g_k)_{i \in \mathcal{I}_k}. \]

We obtain the relation

\[(g^k)^{l+1} = S^k(2\sigma (p^k)^l - (g^k)^l). \]

This gives rise to the definition of a fixed point mapping. To this end, we need to look into the behavior of the interface, i.e., the transmission nodes, in terms of \(g^k \),
We now formulate a relaxed version of a fixed point iteration: For $g \in \mathcal{X} := \Pi_{k \in \mathcal{J}^M} \Pi_{i \in \mathcal{I}_k} \mathbb{R}$, we consider an edge that connects two multiple nodes or one multiple node and a part formula after multiplying by a test function to obtain

$$||g||^2_{\mathcal{X}} := \sum_{k \in \mathcal{J}^M} \sum_{i \in \mathcal{I}_k} \frac{1}{\sigma_k} |g^k_i|^2$$

and $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ with

$$(\mathcal{T}g)_{i,k} = s^k(2\sigma(p^k) - g^k_i), \quad k \in \mathcal{J}^M, i \in \mathcal{I}_k,$$

$$(\mathcal{T}g)_k = \{(\mathcal{T}g)_{i,k}, i \in \mathcal{I}_k\},$$

$$\mathcal{T}g = \{(\mathcal{T}g)_k, k \in \mathcal{J}^M\}.$$

Now,

$$\|\mathcal{T}g\|^2_{\mathcal{X}} = \sum_{k \in \mathcal{J}^M} \sum_{i \in \mathcal{I}_k} \frac{1}{\sigma_k} |s^k(2\sigma(p^k) - g^k_i)|^2$$

holds. We use the facts

$$\sum_{i \in \mathcal{I}_k} (s^k g^k_i)^2 = \sum_{i \in \mathcal{I}_k} (g^k_i)^2$$

and

$$\sum_{i \in \mathcal{I}_k} (s^k q^k_i) (s^k g^k_i) = \sum_{i \in \mathcal{I}_k} q^k_i g^k_i$$

to obtain

$$\|\mathcal{T}g\|^2_{\mathcal{X}} = \|g\|^2_{\mathcal{X}} - 4 \sum_{k \in \mathcal{J}^M} \sum_{i \in \mathcal{I}_k} (g^k_i - \sigma_k p_i(n_k)) p_i(n_k).$$

We now formulate a relaxed version of a fixed point iteration: For $\varepsilon \in [0, 1)$, we set

$$g^{l+1} = (1 - \varepsilon) \mathcal{T}(g^l) + \varepsilon g^l.$$

So far, the relations concerning the iteration at the interfaces do not involve the state equation explicitly. For the analysis of the convergence of the iterates, we need to specify the equations.

4.1. The Nonoverlapping Domain Decomposition. For the ease of presentation, we first look at a graph that does not contain valves or compressors and we only consider the situation of flow-controlled boundary nodes. Thus, at this point we consider an edge that connects two multiple nodes or one multiple node and a controlled simple node. We are interested in the errors between the solutions of System 3 and the solutions of

$$\beta_i p_i^{l+1}(x) + \partial_x q_i^{l+1}(x) = f_i^1, \quad x \in (0, \ell_i), \ i \in \mathcal{I},$$

$$\alpha_i q_i^{l+1}(x) + \partial_x p_i^{l+1}(x) + g_i(x; q_i^{l+1}(x)) = f_i^2, \quad x \in (0, \ell_i), \ i \in \mathcal{I},$$

$$-d_{ij} q_j^{l+1}(n_j) + \sigma_j p_j^{l+1}(n_j) = g_{kj}^{l+1}, \quad j \in \mathcal{J}_j, \ i, k \in \mathcal{I}_j,$$

where q_{kj}^{l+1} satisfies (12). Notice that the third position in (17) describes a set of equations, one for each edge incident at node n_j. Thus, we introduce $q^{l+1} := q^{l+1} - q$ and $p^{l+1} := p^{l+1} - p$. Then q^{l+1} and p^{l+1} solve a nonlinear differential equation with nonlinearity $g_i(q_i^{l+1} + q_i) - g_i(q_i)$, zero right-hand sides and homogeneous boundary conditions at the simple nodes. As we noted above, the full transmission conditions are equivalent to (8). Hence, the error satisfies the same iterative Robin-type boundary conditions as q^{l+1} and p^{l+1}. We consider the following integration by parts formula after multiplying by a test function ϕ:
0 = \sum_{i \in \mathcal{I}} \int_0^{t_i} \left(\beta_i \dot{p}_i^{l+1} + \partial_x g_i^{l+1} \right) \phi_i \, dx
\quad = \sum_{k \in \mathcal{J}_i} \sum_{i \in \mathcal{I}_k} d_k \dot{p}_i^{l+1} (n_k) \phi_i (n_k) + \sum_{i \in \mathcal{I}} \int_0^{t_i} \left(\beta_i \dot{p}_i^{l+1} \phi_i - \dot{q}_i^{l+1} \partial_x p_i \right) \, dx,
0 = \sum_{i \in \mathcal{I}} \int_0^{t_i} \left(\alpha_i \dot{q}_i^{l+1} + \partial_x \dot{p}_i^{l+1} + g_i (\dot{q}_i^{l+1} + q_i) - g_i (q_i) \right) q_i \, dx.

We obtain
\quad = - \sum_{k \in \mathcal{J}_i} \sum_{i \in \mathcal{I}_k} d_k \dot{q}_i^{l+1} (n_k) \dot{p}_i^{l+1} (n_k)
\quad = \sum_{i \in \mathcal{I}} \int_0^{t_i} \left(\beta_i (\dot{p}_i^{l+1})^2 + \alpha_i (\dot{q}_i^{l+1})^2 + (g_i (\dot{q}_i^{l+1} + q_i) - g_i (q_i)) \dot{q}_i^{l+1} \right) \, dx.

Moreover, we have
\sum_{k \in \mathcal{J}_i} \sum_{i \in \mathcal{I}_k} d_k \dot{q}_i^{l+1} (n_k) \dot{p}_i^{l+1} (n_k) = - \sum_{k \in \mathcal{J}_i} \sum_{i \in \mathcal{I}_k} (g_i - \sigma_i p_i (n_k)) p_i (n_k).

This identity is used in (15), evaluated for the error
\| T g \|^2_X = \| g \|^2_X - 4 \sum_{k \in \mathcal{J}_i} \sum_{i \in \mathcal{I}_k} (g_i^k)^l - \sigma_k (\dot{p}_i^k)^l (\dot{p}_i^k)^l.

We obtain
\| g^{l+1} \|^2_X = \| T g^l \|^2_X
\quad = \| g^l \|^2_X - 4 \sum_{i \in \mathcal{I}} \int_0^{t_i} \left(\beta_i (\dot{p}_i^l)^2 + \alpha_i (\dot{q}_i^l)^2 + (g_i (\dot{q}_i^l + q_i) - g_i (q_i)) \dot{q}_i^l \right) \, dx.

We assume monotonicity of the nonlinear term
\quad (g_i (x; s) - g_i (x; t)) (s - t) \geq 0, \quad x \in (0, t), \quad i \in \mathcal{I}.

Then, the error iteration is
\| g^{l+1} \|^2_X \leq \| T g^l \|^2_X = \| g^l \|^2_X - 4 \sum_{i \in \mathcal{I}} \int_0^{t_i} \left(\beta_i (\dot{p}_i^l)^2 + \alpha_i (\dot{q}_i^l)^2 \right) \, dx
\quad \leq \| g^l \|^2_X - 4 (1 - \varepsilon) \sum_{i \in \mathcal{I}} \| \dot{q}_i \|^2 + \| \dot{p}_i \|^2.

