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Abstract The Traveling Salesman Problem with Pickup

and Delivery (TSPPD) describes the problem of finding

a minimum cost path in which pickups precede their

associated deliveries. The TSPPD is particularly im-

portant in the growing field of Dynamic Pickup and

Delivery Problems (DPDP). These include the many-

to-many Dial-A-Ride Problems (DARP) of companies

such as Uber and Lyft, and meal delivery services pro-

vided by Grubhub. We examine exact methods for solv-

ing TSPPDs where orders from different pickup loca-

tions can be carried simultaneously in real-time appli-

cations, in which finding high quality solutions quickly

(often in less than a second) is often more important

that proving the optimality of such solutions. We con-

sider enumeration, Constraint Programming (CP), Mixed

Integer Programming (MIP), and hybrid methods com-

bining CP and MIP. Our CP formulations examine mul-

tiple techniques for ensuring pickup and delivery prece-

dence relationships. Finally, we attempt to provide guid-

ance about which of these methods may be most ap-

propriate for fast TSPPD solving given various time

budgets and problem sizes.
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1 Introduction

The Traveling Salesman Problem (TSP) is the search

for a minimum cost Hamiltonian circuit connecting a

set of locations. In general, the TSP is NP-complete

[34]. The first paper of note related to TSP research

solved an instance of “49 cities, one in each of the 48

states and Washington, D.C.” [10]. Algorithms now ex-

ist that, given sufficient time, can solve TSPs with tens

of thousands of nodes, and its computational bound-

aries continue to be pushed forward [2].

The TSP is an important problem in inspiring algo-

rithmic research, to the substantial benefit of the op-

timization community. It also provides a practical ap-

plication in its own right, particularly in the context of

Vehicle Routing Problems (VRP). VRPs are common

in industry and involve routing a set of vehicles to visit

a set of nodes at minimum cost. At its surface, the only

substantive difference between the TSP and the VRP is

the latter’s use of multiple vehicles to service customer

demand.

The Pickup and Delivery Problem (PDP) is an in-

creasingly prevalent industrial form of the VRP in which

each of a set of requests must be picked up from one

or more locations and delivered to one or more delivery

points. Pickups must precede their associated deliveries

in any feasible route, and each pair must be serviced by

the same vehicle. Pickup and delivery locations can be

distinct to each request, as in the many-to-many Dial-

A-Ride Problem (DARP) of Psaraftis (1980) [37] Bert-

simas et al. (2018) [7] and the Meal Delivery Routing

Problem (MDRP). Given multiple pickup and delivery
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requests, the PDP seeks to route a set of vehicles to

service those requests at minimum cost [38].

Solving a PDP with a single vehicle is equivalent

to solving a TSP with precedence constraints on the

pickup and delivery nodes. This form is referred to as

the Traveling Salesman Problem with Pickup and De-

livery (TSPPD) [12]. There is a great deal of litera-

ture on the TSP and some of its variants, such as the

TSP with Time Windows (TSPTW) [2]. In contrast,

there has been less attention paid to the TSPPD, de-

spite its practical applicability [38]. TSPPDs and their

variants play an increasingly important role in indus-

trial routing applications. This importance is witnessed

by a proliferation of ride hailing and sharing companies,

as well as on-demand delivery service providers for ev-

erything from groceries, alcoholic beverages, and meals,

to snacks and convenience store items.

Different forms of on-demand pickup and delivery

have their own objectives, constraints, and levels of dy-

namism and urgency for decision making [28]. For in-

stance, in dynamic DARP, end users are inconvenienced

from the moment they request a ride. In the MDRP,

time from request to delivery cannot be less than the

restaurant preparation time and travel time from the

restaurant to the diner.

1.1 Problems with Small Routes

The divide between research and industrial use of the

TSP becomes clearly evident when one considers prac-

tical limitations associated with routing. For example,

delivery trucks are often limited to routes of fewer than

100 stops due to physical considerations, such as vehicle

capacity [9]. Routes used for high volume restaurant de-

livery are even shorter due to the perishability of goods,

and typically involve fewer than 10 stops.

Even in the context of the broader PDP with many

vehicles and many more nodes (e.g. hundreds or thou-

sands), the allowable individual routes tend to be rela-

tively short. Solving real-world delivery problems often

requires solving, in a very short time frame (i.e. frac-

tions of a second to not more than minutes), a huge

numbers of problems each having a very small number

of nodes. And, often, resolving some subset of these

problems as the delivery service learns of changing de-

mand and/or service times.

This lack of attention reflects a common theme of

exact approaches in the TSP optimization literature,

which seek to optimize ever longer routes. The pri-

mary mechanism for finding exact solutions to TSPs

is a branch-and-cut procedure based on Dantzig et al.

(1954) [10] in which the TSP is relaxed into a two-

matching problem, binary arc variables are relaxed to

continuous variables with 0-1 bounds, and cuts are added

to the formulation as infeasible solutions are found by

the optimization. Thus the procedure begins with an

infeasible solution and works toward feasibility. The

bulk of the computation is based on getting good lower

bounds on the problem, as good upper bounds are usu-

ally obtained through the Lin-Kernighan heuristic.

Branch-and-cut is by no means the only model for

solving TSPs. One could consider adding cuts to the

two-matching or assignment relaxations as pure inte-

ger solutions are found, as done in Pferschy and Staněk

(2016) [36]. This approach may not be as effective in

proving optimality, but it removes complexity and cut-

ting planes, making its implementation more conve-

nient. Such approaches retain the issue of starting in-

feasible and working toward feasibility. In either case,

most procedures employ heuristics to obtain feasible so-

lutions, thereby supplying upper bounds on the prob-

lem.

Infeasibility can be particularly painful in dynamic

real-time logistics, where optimization procedures are

time limited. Such problems may prefer obtaining a

“good” solution quickly to an optimal solution even-

tually. In these circumstances, one might reasonably

ask, “What is the cost of optimality?” Or the corol-

lary, “What is the value of knowing one is likely to

obtain a near-optimal solution within a certain amount

of time?” For the class of problems that we are consid-

ering, time budgets for route optimization are on the

order of milliseconds or, at most, seconds.

1.2 Hybrid Methods

Another issue with standard exact approaches to solv-

ing practical TSP instances is inflexibility. Industrial

problems often have side constraints. Of particular in-

terest here, the PDP requires that associated pickups

and deliveries be serviced by the same vehicle and that

the former precede the latter.

Other common constraints involve time windows,

such as in the PDPTW [11]. For example, for meal de-

livery service operations, an order cannot be picked up

from a restaurant before it is ready. A delivery can-

not be made to a residence outside of an agreed-upon

time window. Further, vehicles may have capacity con-

straints. This requirement is particularly important if

bicycle couriers are used, as they have limited carrying

capacity. These are just a few of the potential side con-

straints that may be required in an industrial model for

either physical or business reasons.

Milano et al. (2001) [30] characterize the strengths

and weaknesses of Mixed Integer Programming (MIP)
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and Constraint Programming (CP) in terms of opti-

mality and feasibility reasoning. MIP excels at proving

optimality by working to improve both the upper and

the lower bounds, but may take longer to obtain a fea-

sible solution. The slowness in finding a first feasible

solution is often because algebraic (linear) formulations

fail to encode the special structure of a problem with-

out requiring the use of “big M’s” to indicate either-or

syntax. Thus, side constraints such as precedence con-

straints or time windows that occur in TSP related to

vehicle routing can be challenging for a MIP solver, but

they adapt quite naturally to CP, since CP solvers can

handle them directly in their propagation and search

strategies [9, 35].

On the other hand, CP is much less efficient at op-

timality reasoning than MIP. This is partly due to poor

propagation on objective functions, and partly due to

a lack of built-in concepts around dual bounds and

reduced-cost variable fixing. We address these difficul-

ties by studying both MIP and CP forms of the TSPPD,

then integrating them into hybrid models that combine

the benefits of the two, similar to the models proposed

in Focacci et al. (1999) [17] and Focacci et al. (2002)

[16].

We test these models using problem instances gener-

ated from real-world meal delivery data. These are built

from actual pickup and delivery locations observed at

Grubhub, along with expected travel times connecting

location pairs. We use a variety of problem sizes to char-

acterize the performance of enumerative, MIP, CP, and

hybrid models, and attempt to provide advice regard-

ing which techniques are most appropriate for real-time

optimization given varying time budgets and problem

sizes.

Contributions of this paper include extensive com-

putational experiments using these models for solving

TSPPD instances, along with guidance for which tech-

niques work best quickly and how they can be hybridized

effectively. Our test set and source code for all model

implementations are available for continued experimen-

tation [20, 32]. Further, in the CP model implemen-

tation, we compare different forms of precedence that

operate on circuit constraints, and provide a complete

description of a propagator that enforces precedence

without the use of time windows. Finally, we explore

different branching forms for CP applied to the TSPPD.

