Multi-model Markov Decision Processes

Lauren N. Steimle
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, steimle@gatech.edu

David L. Kaufman
Management Studies, University of Michigan–Dearborn, Dearborn, MI 48126, davidlk@umich.edu

Brian T. Denton
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, btdenton@umich.edu

Markov decision processes (MDPs) have found success in many application areas that involve sequential decision making under uncertainty, including the evaluation and design of treatment and screening protocols for medical decision making. However, the usefulness of these models is only as good as the data used to parameterize them, and multiple competing data sources are common in many application areas, including medicine. In this article, we introduce the Multi-model Markov decision process (MMDP) which generalizes a standard MDP by allowing for multiple models of the rewards and transition probabilities. Solution of the MMDP generates a single policy that maximizes the weighted performance over all models. This approach allows for the decision maker to explicitly trade off conflicting sources of data while generating a policy of the same level of complexity for models that only consider a single source of data. We study the structural properties of this problem and show that this problem is at least NP-hard. We develop exact methods and fast approximation methods supported by error bounds. Finally, we illustrate the effectiveness and the scalability of our approach using a case study in preventative blood pressure and cholesterol management that accounts for conflicting published cardiovascular risk models.

Key words: Dynamic programming; medical decision making; Markov decision processes; parameter ambiguity; healthcare applications

1. Introduction

The Markov decision process (MDP) is a mathematical framework for sequential decision making under uncertainty that has informed decision making in a variety of application areas including inventory control, scheduling, finance, and medicine (Puterman 1994, Boucherie and Van Dijk 2017). MDPs generalize Markov chains in that a decision maker (DM) can take actions to influence the rewards and transition dynamics of the system. When the transition dynamics and rewards are known with certainty, standard dynamic programming methods can be used to find an optimal policy, or set of decisions, that will maximize the expected rewards over the planning horizon.

Unfortunately, the estimates of rewards and transition dynamics used to parameterize the MDPs are often imprecise and lead the DM to make decisions that do not perform well with respect
to the true system. The imprecision in the estimates arises because these values are typically obtained from observational data or from multiple external sources. When the policy found via an optimization process using the estimates is evaluated under the true parameters, the performance can be much worse than anticipated (Mannor et al. 2007). This motivates the need for MDPs that account for this ambiguity in the MDP parameters.

In this article, we are motivated by situations in which the DM relies on external sources to parameterize the model but has multiple credible choices which provide potentially conflicting estimates of the parameters. In this situation, the DM may be grappling with the following questions: Which source should be used to parameterize the model? What are the potential implications of using one source over another? To address these questions, we propose a new method that allow the DM to simultaneously consider multiple models of the MDP parameters and create a policy that balances the performance while being no more complicated than an optimal policy for an MDP that only considers one model of the parameters.

1.1. Applications to medical decision making

We are motivated by medical applications for which Markov chains are among the most commonly used stochastic models for decision making. A keyword search of the US Library of Medicine Database using PubMed from 2007 to 2017 reveals more than 7,500 articles on the topic of Markov chains. Generalizing Markov chains to include decisions and rewards, MDPs are useful for designing optimal treatment and screening protocols, and have found success doing so for a number of important diseases; e.g., end-stage liver disease (Alagoz et al. 2007), HIV (Shechter et al. 2008), breast cancer (Ayer et al. 2012), and diabetes (Mason et al. 2014).

Despite the potential of MDPs to inform medical decision making, the utility of these models is often at the mercy of the data available to parameterize the models. The transition dynamics in medical decision making models are often parameterized using longitudinal observational patient data and/or results from the medical literature. However, longitudinal data are often limited due to the cost of acquisition, and therefore transition probability estimates are subject to statistical uncertainty. Challenges also arise in controlling observational patient data for bias and often there are unsettled conflicts in the results from different clinical studies; see Mount Hood 4 Modeling Group (2007), Etzioni et al. (2012), and Mandelblatt et al. (2016) for examples in the contexts of breast cancer, prostate cancer, and diabetes, respectively.

A specific example, and one that we will explore in detail, is in the context of cardiovascular disease for which cardiovascular risk calculators estimate the probability of a major cardiovascular event, such as a heart attack or stroke. There are multiple well-established risk calculators in the clinical literature that could be used to estimate these transition probabilities, including the
American College Of Cardiology/ American Heart Association (ACC/AHA) Risk Estimator (Goff et al. 2014) and the risk equations resulting from the Framingham Heart Study (FHS) (Wolf et al. 1991, Wilson et al. 1998). However, these two credible models give conflicting estimates of a patient’s risk of having a major cardiovascular event. Steimle and Denton (2017) showed that the best treatment protocol for cardiovascular disease is sensitive to which of these conflicting estimates are used leaving an open question as to which clinical study should be used to parameterize the model.

The general problem of multiple conflicting models in medical decision making has also been recognized by others (in particular, Bertsimas et al. (2016)), but it has not been addressed previously in the context of MDPs. As pointed out in a report from the Cancer Intervention and Surveillance Modeling Network regarding a comparative modeling effort for breast cancer, the authors note that “the challenge for reporting multimodel results to policymakers is to keep it (nearly) as simple as reporting one-model results, but with the understanding that it is more informative and more credible. We have not yet met this challenge” (Habbema et al. 2006). This highlights the goal of designing policies that are as easily translated to practice as those that optimize with respect to a single model, but with the robustness of policies that consider multiple models. The primary contribution of our work is meeting this challenge for MDPs.

The general problem of coping with multiple (potentially valid) choices of data for medical decision making motivates the following more general research questions: How can we improve stochastic dynamic programming methods to account for parameter ambiguity in MDPs? Further, how much benefit is there to mitigating the effects of ambiguity?

1.2. Contributions

In this article, we present a new approach for handling parameter ambiguity in MDPs, which we refer to as the Multi-model Markov decision process (MMDP). An MMDP generalizes an MDP to allow for multiple models of the transition probabilities and rewards, each defined on a common state space and action space. In this model formulation, the DM places a weight on each of the models and seeks to find a single policy that will maximize the weighted value function.

It is well-known that for standard MDPs, optimal actions are independent of past realized states and actions; optimal policies are history independent. We show that, in general, optimal policies for MMDPs may actually be history dependent, making MMDPs more challenging to solve in certain cases. With the aim of designing policies that are easily translated to practice, we distinguish between two important variants: 1) a case where the DM is limited to policies determined by the current state of the system, which we refer to as the non-adaptive MMDP, and 2) a more general case in which the DM attempts to find an optimal history-dependent policy based on all previously
observed information, which we refer to as the adaptive MMDP. We show that the adaptive problem is a special case of a partially-observable MDP (POMDP) that is PSPACE-hard, and we show that the non-adaptive problem is NP-hard.

Based on our complexity analysis, the well-known value iteration algorithm for MDPs cannot solve MMDPs to optimality. Therefore, we formulate a mixed-integer program (MIP) that produces optimal policies. We first test this method on randomly generated problem instances and find that even small instances are difficult to solve. For larger problem instances, as one might find in medical decision making applications, models are computationally intractable. Therefore, we introduce a fast heuristic based on backwards recursion that we refer to as the Weight-Select-Update (WSU) with computational bounds on the error. The WSU heuristic is fast and scales to larger medical decision making instances, such as the instance that motivated this work.

Finally, we present a case study for prevention of cardiovascular disease, a setting in which there is ambiguity due to the existence of two well known and competing risk models for cardiovascular events. The goal is to design an optimal treatment guideline that would work well from a population perspective given both models are plausibly correct. We show this problem can me modeled as a non-adaptive MMDP. Our study demonstrates the ability of MMDPs to blend the information of multiple competing medical studies (ACC/AHA and FHS) and directly meet the challenge of designing policies that are easily translated to practice while being robust to ambiguity arising from the existence of multiple conflicting models.

1.3. Organization of the paper

The remainder of this article is organized as follows: In Section 2, we provide some important background on MDPs and discuss the literature that is most related to our work. We formally define the MMDP in Section 3, and in Section 4 we present analysis of our proposed MMDP model. In Section 5, we discuss exact solution methods as well as fast and scalable approximation methods that exploit the model structure. We test these approximation algorithms on randomly generated problem instances and describe the results in Section 6. In Section 7, we present our case study. Finally, in Section 8, we summarize the most important findings from our research and discuss the limitations and opportunities for future research.

2. Background and literature review

In this article, we focus on discrete-time, finite-horizon MDPs with parameter ambiguity. In this section, we will describe the MDP and parameter ambiguity, as well as the related work aimed at mitigating the effects of ambiguity in MDPs.
2.1. Markov decision processes

MDPs are a common framework for modeling sequential decision making that influences a stochastic reward process. For ease of explanation, we introduce the MDP as an interaction between an exogenous actor, nature, and the DM. The sequence of events that define the MDP are as follows: first, nature randomly selects an initial state $s_1 \in \mathcal{S}$ according to the initial distribution $\mu_1 \in \mathcal{M}(\mathcal{S})$, where $\mathcal{M}(\cdot)$ denotes the set of probability measures on the discrete set. The DM observes the state $s_1 \in \mathcal{S}$ and selects an action $a_1 \in \mathcal{A}$. Then, the DM receives a reward $r_1(s_1, a_1) \in \mathbb{R}$ and then nature selects a new state $s_2 \in \mathcal{S}$ with probability $p_1(s_2 \mid s_1, a_1) \in [0, 1]$. This process continues whereby for any decision epoch $t \in T \equiv \{1, \ldots, T\}$, the DM observes the state $s_t \in \mathcal{S}$, selects an action $a_t \in \mathcal{A}$, and receives a reward $r_t(s_t, a_t)$, and nature selects a new state $s_{t+1} \in \mathcal{S}$ with probability $p_t(s_{t+1} \mid s_t, a_t)$. The DM selects the last action at time T which may influence which state is observed at time $T + 1$ through the transition probabilities. Upon reaching $s_{T+1} \in \mathcal{S}$ at time $T + 1$, the DM receives a terminal reward of $r_{T+1}(s_{T+1}) \in \mathbb{R}$. Future rewards are discounted at a rate of $\alpha \in (0, 1]$ which accounts for the preference of rewards received now over rewards received in the future. In this article, we assume without loss of generality that the discount factor is already incorporated into the reward definition. We will refer to the times at which the DM selects an action as the set of decision epochs, T, the set of rewards as $R \in \mathbb{R}^{S \times A \times T}$, and the set of transition probabilities as $P \in \mathbb{R}^{S \times A \times S \times T}$ with elements satisfying $p_t(s_{t+1} \mid s_t, a_t) \in [0, 1]$ and $\sum_{s_{t+1} \in \mathcal{S}} p_t(s_{t+1} \mid s_t, a_t) = 1, \forall t \in T, s_t \in \mathcal{S}, a_t \in \mathcal{A}$. Throughout the remainder of this article, we will use the tuple $(T, \mathcal{S}, \mathcal{A}, R, P, \mu_1)$ to summarize the parameters of an MDP.

The realized value of the DM’s sequence of actions is the total reward over the planning horizon:

$$
\sum_{t=1}^{T} r_t(s_t, a_t) + r_{T+1}(s_{T+1}).
$$

(1)

The objective of the DM is to select the sequence of actions in a strategic way so that the expectation of (1) is maximized. Thus, the DM will select the actions at each decision epoch based on some information available to her. The strategy by which the DM selects the action for each state at decision epoch $t \in T$ is called a decision rule, $\pi_t \in \Pi_t$, and the set of decision rules over the planning horizon is called a policy, $\pi \in \Pi$.

There exist two dichotomies in the classes of policies that a DM may select from: 1) history-dependent vs. Markov, and 2) randomized vs. deterministic. History-dependent policies may consider the entire history of the MDP, $h_t := (s_1, a_1, \ldots, a_{t-1}, s_t)$, when prescribing which action to select at decision epoch $t \in T$, while Markov policies only consider the current state $s_t \in \mathcal{S}$ when selecting an action. Randomized policies specify a probability distribution over the action set, $\pi_t(s_t) \in \mathcal{M}(\mathcal{A})$, such that action $a_t \in \mathcal{A}$ will be selected with probability $\pi_t(a_t \mid s_t)$. Deterministic policies specify a single action to be selected with probability 1. Markov policies are a subset
of history-dependent policies, and deterministic policies are a subset of randomized policies. For standard MDPs, there is guaranteed to be a Markov deterministic policy that maximizes the expectation of (1) (Proposition 4.4.3 of Puterman 1994) which allows for efficient solution methods that limit the search for optimal policies to the Markov deterministic (MD) policy class, \(\pi \in \Pi^{MD} \). We will distinguish between history-dependent (H) and Markov (M), as well as randomized (R) and deterministic (D), using superscripts on \(\Pi \). For example, \(\Pi^{MR} \) denotes the class of Markov randomized policies.

To summarize, given an MDP \((T, S, A, R, P, \mu_1)\), the DM seeks to find a policy \(\pi \) that maximizes the expected rewards over the planning horizon:

\[
\max_{\pi \in \Pi} \mathbb{E}^{\pi, P, \mu_1} \left[\sum_{t=1}^{T} r_t(s_t, a_t) + r_{T+1}(s_{T+1}) \right].
\] (2)

A standard MDP solution can be computed in polynomial time because the problem decomposes when the search over \(\Pi \) is limited to the Markov deterministic policy class, \(\Pi^{MD} \). We will show that this and other properties of MDPs no longer hold when parameter ambiguity is considered.

2.2. Parameter ambiguity and related work

MDPs are known as models of sequential decision making under uncertainty. However, this “uncertainty” refers to the imperfect information about the future state of the system after an action has been taken due to stochasticity. The transition probability parameters are used to characterize the likelihood of these future events. For the reasons described in Section 1, the model parameters themselves may not be known with certainty. For clarity, throughout this article, we will refer to uncertainty as the imperfect information about the future which can be characterized via a set of transition probability parameters. We refer to ambiguity as the imperfect information about the transition probability parameters themselves.

In this article, we consider a variation on MDPs in which parameter ambiguity is expressed through multiple models of the underlying Markov chain and the goal of the DM is to find a policy that maximizes the weighted performance across these different models. The concept of multiple models of parameters is seen in the stochastic programming literature whereby each model corresponds to a “scenario” representing a different possibility for the problem data (Birge and Louveaux 1997). Stochastic programming problems typically consist of multiple stages during which the DM has differing levels of information about the model parameters. For example, in a two-stage stochastic program, the DM selects initial actions during the first-stage before knowing which of the multiple scenarios will occur. The DM subsequently observes which scenario is realized and takes recourse actions in the second stage. In contrast, in the MMDP, the DM must take all actions before the model parameters are realized.
A recent stream of research on MDPs with parameter ambiguity has taken the approach of multiple models. Ahmed et al. (2017) proposed sampling rewards and transition probabilities at each time step to generate a finite set of MDPs and then seek to find one policy that minimizes the maximum regret over the set of MDPs. To do this, they formulate a MIP to approximate an optimization problem with quadratic constraints which minimizes regret. They also propose cumulative expected myopic regret as a measure of regret for which dynamic programming algorithms can be used to generate an optimal policy. The authors require that the sampled transition probabilities and rewards are stage-wise independent, satisfying the rectangularity property. Concurrently and independent of our work, Buchholz and Scheftelowitsch (2019) considered the problem of finding a policy that maximizes a weighted performance across “concurrent” infinite-horizon MDPs. They show that their problem is NP-hard and that randomized policies may be optimal in the infinite-horizon case. We will show that the finite-horizon problem is NP-hard and that there will exist a deterministic policy that is optimal. Building on the weighted value problem proposed here and by Buchholz and Scheftelowitsch (2019), Meraklı and Küçükyavuz (2019) proposed a percentile optimization formulation of the multiple models problem to reflect the decision-maker with an aversion to losses in performance due to parameter ambiguity in infinite-horizon MDPs and Steimle et al. (2019) studied computational methods for solving the non-adaptive problem exactly. Meraklı and Küçükyavuz (2019) and Buchholz and Scheftelowitsch (2019) both provide mixed-integer linear programming formulations for determining the optimal pure policy and a nonlinear programming formulation for the optimal randomized policy, as well as local search heuristics that work well on their benchmark test instances. Multiple models have also been studied for POMDPs: Saghafian (2018) uses multiple models of the parameters to address ambiguity in transitions among the core states in a partially-observable MDP and use an objective function that weights the best-case and worst-case value-to-go across the models. This is in contrast to our work which considers the expected value-to-go among multiple models. The author assumes that the best-case and worst-case model are selected independently across decision epochs. In our proposed MMDP formulation, the objective is to find a single policy that will perform well in each of the models which may have interdependent transition probabilities across different states, actions, and decision epochs.