We iterate in (19) or (20) down from \(l \) to zero and obtain
\{ g^l \} is bounded, \quad \| \dot{p}_i^l \|^2, \| \dot{q}_i^l \|^2 \to 0, \quad l \to \infty.

But according to the error equations, if \(\dot{p}_i \to 0 \) holds strongly, then also \(\partial_x \dot{q}_i \), and in a similar way also \(\partial_x \dot{p}_i \), strongly tends to zero. Thus, the full sequence of traces converges.

Theorem 4.1. Under the monotonicity assumption (18), for each \(\varepsilon \in [0, 1) \) the iteration (16) with (11), (13), and (14) converges as \(l \to \infty \). The convergence of the solutions is in the \(H^1 \)-sense (see (29)) on the entire network. Moreover, the traces at the decomposition nodes converge.

Before we embark on the domain decomposition of the optimal control problems, we discuss the extension to sub-graph decomposition.
4.2. Sub-Graph Decomposition. We consider the graph $G = (V, E)$ being decomposed into sub-graphs $G_m = (V_m, E_m)$ for $m = 1, \ldots, K$. For the ease of presentation, we split the original graph only at serial nodes $j \in J^M$. We assume that the sub-graphs are connected according to an adjacency structure $A_{m,n} = 1$ if the two sub-graphs G_m and G_n with $m, n \in \{1, \ldots, K\}$ are connected. Otherwise, $A_{m,n} = 0$ holds. We denote the edge sets of sub-graph $G_m, m \in \{1, \ldots, K\}$, by I^m.

The serial transmission nodes between sub-graph G_m and G_n are denoted by the set $J^M_{m,n}$. Moreover, we assume that all valves and compressors are contained in the interior of the sub-graphs. To express this, we introduce the set $J^M_{m,o}$ of multiple nodes of G_m that are not in $J^M_{m,n}$. Accordingly, $J_{m,c}$ and $J_{m,v}$ are the compressor and valve nodes contained in G_m. Thus, after domain decomposition, System 3 then yields System 4.

System 4. Domain-decomposed system; $x \in (0, \ell_i)$, $m = 1, \ldots, K$

\[
\begin{align*}
\beta_i p_i^{i+1}(x) + \partial_x q_i^{i+1}(x) &= f_1^i, & i \in I^m \\
\alpha_i q_i^{i+1}(x) + \partial_x p_i^{i+1}(x) + g_i(x; q_i^{i+1}(x)) &= f_2^i, & i \in I^m \\
p_i^{i+1}(n_j) &= p_k^{i+1}(n_j), & j \in J^M_{m,o} \setminus (J_{m,c} \cup J_{m,v}), i, k \in I_J \\
g_i(p_i^{i+1}(n_j), q_i^{i+1}(n_j)) &= u_j, & j \in J^M, i \in I_J \\
\sum_{i \in I_J} d_{ij} q_i^{i+1}(n_j) &= 0, & j \in J^M_{m,o} \\
s_j^i (p_i^{i+1}(n_j) - p_k^{i+1}(n_j)) + (1 - s_j^i) q_i^{i+1}(n_j) &= 0, & j \in J_{m,v}, i \in I_J^+, k \in I_J^- \\
s_j^i (p_i^{i+1}(n_j) u_j - p_k^{i+1}(n_j)) + (1 - s_j^i) (p_i^{i+1}(n_j) - p_k^{i+1}(n_j)) &= 0, & j \in J_{m,c}, i \in I_J^+, k \in I_J^- \\
-d_{ij} q_i^{i+1}(n_j) + \sigma p_i(n_j) &= 0, & j \in J^M_{m,n}, n : A_{m,n} = 1, i, k \in I_J
\end{align*}
\]

Example 4.2. We consider a serial situation consisting of two links, labeled with $i = 1, 2$, that are coupled at $x = 0$. The first link stretches from $x = -1$ to $x = 0$ while the second stretches from $x = 0$ to $x = 1$; cf. Figure 1. We choose $\alpha_i = \beta_i = 1$, $\gamma_i = \lambda c_i^2 / (2D_i a_i^2) = 0$, and the distributed loads are given by $f_1^i(x) = 1, f_2^i(x) = 1$, $f_1^2 = 1, f_2^2 = 2$. We plot the first five iterations of the domain decomposition and provide the nodal errors. The reference solution is obtained using the MATLAB routine `bvp4c` with a tolerance of 10^{-4}; cf. the bold lines in Figure 2. For the fixed point behavior of the $g_{k,j}$ at the interface see Table 1. The error after five iterations in the continuity conditions for the pressures is 8.87×10^{-4} and the final error in the flow is 2.25×10^{-4}. After 20 iterations, the corresponding errors are 7.92×10^{-12} and 1.71×10^{-12}, respectively. If we now choose $\gamma = 5$ and take 20 iterations we obtain the errors 2.84×10^{-9} and 4.08×10^{-10}, respectively. The corresponding plots in Figure 2 do not show any difference w.r.t. the reference solution.
Figure 2. The two-link serial network of Example 4.2; cf. Figure 1. x-axis: spatial coordinate $x \in [-1, 1]$. y-axis: mass flow. The reference solution is printed in bold.

Table 1. Iteration history of g_{11}, g_{21} in Example 4.2.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{11}</td>
<td>0.00</td>
<td>0.89</td>
<td>1.01</td>
<td>1.07</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>g_{21}</td>
<td>0.00</td>
<td>0.45</td>
<td>0.68</td>
<td>0.71</td>
<td>0.73</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Example 4.3. We now consider the situation in which a compressor is located in the middle of the two links. Otherwise, the model is as in Example 4.2. The domain decomposition is as follows:

\[
\begin{align*}
\beta_i p_i^{l+1}(x) + \partial_x q_i^{l+1}(x) &= f_i^1, \quad i = 1, 2, \\
\alpha_i q_i^{l+1}(x) + \partial_x p_i^{l+1}(x) + g_i(x; q_i^{l+1}(x)) &= f_i^2, \quad i = 1, 2, \\
q_i^{l+1}(-1) &= 0, \quad q_i^{l+1}(1) = 0, \\
-q_1^{l+1}(0) + \sigma_p(0)^{l+1} u_0 &= \sigma_p(0)^l + q_2(0)^l, \\
-q_2^{l+1}(0) + \sigma_p(0)^{l+1} &= \sigma_p(0)^l u_0 + q_1(0)^l.
\end{align*}
\]

We take 20 iterations and put the control $u_0 = 5$. The flow of the last iteration is plotted on top of the MATLAB reference solution, obtained as above; cf. Figure 3. The errors are 3.55×10^{-7} and 1.67×10^{-7}, respectively.