2 Background

The Traveling Salesman Problem with Pickup and De-

livery (TSPPD) is a modification of the Traveling Sales-

man Problem (TSP) that includes side constraints en-
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-i

-j

-0

Fig. 1 Example TSPPD graph structure.

forcing precedence among pickup and delivery node pairs.

Each of n requests has a pickup node and a delivery

node, and its pickup must occur before its delivery for

a route to be feasible. The objective of the problem is

to minimize total distance traveled while visiting each

node exactly once. The TSPPD is formally described

in Ruland and Rodin (1997) [38] and Dumitrescu et al.

(2010) [12].

2.1 The TSPPD Polytope

The TSPPD is defined on an ordered set of pickup

nodes V+ = {+1, . . . ,+n} and associated delivery nodes

V− = {−1, . . . ,−n} such that (+i,−i) form a request

and +i must precede −i in a feasible route. V is de-

fined as the union of V+ and V− with the addition of

origin and destination nodes {+0,−0}. E± is the set of

edges connecting V+∪V−. E is the union of E± with all

feasible edges connecting to the origin and destination

nodes. The graph G = (V,E) includes all nodes and

edges required to describe the TSPPD.

V = {+0,−0} ∪ V+ ∪ V−
E = {(+0,−0)} ∪ {(+0,+i) | i ∈ V+}
∪ {(−0,−i) | i ∈ V−} ∪ E±
For modeling convenience, the edge (+0,−0) must

be included in any feasible solution. The set of edges

E is defined such that it includes only feasible edges.

That is, it is not possible that a TSPPD route begins

with a delivery or ends with a pickup. Figure 1 shows

an example of the feasible edges for a TSPPD with

two requests. Note that it is possible to use the same

formulation to solve Hamiltonian paths with precedence

rather than circuits by simply assigning a cost of zero

to the (+0,−0) edge.

2.1.1 The Symmetric TSPPD

In the case of the symmetric TSPPD (STSPPD), each

edge (i, j) ∈ E is the same as the edge (j, i) and has
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the same costs and edge variables. cij specifies a non-

negative cost for each edge (i, j) ∈ E. By convention,

c+0,−0 = 0. xij ∈ {0, 1} is a binary decision variable for

each (i, j) ∈ E with the value xij = 1 if the edge (i, j)

is in a solution and 0 otherwise. δ(S) = {(i, j) ∈ E | i ∈
S, j /∈ S} is the cutset containing edges that connect

S ⊂ V and S̄ ⊂ V . For any node i ∈ V , δ(i) = δ({i}).
The STSPPD is defined using Formulation 1, as in Ru-

land and Rodin (1997) [38].

min
∑

(i,j)∈E

cijxij

s.t. x+0,−0 = 1 (1)

x(δ(i)) = 2 ∀ i ∈ V (2)

x(δ(S)) ≥ 2 ∀ S ⊂ V (3)

x(δ(S)) ≥ 4 ∀ S ⊂ V, {+0,−i} ⊂ S,
{−0,+i} ⊂ V \ S (4)

xij ∈ {0, 1} ∀ (i, j) ∈ A

Formulation 1: STSPPD as provided by Ruland and Rodin [38]

Constraint (1) requires that the edge connecting the

origin and destination nodes be part of any feasible

solution. The degree constraints (2) require that each

node is entered and exited in all feasible routes, but by

itself leaves open the possibility of disconnected sub-

tours. Constraints (3) accomplish subtour elimination,

forming a complete representation of the TSP. The fi-

nal set of constraints (4) require that pickups occur in

routes before their respective deliveries [38].

2.1.2 The Asymmetric TSPPD

The asymmetric TSP (ASTP) polytope can be similarly

adapted to the asymmetric TSPPD (ATSPPD) by as-

sociating the x variables with arcs (i.e. directed edges)

and replacing the two-degree constraints with assign-

ment constraints. Instead of an edge set E we define an

arc set A which contains only the feasible arcs for the

ATSPPD.

A = {(−0,+0)}
∪ {(+0,+i) | + i ∈ V+}
∪ {(−i,−0) | − i ∈ V−}
∪ {(+i, j) | + i ∈ V+, j ∈ (V+ ∪ V−) \ {+i}}
∪ {(−i, j) | − i ∈ V+, j ∈ (V+ ∪ V−) \ {+i,−i}}

Formulation 2 is more general since it supports arc

costs that are not the same bidirectionally. Further, it is

intuitively satisfying to consider the TSPPD this way,

as there is a natural asymmetry built into the structure

of the problem: pickups must precede their associated

deliveries. As in Formulation 1, the x−0,+0 arc connect-

ing the start and end nodes must be part of any feasible

tour, +0 must connect to a pickup, and −0 must be

preceded by a delivery. One small additional difference

is that Formulation 2 does not include x variables for

arcs starting at a delivery and ending at its associated

pickup.

min
∑

(i,j)∈A

cijxij

s.t.
∑

(i,j)∈A

xij = 1 ∀ i ∈ V (5)

∑
(i,j)∈A

xij = 1 ∀ j ∈ V (6)

x(δ(S)) ≥ 1 ∀ S ⊂ V (7)

x(δ(S)) ≥ 4 ∀ S ⊂ V, {+0,−i} ⊂ S,
{−0,+i} ⊂ V \ S

xij ∈ {0, 1} ∀ (i, j) ∈ A (8)

Formulation 2: ATSPPD

In Formulation 2, constraints (5) and (6) require

that each node directly precede and follow exactly one

other node. Constraints (7) accomplish subtour elim-

ination, while precedence is enforced using the same

constraints as in Formulation 1.

2.2 Enumerative Methods

One reason solving TSPs is challenging is that the num-

ber of feasible solutions grows as a factorial function of

the number of nodes. Yet enumeration may still be a

valid technique for solving small TSPPDs. If it is guided

by some information about the problem, enumeration

may be able to discover good routes quickly without

any overhead of model formulation.

In addition to more sophisticated models, we also

consider an enumerative approach. Our purpose is to

determine which size problems enumeration can suc-

cessfully solve, and at which point sophisticated mod-

eling techniques tend to more effectively solve the prob-

lem. Algorithm 1 uses a recursive function to search the

feasible set of TSPPD routes, while tracking the best

solution discovered at each point in the search tree.

This algorithm maintains a current node and a par-

tial tour starting at +0. Every recursion loops over the

arcs from the current node and appends each feasible

one to the tour individually prior to recursing. If an

arc’s added cost puts a partial route’s cost over that of



Exact Methods for Solving TSPPDs in Real Time 5

Algorithm 1 Enumerative TSPPD Solver
function Initialize

for all i ∈ nodes do
arcs(i) ← ordered {j | j ∈ nodes \ {+0,−0}, j 6= i}

end for
tour ← (+0)
best ← ∅

end function

function Enumerate
n1 ← last node in tour
for all n2 ∈ arcs(current) do

if n2 ∈ tour then
continue

else if cost(tour) + cost(n1, n2) ≥ cost(best) then
continue

else if n2 ∈ V− and pickup(n2) /∈ tour then
continue

end if

tour ← tour + next
if |tour| ≥ n− 1 then

c← cost(tour) + cost(n2, −0)
if best = ∅ or c < cost(best) then

best ← tour +− 0
end if

else
Enumerate()

end if
tour ← tour − next

end for
end function

Initialize()
Enumerate()

the best known tour, that arc is ignored and its section

of the search tree effectively fathomed. If a complete

tour improves the best known solution, it is stored as

the new incumbent.

The key to effective search and early discovery of

good solutions is the ordering technique for arcs. Dur-

ing initialization, each node is assigned a sorted vec-

tor of next nodes. We use ascending arc cost as our

sorting function, and others can be easily incorporated.

Nodes that are infeasible for the current partial route

are skipped.

A symmetric TSP instance with n pairs of nodes has

#TSP (n) = 1
2 (2n− 1)! unique solutions [26], while a

TSPPD of the same size has #TSPPD (n) = (2n)!
2n [38].

The size of the feasible set of the TSPPD grows slower

with respect to the number of node pairs than that of

the TSP. Obviously, the set of feasible solutions of the

TSPPD is a subset of the feasible solutions to the TSP.

Allowing only pickup and delivery node pairs in the

route with precedence relations reduces the size of the

TSP feasible set by 1
2n−1 [38].

With fewer feasible solutions, the worst case com-

plexity of solving a TSPPD instance via enumeration

is technically better than the TSP. As side constraints

such as time windows or capacity constraints are added,

the size of the feasible set reduces further. However,

that size may no longer have a closed form solution [6].

As we shall see in the next sections, the classical

technique of solving a TSP through relaxation of con-

straints can yield infeasible solutions, requiring the ad-

dition of more constraints to the model during solution.