Perhaps the most closely related healthcare-focused research to this article is that of Bertsimas et al. (2016) who recently addressed ambiguity in simulation modeling in the context of prostate cancer screening. The authors propose solving a series of optimization problems via an iterated local search heuristic to find screening protocols that generate a Pareto optimal frontier on the dimensions of average-case and worst-case performance in a set of different simulation models. This article identified the general problem of multiple models in medical decision making; however, they do not consider this issue in MDPs. The concept of multiple models of problem parameters in
MDPs has mostly been used as a form of sensitivity analysis. For example, Craig and Sendi (2002) propose bootstrapping as a way to generate multiple sets of problem parameters under which to evaluate the robustness of a policy to variation in the transition probabilities. There has been less focus on finding policies that perform well with respect to multiple models of the problem parameters in MDPs, especially with the goal of these policies being just as easily translated to practice as those found by optimizing with respect to a single model.

The approach of incorporating multiple models of parameters is also seen in the reinforcement learning literature, however the objective of the DM in these problems is different than the objective of the DM in this article. For example, consider what is perhaps the most closely related reinforcement learning problem: the Contextual Markov Decision Process (CMDP) proposed by Hallak et al. (2015). The CMDP is essentially the same as the MMDP set-up in that one can think of the CMDP as an integer number, C, of MDPs all defined on the same state space and action space, but with different reward and transition probability parameters. In the CMDP problem, the DM will interact with the CMDP throughout a series of episodes occurring serially in time. At the beginning of the interaction, the DM neither has any information about any of the C MDPs’ parameters, nor does she know which MDP she is interacting with at the beginning of each episode. Our work differs from that of Hallak et al. (2015) in that we assume the DM has a complete characterization of each of the MDPs, but due to ambiguity the DM still does not know which MDP she is interacting with. Others have studied related problems in the setting of multi-task reinforcement learning (Brunskill and Li 2013). Our work differs from this line of research in that we are motivated by problems with shorter horizons while multi-task learning is appropriate for problems in which the planning horizon is sufficiently long to observe convergence of estimates to their true parameters based on a dynamic learning process.

We view our research as distinct from the more traditional approach of mitigating parameter ambiguity in MDPs, known as robust dynamic programming, which represents parameter ambiguity through an ambiguity set formulation. The standard robust dynamic programming is a “max-min” approach in which the DM seeks to find a policy that maximizes the worst-case performance when the transition probabilities are allowed to vary within an ambiguity set. The ambiguity set can be constructed as intervals around a point estimate and the max-min approach represents that the DM is risk neutral with respect to uncertainty and risk adverse with respect to ambiguity. One of the key results is that the max-min problem is tractable for instances that satisfy the rectangularity property (Iyengar 2005, Nilim and El Ghaoui 2005). Essentially, rectangularity means that observing the realization of a transition probability parameter gives no information about the values of other parameters for any other state-action-time triplet. Because each parameter value for any given state-action-time triplet is independent of the others, the problem can be decomposed so that
each worst-case parameter is found via an optimization problem called the inner problem. Iyengar (2005) and Nilim and El Ghaoui (2005) provide algorithms for solving the max-min problem for a variety of ambiguity sets by providing polynomial-time methods for solving the corresponding inner problem. While rectangular ambiguity sets are desirable from a computational perspective, they can give rise to policies that are overly-conservative because the DM must account for the possibility that parameters for each state-action-time triplet will take on their worst-case values simultaneously. Much of the research in robust dynamic programming has focused on ways to mitigate the effects of parameter ambiguity while avoiding policies that are overly conservative by either finding non-rectangular ambiguity sets that are tractable for the max-min problem or optimizing with respect to another objective function usually assuming some a priori information about the model parameters (Delage and Mannor 2009, Xu and Mannor 2012, Wiesemann et al. 2014, Mannor et al. 2016, Li et al. 2017, Scheftelowitsch et al. 2017, Goyal and Grand-Clement 2018).

Later in this article, we will describe a case study that illustrates the effectiveness and scalability of the MMDP formulation on a medical decision making problem with parameter ambiguity in the context of prevention of cardiovascular disease. Others have considered the impact of parameter ambiguity on other models for medical decision making, such as simulation models and Markov chains; however, the literature on addressing ambiguity in MDPs for medical decision making is very sparse. As mentioned previously, Bertsimas et al. (2016) evaluate screening strategies for prostate cancer on the basis of average-case and worst-case performance in several simulation models. Goh et al. (2018) proposed finding the best-case and worst-case transition probability parameters under which to evaluate a specific policy in a Markov chain when these parameters are allowed to vary within an ambiguity set. The authors assumed that this ambiguity set is a row-wise independent set that generalizes the existing row-wise uncertainty models in Iyengar (2005) as well as Nilim and El Ghaoui (2005). This rectangularity assumption allows for the authors to solve a semi-infinite linear programming problem efficiently. The authors apply their methods to fecal immunochemical testing (FIT) for colorectal cancer and show that, despite the ambiguity in model parameters related to FIT, this screening tool is still cost-effective relative to the most prevalent method, colonoscopy.

To our knowledge, the optimal design of medical screening and treatment protocols under parameter ambiguity is limited to the work of Kaufman et al. (2011), Sinha et al. (2016), Zhang et al. (2017), and Boloori et al. (2019). Kaufman et al. (2011) consider the optimal timing of living-donor liver transplantations, for which some critical health state are seldom visited historically. They use the robust MDP framework, modeling ambiguity sets as confidence regions based on relative entropy bounds. The resulting robust solutions are of a simple control-limit form that suggest
transplanting sooner, when patients are healthier, than otherwise suggested by traditional MDP solutions based on maximum likelihood estimates of transition probabilities. Sinha et al. (2016) use a robust MDP formulation for response-guided dosing decisions in which the dose-response parameter is allowed to vary within an interval uncertainty set and show that a monotone dosing policy is optimal for the robust MDP. Zhang et al. (2017) propose a robust MDP framework in which transition probabilities are confined to statistical confidence intervals. They employ a rectangularity assumption implying independence of rows in the transition probability matrix and they assume an adversarial model in which the DM decides on a policy and an adversary optimizes the choice of transition probabilities that minimizes expected rewards subject to an uncertainty budget on the choice of transition probabilities. Boloori et al. (2019) leverages the results of Saghafian (2018) to inform decision-making related to immunosuppressive medication use for patients after organ transplantations to balance the risk of diabetes after transplantation and the risk of organ rejection. While these articles address parameter ambiguity in the transition probabilities, they all assume a rectangular ambiguity set which decouples the ambiguity across decision epochs and states. In contrast, the MMDP formulation that we propose allows a relaxation of this assumption to allow for the ambiguity in model parameters to be linked across tuples of states, actions, and decision epochs.

3. Multi-model Markov decision processes

In this section, we introduce the detailed mathematical formulation of the MMDP starting with the following definition:

Definition 1 (Multi-model Markov decision process). An MMDP is a tuple \((T, S, A, \mathcal{M}, \Lambda)\) where \(T\) is the set of decision epochs, \(S\) and \(A\) are the state and action spaces respectively, \(\mathcal{M}\) is the finite discrete set of models, and \(\Lambda := \{\lambda_1, \ldots, \lambda_{|\mathcal{M}|}\}\) is the set of exogenous models weights with \(\lambda_m \in (0, 1), \forall m \in \mathcal{M}\) and \(\sum_{m \in \mathcal{M}} \lambda_m = 1\). Each model \(m \in \mathcal{M}\) is an MDP, \((T, S, A, R^m, P^m, \mu^m)\), with a unique combination of rewards, transition probabilities, and initial distribution.

The requirement that \(\lambda_m \in (0, 1)\) is to avoid the trivial cases: If there exists a model \(m \in \mathcal{M}\) such that \(\lambda_m = 1\), the MMDP would reduce to a standard MDP. If there exists a model \(m \in \mathcal{M}\) such that \(\lambda_m = 0\), then the MMDP would reduce to an MMDP with a smaller set of models, \(\mathcal{M} \setminus \{m\}\).

The model weights, \(\Lambda\), may be selected via expert judgment to stress the relative importance of each model, as tunable parameters which the DM can vary (as illustrated in the case study in Section 7), according to a probability distribution over the models, or as uninformed priors when each model is considered equally reputable (as in Bertsimas et al. (2016)).
In an MMDP, the DM considers the expected rewards of the specified policy in the multiple models. The value of a policy \(\pi \in \Pi \) in model \(m \in \mathcal{M} \) is given by its expected rewards evaluated with model \(m \)'s parameters:

\[
v^m(\pi) := \mathbb{E}_{\pi,P^m,\mu^m_1}\left[\sum_{t=1}^{T} r^m_t(s_t,a_t) + r^m_{T+1}(s_{T+1}) \right].
\]

We associate any policy, \(\pi \in \Pi \), for the MMDP with its weighted value:

\[
W(\pi) := \sum_{m \in \mathcal{M}} \lambda_m v^m(\pi) = \sum_{m \in \mathcal{M}} \lambda_m \mathbb{E}_{\pi,P^m,\mu^m_1}\left[\sum_{t=1}^{T} r^m_t(s_t,a_t) + r^m_{T+1}(s_{T+1}) \right].
\]

(3)

Thus, we consider the weighted value problem in which the goal of the DM is to find the policy \(\pi \in \Pi \) that maximizes the weighted value defined in (3):

Definition 2 (Weighted value problem). Given an MMDP \((T,S,A,M,\Lambda)\), the weighted value problem is defined as the problem of finding a solution to:

\[
W^* := \max_{\pi \in \Pi} W(\pi) = \max_{\pi \in \Pi} \left\{ \sum_{m \in \mathcal{M}} \lambda_m \mathbb{E}_{\pi,P^m,\mu^m_1}\left[\sum_{t=1}^{T} r^m_t(s_t,a_t) + r^m_{T+1}(s_{T+1}) \right] \right\}
\]

(4)

and a set of policies \(\Pi^* := \{ \pi^* : W(\pi^*) = W^* \} \subseteq \Pi \) that achieve the maximum in (4).

The weighted value problem can be viewed as an interaction between the DM (who seeks to maximize the expected weighted value of the MMDP) and nature. In many robust formulations, nature is viewed as an adversary which represents the risk-aversion to ambiguity in model parameters. However, in the weighted value problem, nature plays the role of a neutral counterpart to the DM. In this interaction, the DM knows the complete characterization of each of the models and nature selects which model will be given to the DM by randomly sampling according to the probability distribution defined by \(\Lambda \in \mathcal{M}(\mathcal{M}) \). For a fixed model \(m \in \mathcal{M} \), there will exist an optimal policy for \(m \) that is Markov (i.e., \(\pi^m \in \Pi^M \)). We will focus on the problem of finding a policy that achieves the maximum in (4) when \(\Pi = \Pi^M \). We will refer to this problem as the *non-adaptive problem* because we are enforcing that the DM’s policy be based solely on the current state and she cannot adjust her strategy based on what sequences of states she has observed. As we will show, unlike traditional MDPs, the restriction to \(\Pi^M \) may not lead to an overall optimal solution. For completeness, we will also describe an extension, called the *adaptive problem*, where the DM can utilize information about the history of observed states, however this extension is not the primary focus of this article. The evaluation of a given policy in the weighted value problem is illustrated in Figure 1.
3.1. The non-adaptive problem

The non-adaptive problem for MMDPs is an interaction between nature and the DM. In this interaction, the DM specifies a Markov policy, \(\pi \in \Pi^M \), \textit{a priori}. In this case, the policy is composed of actions based only on the current state at each decision epoch. Therefore the policy is a distribution over the actions: \(\pi = \{ \pi_t(s_t) = (\pi_t(1 \mid s_t), \ldots, \pi_t(|A| \mid s_t)) \in \mathcal{M}(A) : a_t \in A, s_t \in S, t \in T \} \). In this policy, \(\pi_t(a_t \mid s_t) \) is the probability of selecting action \(a_t \in A \) if the MMDP is in state \(s_t \in S \) at time \(t \in T \). Then, after the DM has specified the policy, nature randomly selects model \(m \in \mathcal{M} \) with probability \(\lambda_m \). Now, nature selects \(s_1 \in S \) according to the initial distribution \(\mu_1^{m} \in \mathcal{M}(S) \) and the DM selects an action, \(a_1 \in A \), according to the pre-specified distribution \(\pi_1(s_1) \in \mathcal{M}(A) \). Then, nature selects the next state \(s_2 \in S \) according to \(p_1^{m}(\cdot \mid s_1, a_1) \in \mathcal{M}(S) \). The interaction carries on in this way where the DM selects actions according to the pre-specified policy, \(\pi \), and nature selects the next state according to the distribution given by the corresponding row of the transition probability matrix. From this point of view, it is easy to see that under a fixed policy, the dynamics of the stochastic process follow a Markov chain. Policy evaluation then is straightforward; one can use backwards recursion. While policy evaluation is similar for MMDPs as compared to standard MDPs, policy optimization is much more challenging for MMDPs. For example, value iteration, a well-known solution technique for MDPs, does not apply to MMDPs where actions are coupled across models.

3.2. The adaptive problem

The adaptive problem generalizes the non-adaptive problem to allow the DM to utilize realizations of the states to adjust her strategy. In this problem, nature and the DM interact sequentially where the DM gets new information in each decision epoch of the MMDP and the DM is allowed to utilize the realizations of the states to infer information about the ambiguous problem parameters when
selecting her future actions. In this setting, nature begins the interaction by selecting a model, \(m \in \mathcal{M} \), according to the distribution \(\Lambda \), and the model selected is not known to the DM. Nature then selects an initial state \(s_1 \in \mathcal{S} \) according to the model's initial distribution, \(\mu_1^m \). Next, the DM observes the state, \(s_1 \), and makes her move by selecting an action, \(a_1 \in \mathcal{A} \). At this point, nature randomly samples the next state, \(s_2 \in \mathcal{S} \), according to the distribution given by \(p_m^s(s_1, a_1) \in \mathcal{M}(\mathcal{S}) \).

The interaction continues by alternating between the DM (who observes the state and selects an action) and nature (who selects the next state according to the distribution defined by the corresponding row of the transition probability matrix).

In the adaptive problem, the DM considers the current state of the MMDP along with information about all previous states observed and actions taken. Because the history is available to the DM, the DM may be able to infer which model is most likely to correctly characterize the behavior of nature which the DM is observing. As we will formally prove later, in this context the DM will specify a history-dependent policy in general, \(\pi = \{ \pi_t(h_t) : h_t \in \mathcal{S} \times \mathcal{A} \times \ldots \times \mathcal{A} \times \mathcal{S}, t \in T \} \).