Remark 4.4. We consider the situation of the last example, analyze a particular iteration $l + 1$ and omit this index while keeping the previous index in order to identify the data of the problem. In particular, on edge 2 we have

\[
\begin{align*}
\beta_2 p_2(x) + \partial_x q_2(x) &= f_2^1, \quad x \in (0, \ell_2), \\
\alpha_2 q_2(x) + \partial_x p_2(x) + g_2(x; q_2(x)) &= f_2^2, \quad x \in (0, \ell_2), \\
-q_2(0) + \sigma_p(0)^l &= \sigma_p(0)^l s(u - 1) + q_1(0)^l, \quad q_2(1) = q_2.
\end{align*}
\]
If \(s = 1 \), the control \(u \geq 1 \) is applied, as the pressure is then higher as in the previous pipe. Otherwise, the control 1 is applied, as then the pressures are the same. We may introduce \(v = u - 1 \) and have \(v \geq 0 \). The control \(v \) then appearing in the Robin-type boundary condition is multiplied by the binary variable \(s \) and by \(\sigma p_1(0) \) from the previous iteration. Thus, the constellation above is a Robin-type boundary control problem for a single link. In [10], the authors have established particular situations in which a master-sub-problem-strategy, where the master problem consists in optimizing the discrete variables, i.e., deciding whether the compressor is active or not, and the sub-problem takes the continuous optimization, i.e., the pump-control, converges. In that study it was required that the control-to-state map of the sub-problem is smooth, strictly monotone, and either convex or concave. Further developments that alleviate the assumptions were presented in [26]. A similar situation has been studied in [5] for an integer control problem for a semilinear Laplace boundary value problem, where also the concavity of the control-to-state-map turned out to be the crucial argument. We therefore ask the question whether the flow \(q \) is concave as a function of \(u \). For its answer, we would like to resort to a maximum principle and transform Problem (21) into a second-order problem. This is done by differentiating the first equation of (21) with respect to \(x \) and inserting the resulting expression for \(\partial_x p_2 \) into the second equation. The pressure terms in the boundary and transmission conditions are then \(p_i(n_j) = -\partial_x q_i(n_j)/\beta_i \). We ignore the edge index and formulate an optimal control problem for the single edge 2:

\[
\min_{s \in \{0, 1\}, u \in [1, \bar{u}]} \| q - q^d \|_{L^2(0, 1)} + \frac{\nu}{2} (s^2 + u^2) \\
\text{s.t.} \quad \alpha \beta q - \partial_x x q + \beta g(x; q) = \beta f^2 - \partial x f^1, \\
q(0) + \frac{\sigma}{\beta} \partial_x q(0) = \phi s(u - 1) + \mu, \\
q(1) = \bar{q}
\]

(22)
Here, $\phi = \sigma/\beta_1 \partial_x q_1(0)^T$, $\mu = \phi - q_1(0)^T$. In order to prove the concavity of q as a function of u using differential calculus, we need to show that $\partial_u q(u) < 0$. This, however, requires that $g(x; \cdot)$ is twice differentiable. Obviously, the function $g(x; q) = \gamma(x)q(x)|q(x)|$ is first-order continuously differentiable, while the second derivative is not well defined at $x = 0$, being otherwise identical to the Heaviside function. Its Bouligand second derivative is the set $\{-1, 1\}$. We now use the smoothed function $g_\varepsilon(x; q) = \gamma(x)(\varepsilon + |q(x)|^2)q(x)$. We can now differentiate the constraints of (22) w.r.t. u and obtain for $w := D_u u q(u)$ and $z := D_{uu} u q(u)$:

$$
\begin{align*}
\alpha z & - \partial_{xx} z + \beta D_2 g_\varepsilon(x; q(u)) z = -\beta D_2^2 g_\varepsilon(x; q(u)) w^2, \\
q(0) + \frac{\sigma}{\beta} \partial_x z(0) & = 0, \\
z(1) & = 0.
\end{align*}
$$

As the flow is in the positive direction by construction, $q(u)$ is positive for positive controls. This can also be proven using the maximum principle for (22). The term $\beta D_2^2 g_\varepsilon(x; q(u)) w^2$ is positive and, hence, the right-hand side of (23a) is negative. According to the maximum principle, z is negative and, therefore, $q(u)$ is concave as a function of $u > 0$. Thus, for $\varepsilon > 0$, we have achieved the situation alluded to above. This amounts to saying that up to a relaxation parameter, we can achieve a global solution at the iteration level $l + 1$ and $\varepsilon > 0$ using the techniques of [10]. This property is reminiscent to the results in [1], where additional control and state constraints are considered. However, the nonlinearity does not formally fit into the framework of [1]. The extension of these results for constrained problems with the nonlinearity discussed here is subject to a forthcoming publication. Having achieved the optimal control in (22) for edge 2, we can use it in the iteration for the edge 1, according to (21). While the question if the global optimum is stable as the domain decomposition iteration converges is open. See, e.g., [24] for a sensitivity analysis for MINLPs.

Example 4.5. We consider the serial situation displayed in Figure 4, where the edges 1, 2 are connected by the node n_0 (at $x = 0$), the edges 3, 4 are connected to edge 1 via node n_1 (at $x = 1$) and to edge 2 via node n_2 (at $x = 1$). At $x = 0$, i.e., the node between edges 1, 2, we have an active compressor, i.e., $s_0^0 = 1$. We decompose the network at the two serial nodes between edges 1, 3 and 2, 4 at $x = 1$, respectively. With this configuration, we have $I_0 = \{1, 2\}$, $I_1 = \{1, 3\}$, $I_2 = \{2, 4\}$. At the simple nodes of edges 3 and 4, we consider controlled boundary flows. We
write down the system in a more explicit way:
\[\beta_i p_i^{l+1}(x) + \partial_x q_i^{l+1}(x) = f_i^1, \quad x \in (0, \ell_i), \quad i = 1, \ldots, 4, \]
\[\alpha_i q_i^{l+1}(x) + \partial_x p_i^{l+1}(x) + g_i(x; q_i^{l+1}(x)) = f_i^2, \quad x \in (0, \ell_i), \quad i = 1, \ldots, 4, \]
\[p_i^{l+1}(0) u_0 = p_2^{l+1}(0), \]
\[q_i^{l+1}(0) + q_2^{l+1}(0) = 0, \]
\[q_3^{l+1}(0) = u_3, \quad q_4^{l+1}(0) = u_4, \]
\[-q_1^{l+1}(1) + \sigma p_1(1)^{l+1} = \sigma p_3(1)^{l+1} + q_3(1)^{l+1} =: g_{31}^{l+1}, \]
\[-q_3^{l+1}(1) + \sigma p_3(1)^{l+1} = \sigma p_1(1)^{l+1} + q_1(1)^{l+1} =: g_{11}^{l+1}, \]
\[-q_2^{l+1}(1) + \sigma p_2(1)^{l+1} = \sigma p_4(1)^{l+1} + q_4(1)^{l+1} =: g_{32}^{l+1}, \]
\[-q_4^{l+1}(1) + \sigma p_4(1)^{l+1} = \sigma p_2(1)^{l+1} + q_2(1)^{l+1} =: g_{22}^{l+1}. \]

It is then obvious that the domain decomposition method converges.

Example 4.2, 4.3, and 4.5 show that a network with compressors and valves can be decomposed into sub-graphs down to individual edges using the nonoverlapping domain decomposition procedure.

Theorem 4.6. Let the assumption of Theorem 4.1 be valid. Then, the sub-graph iteration (4) converges as \(l \to \infty \) in the \(H^1 \)-sense.

5. **Domain Decomposition for Optimal Control Problems**

We now consider the optimal control problem (7) with two modifications: First, we fix a given switching structure \(s \). Second, we only consider flow boundary controls. The latter means that we replace \(g_i(p_i(n_j), q_i(n_j)) = u_j \) by \(q_i(n_j) = u_j \) for \(j \in J^S, \quad i \in I_j \). The corresponding optimality system is given in System 5.