As more side constraints are added to the model, they

can complicate the search or model structure. Branch-

and-cut approaches relax the integrality constraints and

work to tighten the Linear Programming relaxation by

adding cuts and by restricting the range of the values

for the integer values. In contrast, Constraint Program-

ming, works directly on the original model and uses

logical implications within a tree-search to tighten the

feasible range for the integer variables.

2.3 Mixed Integer Programming Methods

While formulations 1 and 2 give complete representa-

tions of the STSPPD and ATSPPD polytopes, the num-

ber of subtour elimination and precedence constraints

grow quickly as a function of the number of nodes. Most

exact approaches to the TSP and its variants solve a

relaxation of the problem that omits these constraints,

and add constraints to the representation as they are vi-

olated by new solutions. This is embodied in a method-

ology called branch-and-cut, which relaxes the subtour

elimination constraints as well as the integrality con-

straints as in Dantzig et al. (1954) [10]. Padberg and

Rinaldi (1991) [33] refine the technique by using addi-

tional polyhedral cuts and including the Lin-Kernighan

heuristic [27]. This general approach is the primary one

used to prove optimality for large TSPs over the last

several decades.

The primary motivation for the study presented here

is obtaining very good solutions in milliseconds to rel-

atively small TSPPD instances. Branch-and-cut meth-

ods have disadvantages in this domain. They are chal-

lenging to implement when adding subtour elimination

constraints (SEC) as well as combs, ladders, and other

constraints including those described in Dumitrescu et

al. (2010) [12], and therefore require a great deal of

modeling overhead.

2.3.1 Combinatorial Relaxations

Instead of beginning our search in fractional space, it

may make more sense to adopt an approach similar to

that of Pferschy and Staněk (2016) [36] and Aguayo

et al. (2018) [1], and only consider integer-feasible so-

lutions to two-matching or assignment models. In this
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approach we solve a combinatorial relaxation contain-

ing only the degree constraints. SEC are added within

the branch-and-bound search tree as they are violated.

Such constraints are implemented as “lazy” constraints

within the solver, which are allowed to cut off integer-

feasible solutions and are checked whenever a new can-

didate solution is found.

We take the same approach with the TSPPD: solve a

relaxation of the problem using only degree constraints

(2) for the STSPPD, or constraint sets (5) and (6)

for the ATSPPD. When a candidate solution is found,

check to see if it contains subtours or violates prece-

dence. If so, add SEC and precedence constraints as

appropriate. Once a tour covering all nodes and satis-

fying presence constraints is found, that tour is optimal.

As integer-feasible solutions are discovered in the

branch-and-bound tree, they are scanned for subtours.

T is the set containing all sets of nodes in a tour in

the current solution. If T > 1, then for each set of

nodes corresponding to a subtour S ∈ T , we add a lazy

constraint of either the form (3) or (7), eliminating that

subtour from future solutions.

Constraints (3) or (7) remove a given subtour from

the final solution. Thereafter, not all edges in the sub-

tour can exist in any new solution. An alternative and

equivalent formulation of the constraint is shown as (9)

below. We call constraints (3) and (7) the “cutset” form

and constraint (9) the “subtour” form, respectively.

∑
i,j∈S

xij ≤ |S| − 1 (9)

The different SEC formulations achieve the same

end, but impact different sets of edges. In particular,

constraint set (9) includes not only the edges found in

a disconnected subtour, but all edges connecting the

nodes in the subtour S. This inclusion of additional

edges makes the constraint stronger, and follows from

the observation that only |S| − 1 edges from a subtour

can be in a Hamiltonian circuit, and that circuit is com-

prised of n edges, including (+0,−0) in the case of the

TSPPD. If only |S| − 1 edges from a subtour can be in

the final tour, there must be n− (|S| − 1) = n− |S|+ 1

edges that are not part of the subtour in the final solu-

tion.

Pferschy and Staněk (2016) [36] investigate the ben-

efits of switching between constraints (9) and (3), ob-

serving that the solution time for a MIP tends to in-

crease with the density of its constraint matrix. They

choose between the two formulations based on the num-

ber of nodes in each subtour as in the form (10).

∑
i,j∈S

xij ≤ |S| − 1 if |S| ≤ n+1
3

x (δ (S)) ≥ 2 if |S| > n+1
3

(10)

We integrate SEC into the TSPPD by first elimi-

nating subtours in Gurobi’s callback. Once there is only

one tour, that is, |T | = 1, the current solution is a valid

TSP solution. We then scan it for precedence violations

as described in algorithm 2, adding lazy cuts using con-

straint (4) as precedence violations are found.

Algorithm 2 TSPPD MIP Precedence Callback
tour ← an ordered vector starting at +0 and ending at −0
S ← ∅
for all i ∈ {1, . . . , n} do

current ← tour(i)
S ← S ∪ {current}
if current ∈ V− and pickup(current) /∈ S then∑

i∈S, j∈V \S xij ≥ 4

end if
end for

Figure 2 shows the median log time to prove opti-

mality for TSP and TSPPD instances of different sizes

based on the SEC forms described in Pferschy and Staněk

(2016) [36]. For each problem size we generate 25 in-

stances with random node locations drawn uniformly

from a square region. The subtour form uses constraint

(9), while the cutset form uses constraint (3). The hy-

brid form switches between these forms as in constraint

(10).

Pferschy and Staněk (2016) [36] use the SCIP opti-

mization solver, adding SEC at the end of the optimiza-

tion and re-optimizing if subtours are found [29]. Our

implementation uses lazy constraints in Gurobi [21]. We

observe some of the same effects in TSPs that they do,

namely the subtour form dominates the cutset form in

performance, and the hybrid form is most effective in

larger instances, particularly those over 50 nodes. We

don’t observe much benefit to using hybrid SEC for

the TSPPD, and therefore opt to use the subtour form

shown in constraint set (9) for the remainder of the

paper.

Our version of the MIP model for solving the TSPPD

thus starts by finding infeasible solutions and works to-

ward feasibility through the addition of SEC and prece-

dence constraints. While this can be very effective for

optimization, it does mean that feasibility may not be

realized early in the search without some external modi-

fication of the solution. As with other MIP exact solvers,

we warm start the search with solutions from a CP

search.
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Fig. 2 Median time to prove optimality of SEC forms.

2.4 Polynomial Length ATSPPD Models

Not all TSP formulations require relaxation. A number

of models contain constraints that imply the Dantzig-

Fulkerson-Johnson subtour elimination constraints. Per-

haps most notably, the Miller-Tucker-Zemlin formula-

tion use variables to indicate which position each node

is in a feasible tour [31].

Sarin et al. (2005) [39] introduce a polynomial-length

ATSP model based on an assignment problem formula-

tion. Their model uses x variables to represent directed

arcs that indicate direct precedence and y variables to

indicate route precedence. If xij = 1 then i directly pre-

cedes j, and if yij = 1 then i precedes j but need not

directly precede it. This models is given in Formulation

3.

min
∑

(i,j)∈A

cijxij

s.t.
∑

(i,j)∈A

xij = 1 ∀ i ∈ V

∑
(i,j)∈A

xij = 1 ∀ j ∈ V

xij ≤ yij ∀ i, j ∈ V (11)

yij + yji = 1 ∀ i, j ∈ V, i 6= j (12)

yij + xji + yjk + yki ≤ 2 ∀ i, j, k ∈ V, i 6= j 6= k

(13)

xij ∈ {0, 1} ∀ i, j ∈ V, i 6= j

0 ≤ yij ≤ 1 ∀ i, j ∈ V, i 6= j

Formulation 3: The ATSP Formulation of Sarin et al. [39]

Constraints (11) establish the relationship between

route and direct precedences. Constraints (12) require

that, for each pair of nodes, one must precede the other.

Subtour elimination is handled through route prece-

dence using constraints (13). The ATSP model of Sarin

et al. (2005) [39] conveniently adapts to the ATSPPD

by setting y+0,i = yi,−0 = 1 for all i ∈ V \{+0,−0}, and

all y+i,−i = 1, which we present results for in section 4.

2.5 Constraint Programming Methods

A common CP formulation of the TSP employs a vector

of successors as its primary decision variable [9, 17, 35].