4. Analysis of MMDPs

In this section, we will analyze the weighted value problem as defined in (4). For both the adaptive and non-adaptive problems, we will describe the classes of policies that achieve the optimal weighted value, the complexity of solving the problem, and related problems that may provide insights into promising solution methods. These results and solution methods are summarized in Table 1. For ease of reading, we defer all proofs to the appendix.

4.1. General properties of the weighted value problem

In both the adaptive and non-adaptive problems, nature is confined to the same set of rules. However, the set of strategies available to the DM in the non-adaptive problem is just a subset of the strategies available in the adaptive problem. Therefore, if \(W_N^* \) and \(W_A^* \) are the best expected
values that the DM can achieve in the non-adaptive and adaptive problems, respectively, then it follows that $W_N^* \leq W_A^*$.

Proposition 1. $W_N^* \leq W_A^*$. Moreover, the inequality may be strict.

Corollary 1. It is possible that there are no optimal policies that are Markovian for the adaptive problem.

The results of Proposition 1 and Corollary 1 mean that the DM may benefit from being able to recall the history of the MMDP. This history allows for the DM to infer which model is most likely, conditional on the observed sample path and tailor the future actions to reflect this changing belief about nature’s choice of model. Therefore, the DM must search for policies within the history-dependent policy class to find an optimal solution to the adaptive MMDP. These results establish that the adaptive problem does not reduce to the non-adaptive problem in general. For this reason, we separate the analysis for the adaptive and non-adaptive problems.

4.2. Analysis of the adaptive problem

We begin by establishing an important connection between the adaptive problem and the POMDP (Smallwood and Sondik 1973):

Proposition 2. The adaptive problem for any MMDP can be recast as a special case of a POMDP such that the maximum weighted value of the MMDP is equivalent to the expected discounted rewards of the POMDP.

Corollary 2. There is always a deterministic policy that is optimal for the adaptive problem.

The implication of Proposition 2 is illustrated in Figure 2 which displays the relationship between MDPs, MMDPs, and POMDPs. Given Proposition 2, we can draw on similar ideas proposed in the
literature for solving POMDPs and refine them to take advantage of structural properties specific to MMDPs. However, we show that even though MMDPs have special structure on the observation matrix and transition probability matrix (see the proof of Proposition 2 in the appendix), we cannot expect any improvements in the complexity of the problem due to this structure.

Proposition 3. The adaptive problem for MMDPs is PSPACE-hard.

Although the adaptive problem is PSPACE-hard and we cannot expect to develop an algorithm whose solution time is bounded above by a function that is polynomial in the problem size, we now discuss some special properties of the problem that can be exploited to develop an exact algorithm for solving this problem in Section 5. We start by establishing a sufficient statistic for MMDPs:

Definition 3 (Information state for MMDPs). The information state for an MMDP is given by a vector:

\[b_t := [b_t(1,1), \ldots, b_t(S,1), b_t(1,2), \ldots, b_t(S,2), \ldots, b_t(1,M), \ldots, b_t(S,M)]' \]

with elements:

\[b_t(s,m) := \mathbb{P}(s_t, m \mid s_1, a_1, \ldots, s_{t-1}, a_{t-1}, s_t). \]

The fact that the information state is a sufficient statistic follows directly from Proposition 2, the formulation of a POMDP, and the special structure in the observation matrix.

Given this sufficient statistic, we establish some structural properties of the weighted value problem:

Proposition 4. The information state, \(b_t \), has the following properties:

1. The value function is piece-wise linear and convex in the information state, \(b_t \).
2. \(b_t(s,m) > 0 \Rightarrow b_t(s',m) = 0, \forall s' \neq s. \)
3. The information state as defined above is Markovian in that the information state \(b_{t+1} \) depends only on the information state and action at time \(t \), \(b_t \) and \(a_t \) respectively, and the state observed at time \(t+1 \), \(s_{t+1} \).

According to part 1, the optimal value function can be expressed as the maximum value over a set of hyperplanes. This structural result forms the basis of our exact algorithm in Appendix B. Part 2 states that only elements in the vector with the same value for the state portion of the state-model pair \((s,m) \) can be positive simultaneously, which implies that at most \(|\mathcal{M}| \) elements of this vector are zero. This result allows us to ignore the parts of this continuous state space that have zero probability of being occupied. Part 3 allows for a sequential update of the belief that a given model is the best representation of the observed states given the DM’s actions according to
Bayes’ rule. Consider the information state at time 1 at which point state s_1 has been observed. This information state can be represented by the vector with components:

$$b_1(s, m) = \begin{cases} \lambda_m \mu^m_1(s) / \sum_{m' \in M} \lambda_m \mu^m_1(s) & \text{if } s = s_1, \\ 0 & \text{otherwise}. \end{cases}$$

Now, suppose that the information state at time t is b_t, the DM takes action $a_t \in A$, and observes state s_{t+1} at time $t+1$. Then, every component of the information state can be updated by:

$$b_{t+1}(s, m) = \begin{cases} T^m(b_t, a_t, s_{t+1}) & \text{if } s = s_{t+1}, \\ 0 & \text{otherwise}, \end{cases}$$

where $T^m(b_t, a_t, s_{t+1})$ is a Bayesian update function that reflects the probability of model m being the best representation of the system given the most recently observed state, the previous action, and the previous belief state:

$$T^m(b_t, a_t, s_{t+1}) := \frac{\sum_{s_t \in S} p^m_t(s_{t+1}|s_t, a_t) b_t(s_t, m)}{\sum_{m' \in M} \sum_{s_t \in S} p^{m'}_t(s_{t+1}|s_t, a_t) b_t(s_t, m')}.$$

As mentioned previously, our focus in this article is on applications of the MMDP framework to medical problems in contexts for which learning by Bayesian updating is not appropriate. However, the adaptive framework would apply to other contexts. We describe solution methods that exploit these structural properties in Appendix B. While the methods described are likely to achieve some degree of computational efficiency, the difficulty of solving POMDPs is such that these problems are likely to remain intractable for all but very small model instances.

4.3. Analysis of the non-adaptive problem

In this section, we analyze the non-adaptive problem for which restricts the DM’s policy is restricted to the class of Markov policies (Π^M). We begin by establishing the important result that there always exists a deterministic optimal policy for the special case of the non-adaptive problem. This result is important because searching among policies in the Markov deterministic policy class may be appealing for several reasons: First, each individual model is solved by a policy in this class and it could be desirable to find a policy with the same properties as the each model’s individual optimal policy. Second, Markov policies are typically easier to implement because they only require the current state to be stored rather than partial or complete histories of the MDP. Third, Markov deterministic policies are ideal for medical decision making, the motivating application for this article, because they can be easily translated to treatment guidelines that are based solely on the information available to the physician at the time of the patient visit, such as the patient’s current blood pressure levels. For applications in medicine, such as the case study in Section 7, deterministic policies are a necessity since randomization is unlikely to be considered ethical outside the context of randomized clinical trials.
Proposition 5. For the non-adaptive problem, there is always a Markov deterministic policy that is optimal.

This result means that for the non-adaptive problem, the DM can restrict her attention to the class of Markov deterministic policies. This result may be surprising at first due to the result of Fact 2 in Singh et al. (1994) which states that the best stationary randomized policy can be arbitrarily better than the best stationary deterministic policy for POMDPs. While this result may seem to contradict Proposition 5, it is worth noting that Fact 2 of Singh et al. (1994) was derived in the context of an infinite-horizon MDP in which it is possible that the same state can be visited more than once. In the finite-horizon MMDP, it is not possible that s_t could be visited more than once.

Even though the non-adaptive problem requires searching over a smaller policy class than for the adaptive problem ($\Pi^{MD} \subset \Pi^{HD}$), the non-adaptive problem is still provably hard.

The result of Proposition 6 implies that we cannot expect to find an algorithm that solves the non-adaptive problem for all MMDPs in polynomial time. Still, we are able to solve the non-adaptive problem by formulating it as an MIP as discussed in the following proposition.

Proposition 7. Non-adaptive MMDPs can be formulated as the following MIP:

$$\begin{align*}
\max_{v, \pi} & \quad \sum_{m \in M} \lambda_m \sum_{s \in S} \mu^m_1(s)v^m_1(s) \\
\text{s.t.} & \quad v^m_{T+1}(s) \leq r^m_{T+1}(s), \quad \forall s \in S, m \in M, \\
& \quad v^m_t(s) \leq r^m_t(s, a) + \sum_{s' \in S} p^m_t(s'|s, a)v^m_{t+1}(s') + M(1 - \pi_t(a|s)), \quad \forall m \in M, s \in S, a \in A, \\
& \quad \sum_{a \in A} \pi_t(a|s) = 1, \quad \forall s \in S, t \in T, \\
& \quad \pi_t(a|s) \in \{0, 1\}, \quad \forall s \in S, a \in A, t \in T.
\end{align*}$$

(5)

In this formulation, the decision variables, $v^m_t(s) \in \mathbb{R}$, represent the value-to-go from state $s \in S$ at time $t \in T$ in model $m \in M$. The binary decision variables, $\pi_t(a|s) \in \{0, 1\}$, take on a value of 1 if the policy prescribes taking action $a \in A$, in state $s \in S$, at epoch $t \in T$, and 0 otherwise.

It is well-known that standard MDPs can be solved using a linear programming (LP) formulation (Puterman 1994, §6.9). Suppose that $v_t(s, a)$ represents the value-to-go from state $s \in S$ using action $a \in A$ at decision epoch $t \in T$. The LP approach for solving MDPs utilizes a reformulation trick that finding $\max_{a \in A} v_t(s, a)$ is equivalent to finding $\min v_t(s)$ such that $v_t(s) \geq v_t(s, a)$ for all feasible a. In this reformulation, the constraint $v_t(s) \geq v_t(s, a)$ is tight for all actions that are optimal. The MIP formulation presented in (5) relies on similar ideas as the LP formulation of an MDP, but is modified to enforce the constraint that the policy must be the same across all models.
In the MIP formulation of the non-adaptive MMDP, we require that constraints
\[v^m_t(s) \leq r^m_t(s,a) + \sum_{s' \in S} p^m_t(s'|s,a)v^m_{t+1}(s') + M(1 - \pi_t(a|s)), \quad \forall m \in \mathcal{M}, s \in \mathcal{S}, a \in \mathcal{A} \]
are tight for the action \(a^* \in \mathcal{A} \) such that \(\pi_t(a^*|s) = 1 \) for any given state \(s \in \mathcal{S} \), decision epoch \(t \in \mathcal{T} \), and model \(m \in \mathcal{M} \). The purpose of the big-M is to ensure that \(v^m_t(s) = v^m_t(s,a) \) only if \(\pi_t(a|s) = 1 \) meaning that the value-to-go for this state-time pair in model \(m \in \mathcal{M} \) corresponds to the policy that is being used in all models. Thus, if action \(a \in \mathcal{A} \) is selected (and thus, \(\pi_t(a|s) = 1 \)), we want \(v^m_t(s) = v^m_t(s,a) \) and if not \((\pi_t(a|s) = 0) \), we want \(v^m_t(s) \leq v^m_t(s,a) \). Therefore, we must select \(M \) sufficiently large enough for all constraints.

The formulation of the non-adaptive problem as an MIP may seem more natural after a discussion of the connections with two-stage stochastic programming (Birge and Louveaux 1997). If we view the non-adaptive problem through the lens of stochastic programming, the \(\pi_t(a|s) \) binary variables that define the policy can be interpreted as the first-stage decisions of a two-stage stochastic program. Moreover, nature’s choices of model, \(\mathcal{M} \), correspond to the possible scenarios which are observed according to the probability distribution \(\Lambda \). In this interpretation, the value function variables, \(v^m_t(s) \), can be viewed as the recourse decisions. That is, once the DM has specified the policy according to the \(\pi \) variables and nature has specified a model \(m \in \mathcal{M} \), the DM seeks to maximize the value function so long as it is consistent with the first-stage decisions:
\[
V(\pi, m) = \max_{\pi} \left[v^m(\pi) \mid \sum_{a \in \mathcal{A}} \pi_t(a|s) = 1, \forall s \in \mathcal{S}, t \in \mathcal{T}, \pi_t(a|s) \in \{0, 1\}, \forall s \in \mathcal{S}, a \in \mathcal{A}, t \in \mathcal{T} \right],
\]
where \(V(\pi) \) is the recourse function. This can be written as
\[
V(\pi) = \mathbb{E}_m[V(\pi, m)] = \mathbb{E}_{\pi \sim p^m} \left[\sum_{t=1}^{T} r_t(s_t, a_t) + r_{T+1}(s_{T+1}) \right].
\]
The formulation in (5) is the deterministic equivalent formulation of this stochastic integer program.

Our initial numerical experiments showed that moderate-sized MDPs can be solved using (5), but this approach may be too computationally intensive to solve large problems such as those that arise in the context of medical decision making. This motivated the development of an approximation algorithm that we describe in Section 5, subsequently test on randomly generated problem instances in Section 6, and then apply to a medical decision making problem in the case study in Section 7. The following relaxation of the non-adaptive problem allows us to quantify the performance of our approximation algorithm:

Proposition 8. For any policy \(\hat{\pi} \in \Pi \), the weighted value is bounded above by the weighted sum of the optimal values in each model. That is,
\[
\sum_{m \in \mathcal{M}} \lambda_m v^m(\hat{\pi}) \leq \sum_{m \in \mathcal{M}} \lambda_m \max_{\pi \in \Pi_m} v^m(\pi), \quad \forall \hat{\pi} \in \Pi.
\]
The result of Proposition 8 allows us to evaluate the performance of any MD policy even when we cannot solve the weighted value problem exactly to determine the true optimal policy. We use this result to illustrate the performance of our approximation algorithm in Section 7.

Proposition 8 motivates several connections between robustness and the value of information. First, the upper bound in Proposition 8 is based on the well-known wait-and-see problem in stochastic programming that relaxes the condition that all models must have the same policy. Second, the expected value of perfect information (EVPI) is the expected value of the wait-and-see solution minus the recourse problem solution:

\[
EVPI = \left[\sum_{m \in \mathcal{M}} \lambda_m \max_{\pi \in \Pi_M} v^m(\pi) \right] - \max_{\pi \in \Pi_M} \left[\sum_{m \in \mathcal{M}} \lambda_m v^m(\pi) \right].
\]

While the wait-and-see value provides an upper bound, it may prescribe a set of solutions, one for each model, and thus it often does not provide an implementable course of action. Another common approach in stochastic programming is to solve the mean value problem (MVP) which is a simpler problem in which all parameters take on their expected values. In the MMDP, this corresponds to the case where all transition probabilities and rewards are weighted as follows:

\[
\bar{p}_t(s'|s,a) = \sum_{m \in \mathcal{M}} \lambda_m p^m_t(s'|s,a), \quad \forall s \in \mathcal{S}, a \in \mathcal{A}, t \in \mathcal{T}\]

and

\[
\bar{r}_t(s,a) = \sum_{m \in \mathcal{M}} \lambda_m r^m_t(s,a).
\]

Solving the mean value problem will give a single policy, \(\bar{\pi}\), which we will term the mean value solution, with the following expected rewards:

\[
W(\bar{\pi}) = \sum_{m \in \mathcal{M}} \lambda_m v^m(\bar{\pi}).
\]

Thus, we can create a measure of robustness for an MMDP termed the value of the weighted value solution (VWV):

\[
VWV = W^* - W(\bar{\pi}),
\]

which parallels the well-known value of the stochastic solution (VSS) in stochastic programming (Birge and Louveaux 1997, §4.2). If VWV is low, this implies that there is not much value from solving the MMDP versus the MVP. On the other hand, if VWV is high, this implies that the DM will benefit significantly from solving the MMDP.