System 5. Optimality system of Problem (7) with fixed switching structure and flow boundary control; \(x \in (0, \ell_i) \)

\[\beta_i p_i(x) + \partial_x q_i(x) = f_i^1, \quad i \in I \]
\[\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i(x)) = f_i^2, \quad i \in I \]
\[\beta_i \phi_i(x) - \partial_x \psi_i(x) = -\kappa_i(p_i - p_0), \quad i \in I \]
\[\alpha_i \psi_i(x) - \partial_x \phi_i(x) + \partial_x g_i(x; q_i(x)) + \kappa_i = -\kappa_i(q_i - q_0), \quad i \in I \]
\[q_i(n_j) = u_j, \quad \psi_i(n_j) = 0, \quad j \in J^S, \quad i \in I_j \]
\[p_i(n_j) = p_0(n_j), \quad \phi_i(n_j) = \phi_0(n_j), \quad j \in J^M \setminus (J_L \cup J_R), \quad i, k \in I_j \]
\[\sum_{i \in I_j} d_{ij} q_{ij}(n_j) = 0, \quad \sum_{i \in I_j} d_{ij} \psi_{ij}(n_j) = 0, \quad j \in J^M \]
\[s_i^0 (p_i(n_j) - p_k(n_j)) + (1 - s_i^0) q_i(n_j) = 0, \quad j \in J_L, \quad i \in I_k^+, \quad k \in I_j^- \]
\[s_i^0 (\phi_i(n_j) - \phi_k(n_j)) + (1 - s_i^0) \psi_i(n_j) = 0, \quad j \in J_L, \quad i \in I_k^+, \quad k \in I_j^- \]
\[s_i^0 (p_i(n_j) u_j - p_k(n_j)) + (1 - s_i^0) (p_i(n_j) - p_k(n_j)) = 0, \quad j \in J_L, \quad i \in I_k^+, \quad k \in I_j^- \]
\[s_i^0 (\psi_i(n_j) u_j - \psi_k(n_j)) + (1 - s_i^0) (\phi_i(n_j) - \phi_k(n_j)) = 0, \quad j \in J_L, \quad i \in I_k^+, \quad k \in I_j^- \]
\[u_j = -\frac{1}{\nu} \phi_i(n_j), \quad j \in J^S, \quad i \in I_j \]
\[u_j = -s_i^0 p_i(n_j) \psi_i(n_j), \quad j \in J_L, \quad i \in I_j \]

The idea is to use a domain decomposition similar to the one discussed so far.

We design a method that allows to interpret the decomposed optimality system 5 as...
an optimality system of an optimal control problem formulated on a sub-graph or, ultimately, on an individual edge. To fix the ideas, we first concentrate on systems without valves and compressors as before. The reason is that we do not intend to decompose the systems at such nodes. Instead, we focus on the decomposition at serial nodes again. To this end, we introduce the following local system involving two edges labeled with $i, k \in \mathcal{I}_j$:

\begin{align*}
\beta_i q_i^{l+1}(x) + \partial_x q_i^{l+1}(x) &= f_i, \quad i \in \mathcal{I}, \\
\alpha_i q_i^{l+1}(x) + \partial_x p_i^{l+1}(x) + g_i(x; q_i^{l+1}) &= f_i^2, \quad i \in \mathcal{I}, \\
\beta_i \phi_i^{l+1}(x) - \partial_x \psi_i^{l+1}(x) &= -\kappa_i(p_i^{l+1} - p_i^0), \quad i \in \mathcal{I}, \\
\alpha_i \psi_i^{l+1}(x) - \partial_x \phi_i^{l+1}(x) + \partial_t g_i(x; q_i^{l+1})\phi_i^{l+1} &= -\kappa_i(q_i^{l+1} - q_i^0), \quad i \in \mathcal{I}, \\
-d_{ij}q_j^{l+1}(n_j) + \sigma p_j^{l+1}(n_j) - \mu q_j^{l+1}(n_j) &= g_{kj}^{l+1}, \quad i, k \in \mathcal{I}_j, \\
d_{ij}\psi_i^{l+1}(n_j) + \sigma \phi_i^{l+1}(n_j) + \mu p_i^{l+1}(n_j) &= h_{kj}^{l+1}, \quad i, k \in \mathcal{I}_j, \\
g_{kj}^{l+1} &= d_{kj} q_k^l(n_j) + \sigma p_k^l(n_j) - \mu q_k^l(n_j), \quad i, k \in \mathcal{I}_j, \\
h_{kj}^{l+1} &= -d_{kj} \psi_k^l(n_j) + \sigma \phi_k^l(n_j) + \mu p_k^l(n_j), \quad i, k \in \mathcal{I}_j,
\end{align*}

where $x \in (0, \ell_i)$. System (24) reflects a situation where the domain decomposition is applied at a serial node that connects two edges.

Example 5.1. We consider a serial situation, where two links are coupled at $x = 0$ and the pressure is controlled at the two ends with $x = 1$. The transmission node at $x = 0$ is the one where we apply the domain decomposition. We have the following academic scenario for demonstrating the domain decomposition for optimality systems. On both edges we apply a distributed load $f_i^1(x) = 0$, $f_i^2(x) = 1000$ for all $x \in (0, 1)$ and $i = 1, 2$. We would like to track the constant targets $f_i^{2, d}(x) = 1$, $x \in (0, 1)$, $i = 1, 2$, and choose $\beta_i = 1$, $\alpha_i = 1000$, and $\kappa_i = 100$ for $i = 1, 2$. As iteration parameters, we use $\mu = 0$ and $\sigma = 1$. As above, we solve the optimality system using the MATLAB routine `bvp4c` for obtaining the reference solution and compare it with the result of our domain decomposition method. We print the solution of the domain decomposition iterations on top of the reference solutions, for the optimal states and the adjoints, respectively. For the results see Figure 5 and 6 for the states, the adjoints, and the nodal errors, respectively. Since the situation is fully symmetric, we only plot the solution in $x \in [0, 1]$.

Example 5.2. Here, we consider the same network as in the previous example but change the physical data. We recall that $f_i^{1, 2}$ represent previous pressure and
flow functions along the edges $i = 1, 2$. Assume these are constant and equal, say, $f_1^1 = f_2^1 = 1$ for all $x \in (0, 1)$, while $f_1^2 = -f_2^2 = \alpha$. We may take $\alpha \beta =: c = 1000$, which is fine for the spatial discretization discussed above, in particular if we choose the spatial discretization $\Delta x = 1/1000$. We first ignore the nonlinearity. Then, the flow is 1 and -1 on edge 1 and 2, respectively, while the pressure is equal to 1 in both pipes. If we take these as tracking goals, the domain decomposition iteration should finally reveal these solutions with controls $u_i = 1$. This is what we observe in Figure 7. The error behavior is as above. We now take the same configuration and tune the nonlinearity. This gives new equilibria. Setting $\gamma = 0.1$, we obtain the results shown in Figure 8, where also the change in the adjoints can be seen.

Let us now consider the following optimization problems on a single edge. The idea is to introduce a virtual control that aims at controlling classical inhomogeneous Neumann conditions including the iteration history at the interface as the
inhomogeneity to the Robin-type condition that appears in the decomposition. To this end, it is sufficient to consider three cases:

a) The edge i connects a controlled flow-node $j \in J^S$ node with a multiple (serial) node $k \in J^M$ at which the domain decomposition is active.

b) The edge i connects a controlled pressure-node $j \in J^P$ with multiple (serial) node $k \in J^M$ at which the domain decomposition is active.

c) The edge i connects two multiple (serial) nodes $j, k \in J^M$.