Given nodes V , next is a vector of length n = |V | where

each position is associated with a single node and is

assigned the value of the node that comes directly after

it in the tour.

next ∈ V n

Caseau and Laburthe (1997) [9] constrain the model

such that no node can succeed itself, each node has a

unique successor, and there are no cycles in any feasible

solution. In their version, the alldifferent global con-

straint is implemented using a standard library. They

enforce nocycle in Formulation 4 by failing solutions

that contain multiple subtours throughout the search

tree [9, 24].

nexti 6= i ∀ i ∈ V
alldifferent(next)

nocycle(next)

Formulation 4: TSP Feasible Space
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Some modern constraint solvers such as Gecode pro-

vide a circuit constraint, which efficiently handles prop-

agation for all of these and guarantees that a vector

forms a Hamiltonian circuit in any feasible solution

[19, 24]. Using this constraint simplifies the model.

circuit(c, next, z)

The circuit constraint accepts a variable into which

it propagates the total circuit length, along with a ma-

trix of arc costs [19]. Therefore the feasible set and ob-

jective function of the TSP can be fully represented

using the fairly simple CP Formulation 5.

min z

s.t. circuit(c, next, z)

next ∈ V n

Formulation 5: Circuit-Based TSP Formulation

Formulation 5 is advantageous in that it fully de-

scribes the TSP for n nodes. No additional constraints

related to subtour elimination need to be generated dur-

ing search. At each step in the search tree, constraint

propagation maintains a domain relaxation of the next

vector that has not been proven infeasible. If any ele-

ment of that vector is reduced to an empty domain, the

solver fails that section of the search tree and continues

its search elsewhere.

When it comes to the pickup and delivery portion

of the TSPPD, there is less clarity in the modeling ap-

proach. Well studied constraints exist in the CP litera-

ture for implementing value precedence on vectors [25].

However, these constraints do not operate on successor
vectors such as next.

Implementations of precedence on circuits are de-

scribed in general terms in the CP literature in rela-

tion to the TSP with time windows (TSPTW), and

rely on the computation of times for node arrivals and

comparison of those arrival or execution times to feasi-

ble windows [5]. These formulations enforce precedence

among pickup and delivery pairs using the cost of the

tour upon visiting each node. A delivery’s cost must be

at least that of its associated pickup plus the cost of

traveling along their connecting arc. We refer to this as

“cost-based precedence”.

Such a formulation is intended to operate on TSPs

where there are time windows during which events must

occur. This concept is not found in the pure TSPPD,

in which precedence may be more directly modeled on

circuits using set-based variables and constraints.

The most complete description we have found of a

precedence constraint which solely encodes the prece-

dence relations in a circuit is described in Focacci et

al. (2002) [16]. Their formulation maintains predecessor

and successor sets for each node. They use this mecha-

nism to detect when additional nodes must be inserted

between node pairs, and to assist in domain reduction

on the next vector. We adapt and formalize this repre-

sentation for the TSPPD in section 3.2 and compare it

to the cost-based precedence used for the TSPTW.

2.5.1 Branching and Propagation

A CP solver’s search over a model’s feasible space is

guided by branching on variable domains. At each branch

point, the domains of a variable or set of variables

are reduced. The constraints of the model propagate

these changes into the domains of other variables in

the model that are either directly or indirectly related

to the branching variables. When a variable’s domain

is reduced to a single value, it is assigned that value

for any nodes further down the search tree. If propaga-

tion reduces a variable’s domain to the empty set, that

segment of the search tree fails and is removed from

consideration.

Unlike MIP solvers that obtain lower bounds from

the LP relaxation, CP solvers traditionally do not natu-

rally include a mechanism for obtaining relaxation bounds

for the problem. Instead, VP uses propositional logic

and clever search techniques to fathom major parts of

the tree and is often stopped as soon as a feasible so-

lution is found. Thus, it is more often used as a satis-

fiability algorithm than as an optimization procedure.

There are some papers that explore the integration of

reduced cost and dual bound computations into CP

search [16, 17, 30]. We present test results for such for-

mulations in section 4.

It is well established that the path or circuit con-

straints of CP solvers are not effective at finding opti-

mal TSP solutions on their own [17]. In order to aid

the optimization process, we direct the search through

branching rules and additional propagation based on

objective value bounds. As has long been understood

with MIP, dynamic variable selection is fundamental

to fast solution of problems in CP, particularly when

such problems require optimization of some objective

function [35].

Often, CP modelers adopt heuristic techniques to

determine variable branching order and choose the most

profitable assignments. One such variable selection tech-

nique is the first-fail heuristic, in which the variable

with the smallest domain at the current point in the

search tree is branched on, generating early failures in

an attempt to fathom sections of the search tree quickly.

Both Caseau and Laburthe (1997) [9] and Pesant et

al. (1998) [35] use first-fail as a component in their
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branching schemes to select among the unassigned next

variables.

Pesant et al. (1998) [35] use a branching strategy

that adds a tie-breaking rule to first-fail. If two

variables have the same, minimal, domain cardinality,

they select the one that appears in more domains of

other unassigned variables. They then assign successor

nodes to the branching variable in increasing order of

their cost, measured by the arc cost incurred by fixing

the connection between the branching variable and its

assigned successor.

Caseau and Laburthe (1997) [9] offer a more sophis-

ticated branching scheme, which incorporates a regret

heuristic. At each node in the search tree, the regret

for any unassigned node i in the next vector is the dif-

ference between its two closest, or lowest cost, feasible

assignments, j1 and j2, as shown in equation (14).

regret(i) = |cij1 − cij2 | (14)

Branching on variable regret can help a CP solver

make good choices early in the search. Consistent with

this idea is the view of regret as an approximation of re-

duced costs of an assignment problem (AP) relaxation

of the TSP [17]. A weakness of the regret heuristic is

that it is not as straightforward in adapting to side con-

straints as some others, such as closest neighbor (CN),

which implements a pure greedy strategy. CN branch-

ing is easily modified to respect innately precedence

rules by starting at +0 and always branching on the

least cost feasible arc at the end of the current partial

route. We call this branching scheme Sequential Clos-

est Neighbor (SCN). Regret branching is not so easily

adapted, in our experience, and requires effective prop-

agation using decisions made about partial routes.

2.5.2 Bounding Techniques

A particular difficulty in using CP techniques for opti-

mization is the handling of objective functions. A stan-

dard approach is to assign a variable to the objective

value. When a new incumbent solution is found, we re-

quire that all subsequent solutions be better than our

best known solution. Meanwhile, as other variable do-

mains are restricted as a result of choices in the search

tree, lower bounds are set on the objective variable.

This allows the solver to fathom sections of the search

tree that cannot perform as well as the current incum-

bent solution [17]. In a CP system such as Gecode, this

requires adding a constraint on the cost z < z∗ when

a new incumbent solution with cost z∗ is discovered in

the search tree.

Caseau and Laburthe (1997) [9] and Pesant et al.

(1998) [35] explore three different mechanisms for es-

tablishing lower bounds on TSP cost at each branch in

the search tree. CN bounds are computed by summing

the cost of assigning each node to the closest node in

its domain. These bounds are easy to compute, but my-

opic and tend not to be tight. Such bounds are easily

computed as part of variable domain propagation in the

circuit constraint, and thus do not require an explicit

representation.

More sophisticated bounds involve computing a Min-

imum Spanning Tree (MST) over the domain of the

next vector. A MST does not require that its solu-

tion form a tour and thus underestimates the cost of

the TSP. Computing MSTs is fast and it is possible to

quickly update the solutions within the search tree us-

ing an incremental form of Kruskal’s algorithm [9, 35].

Alternatively, one can derive bounds from a Mini-

mum Spanning Arborescence (MSA) over the domain

of the next vector. A MSA forms a directed spanning

tree from the root towards its leaves. MSAs can be com-

puted in O(EV ) time using Edmonds’ algorithm [13].

More recent refinements of the algorithm can also be

deployed that find an MSA in O(E + V log V ) time

[18].

Focacci et al. (1999) [17] and Focacci et al. (2002)

[16] explore the idea of using relaxations during the

search that provide both dual bounds and reduced cost

information for variable fixing and triggering further

propagation. They implement an Assignment Problem

(AP) relaxation of the TSP using the feasible domain

of next in the search tree, and another vector prev,

which is the inverse of next. Only feasible arcs at the

current location in the search tree are included in the

AP relaxation.

The AP relaxation can be solved in O(n3) time at

the root node in the search tree, and in O(n2) time upon

domain changes throughout the tree using augmenting

path steps [8]. A reduced cost matrix is computed as

part of these updates, and can be then used to prune

variable domains from next. Empirical results show this

technique is more efficient with respect to solution time

than MST-based dual bounds due to its relatively low

computational complexity [16, 17].

2.5.3 Additive Bounding & 1-Tree Relaxations

Benchimol et al. (2012) [4] explore techniques to in-

crease filtering of weighted circuit constraints by com-

bining AP relaxations with 1-tree relaxations obtained

from Held-Karp bounds [22, 23]. They combine these

two relaxations within the additive bounding frame-

work of Fischetti and Toth (1992) [14]. This procedure
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uses one relaxation to compute an initial dual bound

and set of reduced costs, then applies subsequent re-

laxations of different forms directly to the reduced cost

matrix resulting from the initial relaxation. The final

dual bound is the sum of the objective values of the var-

ious relaxations. The reduced cost matrix is provided

by the final relaxation applied [14].