While the non-adaptive problem has connections to stochastic programming, it also has connections to POMDPs. The non-adaptive problem can be viewed as the problem of finding the best memoryless controller for this POMDP (Vlassis et al. 2012). Memoryless controllers for POMDPs
are defined on the most recent observation only. For an MMDP, this would translate to the DM specifying a policy that is based only on the most recent observation of the state (recall that the DM gets no information about the model part of the state-model pair). Because no history is allowed to be incorporated into the definition of the policy, this policy is permissible for the non-adaptive problem. These connections between MMDPs and stochastic programs and POMDPs allow us to better understand the complexity and potential solution methods for finding the best solution to the non-adaptive problem.

5. Solution methods

In this section, we will discuss how to leverage the results of Section 4 to solve the non-adaptive problem. For conciseness, we defer the solution methods for the adaptive problem to Appendix B.

5.1. Solution methods for the non-adaptive problem

In this section, we discuss the MIP formulation of Proposition 7 for solving the non-adaptive weighted value problem. Although the MIP formulation provides a viable way to exactly solve this class of problems, the result of Proposition 6 motivates the need for a fast approximation algorithm that can scale to large MMDPs.

5.1.1. Mixed-integer programming formulation

The big-M constraints are an important aspect of the MIP formulation of the weighted value problem. Thus, we discuss tightening of the big-M values in the following constraints:

\[v^m_t(s) \leq r^m_t(s,a) + \sum_{s' \in S} p^m_t(s'|s,a)v^m_{t+1}(s') + M_1(1 - \pi_t(a|s)), \forall m \in \mathcal{M}, s \in \mathcal{S}, a \in \mathcal{A}, t \in \{1, \ldots, T\}. \]

Recall that the decision variables of the form \(v^m_t(s) \in \mathbb{R} \) represent the value-to-go from state \(s \in \mathcal{S} \) at time \(t \in \mathcal{T} \) in model \(m \in \mathcal{M} \) under the policy specified by the \(x \) variables. For the purposes of this discussion, we define the optimal value function for epoch \(t \) and model \(m \) for a given state-action pair \((s, a)\) as:

\[v^m_t(s, a) = r^m_t(s, a) + \sum_{s' \in S} p^m_t(s'|s, a)v^m_{t+1}(s') + M_1(1 - \pi_t(a|s)), \forall m \in \mathcal{M}, s \in \mathcal{S}, a \in \mathcal{A}, t \in \{1, \ldots, T\}. \]

For action \(a \in \mathcal{A} \), we would like the smallest value of \(M_1 \)'s that still ensures that:

\[r^m_t(s, a) + \sum_{s' \in S} p^m_t(s'|s, a)v^m_{t+1}(s') \leq r^m_t(s, a') + \sum_{s' \in S} p^m_t(s'|s, a')v^m_{t+1}(s') + M_{m, s, t}, \forall a' \in \mathcal{A}. \]

Rearranging, we obtain:

\[M_{m, s, t} \geq r^m_t(s, a) + \sum_{s' \in S} p^m_t(s'|s, a)v^m_{t+1}(s') - r^m_t(s, a') - \sum_{s' \in S} p^m_t(s'|s, a')v^m_{t+1}(s'), \forall a, a' \in \mathcal{A}. \]
A sufficient condition for (6) is the following:

\[M_{m,s,t} \geq \max_{a \in A} v^m_t(s,a) - \min_{a \in A} v^m_t(s,a). \]

By the definition of \(v_t(s,a) \), we are assuming that the policy defined by the \(x \) variables is being followed after time \(t \). However, we can relax this assumption further and allow each model to follow a different policy to obtain the big-M values, where \(\max_{a \in A} v^m_t(s,a) \) is the largest value-to-go for this model and \(\min_{a \in A} v^m_t(s,a) \) is the smallest value-to-go for this model. This will provide tighter bounds that strengthen the MIP formulation and furthermore these bounds can be computed efficiently using standard dynamic programming methods.

5.1.2. Weight-Select-Update (WSU) Approximation Algorithm

Next, we discuss our Weight-Select-Update (WSU) algorithm, formalized in Procedure 1, which is a fast approximation algorithm for the non-adaptive problem. WSU generates decision rules \(\hat{\pi}_t \in \Pi^MD_t \) stage-wise starting at epoch \(T \) and iterating backwards. At epoch \(t \in T \), the algorithm has an estimate of the value for this policy in each model conditioned on the state \(s_{t+1} \) at epoch \(t+1 \in T \). This estimate is denoted \(\hat{v}^m_{t+1}(s_{t+1}) \), \(\forall m \in M, \forall s_{t+1} \in S \). The algorithm weights the immediate rewards plus the value-to-go for each of the models and then the algorithm selects, for each state, an action that maximizes the sum of these weighted terms and denotes this action \(\hat{\pi}_t(s_t) \). Next, the algorithm updates the estimated value-to-go for every state in each model according to the decision rule \(\hat{\pi}_t \) at epoch \(t \in T \). This procedure iterates backwards stage-wise until the actions are specified for the first decision epoch.

Upon first inspection, it may not be obvious that WSU is not guaranteed to produce the optimal MD policy; however, this approximation algorithm fails to account for the fact that, under a given policy, the likelihood of occupying a specific state could vary under the different models. The result of Proposition 9 shows that ignoring this could lead to sub-optimal selection of actions as illustrated in the proof.

Proposition 9. WSU is not guaranteed to produce an optimal solution to the non-adaptive weighted value problem.

Although WSU is not guaranteed to select the optimal action for a given state-time pair, this procedure is guaranteed to correctly evaluate the value-to-go in each model for the procedure’s policy, \(\hat{\pi} \). This is because, although the action selection in equation (7) may be suboptimal, the update of the value-to-go in each model in (8) correctly evaluates the performance of this action in each model conditional on being in state \(s_t \) at decision epoch \(t \). That is, for a fixed policy, policy evaluation for standard MDPs applies to each of the models, separately.
Procedure 1 Weight-Select-Update (WSU) approximation algorithm for the non-adaptive problem (4)

Input: MMDP
Let \(\hat{v}_m^{T+1}(s_{T+1}) = r_m^{T+1}(s_{T+1}), \forall m \in \mathcal{M} \)
\(t \leftarrow T \)
while \(t \geq 1 \) do
for Every state \(s_t \in S \) do
\[\hat{\pi}_t(s_t) \leftarrow \arg \max_{a_t \in A} \left\{ \sum_{m \in \mathcal{M}} \lambda_m \left(r_m^{m}(s_t, a_t) + \sum_{s_{t+1} \in S} p_t^{m}(s_{t+1} | s_t, a_t) \hat{v}_t^{m+1}(s_{t+1}) \right) \right\} \] (7)
end for
for Every model \(m \in \mathcal{M} \) do
\[\hat{v}_t^{m}(s_t) \leftarrow r_t^{m}(s_t, \hat{\pi}_t(s_t)) + \sum_{s_{t+1} \in S} p_t^{m}(s_{t+1} | s_t, \hat{\pi}_t(s_t)) \hat{v}_t^{m+1}(s_{t+1}) \] (8)
end for
\(t \leftarrow t - 1 \)
end while
Output: The policy \(\hat{\pi} = (\hat{\pi}_1, ..., \hat{\pi}_T) \in \Pi^{MD} \)

Lemma 1. For \(|\mathcal{M}| = 2\), if \(\lambda_1 > \lambda_2 \), then the corresponding policies \(\hat{\pi}(\lambda_1) \) and \(\hat{\pi}(\lambda_2) \) generated via WSU for these values will be such that
\[v^m(\hat{\pi}(\lambda_1)) \geq v^m(\hat{\pi}(\lambda_2)). \]

Lemma 1 guarantees that the policies generated using WSU will have values in model \(m \in \mathcal{M} \) that are non-decreasing in model \(m \)'s weight, \(\lambda_m \). This result is desirable because it allows DMs to know that placing more weight on a particular model will not result in a policy that does worse with respect to that model. Lemma 1 is also useful for establishing the lower bound in the following proposition:

Proposition 10. For any MMDP with \(|\mathcal{M}| = 2\), the error of the policy generated via WSU, \(\hat{\pi} \), is bounded so that
\[W(\pi^*) - W(\hat{\pi}) \leq \lambda_1 \left(v^1(\pi^1) - v^1(\pi^2) \right) + \lambda_2 \left(v^2(\pi^2) - v^2(\pi^1) \right), \]
where \(\pi^m \) is the optimal policy for model \(m \) and \(\pi^* \in \Pi^{MD} \) is the optimal policy for weighted value problem (WVP).
Proposition 10 provides an upper bound on the error for the important special case of two models. Unfortunately, the performance guarantee in Proposition 10 does not extend to $|\mathcal{M}| > 2$. The proof relies on Lemma 1 and the property that, when $|\mathcal{M}| = 2$, $\lambda_1 = 1 - \lambda_2$ to summarize the difference between two weight vectors in terms of a single parameter which will satisfy a complete ordering. For $|\mathcal{M}| > 2$, this model-wise complete ordering is no longer available. Fortunately, the WSU heuristic and the upper bound of Remark 8 together provide computational lower and upper bounds, respectively.

6. Computational experiments

In this section, we describe computational experiments involving two sets of test instances for comparing solution methods for WVP on the basis of run-time and quality of the solution. The first set of experiments were based on a series of random instances of MMDPs. The second set of experiments was based on a small MDP for determining the most cost-effective HIV treatment policy which has been used for pedagogical purposes in the medical decision making literature (Chen et al. 2017).

To compare the solution methods, we will generate a solution for each instance using the WSU heuristic, mean value problem (MVP) heuristic, and the MIP formulation. We will compare the weighted value policies obtained via the heuristics ($W_N(\hat{\pi})$) to the optimal value obtained by solving the MIP to within 1% of optimality, W^*_N:

$$\text{Gap} = \frac{W^*_N - W_N(\hat{\pi})}{W^*_N} \times 100\%,$$

where $\hat{\pi}$ is the policy obtained from either WSU or MVP. WSU and MVP were implemented using Python 3.7. All MIPs were solved using Gurobi 8.1.1.

6.1. Test instances

We now describe the two sets of test instances used to compare the solution methods.

6.1.1. Random instances

To generate the random test instances, first, the number of states, actions, models, and decision epochs for the problem were defined. Then, model parameters were randomly sampled. In all test instances, it was assumed that the sampled rewards were the same across models, the weights were uninformed priors on the models, and the initial distribution was a discrete uniform distribution across the states. The rewards were sampled from the uniform distribution: $r(s,a) \sim U(0,1), \forall (s,a) \in \mathcal{S} \times \mathcal{A}$. The transition probabilities were obtained by sampling from a Dirichlet distribution (Dir), which has a set of parameters defining a base measure and a parameter defining the concentration of the distribution. For each row, the base measure was determined by sampling a uniform $U(0,1)$ for each possible transition: $p(s'|s,a) \sim U(0,1)$. Then,
for every \((m, s, a, s') \in \mathcal{M} \times \mathcal{S} \times \mathcal{A} \times \mathcal{S}\), the transition probabilities were normalized so that the row of the transition probability matrix had elements that sum to one:

\[
p(s'|s, a) := \frac{\tilde{p}(s'|s, a)}{\sum_{s'' \in \mathcal{S}} \tilde{p}(s''|s, a)}.
\]

The \(p(s'|s, a)\) values are then used as the base measure for the Dirichlet distribution, and we vary the concentration parameter to control for the amount of variance among the models to control for the amount of variance among the models. Dirichlet distributions with the same base measure will have the same mean value of the transition row, but higher values of the concentration parameter correspond to distributions with less variance. For each sample, we scale by a factor of \(\beta \propto \min_{s' \in \mathcal{S}} p(s'|s, a)\) for \(\beta = 1, 10, \text{ and } 100\):

\[
(p^m(1|s, a), \ldots, p^m(|\mathcal{S}||s, a)) \sim \text{Dir}(\beta p(1|s, a), \ldots, \beta p(|\mathcal{S}||s, a)) \forall s \in \mathcal{S}, a \in \mathcal{A}, m \in \mathcal{M}.
\]

These experiments allow us to test the performance of the solution methods on many different kinds of MMDPs, however these instances are not guaranteed to have structured transitions and rewards that one might expect in practice. Therefore, we also include the following test instances that has a structure commonly observed in MDPs for medical decision making.

6.1.2. Medical decision making instances

We also consider a second set of test instances which matches the medical decision making context of our case study. The example we consider has been used many times in the medical decision making literature for illustrative purposes to demonstrate various methods.

In this set of experiments, we consider an MDP for determining the optimal timing of treatments for HIV. In the MDP, HIV is characterized according to 4 health states: Mild, Moderate, Severe, or Dead. The patient transitions from the less severe states to the more severe states according to a Markov chain. The DM can choose to start the patient on one of three treatments: Treatment A, Treatment B, and Treatment C. Treatment A is the least effective but also the least expensive while Treatment C is the most effective but comes at the highest cost. Chen et al. (2017) provides a summary table of parameter values for this MDP as well as some sampling distributions for each parameter. In our experiments, we construct an MMDP by sampling parameters from the corresponding distributions. We consider 10, 20, and 30 models in the MMDP and vary the number of decision epochs from 5 to 10 to explore how the proposed methods perform.

6.2. Results

We now present the results of our computational experiments comparing solution methods for WVP for these two sets of test instances.
6.2.1. Random instances Figure 3 demonstrates the run-time of the three proposed solution methods: MVP, WSU heuristic, and the exact MIP formulation. We find that the MVP and WSU were able to solve these instances quickly (under 0.1 CPU seconds for each instance) while the average time to solve the MIP noticeably increases as the size of the problem increases. The results suggest that heuristics are needed to approximate solutions for larger MMDPs, such as the one presented in the case study in Section 7. The MVP and WSU heuristic also performed well in terms of their average optimality gaps, although WSU provided a better optimality gap in 79.2% of the test instances. WSU had an average optimality gap of 0.53% and worst-case gap of 10.17% while the MVP had an average optimality gap of 1.17% and worst-case gap of 12.80%. Table 2 shows the effect of the concentration parameter, β, on the computational time and optimality gap. It appears that the solution time for the MIP decreases as the concentration parameter increases, but there is no such pattern between the solution time for the WSU and MVP solution times. Further, there does not appear to be a clear connection between the concentration parameter and the optimality gap of the heuristics.

Table 2 The effect of the concentration parameter, β, on the performance of the WSU, MVP, and MIP solution methods on random MMDP test instances for the basecase instance size.

<table>
<thead>
<tr>
<th>Conc. Parameter</th>
<th>Solution Time (CPU Seconds)</th>
<th>Optimality Gap (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIP Average</td>
<td>MIP Maximum</td>
</tr>
<tr>
<td>1</td>
<td>5.73</td>
<td>18.54</td>
</tr>
<tr>
<td>10</td>
<td>5.19</td>
<td>12.48</td>
</tr>
<tr>
<td>100</td>
<td>4.80</td>
<td>9.81</td>
</tr>
</tbody>
</table>

(a) Decision epochs (b) States (c) Actions (d) Models

Figure 3 The effect of the number of decision epochs, states, actions, and models on computation time in the random instances. We observe that computation time to solve the MIP increases most quickly with respect to the number of decision epochs than the number of models. However, we see that the computation time required for the WSU and MVP heuristics increases at a much slower rate.
6.2.2. Medical decision making instances

Figure 4 demonstrates the run-time of the three proposed solution methods on the medical decision making instances. We find that the MVP and WSU were able to solve these instances relatively quickly (under 0.1 CPU seconds for each instance) while the average time to solve the MIP noticeably increases as the size of the number of decision epochs increases (from 1.73 CPU seconds on average for 4 decision epochs to 141.84 CPU seconds for 6 decision epochs). For the instances with 6 decision epochs, the MIP computation time rose from 21.73 CPU seconds on average for 5 models to 111.04 CPU seconds for 15 models. Comparing WSU and MVP in terms of optimality gap, we observe that for these test instances, both WSU and MVP perform quite well with maximum optimality gaps under 0.45% and 0.69% respectively. These results suggest that the MVP and WSU heuristics may be suitable for generating solutions to medical decision making instances. The case study in Section 7 considers a larger medical decision making problem in the context of preventive blood pressure and cholesterol management.