We concentrate on the last case as it is the most complex one. The two other cases are completely analogous. Thus, in the case of a single edge i with no connection to a controlled node, we consider the problem

$$
\min_{q_i, p_i, v_{ij}, v_{ik}} I(q_i, p_i, v_{ij}, v_{ik}) := \frac{\kappa}{2} (\|q_i - q_0\|^2 + \|p_i - p_0\|^2) + \frac{1}{2\mu} v_{ij}^2 + \frac{1}{2\mu} v_{ik}^2 \\
+ \frac{1}{2\mu} (\mu p_i(n_k) - h_{ik})^2 + \frac{1}{2\mu} (\mu p_i(n_j) - h_{ij})^2 \\
\text{s.t. } \beta_i p_i + \partial_x q_i = f_i^1, \quad x \in (0, \ell_i), \\
\alpha_i q_i + \partial_x p_i + g_i(x; q_i) = f_i^2, \quad x \in (0, \ell_i), \\
-d_{ij} q_i(n_j) + \sigma p_i(n_j) = g_{kj} + v_{ij}, \quad i, k \in I_j, \\
-d_{ik} q_i(n_k) + \sigma p_i(n_k) = g_{jk} + v_{ik}, \quad i, j \in I_k,
$$

where the h_{ij}, h_{ik} appear in the domain decomposition of the optimality system in (24) and are taken at iteration level l. We now also involve valves and compressors that are present in the sub-graphs G_m and formulate the analogous optimal control
The corresponding optimality conditions are given in System 6. Let us remark the following. Problem (25) and the corresponding optimality system 6 on the problem on the sub-graph G. LEUGERING, A. MARTIN, M. SCHMIDT, M. SIRVENT

$$\min_{q_i, p_i, v_{ij}, v_{ik}} I(q_i, p_i, v_i, v_j) := \frac{\kappa}{2} \sum_{i \in I^m} (\|q_i - q_i^0\|^2 + \|p_i - p_i^0\|^2)$$
$$+ \frac{1}{2\mu} \sum_{j \in J_{m,n}^+, A_{m,n} = 1} \sum_{i \in I_j} (v_{ij}^2 + (\mu p_i(n_j) - h_{ij})^2)$$

s.t. $\beta_i p_i(x) + \partial_x q_i(x) = f_i^1$, $x \in (0, \ell_i)$, $i \in I^m$,
$$\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i(x)) = f_i^2$, $x \in (0, \ell_i)$, $i \in I^m$,
$$q_i(n_j) = u_j, \quad j \in J_{m}^+, \quad i \in I_j,$$
$$p_i(n_j) = p_k(n_j), \quad j \in J_{m,c} \cup J_{m,v}, \quad i, k \in I_j,$$
$$\sum_{i \in I_j} d_{ij} q_i(n_j) = 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j,$$

$$s_j^p (p_i(n_j) - p_k(n_j)) + (1 - s_j^p) q_i(n_j) = 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j,$$
$$s_j^p (p_i(n_j) - p_k(n_j)) + (1 - s_j^p) q_i(n_j) = 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j,$$
$$- d_{ij} q_i(n_j) + \sigma p_i(n_j) = g_{ik} + v_{ij}, \quad j \in J_{m,n}, \quad n : A_{m,n} = 1, \quad i, k \in I_j.$$

Here, we omitted the iteration indices l for the sake of convenience. Note that the constraints of (25) are the same as in System 4 except for the case that we only consider flow boundary control here and that we add the virtual controls. The corresponding optimality conditions are given in System 6. Let us remark

SYSTEM 6. Optimaliy system of Problem (25); $x \in (0, \ell_i)$

\begin{align*}
\beta_i p_i(x) + \partial_x q_i(x) &= f_i^1, \quad i \in I^m, \\
\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i(x)) &= f_i^2, \quad i \in I^m, \\
\beta_i \phi_i(x) - \partial_x \psi_i(x) &= -\kappa_i(p_i - p_i^0), \quad i \in I^m, \\
\alpha_i \psi_i(x) - \partial_x \phi_i(x) + \partial_x g_i(x; q_i(x)) \phi_i &= -\kappa_i(q_i - q_i^0), \quad i \in I^m, \\
q_i(n_j) &= u_j, \psi_i(n_j) = 0, \quad j \in J_{c,m}^+, \quad i \in I_j, \\
p_i(n_j) &= p_k(n_j), \phi_i(n_j) = \phi_k(n_j), \quad j \in J_{m,c} \cup J_{m,v}, \quad i, k \in I_j, \\
\sum_{i \in I_j} d_{ij} q_i(n_j) &= 0, \quad \sum_{i \in I_j} d_{ij} \psi_i(n_j) = 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j, \\
s_j^p (p_i(n_j) - p_k(n_j)) + (1 - s_j^p) q_i(n_j) &= 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j, \\
s_j^p (\phi_i(n_j) - \phi_k(n_j)) + (1 - s_j^p) \psi_i(n_j) &= 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j, \\
s_j^p (p_i(n_j) - p_k(n_j)) + (1 - s_j^p) (p_i(n_j) - p_k(n_j)) &= 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j, \\
s_j^p (\psi_i(n_j) - \psi_k(n_j)) + (1 - s_j^p) (\phi_i(n_j) - \phi_k(n_j)) &= 0, \quad j \in J_{m,c} \cup J_{m,v}, \quad i \in I_j, \\
-d_{ij} q_i(n_j) + \sigma p_i(n_j) &= g_{ik} + v_{ij}, \quad j \in J_{m,n}, \quad n : A_{m,n} = 1, \quad i, k \in I_j, \\
d_{ij} \psi_i(n_j) + \sigma \phi_i(n_j) + \mu p_i(n_j) &= h_{kj}, \quad j \in J_{m,n}, \quad n : A_{m,n} = 1, \quad i, k \in I_j, \\
\psi_i &= -\frac{1}{\nu} \phi_i, \quad j \in J_{c}, \quad i \in I_j, \\
\psi_j &= -s_j^p p_i(n_j) \psi_i(n_j), \quad j \in J_{c}, \quad i \in I_j.
\end{align*}
sub-graph G_m are now completely decoupled from the analogous problems on all other sub-graphs G_n, $n \neq m$. This means that we can actually decompose the optimization problem given on the graph into a set of local optimization problems given on the sub-graphs.

Example 5.3. We continue with Example 4.5. The corresponding virtual control problem regarding the decomposition at the nodes n_1 and n_2, where the edges 1 and 3 as well as 2 and 4 meet at $x = 1$, respectively, is then given by

$$
\min_{u,v} I((q_i, p_i)_{i=1}^4, v_{11}, v_{31}, v_{22}, v_{42}, u_0, u_3, u_4) := \sum_{i=1}^4 \frac{\kappa}{2} (\|q_i - q_i^0\|^2 + \|p_i - p_i^0\|^2)
$$

$$
+ \frac{1}{2\mu} (v_{11}^2 + (\mu p_1(1) - h_{11})^2) + \frac{1}{2\mu} (v_{31}^2 + (\mu p_3(1) + h_{31})^2)
$$

$$
+ \frac{1}{2\mu} (v_{22}^2 + (\mu p_2(1) - h_{22})^2) + \frac{1}{2\mu} (v_{42}^2 + (\mu p_4(1) - h_{42})^2)
$$

s.t. $\beta_i p_i(x) + \partial_x q_i(x) = f_i^1$, $x \in (0, \ell_i)$, $i = 1, \ldots, 4$,

$\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i(x)) = f_i^2$, $x \in (0, \ell_i)$, $i = 1, \ldots, 4$,

$-q_1(1) + \sigma p_1(1) = g_{11}^{\ell+1} + v_{11}$, $-q_3(1) + \sigma p_3(1) = g_{33}^{\ell+1} + v_{31}$,

$-q_2(1) + \sigma p_2(1) = g_{22}^{\ell+1} + v_{12}$, $-q_4(1) + \sigma p_4(1) = g_{42}^{\ell+1} + v_{42}$,

$p_1(0) = u_0 = p_2(0)$, $q_1(0) + q_2(0) = 0$, $q_3(0) = u_3$, $q_4(0) = u_4$.