Additive bounding can provide tighter dual bounds

than individual relaxations because each relaxation in-

corporates different constraints from the original model.

For instance, an AP relaxation has degree constraints

but will allow subtours, while a 1-tree relaxation dis-

allows subtours while not enforcing degree constraints.

Combining the relaxations can enhance filtering inside

a CP search and may result in dramatically smaller

search trees, as shown in Benchimol et al. (2012) [4].

We attempt to improve the runtime of our CP mod-

els against TSPPD instances using a similar technique.

However, while incremental AP relaxations fit easily

into real-time optimization since AP updates require

a single execution of an O(n2) algorithm with each

relevant variable domain change, adapting 1-tree re-

laxations to the demands of real-time systems is not

so straightforward. Computing an optimal 1-tree re-

laxation requires repeated applications of an algorithm

such as Kruskal’s, each of which runs in O(m log n) time

[4, 40].

Detecting convergence of the 1-tree bound is non-

trivial and based on subgradient techniques [15]. Each

iteration involves calculating node potentials which pe-

nalize nodes that do not have a degree of two, as in

(15). tm is the current step size, while dmi is the de-

gree of node i in iteration m. The node potentials π

are added into the edge costs for the next 1-tree as

cij + πi + πj , where cij is the original edge cost. Since

a TSP tour incurs each node potential cost twice, the

TSP is invariant to these node potentials, while the 1-

tree is not [23]. Converting a 1-tree bound into a TSP

bound simply involves subtracting each node potential

twice from the 1-tree cost.

π1
i = 0 ∀ 1 ≤ i ≤ n
πm+1
i = πm

i + tm(dmi − 2) ∀ 1 ≤ i ≤ n (15)

A number of mechanisms exist for updating the step

size tm. We compute 1-trees using a fixed number of

iterations, as outlined in Valenzuela and Jones (1997)

[40]. The formula (16) gives a step size update that

works on a fixed number of iterations, where L1 is the

first 1-tree objective value, m is the current iteration,

M is the total number of iterations, and n is the number

of nodes in the graph.
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Fig. 3 Optimality gap of Held-Karp bounds.

t1 = 1
2nL

1

tm = t1
(

(m− 1) 2M−5
2(M−1) − (m− 2) + (m−1)(m−2)

2(M−1)(M−2)

)
(16)

The Held-Karp bound at a node in the CP search

is thus the maximum objective in terms of the origi-

nal edge costs from a series of M 1-tree computations.

Variable domain filtering can be accomplished using

either marginal costs per Benchimol et al. (2010) [3]

or by computing reduced costs directly. While we ob-

serve both improvements in runtime and search tree size

for TSP instances using the 1-tree relaxation and addi-

tive bounding, those benefits do not translate readily to

TSPPD instances in our implementation. This appears

to be because the 1-tree bounds degrade significantly

in the presence of precedence constraints.

Figure 3 shows median and maximum optimality

gaps of the Held-Karp bound after a fixed number of it-

erations against TSP and TSPPD instances by number

of nodes. We use the Grubhub test instances, described

in section 4. The TSP instances are simply the TSPPD

instances with the precedence constraints relaxed. Opti-

mality gap is computed as (z∗−w∗)/w∗ where z∗ is the

true optimal solution to a TSP or TSPPD instance, re-

spectively, and w∗ is the 1-tree objective value in terms
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of the original edge costs at the root node of the search

tree after a fixed number of iterations.

We observe that, as problem size grows, the Held-

Karp bound remains quite good for TSP instances, while

degrading quickly for TSPPD instances. In the update

mechanism we use, the benefit of increasing the number

of iterations drops sharply from 25 to 100. Further, the

spread of the optimality gap appears to decrease for the

TSP with increased iterations, but not for the TSPPD.

We believe that this challenge is due to the structure

of the Held-Karp bound when applied to TSPPD in-

stances. The bound itself is based on undirected graphs,

while the TSPPD is fundamentally a directed problem

(pickups must precede deliveries). Results against TSP

instances indicate that adapting the Held-Karp bound

to the TSPPD may be a worthy endeavor, but we do

not consider it further in this paper.

3 Approach

Our goal in this study is not to directly compare MIP

and CP methods. While the latter can outperform MIP

for certain problem classes, MIP solvers have been tra-

ditionally designed and built expressly for optimization.

Rather, we hope to observe the impact of pickup and

delivery structure applied to small TSPPD instances

which must be solved in “real time”, when high quality

routes must be constructed within seconds or millisec-

onds in response to events during an operational period.

Intuitively, we understand that additional constraints

complicate the search for MIP solvers, while support-

ing it for CP. It is less clear how precedence impacts

solution time, and whether those solution times can be

improved through hybridization, i.e. using components

of more than one standard algorithm.

3.1 Mixed Integer Programming TSPPD Models

We base our MIP implementation of the TSPPD solver

on that of Pferschy and Staněk (2016). There are a few

points where our underlying TSP implementation di-

verges from theirs. First, they use the SCIP solver as

their optimization engine, while we use Gurobi [21, 29].

They mention the possibility of using lazy constraints

for SEC but do not actually implement and test this ap-

proach. We implement subtour elimination inside lazy

constraints using inequality (9) in our implementation

and precedence constraints using inequality (4).

Once a single tour is found in the search tree, we

scan it for precedence constraint violations. If a partial

route S exists such that +0,−i ∈ S and −0,+i /∈ S, we

add a lazy constraint using inequality (4). This results

in model (1).

Algorithm 2 detects precedence violations given fea-

sible tours by starting at +0 and following the directed

tour from that node. If it finds a delivery that oc-

curs before its associated pickup, it adds a lazy con-

straint. For comparison, we also test the asymmetric

polynomial-length model in Formulation 3 with prece-

dence of pickup and delivery pairs enforced by setting

y+i,−i = 1 for each pair (+i,−i).

3.2 Constraint Programming TSPPD Model

3.2.1 Cost-Based Circuit Precedence

The addition of pickup and delivery precedence rela-

tions to the CP TSP model requires a constraint that

fails the search tree when they are violated and removes

infeasible values from variable domains in response to

branching decisions. Berbeglia et al. (2012) [5] give a

formulation that enforces precedence using the times

that events occur, a common structure in TSPTW mod-

els.

Since the pure form of the TSPPD does not include

time windows, we think of this as cost-based prece-

dence, as formulated in (17). A cost vector encodes

the cumulative route cost at every node. Each delivery

−i ∈ V− must have a cost greater than or equal to its

associated pickup +i.

min z

s.t. circuit(c, next, z)

circuit-precede-cost(next, cost)

next−0 = +0

cost+0 = 0

cost−i ≥ cost+i ∀ +i ∈ V+
next ∈ V n

cost ∈ Nn

z ≥ max cost

(17)

A custom propagator circuit-precede-cost de-

tects when a branching decision is made such that nexti =

j in the search tree, either directly through branching

or as a result of propagation. The assignment of next−0
is required by the model and ignored during propaga-

tion. When any other variable nexti is assigned a value

j in the search tree, the cost i must now be equal to

the cost of j plus the cost of their connecting arc. This

is achieved through a local constraint of the form (18).

nexti = j =⇒ costj = costi + cij (18)
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3.2.2 Set-Based Circuit Precedence

It is also possible to enforce precedence more directly

using set variables, as Focacci et al. (2002) [16] out-

line. Our implementation uses vectors of predecessor

and successor nodes called pred and succ, respectively,

that track which nodes must and must not precede and

succeed each node based on the current structure of par-

tial routes in the solution. The TSPPD CP formulation

using set precedence is shown in Formulation 19.

A custom propagator circuit-precede-set is trig-

gered whenever an assignment to next is made. The ori-

gin node, +0, must have an empty set of predecessors,

while the destination node, −0, must have an empty set

of successors. No node’s predecessor and successor sets

are allowed to intersect. A pickup’s successor set must

be a superset of its associated delivery’s successor set,

and the delivery’s predecessor set must be a superset of

the pickup’s predecessor set.

min z

s.t. circuit(next, z)

circuit-precede-set(next, pred, succ)

next−0 = +0

+i ∈ pred−i ∀ −i ∈ VD
−i ∈ succ+i ∀ +i ∈ VP
predi ∩ succi = ∅ ∀ i ∈ V
pred−i ⊂ pred+i ∀ +i ∈ V+
succ+i ⊂ succ−i ∀ +i ∈ V+
pred+0 = ∅
succ−0 = ∅
next ∈ V n

pred ∈ {V n}n
succ ∈ {V n}n
z ≥ 0

(19)

The assignment of next−0 is required by the model

and ignored during propagation. When any other vari-

able nexti is assigned a value j in the search tree, the

successor set for i must now be equal to the successor

set of j with the addition of j itself. Similarly, the prede-

cessor set of j must now be equal to the predecessor set

of i with the addition of i. Our circuit-precede-set

constraint shown in (20) accomplishes this by adding

local constraints to the current branch of the search

tree upon assignment of any nexti.

nexti = j =⇒ predj = predi ∪ {i}
succi = succj ∪ {j}

(20)

next+i = +j =⇒ −i ∈ succ+j

−j ∈ succ+i

next+i = −j =⇒ −i ∈ succ+j

−i ∈ succ−j
+j ∈ pred+i

+j ∈ pred−i

next−i = +j =⇒ +i ∈ pred+j

+i ∈ pred−j
−j ∈ succ+i

−j ∈ succ−i

next−i = −j =⇒ +i ∈ pred−j
+j ∈ pred−i

(21)

Further propagation is accomplished by explicitly

adding to and removing values from the predecessor

and successor sets upon propagation of nexti = j, de-

pending on the values of i and j and what is known

about their precedence relations, as shown in (21). This

allows failures to be detected early in the search tree.