7. Case study: blood pressure and cholesterol management in type 2 diabetes

In this section, we present an MMDP to optimize the timing and sequencing of the initiation of blood pressure medications and cholesterol medications for patients with type 2 diabetes. A non-adaptive MMDP is appropriate for this case study because the goal is to design treatment guidelines to prevent cardiovascular events. Thus, adaptive learning cannot be used to resolve the underlying source of ambiguity (models for the risk of events) without exposing patients to heightened risk of events. Something that would be considered unethical in the context of preventive medicine. Here,
WSU was used to generate a policy that trades off conflicting estimates of cardiovascular risk from two well-established studies in the medical literature. We begin by providing some context about the problem, the MMDP model, and the parameter ambiguity that motivates its use.

Diabetes is one of the most common and costly chronic medical conditions, affecting more than 25 million adults, or 11% of the adult population in the United States (CDC 2011). Diabetes is associated with the inability to properly metabolize blood glucose (blood sugar) and other metabolic risk factors that place the patient at risk of complications including coronary heart disease (CHD) and stroke. There are several types of diabetes including type 1 diabetes, in which the patient is dependent on insulin to live, gestational diabetes, which is associated with pregnancy, and type 2 diabetes in which the patient has some ability (albeit impaired) to manage glucose. In this case study we focus on type 2 diabetes, which accounts for more than 90% of all cases.

The first goal, glycemic control, is typically achieved quickly following diagnosis of diabetes using oral medications and/or insulin. Management of cardiovascular risk, the focus of this case study, is a longer term challenge with a complex tradeoff between the harms of medication and the risk of future CHD and stroke events. Patients with diabetes are at much higher risk of stroke and CHD events than the general population. Well-known risk factors include total cholesterol (TC), high density lipids (HDL – often referred to as “good cholesterol”), and systolic blood pressure (SBP). Like blood glucose, the risk factors of TC, HDL, and BP are also controllable with medical treatment. Medications, such as statins and fibrates, can reduce TC and increase HDL. Similarly, there are a number of medications that can be used to reduce blood pressure including ACE inhibitors, ARBs, beta blockers, thiazide, and calcium channel blockers. All of these medications have side effects that must be weighed against the long-term benefits of lower risk of CHD and stroke. An added challenge to deciding when and in what sequence to initiate medication is due to the conflicting risk estimates provided by two well known clinical studies: the FHS (Wolf et al. 1991, Wilson et al. 1998) and the ACC/AHA assessment of cardiovascular risk (Goff et al. 2014).

7.1. MMDP formulation

The MDP formulation of Mason et al. (2014) was adapted to create an MMDP based on the FHS risk model (Wolf et al. 1991, Wilson et al. 1998) and the ACC/AHA risk model (Goff et al. 2014). These are the most well-known risk models used by physicians in practice. The state space of the MMDP is a finite set of health states defined by SBP, TC, HDL, and current medications. A discrete set of actions represent the initiation of the two cholesterol medications and 4 classes of blood pressure medications. The objective is to optimize the timing and sequencing of medication initiation to maximize quality-adjusted life years (QALYs). QALYs are a common measure used to assess health interventions that account for both the length of a patient’s life as well as the loss
of quality of life due to the burden of medical interventions. For this case study, we will assume that the rewards are the same in each of the models of the MMDP and that only the transition probabilities vary across models. Figure 5 provides a simplified example to illustrate the problem. In the diagram, solid lines illustrate the actions of initiating one or both of the most common medications (statins (ST), ACE inhibitors (AI)), and dashed lines represent the occurrence of an adverse event (stroke or CHD event), or death from other causes. In each medication state, including the no medication state (\emptyset), patients probabilistically move between health risk states, represented by L (low), M (medium), H (high), and V (very high). For patients on one or both medications, the resulting improvements in risk factors reduce the probability of complications. Treatment actions are taken at a discrete set of decision epochs indexed by $t \in T = \{0, 1, \ldots, T\}$ that correspond to ages 54 through 74 at one year intervals that represent annual preventive care visits with a primary care doctor. These ages represent the median age of diagnosis of diabetes among patients in the calibrating dataset until the age for which the risk estimators provide predictions of car risk. It is assumed that once a patient starts a medication, the patient will remain on this medication for the rest of his or her life which is consistent with clinical recommendations (Vijan and Hayward 2004, Chobanian et al. 2003). States can be separated into living states and absorbing states. Each living state is defined by the factors that influence a patient’s cardiovascular risk: the patient’s TC, HDL, and SBP levels, and medication state. We denote the set of the TC states by $\mathcal{L}_{TC} = \{L, M, H, V\}$, with similar definitions for HDL, $\mathcal{L}_{HDL} = \{L, M, H, V\}$, and SBP, $\mathcal{L}_{SBP} = \{L, M, H, V\}$. The thresholds for these ranges are based on established clinically-relevant cut points for treatment (Cleeman et al. 2001). The complete set of health states is indexed by $\ell \in \mathcal{L} = \mathcal{L}_{TC} \times \mathcal{L}_{HDL} \times \mathcal{L}_{SBP}$. The set of medication states is $\mathcal{M} = \{\tau = (\tau_1, \tau_2, \ldots, \tau_n) : \tau_i \in \{0, 1\}, \forall i = 1, 2, \ldots, 6\}$ corresponding to all combinations of the 6 medications mentioned above. If $\tau_i = 0$, the patient is not on medication i, and if $\tau_i = 1$, the patient is on medication i. The treatment effects for medication i are denoted by $\omega^{TC}(i)$, for the proportional reduction in TC, $\omega^{HDL}(i)$, for the proportional change in HDL, and $\omega^{SBP}(i)$, for the proportional change in SBP, as reported in Mason et al. (2014). The living states in the model are indexed by $(\ell, \tau) \in \mathcal{L} \times \mathcal{M}$. The absorbing states are indexed by $d \in D = \{D_S, D_{CHD}, D_O\}$ represent having a stroke, D_S, having a CHD event, D_{CHD}, or dying, D_O. The action space depends on the history of medications that have been initiated in prior epochs. For each medication, at each epoch, medication i can be initiated (I) or initiation can be delayed (W):

$$A_{(\ell, m_i)} = \begin{cases} \{I_i, W_i\} & \text{if } \tau_i = 0, \\ \{W_i\} & \text{if } \tau_i = 1, \end{cases}$$

and $A_{(\ell, \tau)} = A_{(\ell, \tau_1)} \times A_{(\ell, \tau_2)} \times \cdots \times A_{(\ell, \tau_n)}$. Action $a \in A_{(\ell, \tau)}$ denotes the action in state (ℓ, τ). If a patient is in living state (ℓ, τ) and takes action a, the new medication state is denoted by
Figure 5 An illustration of the state and action spaces of the MDP as illustrated in Mason et al. (2014). In the corresponding MMDP, when medications are initiated (solid lines denote actions), the risk factors are improved and the probability of an adverse event (denoted by the dashed lines) is reduced. The probabilities of adverse events may differ in the different models depending on the risk calculator that was used to estimate the probability.

\(\tau' \), where \(\tau'_i \) is set to 1 for any medications \(i \) that are newly initiated by action \(a \); \(\tau'_i = \tau_i \) for all medications \(i \) which are not newly initiated. Once medication \(i \) is initiated, the associated risk factor is modified by the medication effects denoted by \(\omega^{TC}(i) \), \(\omega^{HDL}(i) \), and \(\omega^{SBP}(i) \), resulting in a reduction in the probability of a stroke or CHD event. Two types of transition probabilities are incorporated into the model: probabilities of transition among health states and the probability of events (fatal and nonfatal). At epoch \(t \), \(\bar{p}_t(\ell|d,\tau) \) denotes the probability of transition from state \((\ell, \tau) \in \mathcal{L} \times \mathcal{M} \) to an absorbing state \(d \in \mathcal{D} \). Given that the patient is in health state \(\ell \in \mathcal{L} \), the probability of being in health state \(\ell' \) in the next epoch is denoted by \(q_t(\ell'|\ell) \). The health state transition probabilities, \(q_t(\ell'|\ell) \), were computed from empirical data for the natural progression of BP and cholesterol adjusted for the absence of medication (Denton et al. 2009). We define \(p_t^*(j|\ell) \) to be the probability of a patient being in state \(j \in \mathcal{L} \cup \mathcal{D} \) at epoch \(t + 1 \), given the patient is in living state \((\ell, \tau) \) at epoch \(t \). The transition probabilities can be written as:

\[
p_t^*(j|i) = \begin{cases}
1 - \sum_{d \in \mathcal{D}} \bar{p}_t(d|i) q_t(j|i) & \text{if } i, j \in \mathcal{L}, \\
\bar{p}_t(j|i) & \text{if } i \in \mathcal{L}, j \in \mathcal{D}, \\
1 & \text{if } i = j \in \mathcal{D}, \\
0 & \text{otherwise}.
\end{cases}
\]

The two models of the MMDP represent the different cardiovascular risk calculators used to estimate the transition probabilities to the absorbing states: \(p_t^*(j|i) \) for \(i \in \mathcal{L}, d \in \mathcal{D} \). We will refer to the model using the ACC/AHA study as model \(A \) and the model using FHS as model \(F \). We weight
these models by \(\lambda_A \in [0, 1] \) and \(\lambda_F := 1 - \lambda_A \) respectively. We estimate of all other cause mortality based take from the Centers for Disease Control and Prevention life tables (Arias et al. 2011). The reward \(r_t(\ell, \tau) \) for a patient in health state \(\ell \) at epoch \(t \) is:

\[
r_t(\ell, \tau) = Q(\ell, \tau),
\]

where \(Q(\ell, \tau) = 1 - d^{\text{MED}}(\tau) \) is the reward for one QALY. QALYs are elicited through patient surveys, and are commonly used for health policy studies (Gold et al. 2002). The disutility factor, \(d^{\text{MED}}(\tau) \), represents the estimated decrease in quality of life due to the side effects associated with the medications in \(\tau \). We use the disutility estimates provided in Mason et al. (2014).

The goal of this case study is to design treatment guidelines that maximize population-level outcomes. For this reason, the non-adaptive problem is more appropriate because it designs guidelines that could be recommended to an entire population of patients. In contrast, a personalized medicine approach might try to infer whether ACC/AHA or Framingham is the “representative risk model” for an individual patient and might motivate the use of the adaptive framework. However, this is not the focus of this case study.

7.2. Results

Using the MMDP described above, we evaluated the performance of the solutions generated via WSU in terms of computation time and the objective function of QALYs until first event. We also discuss the policy associated with the solution generated using WSU when the weights are treated as an uninformed prior on the models. The MMDP had 4099 states, 64 actions, 20 decision epochs, and 2 models.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Time to approximate a solution to the weighted problem using the Weight-Select-Update (WSU) algorithm and to solve each of the nominal models using standard dynamic programming, in CPU seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSU with (\lambda_F = \lambda_A = 0.5)</td>
<td>10.98 sec. 11.08 sec.</td>
</tr>
<tr>
<td>Standard DP, FHS Model</td>
<td>8.70 sec. 8.77 sec.</td>
</tr>
<tr>
<td>Standard DP, ACC/AHA Model</td>
<td>8.98 sec. 9.00 sec.</td>
</tr>
</tbody>
</table>

Table 3 shows the computation time required to run WSU with \(\lambda_F = \lambda_A = 0.5 \), as well as the time required to solve the FHS model and the ACC/AHA model using standard dynamic programming, for the female and male problem parameters. While WSU requires more computation time than standard dynamic programming for each of the individual models, WSU does not take more computation time than the total time for solving both of the nominal models.

Figure 6 shows the performance of the policies generated using WSU when evaluated in the ACC/AHA and FHS models, as well as the weighted value of these two models for the corresponding
Figure 6 The performance of the policies generated using the Weight-Select-Update (WSU) approximation algorithm for the MMDP for treatment of men (Figure 6a) and women (Figure 6b). For each choice of the weight on the FHS model in WSU, the graph shows the performance of these policies with respect to three different metrics: the performance in the ACC/AHA model (light grey), the performance in the FHS model (dark grey), and the weighted value (black). The dashed line represents the upper bound from Proposition 8.
choice of the weight on the FHS model, λ_F. The dashed line in these figures represents the upper bound from Proposition 8. When $\lambda_F = 100\%$, WSU finds the optimal policy for the FHS model which is why the maximum the FHS value is achieved at $\lambda_F = 100\%$. Of the WSU policies, the worst value in the ACC/AHA model is achieved at this point because the algorithm ignores the performance in the ACC/AHA model. Analogously, when $\lambda_F = 0\%$, WSU finds the optimal policy for the ACC/AHA model which is why the performance in the ACC/AHA model achieves its maximum and the performance in the FHS model is at its lowest value at this point. For values of $\lambda_F \in (0, 1)$, WSU generates policies that trade-off the performance between these two models.

We found that WSU generated policies that slightly outperformed the policy generated by solving the MVP. As supported by Proposition 1, WSU has the desirable property that the performance in model m is non-decreasing in λ_m. For women, using the FHS model’s optimal policy leads to a severe degradation in performance with respect to the ACC/AHA model. In contrast, WSU is able to generate policies that do not sacrifice too much performance in the ACC/AHA model in order to improve performance in the FHS model. The results for women clearly illustrate why taking a max-min approach instead of the MMDP approach can be problematic in some cases. To see this, note that the FHS model’s optimal policy is a solution to the max-min problem because $v^F(\pi^*_F) < v^A(\pi^*_F)$ and thus no policy will be able to achieve a better value than π^*_F in the FHS model. However, Figure 6(b) shows that this policy leads to a significant degradation in performance in the ACC/AHA model relative to that model’s optimal policy π^*_A. This demonstrates why taking a max-min approach, which is common in the robust MDP literature as pointed out in Section 2, can have the unintended consequence of ignoring the performance of a policy in all but one model in some cases. By taking the weighted value approach with nontrivial weights on the models, the DM is forced to consider the performance in all models. By generating policies using WSU by varying $\lambda_F \in (0, 1)$, the DM can strike a balance between the performance in the ACC/AHA model and the FHS model.

Table 4 illustrates that the WSU approximation algorithm generates a policy that will perform well in both the ACC/AHA model and in the FHS model. The table reports the QALYs gained per 1000 persons relative to a benchmark policy of never initiating treatment; these values are reported for three policies: (1) the ACC/AHA model’s optimal policy, (2) the FHS model’s optimal policy, and (3) the WSU policy. While using a model’s optimal policy results in the highest possible QALY gain in that model, that model’s optimal policy can sacrifice performance when evaluated in the other model. This is illustrated in the table in terms of regret; regret for a specific model is defined to be the difference between the QALYs gained by that model’s optimal policy and the QALYs gained by the specified policy. The table shows that in the ACC/AHA model, the FHS model’s optimal policy achieves 134.4 QALYs per 1000 men less than the ACC/AHA model’s optimal
Table 4 The performance of 3 policies in terms of QALYs gained over no treatment and regret for (a) men and (b) women. The 3 policies are (1) the optimal policy for the ACC/AHA model, (2) the optimal policy for the FHS model, and (3) the policy generated via the Weight-Select-Update (WSU) approximation algorithm which considers both the ACC/AHA and FHS models simultaneously. These policies are evaluated in terms of the QALYs gained over a policy which never initiates medication in the ACC/AHA model and the FHS model, as well as the weighted QALYs gained over no treatment in these two models. Regret is determined by taking the difference between the QALYs obtained by the optimal policy for a model and the QALYs obtained by the given policy.