Example 5.4. We expand the model of the last example by a valve parallel to the compressor; cf. Figure 9. We have 8 edges and 8 nodes. Edge 1 has a simple flow-controlled node n_6 at $x = 0$. The edges 1, 2 are coupled at node n_4, where $x = 1$. Similarly, edge 4 has a simple node at n_7, where $x = 0$, and is coupled to edge 3 at $x = 1$ via node n_5. These two serial links (1, 2) and (3, 4) are connected through nodes n_2, n_3 to edges 5, 7 and 6, 8 at $x = 0$, respectively. These are triple junctions. Finally, the compressor is located at $n_0 = n_c$ between links 5, 6 at $x = 1$, while the

Figure 9. Network of Example 5.4
While the optimization w.r.t. the continuous variables results in the decomposed
optimality system, a similar conclusion cannot be drawn for the discrete optimization
the fact that the right-hand sides
there is no sensitivity analysis available for such problems. Therefore, even given
transmission nodes
describe the serial nodes, where we will apply the domain decomposition. The
globally optimal switching change infinitely often in the course of the convergence.
In addition, these costs may
involving the compressor at node
20 G. LEUGERING, A. MARTIN, M. SCHMIDT, M. SIRVENT
An analysis of the situation addressed at the end of the example and scenarios
that avoid this Zeno-phenomenon is subject of future research.
value connects edges 7, 8 at n_1 = n_v, where x = 1. The model is given by
\[\beta p_i(x) + \partial_x q_i(x) = f_i^1, \] (26a)
\[\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i(x)) = f_i^2, \] (26b)
\[p_1(1) = p_2(1), \quad p_3(1) = p_4(1), \] (26c)
\[q_1(1) + q_2(1) = 0, \quad q_3(1) + q_4(1) = 0, \] (26d)
\[p_2(0) = p_5(0) = p_7(0), \quad p_6(0) = p_3(0) = p_8(0), \] (26e)
\[q_2(0) + q_5(0) + q_7(0) = 0, \quad q_6(0) + q_3(0) + q_8(0) = 0, \] (26f)
\[p_5(1)u_0 = p_6(1), \quad q_5(1) + q_6(1) = 0, \quad \text{if } s_5^0 = 1, \] (26g)
\[p_6(1) = p_5(1), \quad q_6(1) + q_5(1) = 0, \quad \text{if } s_6^0 = 0, \] (26h)
\[p_7(1) = p_8(1), \quad q_7(1) + q_8(1) = 0, \quad \text{if } s_7^1 = 1, \] (26i)
\[q_7(1) = 0, \quad q_8(1) = 0, \quad \text{if } s_7^1 = 0, \] (26j)
\[q_1(0) = u_6, \quad q_4(0) = u_7, \] (26k)
where we again have x \in (0, 1) and i = 1, \ldots, 8. Constraints (26c) and (26d)
describe the serial nodes, where we will apply the domain decomposition. The
transmission nodes n_2 and n_3 are described in (26e) and (26f), the compressor’s
nodal conditions are given by (26g) and (26h). Similarly, (26i) and (26j) are the
valve conditions. Finally, the control and the demand are provided in (26k). The
the costs are similar to the previous example. In addition, these costs may
involve the switching parameters s. Problem (27) can be seen as a mixed-integer
nonlinear program (MINLP) on the sub-graph consisting of the edges 2, 3, 5, 6, 7, 8
involving the compressor at node n_0 and the valve at node n_1 with Robin-data
\[-q_2(1) + \sigma p_2(1) = g_{24}^{l+1} + v_{24} =: r_2^l, \quad -q_4(1) + \sigma p_4(1) = g_{45}^{l+1} + v_{45} =: r_4^l. \]
For each given l, the sub-graph problem admits a minimal solution w.r.t. both u and s.
While the optimization w.r.t. the continuous variables results in the decomposed
optimality system, a similar conclusion cannot be drawn for the discrete optimization
part, as there is no such optimality system w.r.t. the switching variables. Moreover,
there is no sensitivity analysis available for such problems. Therefore, even given
the fact that the right-hand sides r_2^l, r_4^l converge, as l \to \infty, it may happen that the
globally optimal switching change infinitely often in the course of the convergence.

An analysis of the situation addressed at the end of the example and scenarios
that avoid this Zeno-phenomenon is subject of future research.
6. Wellposedness and Convergence

6.1. Uniqueness of the Primal Problem’s Solution. For a given switching structure \(s \in S \), the flow boundary controlled problem

\[
\beta_i p_i(x) + \partial_x q_i(x) = f^1_i, \quad x \in (0, \ell_i), \ i \in I,
\]

\[
\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i(x)) = f^2_i, \quad x \in (0, \ell_i), \ i \in I,
\]

\[
q_i(n_j) = u_j, \quad j \in J^S, \ i \in I_j,
\]

\[
p_i(n_j) = p_k(n_j), \quad j \in J^M \setminus (J_c \cup J_v), \ i, k \in I_j,
\]

\[
\sum_{i \in I_j} d_{ij} q_i(n_j) = 0, \quad j \in J^M,
\]

\[
(1 - s^*_j)(p_i(n_j) - p_k(n_j)) = 0, \quad j \in J_v, \ i \in I_j^+, \ k \in I_j^-,
\]

\[
(1 - s^*_j)(p_i(n_j) - p_k(n_j)) = 0, \quad j \in J_v, \ i \in I_j^+, \ k \in I_j^-,
\]

on \(G \) admits a unique solution. In order to prove this, we introduce the first-order differential expression

\[
A(p, q) := \{ \frac{\partial_x q_i}{\partial_x p_i} \}_{i \in I}.
\]

For defining a proper differential operator, we introduce the spaces

\[
H := \{(p, q) : (p, q) = (p_i, q_i)_{i \in I} \in \Pi \in I \mathbb{L}^2(0, \ell_i)^2\},
\]

\[
H^1 := H \cap \Pi \in I \mathbb{L}^2(0, \ell_i)^2,
\]

\[
D(A) := \{(p, q) = (p_i, q_i)_{i \in I} \in H^1 : q_i(n_j) = 0, \quad j \in J^S, \ i \in I_j,
\]

\[
p_i(n_j) = p_k(n_j), \quad j \in J^M, \ i, k \in I_j,
\]

\[
\sum_{i \in I_j} d_{ij} q_i(n_j) = 0, \quad j \in J^M\}.
\]

Here we have taken the situation without valves and compressors. For an open valve and a shut-down compressor, we have the canonical pressure and flow transmission conditions as in definition above. If the valve is closed, we have two extra no-flow conditions at the valve node. If the compressor is switched on, we have a pressure transmission condition involving the control \(u_j \). For a given pressure ratio \(u_j \) the corresponding transmission can be integrated into the domain \(D(A) \), otherwise the bilinear term has to be taken into account via shifting it into the state equation.