Set-based precedence operates directly on precedence

structure and does not require time windows. However,

it may be beneficial to combine both forms in cases

where there is precedence structure and time windows

on event times. We study a final form of precedence

constraint that combines the cost and set-based form

by simply applying both of them.

3.3 Hybrid TSPPD Models

Milano et al. (2001) [30] characterize the benefits of

incorporating optimization procedures and CP into the

same framework. We attempt two hybrid methods for

tackling the TSPPD. In the first, we incorporate AP

relaxations for reduced cost variable fixing into our CP

TSPPD model, similar to its application to the TSPTW

by Focacci et al. (2002) [16]. In the second, we attempt

to combat the issue of MIP starting its search far from

feasibility by using a CP model to find solutions quickly,

and warm-starting the MIP solver with the best known

solution after a given time limit.

3.3.1 Reduced Cost-Based Domain Filtering

We implement reduced cost-based variable fixing as a

custom propagator inside of Gecode CP framework.

The propagator subscribes to value assignments on each

index of the next vector. When first triggered, the prop-

agator initializes and solves the primal-dual AP solving
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algorithm of Carpaneto et al. (1988) [8], an operation

that takes O(n3) time. When subsequent assignments

to next occur in the search tree, the propagator per-

forms an augmenting path update in O(n2) time.

The custom propagator tracks which variables are

currently unassigned. When a branching decision is made

such that nexti = j, the propagator forces the primal-

dual algorithm to set row i to column j in its internal

matrix, and removes any conflicting assignments from

consideration. For each unassigned variable nexti and

each j in the domain of nexti, the AP relaxation pro-

vides a reduced cost rcij . It also provides a dual bound

w∗ for the objective function of the TSPPD at that lo-

cation in the search tree. If, for any feasible arc (i, j),

w∗ + rcij ≥ ẑ, where ẑ is the upper bound on the ob-

jective function, we infer that nexti 6= j.

3.3.2 MIP Warm Starting

We study a second form of integration by using CP to

warm start MIP. As previously discussed in section 1.2,

side constraints can make MIP implementations take

longer to find feasible solutions. We address this behav-

ior by using our CP implementation to find good solu-

tions quickly, and then warm starting the MIP solver

with them. This not only provides primal bounds to the

MIP solver, but also gives it a neighborhood in which

to search. We test the warm starting technique using

different time budgets on the CP solver.

4 Results

We test enumerative, MIP, CP, and hybrid forms of

the TSPPD models using instances constructed from

pickup and delivery locations observed at Grubhub,

along with expected travel times connecting location

pairs. The test set has 10 instances per problem size.

This allows us to gauge the performance of the mod-

els on realistic problems from meal delivery, in which

pickup locations are likely to be clustered close together,

and there may be many near optimal solutions that

would have to be considered to prove optimality.

We evaluate the models according to multiple crite-

ria: the time taken to find a first feasible TSPPD route,

the time to find a route within 10% of the true opti-

mum, the time to find an optimal route, and the time

to prove optimality. The first three measures are im-

portant to real-time logistics, where high quality routes

must be found quickly and there may not be enough

time to optimize fully. The final measure quantifies the

capacity of model formulations and algorithms to opti-

mize. We use time to prove optimality as a proxy for

general algorithmic performance while selecting config-

urations. Not all modeling techniques surveyed have ac-

cess to global dual bounds, so we measure optimality

gap of primal solutions from the true optimum.

Charts report the median and maximum of execu-

tion times for each problem size and model configura-

tion with the vertical axis scaled to log time. These

measures are useful in choosing models for production

systems because they give us a sense of typical per-

formance and poor performance in terms of execution

time. Given a target problem size and time budget, we

can use the results of these test to determine the best

approach for a given TSPPD problem size. Execution

times are limited to 1000 seconds. Any model configu-

ration that is not able to achieve a particular goal (e.g.

finding a feasible solution, or finding a solution with

10% of optimal) for all instances of a given size is re-

moved from consideration for that problem size, causing

its line to end on the graph.

We generate results using Gurobi 8.0.0 as the MIP

solver and Gecode 6.0.1 for the CP models. Model code

is written using C++14. The test machine is a Lenovo

X1 Carbon with a 4-core Intel Core i5 CPU and 16

GB of RAM. We test using 1 thread and 4 threads, but

concurrency does not appear to change our conclusions,

so we report results for a single thread. Single-threaded

executions of these models are deterministic and thus

easier to interpret and compare.

Sections 4.1 and 4.2 discuss the testing of the CP al-

ternatives. Section 4.3 then similarly discusses our test-

ing of MIP models. Finally, section 4.4 provides results

that compare enumeration to the best CP and best MIP

models.

4.1 Circuit Precedence Forms

Figure 4 shows the performance characteristics of cost-

based precedence (Formulation 17), set-based prece-

dence (Formulation 19), and the combination of those

two model formulations. We observe the best and most

consistent performance from set-based precedence with

either regret or SCN branching. Combined precedence

performs similarly to set-based, indicating that there

is a benefit to adding set-based precedence to circuits

that involve time windows, when applicable. Due to its

performance, we fix the CP TSPPD models to use set-

based precedence for the remainder of the paper.

4.2 Reduced Cost-Based Domain Filtering

Figures 5 and 6 shows the speedup obtained by the CP

TSPPD solver due to incorporating reduced cost-based
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Fig. 4 Precedence forms in TSPPD CP models.

Pickup and Delivery Pairs
Brancher 2 3 4 5 6 7
All 0.74 0.72 0.90 1.20 1.57 3.98
CN 0.74 0.71 0.85 1.07 1.18 1.80
Regret 0.75 0.67 0.71 0.80 1.02 1.59
SCN 0.74 0.83 1.45 4.44 14.0 127

8 9 10 11 12 13
All 8.35 4.89 6.69 4.11 19.4 16.2
CN 2.52 3.76 6.95 4.37 23.0 53.3
Regret 3.24 5.35 5.94 3.84 16.8 13.6
SCN 520 480

Table 1 Median speedup to proving optimality from incor-
porating AP relaxation and reduced cost fixing.

variable domain filtering using the AP relaxations. The

columns correspond to CN, regret, and SCN branching.

Table 1 shows median speedups for proving optimality.

We observe that reduced cost-based domain filtering

begins to improve the median solution time for finding

optimal solutions at 6 pickup and delivery pairs, and

for proving optimality at 5 pairs. The speedup acquired

appears to increase with the problem size. Further, fil-
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Fig. 5 Speedup finding optimal solutions due to AP relax-
ation and reduced cost fixing.

tering brings the poor performance of SCN branching

closer in line with regret branching.

Figure 7 shows that, with filtering, SCN branching

actually finds high quality solutions significantly faster

than regret branching, while Figure 8 shows that regret

branching remains better for finding optimal solutions.

Subsequent results for CP solvers in this paper will al-

ways use reduced cost-based domain filtering with ei-

ther regret or SCN branching.

4.3 MIP Warm Starting

Figures 9 and 10 show median and maximum times to

obtain a feasible TSPPD solution and to find an optimal

solution for the MIP models. The MIP solver is warm

started by the CP solver configured to use set prece-

dence, reduced cost-based variable domain filtering, and

SCN branching. Setting the warm start time time to
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Fig. 6 Speedup proving optimality due to AP relaxation and
reduced cost.

zero milliseconds equates to using the MIP solver with-

out a warm start.

We observe that, as problems get larger, the Ru-

land model takes more time to find a feasible solution.

Warm starting significantly reduces its time to feasi-

bility. Finding actionable solutions quickly is vital to

real-time logistics, so it does not appear that our MIP

model by itself is useful in that context for moderately

sized TSPPD instances. The Sarin model, on the other

hand, finds feasible solutions very quickly, but suffers

from formulation overhead due to SEC and precedence

constraints on the y variables. In our implementation,

both CP and MIP models are constructed prior to warm

starting.