(a) Male

<table>
<thead>
<tr>
<th>Metric (per 1000 men)</th>
<th>Evaluation</th>
<th>ACC/AHA Optimal Policy</th>
<th>FHS Optimal Policy</th>
<th>WSU Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>QALYS Gained Over No Treatment</td>
<td>ACC/AHA</td>
<td>695.9</td>
<td>561.5</td>
<td>679.3</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>1788.9</td>
<td>1880.5</td>
<td>1841.4</td>
</tr>
<tr>
<td></td>
<td>Weighted</td>
<td>1242.4</td>
<td>1211.0</td>
<td>1260.4</td>
</tr>
<tr>
<td>Regret</td>
<td>ACC/AHA</td>
<td>0</td>
<td>134.4</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>91.6</td>
<td>0</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>Weighted</td>
<td>45.8</td>
<td>67.2</td>
<td>27.9</td>
</tr>
</tbody>
</table>

(b) Female

<table>
<thead>
<tr>
<th>Metric (per 1000 women)</th>
<th>Evaluation</th>
<th>ACC/AHA Optimal Policy</th>
<th>FHS Optimal Policy</th>
<th>WSU Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>QALYS Gained Over No Treatment</td>
<td>ACC/AHA</td>
<td>205.2</td>
<td>−155.3</td>
<td>147.9</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>1401.1</td>
<td>1670.4</td>
<td>1464.1</td>
</tr>
<tr>
<td></td>
<td>Weighted</td>
<td>803.1</td>
<td>757.5</td>
<td>806.0</td>
</tr>
<tr>
<td>Regret</td>
<td>ACC/AHA</td>
<td>0</td>
<td>360.5</td>
<td>57.3</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>269.3</td>
<td>0</td>
<td>206.3</td>
</tr>
<tr>
<td></td>
<td>Weighted</td>
<td>134.7</td>
<td>180.2</td>
<td>131.8</td>
</tr>
</tbody>
</table>

policy while the WSU policy is able to achieve only 16.6 less QALYs per 1000 men. Similarly, in the FHS model, the ACC/AHA model’s optimal policy sacrifices 91.6 fewer QALYs per 1000 men relative to the optimal policy for the ACC/AHA model while the WSU policy only sacrifices 39.1 QALYs per 1000 men relative to the optimal policy for this model. Assuming an uninformed prior, the WSU approximation algorithm with equal weights on the models provides a weighted regret that is 17.9 and 2.9 QALYs less than the ACC/AHA model’s optimal policy for men and women respectively, and WSU achieved a weighted regret that was 39.3 and 48.4 QALYs less than the FHS models’ optimal policy for men and women respectively. For women in particular, we find that using ignoring ambiguity in the risk calculations could potentially lead to very poor outcomes. The findings suggest that the FHS model’s optimal policy is worse than the no treatment policy in the ACC/AHA model results. This is likely because the FHS model’s optimal policy is much more aggressive in terms of starting medications (as seen in Figure 7, which is discussed later). Therefore, it seems that the FHS model’s optimal policy is starting many women on medication which leads them to incur the disutility associated with these medications, but that these medications do not provide much benefit in terms of risk reduction in the ACC/AHA model. While the ACC/AHA model’s optimal policy outperforms the no treatment policy in the Framingham model, we still
see a large amount of regret in terms of QALYs gained per 1000 women in the FHS model. For both of these models, the WSU policy finds a policy that achieves a lower regret than the “other” model’s optimal policy. Once again, weighting the regret from the two models equally, we see that the WSU policy is able to hedge against the ambiguity in risk for women and outperforms the two policies which ignore ambiguity.

It is interesting to note that the regret achieved by the WSU is much smaller for men than for women. This may be due to the disparity in the effects of ambiguity on decision making for women and men. EVPI is one way to quantify the expected value of resolving ambiguity and gives a DM a sense of how valuable it would be to obtain better information. Because $WSU \leq W^*$, the following is an upper bound on $EVPI$: $EVPI = WS - W^* \leq WS - WSU$. For this case study, the upper bound on the EVPI suggests that as many as 28 QALYs per 1000 men and 131.8 QALYs per 1000 women could be saved if there were no ambiguity in the cardiovascular risk of the patient. Estimates such as this provide insight into the value of future studies that could reduce the ambiguity.

Figures 7(a) and 7(b) illustrate medication use for male and female patients, respectively, under three different policies: the ACC/AHA model’s optimal policy, the FHS model’s optimal policy, and a policy generated via WSU with $\lambda_F = \lambda_A = 50\%$. These figures illustrate the probability that a patient who follows the specified policy from age 54 will be on the corresponding medication, conditioned on the patient being alive, as a function of their age. For men, the optimal policy for FHS model and the optimal policy for the ACC/AHA model agree that all men should start statins immediately, which could be explained by the relatively low disutility and high risk reduction of statins in both models. However, the models disagree in the use of fibrates and the 4 classes of blood pressure medications. The optimal policy for the ACC/AHA model suggests that all men should start fibrates immediately, suggesting that cholesterol control is important in the ACC/AHA model. However, fibrates are less commonly prescribed under the FHS model’s optimal policy with about two-thirds of men on this medication by age 65. The policy generated with WSU agrees with the ACC/AHA policy’s more extensive use of fibrates which may suggest that focusing on cholesterol control could be a good strategy in both models. Among the blood pressure medications, there are some disagreements between the optimal policies of the two models, with the most distinct being for the use of calcium channel blockers. This is likely to be due to the relatively high disutility (from side effects of calcium channel blockers) and low risk reduction associated with this medication. In the ACC/AHA model, the risk reduction of calcium channel blockers is worth the disutility in many cases, but in the FHS model, there are few instances in which the disutility associated with this medication is worth the gain in QALYs. The policy generated with WSU generates a policy that strikes a balance between these two extremes. While the differences are not quite as extreme, WSU also generates a policy that balances the utilization of thiazides prescribed by each
The percentage of patients who have not died or had an event by the specified age that will be on a medication under each of three different treatment policies: the ACC/AHA model’s optimal policy, the FHS model’s optimal policy, and a policy generated via WSU with $\lambda_F = \lambda_A = 50\%$, as evaluated in the FHS model.

For the other classes of blood pressure medications, both models agree that these medications should be commonly used for men, but disagree in the prioritization of these medications. The ACC/AHA model tends to utilize these medications more at latter ages,
while the FHS model starts more men on these medications early. Interestingly, WSU suggests that starting ACE/ARBs and beta blockers earlier is a good strategy in both models.

For women, the optimal policy for FHS and the optimal policy for ACC/AHA agree that all women should be on a statin by age 57. The models mostly agree that relatively few women should start taking ACE/ARBs or calcium channel blockers. These results are not surprising as statins have low disutility and high risk reduction in both models, making them an attractive medication to use to manage a patient’s cardiovascular risk, while calcium channel blockers and ACE/ARBs are the two medications with lowest expected risk reduction in both models. The models disagree in how to treat women with thiazides, beta blockers, and fibrates. Beta blockers and thiazides have a higher estimated risk reduction in the FHS model than in the ACC/AHA model, which may be why these medications are considered good candidates to use in the FHS model but not in the ACC/AHA model. WSU finds a middle ground between the use of thiazides and beta blockers in the two models, but suggests more use of ACE/ARBs for some women.

In summary, the results of this case study illustrate how the policy generated by WSU trades off performance in the ACC/AHA and FHS models. This information could be useful for decision makers who are tasked with designing screening and treatment protocols in the face of conflicting information from the medical literature.

8. Conclusions

In this article, we addressed the following research questions: (1) how can we improve stochastic dynamic programming methods to account for parameter ambiguity in MDPs? (2) how much benefit is there to mitigating the effects of ambiguity? To address the first question, we introduced the MMDP, which allows for multiple models of the reward and transition probability parameter and whose solution provides a policy that maximizes the weighted value across these models. We proved that the solution of the non-adaptive MMDP provides a policy that is no more complicated than the policy corresponding to a single-model MDP while having the robustness that comes from accounting for multiple models of the MDP parameters. Although our complexity results establish that the MMDP model is computationally intractable, our analysis shows there is promising structure that can be exploited to create exact methods and fast approximation algorithms for solving the MMDP.

To address the second research question, we established connections between concepts in stochastic programming and the MMDP that quantify the impact of ambiguity on an MDP. We showed that the non-adaptive problem can be viewed as a two-stage stochastic program in which the first-stage decisions correspond to the policy and the second-stage decisions correspond to the value-to-go in each model under the specified policy. This characterization provided insight into a
formulation of the non-adaptive problem as an MIP corresponding to the deterministic equivalent problem of the aforementioned two-stage stochastic program. We showed the adaptive problem is a special case of a POMDP and described solution methods that exploit the structure of the belief space for computational gain. We also showed the complexity of the adaptive problem is much less favorable than the non-adaptive problem. Development of approximation methods for these problems is an interesting potential future research direction.

We evaluated the performance of our solution methods using a large set of randomly-generated test instances and also an MMDP of blood pressure and cholesterol management for type 2 diabetes as a case study. The WSU approximation algorithm performed very well across the randomly-generated test cases while solution of the MVP had some instances with large optimality gaps indicating that simply averaging multiple models should be done with caution. These randomly-generated test instances also showed that there was very little gain from adaptive optimization of policies over non-adaptive optimization for the problem instances considered.

In the case study, we solved an MMDP consisting of two models which were parameterized according to two well-established but conflicting studies from the medical literature which give rise to ambiguity in the cardiovascular risk of a patient. The WSU policy addresses this ambiguity by trading off performance between these two models and is able to achieve a lower expected regret than either of the policies that would be obtained by simply solving a model parameterized by one of the studies, as is typically done in practice currently. The case study also highlights how the MMDP can be used to estimate the benefit of mitigating parameter ambiguity arising from these conflicting studies. The EVPI in this case study suggests that gaining more information about cardiovascular risk could lead to a substantial increase in QALYs, with potentially more benefit to be gained from learning more about women’s cardiovascular risk. For the most part, the policies generated via the WSU approximation algorithm found a balance between the medication usage in each of the models. However, for men, the WSU approximation algorithm suggested that more aggressive use of thiazides and ACE/ARBs would be allow for a better balance in performance in both models. For women, the WSU approximation algorithm generated a policy that is more aggressive in cholesterol control than the FHS model’s optimal policy and more aggressive in blood pressure control than the ACC/AHA model’s optimal policy.

There are open opportunities for future work that builds off of the MMDP formulation. In this article, we showed that the MMDP can provide a rigorous way to account for ambiguity in transition probability matrices in an MDP. We focused on ambiguity due to conflicting sources for model parameters in the case study. However, future work could study the performance of the MMDP formulation for addressing statistical uncertainty compared to other robust formulations that have attempted to mitigate the effects of this kind of uncertainty. Another opportunity is to apply this
approach to other diseases, such as diabetes, breast cancer and prostate cancer, for which multiple models have been developed. Other future work might extend this concept to partially-observable MDPs and infinite-horizon MDPs, which are both commonly used for medical decision making. Further, the bounds developed for the WSU were in the context of a 2 model MMDP, but it would be valuable to develop bounds for WSU for $|\mathcal{M}| > 2$. Finally, the MMDP introduced in this article was limited to a finite number of models, however future work may consider the possibility of a countably infinite number of models.

In summary, the MMDP is a new approach for incorporating parameter ambiguity in MDPs. This approach allows DMs to explicitly trade off conflicting models of problem parameters to generate a policy that performs well with respect to each model while keeping the same level of complexity as each model’s optimal policy. The MMDP may be a valuable approach in many application areas of MDPs, such as medicine, where multiple sources are available for parameterizing the model.

Acknowledgments
This work was supported by the National Science Foundation under grant numbers DGE-1256260 (Steimle) and CMMI-1462060 (Denton); any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Appendix A: Proofs

Proposition 1. $W_\mathcal{N}^* \leq W_\mathcal{A}^*$. Moreover, the inequality may be strict.

Proof of Proposition 1. Consider the MMDP illustrated in Figure 8.

First, we describe the decision epochs, states, rewards, and actions for this MMDP. This MMDP is defined for 3 decision epochs where state 1 is the only possible state for decision epoch 1, states 2 and 3 are the states for decision epoch 2, and state 4 is the only state reachable in decision epoch 3. States 5 and 6 are terminal states. This MMDP has two models $\mathcal{M} = \{1, 2\}$. For each model, the only non-zero reward is received upon reaching the terminal state 5. In states 1, 2, and 3, the DM only has one choice of action $a = 1$. In state 4, the DM can select between action $a = 1$ and $a = 2$.

Now we will describe the transition probabilities for each model. Each line represents a transition that happens with probability one when the corresponding action is selected. Solid lines correspond to transitions for model $m = 1$ and dashed lines correspond to transitions for model $m = 2$.

Since state 4 is the only state in which there is a choice of action, we define the possible policies selecting an action in this state. Consider the adaptive problem for this MMDP. The optimal decision rule for state 4 will depend on the state observed at time $t = 2$: If the history of the MMDP is $(s_1 = 1, a_1 = 1, s_2 = 2, a_2 = 1)$, then select action 1, otherwise select action 2. In model 1, the only way to reach state 4 is through state 2. Upon observing this sample path, the policy prescribes taking action 1 which will lead to a transition to state 5 and thus a reward of 1 will be received. On the other hand, in model 2, the only way to reach state 4 is through state 3. Therefore, the policy will always prescribe taking action 2 in model 2 which leads to state 5 with probability 1. This means that evaluating this policy in model 1 gives an expected value of 1 and evaluating this policy in model 2 gives an expected value of 1. Therefore, for any given weights λ, this policy has a weighted value of $W_\mathcal{A}^* = 1$.

Now, consider the non-adaptive problem for the MMDP. Before the DM can observe the state at time $t = 2$, she must specify a decision rule to be taken in state 4. For state 4, there are two options: select action 1 or select action 2. Let q be the probability of selecting action 1. If action 1 is selected, this will give an expected value of 1 in model 1 and an expected value of 0 in model 2, which produces a weighted value of λ_1. Analogously, if action 2 is selected, the weighted value in the MMDP will be λ_2. Thus, the optimal policy for the non-adaptive problem gives a weighted value of $\max_{q \in [0, 1]} \{q\lambda_1, (1-q)\lambda_2\}$ which will be exactly $\max\{\lambda_1, \lambda_2\}$.

This means that for any choice of λ such that $\lambda_1 < 1$ and $\lambda_2 < 1$, the MMDP has $W_\mathcal{N}^* = \max\{\lambda_1, \lambda_2\} < 1 = W_\mathcal{A}^*$. In this MMDP, there does not exist a Markov policy that is optimal for the adaptive problem. □
Figure 8 An example of an MMDP for $W_A > W_N$. The MMDP shown has six states, two actions, and two models. Each arrow represents a transition that occurs with probability 1 for the corresponding action labeling the arrow. Solid lines represent transitions in model 1 and dashed lines represent transitions in model 2. There are no intermediate rewards in this MMDP, but there is a terminal reward of 1 if state 5 is reached.