The norm in \(H \) is given by

\[
\|(p, q)\|^2_H := \langle (p, q), (p, q) \rangle := \sum_{i \in I} \int_0^{\ell_i} \left(p_i^2 + q_i^2 \right) \, dx.
\]

Obviously, \(H \) is a Hilbert space and we have the dense inclusion \(D(A) \subset H \). A simple calculation shows

\[
\langle A(p, q), (p, q) \rangle = 0,
\]

and that, in fact, \(A \) is skew-adjoint. Then, clearly, with \(D_c := \text{diag}(\beta_i, \alpha_i) \), \(D + A \) has a bounded inverse on \(H \). Now, the Nemytskii operator \(N : H^1 \rightarrow H \) with \(N(p, q)_i(x) := (0, \gamma_i(x)q_i(x))\), \(i \in I \), is compact, as the embedding (in 1d) of \(H^1(0, \ell_i) \rightarrow \mathbb{L}^2(0, \ell_i) \) is compact (and monotone on \(H \)). This implies that the equation

\[
(D + A + N)(p, q) = F
\]
admits a unique solution for $F \in H$. The same arguments apply for the problems on a sub-graph G_m:

\[
\begin{align*}
\beta_i p_i(x) + \partial_x q_i(x) &= f_i^1, \quad x \in (0, \ell_i), \ i \in I^m, \\
\alpha_i q_i(x) + \partial_x p_i(x) + g_i(x; q_i) &= f_i^2, \quad x \in (0, \ell_i), \ i \in I^m, \\
q_i(n_j) &= u_j, \quad j \in J^m_0, \ i \in I_j, \\
p_i(n_j) &= p_k(n_j), \quad j \in J^m_0 \setminus (J_{c,m} \cup J_{v,m}), \ i, k \in I_j, \\
\sum_{i \in I_j} d_{ij} q_i(n_j) &= 0, \quad j \in J^m_0, \\
\sum_{i \in I_j} d_{ij} p_i(n_j) &= 0.
\end{align*}
\]

Moreover, we may also apply the same methods in order to show that the corresponding optimality systems admit a unique solution. We skip the details here.

6.2. Smoothness of the Control-to-State-Map. Let $q_t(u), \hat{p}_t(u)$ be the solution of Problem (28) with u replaced by $u + t \bar{u}$ and let q,p be the solution of (28) at $t = 0$. We denote by $\tilde{q} = \hat{q}_t - q, \tilde{p} = \hat{p}_t - p$ the differences of these solutions and obtain

\[
\begin{align*}
\beta_i \tilde{p}_t(x) + \partial_x \tilde{q}_t(x) &= 0, \quad x \in (0, \ell_i), \ i \in I, \\
\alpha_i \tilde{q}_t(x) + \partial_x \tilde{p}_t(x) + g_i(x; \tilde{q}_t(x)) &= 0, \quad x \in (0, \ell_i), \ i \in I, \\
\tilde{q}_t(n_j) &= t \tilde{u}, \quad j \in J^S, \ i \in I_j, \\
\tilde{p}_t(n_j) &= \tilde{p}_k(n_j), \quad j \in J^M \setminus (J_{c} \cup J_{v}), \ i, k \in I_j, \\
\sum_{i \in I_j} d_{ij} \tilde{q}_t(n_j) &= 0, \quad j \in J^M, \\
\sum_{i \in I_j} d_{ij} \tilde{p}_t(n_j) &= 0.
\end{align*}
\]

Dividing by t and letting $t \to 0$, we arrive at the sensitivity problem

\[
\begin{align*}
\beta_i p'_i(x) + \partial_x q'_i(x) &= 0, \quad x \in (0, \ell_i), \ i \in I, \\
\alpha_i q'_i(x) + \partial_x p'_i(x) + g'_i(x; q'_i(x)) &= 0, \quad x \in (0, \ell_i), \ i \in I, \\
q'_i(n_j) &= \bar{u}, \quad j \in J^S, \ i \in I_j, \\
p'_i(n_j) &= p'_k(n_j), \quad j \in J^M \setminus (J_{c} \cup J_{v}), \ i, k \in I_j, \\
\sum_{i \in I_j} d_{ij} q'_i(n_j) &= 0, \quad j \in J^M, \\
\sum_{i \in I_j} d_{ij} p'_i(n_j) &= 0.
\end{align*}
\]

For the solution q', p' of (31), we may apply standard techniques. As the cost function in (7) is convex, Problem (7) admits a unique solution according to the
classical Weierstraß theorem. One can then verify the conditions for the Ioffe–Tichomirov theorem [18] in order to establish the first-order optimality conditions (5). The following theorem summarizes the previous assertions.

Theorem 6.1. Under the assumption (18), for \((f^1, f^2) \in \Pi_{i \in \mathbb{Z}} L^2(0, \ell_i)^2\), there exists a unique solution \((q, p) \in D(A)\) of (30). In addition, the mapping from \(u\) into \(q, p\) is Gateaux differentiable. Moreover, the optimal control problem (7) admits a unique solution. The optimal solution is characterized by the optimality system of first-order (5).

6.3. **Convergence.** For the proof of convergence, we concentrate on the decomposition at a serial node. The decomposition of the problem on a graph into separate problems on sub-graphs then follows as described above. To this end, we introduce the errors \(\hat{p}^{l+1} := p^{l+1} - p, \hat{q}^{l+1} := q^{l+1} - q\), and, accordingly, \(\hat{g}^{l+1} := g^{l+1} - g\), which is to be understood in the vectorial sense. We consider serial nodes \(n_j\) with adjacent edges \(i, k \in \mathcal{I}_j\) and obtain

\[
\beta_i \hat{p}^{l+1}_i(x) + \partial_x \hat{q}^{l+1}_i(x) = 0, \quad x \in (0, \ell_i), \quad i \in \mathcal{I},
\]

\[
\alpha_i \hat{q}^{l+1}_i(x) + \partial_x \hat{p}^{l+1}_i(x) + (g_i(x; \hat{q}^{l+1}_i + q_i) - g_i(x; q_i)) = 0, \quad x \in (0, \ell_i), \quad i \in \mathcal{I},
\]

\[
\beta_i \hat{g}^{l+1}_i(x) - \partial_x \hat{g}^{l+1}_i(x) = 0, \quad x \in (0, \ell_i), \quad i \in \mathcal{I},
\]

\[
\alpha_i \hat{g}^{l+1}_i(x) - \partial_x \hat{g}^{l+1}_i(x) + (\partial_x g_i(x; \hat{q}^{l+1}_i + q_i) - \partial_q g_i(x; q_i) \hat{g}^{l+1}_i) = 0, \quad x \in (0, \ell_i), \quad i \in \mathcal{I},
\]

\[
(\partial_q g_i(x; \hat{q}^{l+1}_i - \hat{q}_i(x; q_i)) \hat{q}_i = -\kappa_i (\hat{q}^{l+1}_i), \quad x \in (0, \ell_i), \quad i \in \mathcal{I}, \quad (32)
\]

\[
-\partial_q g_i(x; \hat{q}^{l+1}_i + q_i) \hat{g}^{l+1}_i + \lambda \hat{g}^{l+1}_i + \mu \hat{g}^{l+1}_i = 0, \quad i, k \in \mathcal{I}_j
\]

\[
= d_{ij} \hat{g}^{l+1}_i(n_j)) + \lambda \hat{g}^{l+1}_i(n_j) + \mu \hat{g}^{l+1}_i(n_j), \quad i, k \in \mathcal{I}_j
\]