The time to find an optimal solution is a measure of

a method’s ability to find high quality solutions quickly

for real-time systems. In such systems one cares about

finding good solutions, but not necessarily about prov-

ing optimality. That is, a real-time system will use the
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Fig. 7 Time to find a solution within 10% of optimal for
TSPPD CP models with and without AP filtering.

best solution it can find within its time budget, regard-

less of that solution’s optimality gap. Time budgets for

real-time path optimization vary based on the domain.

In the meal delivery application, budgets of as little as

50 milliseconds are provided for the purpose of optimiz-

ing individual paths, which are often on the order of 6

to 14 nodes.

The results show a significant benefit in finding op-

timality for both the Ruland and Sarin models, and

particularly for the latter. Presumably, this is due to

the CP solver either finding an optimal solution prior

to warm starting the MIP solver, or giving it a solution

that is close to optimality. There does not appear to be

added benefit to warm starting beyond 100 ms of CP

solver time.

We observe that if we allow the MIP algorithm to

run until optimality is proven, then the warm-starting

does not significantly alter the total time. However,
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Fig. 8 Time to find an optimal solution for TSPPD CP mod-
els with and without AP filtering.

when the MIP is stopped based on a time budget, the

MIP procedure with the CP warm start gets to the op-

timal solution in reasonable times and the warm start

helps it to find this solution. Since a time budget would

be employed in most real-time applications, using MIP

with a CP warm start works best on the larger in-

stances.

4.4 Comparison Across Methods

In this section we show results comparing enumeration;

CP with set precedence, reduced cost-based variable

domain filtering, and both regret and SCN branching;

MIP; and MIP with a CP warm start time of 100 ms.

Charts show the median and maximum times for each

problem size and event.

Figures 11, 12, 13, 14 show times to find feasible

TSPPD solutions, find solutions within 10% of opti-
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Fig. 9 Time to find a feasible solution with a Hybrid CP
warm start.
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Fig. 11 Time to find a feasible solution for different solution
techniques.

mal, find optimal solutions, and prove optimality of

solutions for the different solution techniques, respec-

tively. Tables 2,3, 4, 5 provide textual versions of the

median data for the Grubhub test instances.

We again observe that the Ruland MIP model re-

quires assistance finding feasibility. CP methods tend to

get feasible quickly, though they do incur some model

construction overhead when compared with enumera-

tion. The Sarin model also attains feasibility quickly

during the solution process, but incurs the most over-

head due to model construction. Enumeration is a good

option for systems that require immediate solutions.

Enumeration is competitive at finding good solu-

tions within 10% of optimal up to 10 pickup and deliv-

ery pairs. The Hybrid CP models with SCN branching

excels at finding good solutions. Using it to warm start

the Ruland model unsurprisingly yields similar perfor-

mance, due to its low overhead of formulation. Warm
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Fig. 12 Time to find a solution within 10% of optimal for
different solution techniques.

starting the Sarin model is beneficial compared with

the plain MIP model, but does not perform quite as

well due to model construction.

Our enumerative implementation is competitive in

finding optimal solutions for only the smallest instances,

up to 5 pickup and delivery pairs, after which point its

utility rapidly decreases. The graphs contain points for

when a solver is able to reach a given benchmark for

all instances of a certain size within 1000 seconds. Hy-

brid CP with regret branching outperforms pure MIP

up to 7 pairs, after which point the Ruland model be-

comes the dominant technique. The Ruland model with

a Hybrid CP warm start has similar performance, and

performs best on instances with more than 10 pairs. It

is the only solver able to find optimal solutions to all

test instances with 15 pairs in under 1000 seconds.

Enumeration performs best in proving optimality of

the smallest problems, up to 4 pairs. CP performs well
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Fig. 13 Time to find an optimal solution for different solu-
tion techniques.

on problems up to 7 pairs. After that, the Ruland model

is the dominant solution. Again, warm starting the Ru-

land model performs best for instances with more than

10 pairs, and the warm started Ruland model is able

to fully optimize more instances within the time limit

than it is without the warm start.

5 Conclusions and Future Work

Our goal is to examine the performance of various tech-

niques for solving TSPPDs for real-time logistics, in

which routes must be optimized within strict time bud-

gets. We have implemented enumerative, CP, MIP, and

hybrid approaches, and tested them using data derived

from meal deliveries at Grubhub.

We find that enumeration can be effective for very

small routes when implemented with intelligent arc or-

dering and fathoming. Enumeration scales well to ob-

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

Maximum

Median

2 4 6 8 10 12 14

2 4 6 8 10 12 14

1ms

10ms

100ms

1s

10s

100s

1ms

10ms

100ms

1s

10s

100s

Pickup and Delivery Pairs

T
im

e 
to

 P
ro

ve
 O

pt
im

al
ity

Solver
● CP+AP (Regret)

CP+AP (SCN)

Enumeration

Ruland

Ruland+CP+AP (SCN)

Sarin

Sarin+CP+AP (SCN)

Fig. 14 Time to prove optimality for different solution tech-
niques.

taining feasibility in larger problem instances. Its per-

formance degrades quickly with respect to finding good

solutions and proving optimality as instance size grows.

Although CP solutions are not as fast at finding

feasibility as enumeration, on average, their quality is

better. Set-based precedence outperforms cost-based in

our implementation, and can be used to strengthen the

performance of the latter. Reduced cost-based variable

domain filtering with AP relaxations is a beneficial hy-

bridization of CP with optimization techniques, and ap-

pears to pay increasing dividends with problem size.

Hybrid CP with SCN branching is the most effective

technique at finding “good” solutions (i.e. within 10%

of optimal) quickly, and works well at warm starting the

MIP models. Interestingly, regret branching is better at

finding optimal solutions and proving optimality than

SCN branching.
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Pickup and Delivery Pairs
Solver 2 3 4 5 6
CP+AP (Regret) 0.7 0.8 1.0 1.4 1.9
CP+AP (SCN) 0.7 0.9 1.3 1.7 2.0
Enumeration 0.1 0.1 0.1 0.2 0.2
Ruland 2.1 3.8 5.1 6.0 7.9
Ruland+CP+AP 2.3 2.6 3.0 3.2 3.7
Sarin 2.0 2.6 3.6 5.8 8.6
Sarin+CP+AP 2.4 3.2 4.8 7.3 9.5

7 8 9 10 11
CP+AP (Regret) 2.1 2.7 3.0 4.5 5.3
CP+AP (SCN) 2.6 3.3 3.6 4.6 6.4
Enumeration 0.2 0.2 0.2 0.2 0.2
Ruland 12.8 57.7 47.9 85.7 257.0
Ruland+CP+AP 4.7 5.6 6.1 7.2 8.7
Sarin 13.2 16.0 22.1 33.5 44.7
Sarin+CP+AP 15.1 20.0 24.8 33.6 43.6

12 13 14 15
CP+AP (Regret) 6.3 8.1 10.8 13.3
CP+AP (SCN) 6.3 9.4 10.8 13.5
Enumeration 0.3 0.3 0.3 0.3
Ruland 172.0 396.0 752.0 7611.0
Ruland+CP+AP 9.6 12.7 14.5 17.2
Sarin 57.8 74.0 93.9 114.0
Sarin+CP+AP 56.1 73.3 94.5 119.0

Table 2 Median milliseconds to find a feasible solution.

Pickup and Delivery Pairs
Solver 2 3 4 5 6
CP+AP (Regret) 0.7 0.9 1.3 1.4 2.8
CP+AP (SCN) 0.7 0.9 1.5 1.8 2.4
Enumeration 0.1 0.2 0.1 0.2 0.2
Ruland 2.6 3.8 5.2 6.0 8.5
Ruland+CP+AP 2.3 2.6 3.2 3.3 3.9
Sarin 2.3 5.2 9.9 16.6 33.4
Sarin+CP+AP 2.4 3.5 4.9 7.6 9.8

7 8 9 10 11
CP+AP (Regret) 3.0 11.2 8.9 119.0 314.0
CP+AP (SCN) 3.1 7.6 4 5.7 9.7
Enumeration 0.4 12.4 0.2 0.8 24.9
Ruland 12.8 62.1 62.8 85.7 399.0
Ruland+CP+AP 5.7 9.6 6.4 8.4 12.3
Sarin 54.1 273.0 141.0 760.0 1538.0
Sarin+CP+AP 16.3 23.2 24.9 41.3 50.4

12 13 14 15
CP+AP (Regret) 384.0 253.0 11,267.0 33,697
CP+AP (SCN) 8.5 84.2 45.2 155
Enumeration - - - -
Ruland 189.0 690.0 1100.0 12,674
Ruland+CP+AP 14.7 88.1 49.1 176
Sarin 2271.0 3450.0 7671.0 49,416
Sarin+CP+AP 64.3 355.0 133.0 12,972

Table 3 Median milliseconds to find a solution within 10%
of optimal.