Proposition 2. Any MMDP can be recast as a special case of a partially observable MDP (POMDP) such that the maximum weighted value of the adaptive problem for the MMDP is equivalent to the optimal expected rewards of the POMDP.

Proof of Proposition 2. Let (T, S, A, M, Λ) be an MMDP. From this MMDP, we can construct a POMDP in the following way. The core states of the POMDP will be constructed as state-model pairs, $(s, m) \in S \times M$. The action space for the POMDP is the same as the action space for the MMDP, A. We construct the rewards for the POMDP, denoted r^P, as follows:

$$r^P((s, m), a) := \lambda_m r^m(s, a), \forall s \in S, m \in M, a \in A.$$

The transition probabilities among the core states are defined as follows:

$$p((s', m') \mid (s, m), a) = \begin{cases} p^m(s' \mid s, a) & \text{if } m' = m, \\ 0 & \text{otherwise.} \end{cases}$$
This observation space of the POMDP has a one-to-one correspondence to the state space of the MMDP. We will label the observation space for the POMDP as $O := \{1, \ldots, S\}$ where $S := |S|$. In this POMDP, the observations give perfect information about the state element of the state-model pair, but no information about the model element of the state-model pair, and the conditional probabilities are defined accordingly:

$$q(s|(s_t, m)) = \begin{cases} 1 & \text{if } s = s_t, \\ 0 & \text{otherwise.} \end{cases}$$

This special structure on the observation matrix ensures that the same policy is evaluated in each model of the MMDP. By the construction of the POMDP, any history-dependent policy that acts on the sequence of states (observations in the case of the POMDP) and actions $(s_1, a_1, s_2, \ldots, a_{t-1}, s_t)$ will have the same expected discounted rewards value in the POMDP as the weighted value for the MMDP. □

Remark 1. If the state-model pairs that make up the POMDP core state space are ordered as $(1, 1), \ldots, (S, 1), (1, 2), \ldots, (S, 2), \ldots, (1, M), \ldots, (S, M)$, then the transition probability matrix has the following block diagonal structure:

$$P_t(a_t) := \begin{bmatrix} P^1_t(a_t) & 0 & \cdots & 0 \\ 0 & P^2_t(a_t) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P^M_t(a_t) \end{bmatrix}.$$

The block diagonal structure of the transition probability matrix implies that the underlying Markov chain defined on the core states is reducible.

Proposition 3. The adaptive problem for MMDPs is PSPACE-hard.

Proof of Proposition 3. This result follows from the original proof of complexity for POMDPs from Papadimitriou and Tsitsiklis (1987). Although the MMDP is a special case of a POMDP, we illustrate that the special structure in the observation matrix and transition probabilities is precisely the special case of POMDPs used in the original complexity proof. To aid the reader’s understanding, we reproduce the proof here with the modifications to make it specific to MMDPs. We also provide Figure 9 which illustrates the construction of an MMDP from the quantified satisfiability problem with two clauses for two existential variables and a universal variable.

First, we assume that $\lambda_m \in (0, 1) \forall m \in M$. To show that the adaptive weighted value problem for MMDPs is PSPACE-hard, we reduce QSAT to this problem. We start from any quantified boolean formula $(Q_1 u_1)(Q_2 u_2) \cdots (Q_n u_n)F(u_1, u_2, \ldots, u_n)$ with n variables, n quantifiers (i.e., Q_i is \exists or \forall), and m clauses C_1, C_2, \ldots, C_m. We construct an MMDP with m models such that its optimal policy has weighted value of 0 or less if and only if the formula is true. The MMDP is constructed as
follows: for every variable u_i, we will generate states corresponding to two decision epochs $2i - 1$ and $2i$. In decision epoch $2i - 1$, there will be two states, A'_i and A_i. In decision epoch $2i$, there will be four states, T'_i, F'_i, T_i, and F_i. After the last decision epoch (at time $2n + 1$), there will be 2 states, A_{n+1} and A'_{n+1}. The initial state is A'_1 for every model. The action space is constructed as follows: for every existential variable u_i, the states A'_i and A_i each have two possible actions, true (T) and false (F), which are elements of the action set $\{T, F\}$. All other states have only one action. The models of the MMDP correspond to the clauses in the quantified formula. Each model’s transition probabilities are defined as follows: for every existential variable, the transitions out of A'_i and A_i are deterministic according to the action taken. For state A'_i (A_i), selecting action true will ensure that the next state is T'_i (T_i) and selecting action false will ensure that the next state is F'_i (F_i). For every universal variable u_i, the transitions from A'_i (A_i) to T'_i (T_i) and from A'_i (A_i) to F'_i (F_i) occur with equal probability. The differences between the models’ transition probabilities occur depending on the negation of variables within the corresponding clause. For every variable u_i that is not negated in the clause, transitions occur deterministically from T'_i to A_{i+1}, F'_i to A'_{i+1}, T_i to A_{i+1}, and F_i to A'_{i+1}. For every variable u_i that is negated in the clause, transitions occur deterministically from T'_i to A'_{i+1}, F'_i to A_{i+1}, T_i to A'_{i+1}, and F_i to A_{i+1}. The initial state is A'_1 for every model. There is a terminal cost of 1 upon reaching state A'_{n+1} and no cost for reaching A_{n+1}. Other than the terminal costs, there are no costs associated with any of the states or actions.

Now that we have constructed the MMDP, we must show that there exists a policy that achieves a weighted value of zero if and only if the statement is true. First, we show that if there exists a history-dependent policy with a weighted value of zero, then the statement must be true. Consider that such a policy exists. Recall that for every model, we start in state A'_1. In order to achieve a weighted value equal to zero, the policy must ensure that we end in state A_{n+1} for every model. If not, we incur a cost of 1 at time $2n + 1$ in one of the models $m \in M$ which has weight $\lambda_m > 0$, and thus the weighted value is not zero. If we were able to reach state A_{n+1} in every model, this would imply that our policy is able to select actions for states A'_i and A_i for existential variables u_i based on observation of the previous universal variables in a way that the clause is satisfied. Since this occurs for all models, each clause must be true.

Next, we show that if the quantified formula is true, then there exists a policy that achieves a weighted value of zero. If the quantified formula is true, this means that there exist choices of the existential variables that satisfy the statement. For every existential variable u_i, one can select the appropriate action in $\{T, F\}$ so that based on the values of the previous universal variables, the statement is still true. This corresponds to a policy that will end up in state A_{n+1} with probability one for all models. Thus, this policy achieves a weighted value equal to zero. □
We have developed the above proof independently of a proof of an equivalent result which was found in the thesis of Le Tallec (2007) describing the complexity of MDPs with “general random uncertainty”.

(a) The transitions probabilities in Model 1 represents the first clause over the quantified variables, $u_1 \lor \neg u_2 \lor \neg u_3$.

(b) The transitions probabilities in Model 2 that represents the second clause over the quantified variables, $u_1 \lor u_2 \lor u_3$.

Figure 9 An illustration of how the quantified formula $\exists u_1 \forall u_2 \exists u_3 (u_1 \lor \neg u_2 \lor \neg u_3) \land (u_1 \lor u_2 \lor \neg u_3)$ can be represented as an MMDP. Solid lines represent transitions that occur with probability. Dashed lines represent transitions that occur out of the state with equal probability. Transitions corresponding to the actions true and false are labeled with T and F, respectively. State A'_i represents the case where the clause is false at this point and states A_i represents the case where the clause is true at this point.

Proposition 4 The information state, b_t, has the following properties:

1. The value function is piece-wise linear and convex in the information state, b_t.
2. $b_t(s, m) > 0 \Rightarrow b_t(s', m) = 0, \forall s' \neq s$. The information state as defined above is Markovian in that the information state b_{t+1} depends only on the information state and action at time t, b_t and a_t respectively, and the state observed at time $t+1$, s_{t+1}.
Proof of Proposition 4.1. We will prove this by induction. At time $T + 1$, the value function is represented as:

$$v_{T+1}(b_{T+1}) = b'_{T+1}r_{T+1}, \forall b_{T+1} \in B$$

which is linear (and therefore piecewise linear and convex) in b_{T+1}. Now, we perform the induction step. The inductive hypothesis is that the value function at $t + 1$ is piecewise linear and convex in b_{t+1} and therefore can be represented by set of hyperplanes B such that $v_{t+1}(b_{t+1}) = \max_{\beta_{t+1} \in B_{t+1}} \beta'_{t+1} b_{t+1}$.

$$v_t(b_t) = \max_{a_t \in A} \left\{ b'_t r_t(a_t) + \sum_{s_{t+1} \in S} \gamma(s_{t+1}|b_t, a_t) v_{t+1}(T(b_t, a_t, s_{t+1})) \right\}$$

$$= \max_{a_t \in A} \left\{ b'_t r_t(a_t) + \left[\sum_{s_{t+1} \in S} \left(\sum_{m' \in M, s_t \in S} p_{m'}(s_{t+1}|s_t, a_t) b_t(s_t, m') \right) \cdot v_{t+1}(T(b_t, a_t, s_{t+1})) \right] \right\}$$

$$= \max_{a_t \in A} \left\{ \sum_{s_t \in S} \sum_{m \in M} r_t^m(s_t, a_t) \cdot b_t(s_t, m) + \sum_{s_{t+1} \in S} \sum_{m \in M} \max_{\beta_{t+1} \in B_{t+1}} \beta_{t+1}(s_{t+1}, m) \cdot \sum_{s_t \in S} p_{m}(s_{t+1}|s_t, a_t) b_t(s_t, m) \right\}$$

$$= \max_{a_t \in A} \left\{ \sum_{s_t \in S} \sum_{m \in M} \left(r_t^m(s_t, a_t) + \sum_{\beta_{t+1} \in B_{t+1}} \beta_{t+1}(s_{t+1}, m) \cdot p_{m}(s_{t+1}|s_t, a_t) \right) b_t(s_t, m) \right\} \quad (9)$$

which is piece-wise linear and convex in b_t. Therefore, we can represent (9) as the maximum over a set of hyperplanes:

$$v_t(b_t) = \max_{\beta_t \in B_t} \{ \beta'_t b_t \},$$

where

$$B_t := \{ \beta_t : \beta_t = r_t(a) + P_t'(a) \beta_{t+1}, a \in A, \beta_{t+1} \in B_{t+1} \}.$$

Proof of Proposition 4.2 This follows directly from the definition of the information state 3 and the definition of the conditional probabilities in (A). To elaborate, we prove this by induction: In the initial decision epoch, s_1 is observed and so for every $m \in M$, only the state corresponding to (s_1, m) can have a positive value. Now, suppose that at time t, only $|M|$ values of b_t are positive and they correspond to the state-model pairs (s, m) with $s = s_t$. Then, the DM selects an action a_t and a new state, s_{t+1}, is observed. At this point, only states (s, m) with $s = s_{t+1}$ can have positive values. □
Proof of Proposition 4.3 Next, we show that the information state can be efficiently transformed in each decision epoch using Bayesian updating. That is, we aim to show that the information state is Markov in that the information state at the next stage only depends on the information state in the current stage, the action taken, and the state observed in the next stage.

\[b_{t+1} = T(b_t, a_t, s_{t+1}) \]

(10)

Consider the information state at time 1 at which point state \(s_1 \) has been observed. This information state can be represented by the vector with components:

\[
b_1(s, m) = \begin{cases}
\frac{\lambda_m \mu^m_1(s)}{\sum_{m' \in M} \lambda_{m'} \mu^{m'}_1(s)} & \text{if } s = s_1 \\
0 & \text{otherwise}
\end{cases}
\]

Now, suppose that the information state at time \(t \) is \(b_t \), the decision-maker takes action \(a_t \in A \), and observes state \(s_{t+1} \) at time \(t+1 \). Then, every component of the information state can be updated by:

\[
b_{t+1}(s, m) = \begin{cases}
T^m(b_t, a_t, s_{t+1}) & \text{if } s = s_{t+1} \\
0 & \text{otherwise}
\end{cases}
\]

where

\[
T^m(b_t, a_t, s_{t+1}) := \frac{\sum_{s_t \in S} p^m_t(s_{t+1} | s_t, a_t) b_t(s_t, m)}{\sum_{m' \in M} \sum_{s_t \in S} p^m_t(s_{t+1} | s_t, a_t) b_t(s_t, m')}
\]

which follows from the following:

\[
b_{t+1}(s_{t+1}, m) = P(m | h_{t+1}) = P(m \mid s_{t+1}, a_t, h_t) = \frac{P(s_{t+1} \mid a_t, h_t) P(m \mid a_t, h_t)}{P(s_{t+1} \mid m, a_t, h_t) P(m \mid a_t, h_t)} = \frac{\sum_{m' \in M} P(s_{t+1} \mid m, a_t, h_t) P(m \mid h_t) P(s_{t+1} \mid m, a_t, h_t)}{\sum_{m' \in M} P(s_{t+1} \mid m, a_t, h_t) P(m \mid h_t)} = \frac{\sum_{m' \in M} p^m_t(s_{t+1} \mid s_t, a_t) \lambda(s_t) P(m \mid h_t)}{\sum_{m' \in M} p^m_t(s_{t+1} \mid s_t, a_t) \lambda(s_t) P(m' \mid h_t)} = \frac{\sum_{m' \in M} p^m_t(s_{t+1} \mid s_t, a_t) \lambda(s_t) P(m' \mid h_t)}{\sum_{m' \in M} p^m_t(s_{t+1} \mid s_t, a_t) \lambda(s_t) P(m' \mid h_t)}
\]

if \(s_{t+1} \in S \) is in fact the state observed at time \(t+1 \). (11) follows from the definition of \(h_{t+1} \), (12) and (13) follow from the laws of conditional probability and total probability. (14) follows because the action is selected independently of the context. (15) follows from the definition of \(p^m_t(s_{t+1} \mid s_t, a_t) \) and an indicator which denotes the state at time \(t \), and (16) follows from the
definition of the information state at time t. We define the operator T such that the element at (s, m) in $T(b_t, a_t, s_{t+1})$ is exactly $T^m(b_t, a_t, s_{t+1})$ if $s = s_{t+1}$ and 0 otherwise.

Therefore, the information state is Markovian in that the information state at time $t + 1$ only relies on the information state at time t, the action taken at time t, and the state observed at time $t + 1$. □

Proposition 5 For the non-adaptive problem, there is always a Markov deterministic policy that is optimal.

Proof of Proposition 5. Let μ^*_T be the probability distribution induced over the states by the partial policy used up to time t in the MMDP, so that $\mu^*_T(s_t, m) = P(s_t | \pi_1:(t-1))$, where $\pi_1:(t-1)$ is the partial policy over decision epochs 1 through $(t-1)$. Now we will prove the proposition by induction on the decision epochs.

The base case of the proof is the last decision epoch, T: For any partial policy $\pi_1:(T-1)$, there will be some stochastic process that induces the probability distribution μ^*_T. Given μ^*_T, the best decision rules are found by:

$$\max q \sum_{s_T \in S} q_T(a_T|s_T) \sum_{m \in M} \mu^*_T(s_T, m) \left[r^m_T(s_T, a_T) + \sum_{s_{T+1}} p^m(s_{T+1}|s_T, a_T) r^m_{T+1}(s_{T+1}) \right]$$

s.t. $q_T(a_T|s_T) \geq 0$, $\forall s_T \in S, a_T \in A$, $\sum_{a_T \in A} q_T(a_T|s_T) = 1, \forall s_T \in S$.