Moreover, we define

\[
(\bar{g}, \bar{h}) \in \mathcal{X} := \Pi_{k \in \mathcal{M}} \Pi_{i \in \mathcal{I}_k} \mathbb{R}^2, \quad \|(\bar{g}, \bar{h})\|_X^2 := \sum_{k \in \mathcal{M}} \sum_{i \in \mathcal{I}_k} (\|\bar{g}_i\|^2 + \|\bar{h}_i\|^2)
\]

and \(\mathcal{T} : \mathcal{X} \rightarrow \mathcal{X}\) with

\[
(\mathcal{T}(\bar{g}, \bar{h})_{i,j} := (2(\lambda \hat{g}^{l+1}_i(n_j) - \mu \hat{g}^{l+1}_i(n_j)) - \hat{g}^{l+1}_j, 2(\lambda \hat{g}^{l+1}_i(n_j) + \mu \hat{g}^{l+1}_i(n_j)) - \hat{h}^{l+1}_j)
\]

for \(i, j \in \mathcal{I}_k\). Now,

\[
\|\mathcal{T}(\bar{g}, \bar{h})\|_X^2 = \sum_{k \in \mathcal{M}} \sum_{i \in \mathcal{I}_k} (\|\bar{g}^{l+1}_{ik}\|^2 + \|\bar{h}^{l+1}_{ik}\|^2)
\]

\[
= \sum_{k \in \mathcal{M}} \sum_{i \in \mathcal{I}_k} \left((\|\bar{g}^{l+1}_{ik}\|^2 - 4d_{ik} \hat{g}_i(n_k) \lambda \hat{p}_i(n_k) - \mu \hat{p}_i(n_k)) \right)
\]

\[
+ \sum_{k \in \mathcal{M}} \sum_{i \in \mathcal{I}_k} \left((\|\bar{h}^{l+1}_{ik}\|^2 + 4d_{ik} \hat{g}_i(n_k) \lambda \hat{p}_i(n_k) + \mu \hat{p}_i(n_k)) \right)
\]
holds. We multiply the state equation for the errors p_i, q_i by ϕ_i and ψ_i, respectively, and perform summations and integration by parts in order to obtain

$$
\|T(g, h)\|_{H^1}\frac{2}{\lambda}\|v\|_\infty^2 = \sum_{k \in \mathcal{J} \setminus \mathcal{J}^M} \sum_{i \in I} \left(|g_{ik}^{i+1}|^2 + |h_{ik}^{i+1}|^2 \right) = \sum_{k \in \mathcal{J} \setminus \mathcal{J}^M} \sum_{i \in I} \left(|g_{ik}^i|^2 + |h_{ik}^i|^2 \right)
$$

$$
= -4\lambda \sum_{i \in I} \int_0^{\ell_i} \left(\beta_i (\phi_i^2) + \alpha_i (\psi_i^2) \right) + (\partial g_i(x; \bar{q}_i + q_i) \bar{\psi}_i^2
\right.
\left. + (\partial g_i(x; \bar{q}_i + q_i) - \partial g_i(x; q_i)) \psi_i \bar{\psi}_i + (g_i(x; \bar{q}_i + q_i) - g_i(x; q_i)) \bar{q}_i
\right.
\left. + \kappa ((\bar{p}_i \bar{\psi}_i) + \bar{\phi}_i \bar{p}_i) \right) \, dx
\right.
\left. - 4\mu \sum_{i \in I} \int_0^{\ell_i} \left(\kappa (\psi_i^2) \right) + (\partial g_i(x; \bar{q}_i + q_i) \psi_i \psi_i
\right.
\left. + (\partial g_i(x; \bar{q}_i + q_i) - \partial g_i(x; q_i)) \psi_i \bar{\psi}_i
\right.
\left. - (g_i(x; \bar{q}_i + q_i) - g_i(x; q_i)) \bar{\psi}_i \right) \, dx.
\right.
\right.
$$

Now,

1. $\partial g_i(x; s) \geq |s|$
2. $g_i(x; \bar{q}_i + q_i) - g_i(x; q_i) = g_i(x; \theta \bar{q}_i + q_i)$.
3. $((\partial g_i(x; \bar{q}_i + q_i) - \partial g_i(x; q_i)) \psi \leq (1 - \theta) |\bar{q}_i| \bar{\psi}_i$.
4. $\partial g_i(x; \bar{q}_i + q_i) - \partial g_i(x; q_i) \leq \|g_i\||\bar{q}_i| = L_i |\bar{q}_i|$

and with these statements we can estimate

$$
\|T(g, h)\|_{H^1} = \sum_{k \in \mathcal{J} \setminus \mathcal{J}^M} \sum_{i \in I} \left(|g_{ik}^{i+1}|^2 + |h_{ik}^{i+1}|^2 \right) = \sum_{k \in \mathcal{J} \setminus \mathcal{J}^M} \sum_{i \in I} \left(|g_{ik}^i|^2 + |h_{ik}^i|^2 \right)
$$

$$
= -4\lambda \sum_{i \in I} \int_0^{\ell_i} \left(\lambda \alpha_i + (\mu - \frac{1}{2}\lambda) \kappa + \lambda \partial g_i(x; \theta \bar{q}_i + q_i)
\right.
\left. - L_i (\mu + \frac{1}{2}) |\psi_i| + \mu ||\bar{\psi}_i|| |\bar{q}_i|^2 + (\lambda \beta_i + (\mu - \frac{1}{2}\lambda) \kappa) |\bar{p}_i|^2
\right.
\left. + \lambda \beta_i |\bar{p}_i|^2 + (\lambda \alpha_i - \frac{1}{2}\lambda \kappa + \lambda \partial g_i(x; \bar{q}_i + q_i) - L_i \frac{1}{2} |\psi_i| |\bar{\psi}_i| \right) \, dx.
\right.
\right.
$$

This estimate has to be adjusted in a straightforward way for the case of a decomposition at a boundary control node. It is obvious from (33) that for sufficiently large α_i, β_i, the coefficients of the quantities with $\bar{p}_i^2, \bar{q}_i^2, \bar{\phi}_i^2, \bar{\psi}_i^2$ in (33) can be made uniformly positive. It is also evident from (33) that the choice of the parameters $\alpha_i, \beta_i, \kappa$ will depend on the flows q_i, ψ_i (in case $\mu = 0$) and additionally on the errors $\bar{q}_i, \bar{\psi}_i$ if $\lambda, \mu > 0$. This means that the convergence is local.

Theorem 6.2. Under the positivity assumptions for the coefficients and the monotonicity assumption (18), the iterations converge and the solutions $q^t = (q_i^t, p_i^t)_{i \in I}$ of the iterative process (32), describing the local optimality systems on the individual edges, converge to the solution of the optimality system (24). The convergence takes place in the H^1-sense. Moreover, the traces at the decomposition nodes also converge.

We finally remark that the same theorem applies to the nonoverlapping domain decomposition using sub-graphs.

7. Conclusion

In this paper, we first reduced the original time-dependent optimal control problem (2) for the gas flow in a given network via a semi-implicit-explicit time
discretization scheme first to (5) and then to an optimal control problem for a single time step (7). The latter problem has to be solved in an instantaneous control paradigm. We designed an iterative nonoverlapping domain decomposition at multiple nodes in the spirit of [19] and [20] in order to decompose both the system of equations on the entire network and the optimality system 6 to suitable sub-networks containing valves and compressors. As a result, the iterations converge in natural norms and, moreover, for the optimality system, the decomposed systems are, in fact, optimality systems for virtual optimal control problems (25) on the corresponding sub-networks. We provide numerical evidence for both iterations, i.e., for the solutions to the system on the network and for the optimal solutions together with their adjoints, respectively. The results pave the way for MINLP solution techniques for problems involving the on-off-control of valves and compressors in combination with continuous controls at simple nodes and, e.g., continuous compressor controls. By using the proposed domain decomposition method, the size and the complexity of the MINLP problems to solve can now be controlled. Besides this, the method developed here provides a completely parallel treatment of the considered optimal control problems.

Acknowledgments

The research of the second and third author has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. The authors thank the DFG for their support within sub-projects A05, B07, and B08 of the CRC TRR 154.

References

REFERENCES