Hybrid CP is an effective optimizer for TSPPD in-

stances with up to 8 pairs, after which point MIP is

the dominant technique. The Ruland MIP model by it-

self loses the ability to find feasible solutions quickly as

problem size increases. A second hybridization of warm

starting MIP using the best solution found by the CP

solver within 100 ms handles this problem nicely, and

can help the Ruland model find optimal solutions and

prove optimality faster. The Sarin model finds feasible

Pickup and Delivery Pairs
Solver 2 3 4 5 6
CP+AP (Regret) 0.8 1.1 2.5 3.2 12.9
CP+AP (SCN) 0.8 1.2 2.5 3.5 19.1
Enumeration 0.1 0.2 0.5 2.5 107.0
Ruland 2.6 3.9 5.4 6.0 16.0
Ruland+CP+AP 2.4 2.8 3.9 5.0 20.6
Sarin 2.3 5.5 11.7 27.9 51.6
Sarin+CP+AP 2.5 3.9 5.8 9.7 28.4

7 8 9 10 11
CP+AP (Regret) 14.5 90.6 184.0 899 34,429
CP+AP (SCN) 7.5 249.0 62.2 1291 -
Enumeration 312.0 - 37,020.0 - -
Ruland 31.4 64.6 69.3 112 9844
Ruland+CP+AP 20.9 120.0 65.9 220 2798
Sarin 146.0 528.0 666.0 1530 33,507
Sarin+CP+AP 32.4 292.0 379.0 2718 14,795

12 13 14 15
CP+AP (Regret) 10,911 - - -
CP+AP (SCN) 38,820 - - -
Enumeration - - - -
Ruland 498 6277 8676 -
Ruland+CP+AP 461 2815 6220 129,648
Sarin 21,697 36,807 - -
Sarin+CP+AP 14,565 18,024 - -

Table 4 Median milliseconds to find an optimal solution.

Pickup and Delivery Pairs
Solver 2 3 4 5 6
CP+AP (Regret) 0.9 1.4 2.6 4.8 14.9
CP+AP (SCN) 0.9 1.3 3.5 5.4 28.9
Enumeration 0.2 0.4 2.4 24.7 595.0
Ruland 2.9 4.2 6.3 8.6 18.8
Ruland+CP+AP 2.5 3.0 4.6 6.6 30.2
Sarin 2.7 6.0 12.6 42.2 51.9
Sarin+CP+AP 2.5 4.1 6.4 11.2 34.2

7 8 9 10 11
CP+AP (Regret) 23.5 109.0 230.0 1236 -
CP+AP (SCN) 43.6 353.0 1015.0 2268 -
Enumeration 11,868.0 - - - -
Ruland 31.8 71.1 70.4 129 10,263
Ruland+CP+AP 47.0 178.0 176.0 239 4839
Sarin 236.0 669.0 724.0 2283 39,822
Sarin+CP+AP 59.2 641.0 804.0 3011 38,810

12 13 14 15
CP+AP (Regret) 14,533 - - -
CP+AP (SCN) 90,266 - - -
Enumeration - - - -
Ruland 511 6868 - -
Ruland+CP+AP 481 5007 6598 -
Sarin 31,017 77,622 - -
Sarin+CP+AP 41,130 61,273 - -

Table 5 Median milliseconds to prove optimality.

solutions quickly, but has the disadvantage of additional

overhead due to model formulation.

For the range of problems that we are looking at,

we find Held-Karp bounds ineffective at reducing solu-

tion time due to a large optimality gap in the face of

precedence constraints. On the other hand, we observe

dramatic improvements to the abilities of CP models

to optimize from incorporating incremental primal-dual

AP relaxations and reduced cost-base variable domain

filtering.
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When TSPPD problems are small, most models are

effective for fast solution. It appears that one loses lit-

tle by choosing an algorithm that performs well on in-

stance with more than 10 pairs and using it on the

smaller ones as well. The Ruland model is the best

at finding and proving optimal solutions, but requires

the problem instances be symmetric. Difficulties attain-

ing feasibility of the Ruland model are easily overcome

through warm starting, and a sophisticated warm start

mechanism such as Hybrid CP with SCN branching can

positively impact its optimization abilities as well. For

asymmetric TSPPD instances, the Sarin model can be

effectively warm started in the same manner.

We believe these results provide further evidence

for the utility of hybrid optimization methods in solv-

ing hard combinatorial problems with side constraints,

and demonstrate their utility in real-time optimization.

These studies can be extended to incorporate additional

side constraints found in common pickup and delivery

problems, such as capacity and time windows. We ex-

pect such exploration will further demonstrate the ben-

efits of hybridization.
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T., Lübbecke, M.E., Miltenberger, M., Müller, B.,

Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker,

S., Schwarz, R., Serrano, F., Shinano, Y., Weninger,

D., Witt, J.T., Witzig, J.: The scip optimization

suite 4.0. Tech. Rep. 17-12, ZIB, Takustr.7, 14195

Berlin (2017)

30. Milano, M., Ottosson, G., Refalo, P., Thorsteins-

son, E.S.: Global constraints: When constraint pro-

gramming meets operation research. In: INFORMS

Journal on Computing, Special Issue on the Merg-

ing of Mathematical Programming and Constraint

Programming. Citeseer (2001)

31. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Inte-

ger programming formulation of traveling salesman

problems. Journal of the ACM 7(4), 326–329 (1960)

32. O’Neil, R.J.: TSPPD Hybrid Optimization Code.

https://github.com/ryanjoneil/tsppd-hybrid

(2018)

33. Padberg, M., Rinaldi, G.: A branch-and-cut algo-

rithm for the resolution of large-scale symmetric

traveling salesman problems. SIAM review 33(1),

60–100 (1991)

34. Papadimitriou, C.H.: The Euclidean travelling

salesman problem is NP-complete. Theoretical

computer science 4(3), 237–244 (1977)

35. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau,

J.M.: An exact constraint logic programming al-

gorithm for the traveling salesman problem with

time windows. Transportation Science 32(1), 12–

29 (1998)
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Fig. 23 Time to find a solution within 5% of optimal for
TSPPD CP models with and without AP filtering.
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Fig. 24 Time to find an optimal solution for TSPPD CP
models with and without AP filtering.
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Fig. 25 Time to prove optimality for TSPPD CP models
with and without AP filtering.
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Fig. 26 Speedup finding feasible solutions due to AP relax-
ation and reduced cost fixing.
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Fig. 27 Speedup finding solutions within 10% of optimal due
to AP relaxation and reduced cost fixing.
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Fig. 28 Speedup finding solutions within 5% of optimal due
to AP relaxation and reduced cost fixing.
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Fig. 29 Speedup finding optimal solutions due to AP relax-
ation and reduced cost fixing.
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Fig. 30 Speedup proving optimality due to AP relaxation
and reduced cost fixing.
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Fig. 31 Time to find a feasible solution with a Hybrid CP
warm start.
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Fig. 32 Time to find a solution within 10% of optimal with
a Hybrid CP warm start.
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Fig. 33 Time to find a solution within 5% of optimal with
a Hybrid CP warm start.
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Fig. 34 Time to find an optimal solution with a Hybrid CP
warm start.
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Fig. 35 Time to prove optimality with a Hybrid CP warm
start.
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Fig. 36 Time to find a feasible solution for different solution
techniques.



Exact Methods for Solving TSPPDs in Real Time 33

● ●
● ●

● ●

● ●

●

● ●
●

●

●

●
● ●

●
● ●

● ●

●
●

●
●

●

●

●
● ●

●

● ●

●
●

●

●
● ●

●

●

Interquartile Range

Maximum

Median

2 4 6 8 10 12 14

2 4 6 8 10 12 14

2 4 6 8 10 12 14

1ms

10ms

100ms

1s

10s

1ms

10ms

100ms

1s

10s

100s

1ms

10ms

100ms

1s

10s

100s

Pickup and Delivery Pairs

T
im

e 
to

 F
in

d 
a 

S
ol

ut
io

n 
w

ith
in

 1
0%

 o
f O

pt
im

al

Solver
● CP+AP (Regret)

CP+AP (SCN)

Enumeration

Ruland

Ruland+CP+AP (SCN)

Sarin

Sarin+CP+AP (SCN)

Fig. 37 Time to find a solution within 10% of optimal for
different solution techniques.
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Fig. 38 Time to find a solution within 5% of optimal for
different solution techniques.
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Fig. 39 Time to find an optimal solution for different solu-
tion techniques.
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Fig. 40 Time to prove optimality for different solution tech-
niques.
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