Since we are selecting the action probabilities independently for each state, we can focus on the maximization problem:

$$\max q_T(s_T) \sum_{a_T \in A} q_T(a_T|s_T) \sum_{m \in M} \mu^*_T(s_T, m) \left[r^m_T(s_T, a_T) + \sum_{s_{T+1}} p^m(s_{T+1}|s_T, a_T) r^m_{T+1}(s_{T+1}) \right]$$

s.t. $q_T(a_T|s_T) \geq 0$, $\sum_{a_T \in A} q_T(a_T|s_T) = 1$,

which is a linear programming problem, and will have a solution where at most 1 action has a non-zero value of $q_T(a_T|s_T)$. Thus, for any given partial policy $\pi = (\pi_1, \ldots, \pi_{T-1})$, the optimal decision rule at time T will be deterministic.

Next, we assume that for any partial policy $\pi_{1:t} = (\pi_1, \pi_2, \ldots, \pi_t)$, there exists deterministic decision rules that are optimal for the remainder of the horizon: $\pi^*_t(s_{t+1}):T = (\pi^*_t(s_{t+1}), \pi^*_t(s_{t+2}), \ldots, \pi^*_T)$, and that the partial beginning policy used up to decision epoch t, $(\pi_1, \ldots, \pi_{t-1})$, has induced the
probability distribution \(\mu_\pi \). We will show that it follows that there exists a deterministic decision rule that is optimal for decision epoch \(t \):

\[
\sum_{s_t \in S} \max_q \sum_{a_t \in A} q_t(a_t | s_t) \sum_{m \in M} \mu_\pi(s_t, m) \left[r^m_t(s_t, a_t) + \sum_{s_{t+1}} p^m(s_{t+1} | s_t, a_t) v^m_{t+1}(s_{t+1}) \right] \]

s.t. \(q_t(a_t | s_t) \geq 0 \),
\[
\sum_{a_t \in A} q_t(a_t | s_t) = 1.
\]

Once again, we can focus on the maximization problem within the sum:

\[
\max_{q_t(a_t | s_t) = 1} \sum_{a_t \in A} q_t(a_t | s_t) \sum_{m \in M} \mu_\pi(s_t, m) \left[r^m_t(s_t, a_t) + \sum_{s_{t+1}} p^m(s_{t+1} | s_t, a_t) v^m_{t+1}(s_{t+1}) \right] \]

s.t. \(q_t(a_t | s_t) \geq 0 \),
\[
\sum_{a_t \in A} q_t(a_t | s_t) = 1.
\]

This is a linear program so there will exist an extreme point solution that is optimal. This extreme point solution corresponds to a deterministic decision rule for decision epoch \(t \). □

Proposition 6 Solving the non-adaptive problem for an MMDP is NP-hard.

Proof of Proposition 6. We show that any 3-CNF-SAT problem can be transformed into the problem of determining if there exists a Markov deterministic policy for an MMDP such that the weighted value is greater than zero. Let’s suppose we have a 3-CNF-SAT instance: a set of variables \(U = \{u_1, u_2, \ldots, u_n\} \) and a formula \(E = C_1 \land C_2 \ldots \land C_m \). We will construct an MMDP with one decision epoch from this instance of 3-CNF-SAT. In the only decision epoch, the state space consists of one state per variable, \(u_i \), \(i = 1, \ldots, n \). At the terminal stage, there are two states labeled “T” and “F”. There are no immediate rewards for this problem. For every state \(u_i \), there are two actions \(true \) or \(false \). The terminal rewards correspond to a cost of 0 for reaching the terminal state “T” and a cost of 1 upon reaching the terminal state “F”.

The transition probabilities for model \(j \) correspond to the structure of clause \(C_j \) and are defined as follows: for any variable \(u_i \), \(i < n \) that does not appear in Clause \(j \), both actions lead to the state \(u_{i+1} \) with probability 1. If variable \(u_n \) does not appear in Clause \(j \), both actions lead to the state “F” with probability 1. For any variable \(u_i \) that appears non-negated in clause \(C_j \), the action \(true \) leads from state \(u_i \) to state “T” with probability 1 and the action \(false \) leads from state \(u_i \) to state \(u_{i+1} \) with probability 1. For the variables that appear negated in the clause, the action \(true \) leads from state \(u_i \) to state \(u_{i+1} \) with probability 1 and the action \(false \) leads from state \(u_i \) to state “T” with probability 1. The initial distribution of all models is variable \(u_1 \) with probability 1.
We will show that there is a truth assignment for the variables in U that satisfies E if and only if there is a Markov deterministic policy for the MMDP that achieves a weighted value equal to 0.

First, we show that if there is a truth assignment for the variables in U that satisfies E, then there exists a Markov deterministic policy for the MMDP that achieves a weighted value equal to 0. To construct such a policy, take the action $true$ in every state u_i such that u_i is true is the satisfying truth assignment and take the action $false$ otherwise. Because this true assignment satisfies each clause, the corresponding policy will reach state “T” with probability 1 in each model. By construction, this policy will have a weighted value of zero.

Next, we show that if there is a policy $Π = Π^{MD}$ that achieves a weighted value of 0, that there exists a truth assignment that will satisfy E. Suppose that policy $π ∈ Π^{MD}$ achieves a cost of zero. This implies that for every clause, the policy $π$ leads to the state “T” with probability 1. We can construct a truth assignment from this policy by assigning u_i to be true if $π(u_i)$ is $true$, and u_i to be false if $π(u_i)$ is $false$.

Therefore, we have created a one-to-one mapping of truth assignments to MD policies such that any policy that satisfies E will also have weighted value 0. Hence, if we were able to find a policy that achieves a weighted value of 0 in polynomial time, we would also be able to solve 3-CNF-SAT in polynomial time. Thus, the MMDP weighted value problem with $Π = Π^{MD}$ is NP-hard.

![Diagram](image)

(a) The transitions probabilities in model 1 that represent the first clause: $C_1 = !u_1 ∨ !u_2 ∨ u_3$.

(b) The transitions probabilities in model 2 that represent the second clause: $C_2 = u_1 ∨ u_2 ∨ !u_4$.

Figure 10 An illustration of how a 3-CNF-SAT instance, $E = (u_1 ∨ !u_2 ∨ u_3) ∧ (u_1 ∨ u_2 ∨ !u_4)$, can be represented as an MMDP. Solid lines represent the transitions associated with the action $true$ and dashed lines represent the transitions associated with the action $false$. All transitions shown happen with probability 1.
Proposition 7. Non-adaptive MMDPs can be formulated as the following MIP:

\[
\begin{align*}
\max_{v, x} & \quad \sum_{m \in \mathcal{M}} \lambda_m \sum_{s \in \mathcal{S}} \mu^m_1(s) v^m_1(s) \\
\text{s.t.} & \quad v^m_{T+1}(s) \leq r^m_{T+1}(s), \quad \forall s \in \mathcal{S}, m \in \mathcal{M}, \\
& \quad v^m_t(s) \leq r^m_t(s, a) + \sum_{s' \in \mathcal{S}} p^m_t(s'|s, a) v^m_{t+1}(s') + M(1 - x_{s,a,t}), \quad \forall m \in \mathcal{M}, s \in \mathcal{S}, a \in \mathcal{A}, t \in \mathcal{T}, \\
& \quad \sum_{a \in \mathcal{A}} x_{s,a,t} = 1, \\
& \quad x_{s,a,t} \in \{0, 1\}, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}, t \in \mathcal{T}.
\end{align*}
\]

Proof of Proposition 7 The decision variable \(v_t(s) \) represents the optimal value-to-go for state \(s \in \mathcal{S} \) at time \(t \in \mathcal{T} \). The dual variables correspond to the probability of selecting an action given a state. Corner point solutions correspond to deterministic policies, and the optimal policy is deterministic by construction.

For an MMDP, we cannot use the standard LP formulation used to solve MDPs because of the requirement that the policy must be the same in each of the different models. The mixed-integer program shown in (17) gives a formulation that ensures that the policy \(\pi \in \Pi^{MD} \) is the same in each model. Each decision variable, \(v^m_t(s) \) represents the value-to-go from state \(s \in \mathcal{S} \) at time \(t \in \mathcal{T} \) for model \(m \in \mathcal{M} \) corresponding to the policy \(\pi \in \Pi^{MD} \) that maximizes the weighted value of the MMDP. To enforce that the same policy in each model, \(m \in \mathcal{M} \), we introduce binary decision variables, \(x_{s,a,t} \) for every state, \(s \in \mathcal{S} \), action, \(a \in \mathcal{A} \), and decision epoch \(t \in \{1, 2, \ldots, T\} \). If \(x_{s,a,t} \) takes on a value of 1, this means that the best policy dictates taking action \(a \) in state \(s \) at time \(t \) for every model, and \(x_{s,a,t} = 0 \) otherwise. If the choice of \(M \) is sufficiently large (e.g., \(M > (|\mathcal{T}| + 1) \cdot \max_{m \in \mathcal{M}, s \in \mathcal{S}, a \in \mathcal{A}, t \in \mathcal{T}} r_t(s, a) \)), then the inequalities will become tight when the corresponding binary decision variable \(x_{s,a,t} = 1 \), because all of the other actions’ constraints will have a large value, \(M \), added to their value in the second inequality. The equality constraint ensures that every state-time pair only has one action prescribed. □

Proposition 8. For any policy \(\hat{\pi} \in \Pi \), the weighted value is bounded above by the weighted sum of the optimal values in each model. That is,

\[
\sum_{m \in \mathcal{M}} \lambda_m v^m(\hat{\pi}) \leq \sum_{m \in \mathcal{M}} \lambda_m \max_{\pi \in \Pi^{MD}} v^m(\pi), \quad \forall \hat{\pi} \in \Pi
\]

Proof of Proposition 8 The result follows from this series of inequalities:

\[
\sum_{m \in \mathcal{M}} \lambda_m v^m(\hat{\pi}) \leq \max_{\pi \in \Pi^{MD}} \sum_{m \in \mathcal{M}} \lambda_m v^m(\pi) \leq \sum_{m \in \mathcal{M}} \lambda_m \max_{\pi \in \Pi^{MD}} v^m(\pi),
\]

(18)
where (18) states than any MD policy will have a weighted value at most the optimal MD policy’s weighted value. This optimal weighted value, in turn, is at most the value that can be achieved by solving each model separately and then weighting these values. □

Proposition 9 WSU is not guaranteed to produce an optimal solution to the non-adaptive weighted value problem.

![Figure 11](image.jpg)

Figure 11 An illustration of an MMDP for which the WSUapproximation algorithm does not generate an optimal solution to the non-adaptive weighted value problem. Possible transitions for actions 1 and 2 are illustrated with the dashed and solid line respectively. The probability of each possible transition in both of the models is listed by the corresponding line. The DM receives a reward of 1 if state \(D\) is reached. Otherwise, no rewards are received.

Proof of Proposition 9. Consider the counter-example illustrated in Figure 11 for \(\lambda_1 = 0.8, \lambda_2 = 0.2\). The MMDP has 5 states, 2 actions, 2 models, and 2 decision epochs. First, we can explicitly enumerate all possible deterministic policies for the non-adaptive weighted value problem.

By explicitly enumerating all of the possible deterministic policies, we see that selecting action 1 for state A and action 1 for state B leads to the maximum expected weighted value of 0.9\(\lambda_2 = 0.72\). Now, consider the resulting policy generated from WSU. There is only one option for state C, so WSU will select \(\pi(C) = 1\) and update the value for each model as \(v^1(C) = 0\) and \(v^2(C) = 0\). For state B, WSU will select:

\[
\hat{\pi}(B) \leftarrow \arg\max_{a \in \{1, 2\}} \{\lambda_1 p^1(D|B, a) + \lambda_2 p^2(D|B, a)\}
\]
Table 5 An explicit enumeration of the weighted value under every possible deterministic policy for the non-adaptive weighted value problem.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Expected Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

and because \(\lambda_1 > \lambda_2\), the algorithm will select \(\pi(B) = 2\), and then update \(v^1(B) = 1\) and \(v^2(B) = 0\). Then, the algorithm will select an action for state \(A\) as:

\[
\hat{\pi}(B) \leftarrow \arg \max_{a \in \{1, 2\}} \{\lambda_1 p^1(B|A, a)\};
\]

and so, the algorithm is indifferent between action 1 and action 2 because both give \(\lambda_1 p^1(B|A, a) = 0.1\lambda_1\). Therefore, the policy resulting from WSU is either \(\pi = \{\hat{\pi}(A) = 1, \hat{\pi}(B) = 2, \hat{\pi}(C) = 1\}\) or \(\pi = \{\hat{\pi}(A) = 2, \hat{\pi}(B) = 2, \hat{\pi}(C) = 1\}\), both of which give a weighted value of \(0.1\lambda_1\) which is suboptimal. This shows that WSU may generate a policy that is suboptimal for the non-adaptive weighted value problem. \(\square\)

Proposition 1 For \(|M| = 2\), if \(\lambda_m^1 > \lambda_m^2\), then the corresponding policies \(\hat{\pi}(\lambda^1)\) and \(\hat{\pi}(\lambda^2)\) generated via WSU for these values will be such that

\[
v^m(\hat{\pi}(\lambda^1)) \geq v^m(\hat{\pi}(\lambda^2)).
\]

Proof of Proposition 1. For ease of notation, we refer to \(\hat{\pi}(\lambda^1)\) as \(\pi^1\). The value-to-go under policy \(\pi\) in model \(m\) from state \(s\) will be denoted as \(v^m_t(s, \pi)\). Because \(|M| = 2\), we will refer to the two models as \(m\) and \(\bar{m}\) where \(\lambda_m\) is the weight on model \(m\) and \((1 - \lambda_m)\) is the weight on model \(\bar{m}\).

Suppose the proposition is not true; that is, suppose there exists \(\lambda_m^1 > \lambda_m^2\) such that \(v^m(\hat{\pi}(\lambda^1)) < v^m(\hat{\pi}(\lambda^2))\). Then, it must be the case that for some \(t \in T, s \in S\) that

\[
v^m_t(s, \pi^1) < v^m_t(s, \pi^2).
\]

Let \(t\) be the last decision epoch in which \(\pi^1_t(s_t) \neq \pi^2_t(s_t)\). Note that this implies that \(v^m_t(s', \pi^1) = v^m_t(s', \pi^2), \forall t' > t, s' \in S\).

First, consider the weighted value problem for \(\lambda_m = \lambda_m^1\). Consider a state \(s\) at time \(t\) for which \(\pi^1_t(s) \neq \pi^2_t(s)\). Because the approximation algorithm selected \(\pi^1_t(s)\) as the action, it must be that:

\[
\lambda^1_m v^m_t(s, \pi^1) + (1 - \lambda^1_m) v^m_t(s, \pi^1) \geq \lambda^1_m v^m_t(s, a) + (1 - \lambda^1_m) v^m_t(s, a), \forall a \in A
\]

\[
\Rightarrow \lambda^1_m v^m_t(s, \pi^1) + (1 - \lambda^1_m) v^m_t(s, \pi^1) \geq \lambda^1_m v^m_t(s, \pi^2) + (1 - \lambda^1_m) v^m_t(s, \pi^2)
\]

\[(20)\]
Next, consider the weighted value problem for \(\lambda_m = \lambda_m^2 \). In this case, for the same state \(s \) as above, it must be that the approximation algorithm selected action \(\pi_1^m(s) \) because:

\[
\lambda_m^2 v^m_i(s, \pi^2) + (1 - \lambda_m^2) v^m_i(s, \pi^1) \geq \lambda_m^2 v^m_i(s, a) + (1 - \lambda_m^2) v^m_i(s, a), \quad \forall a \in \mathcal{A}
\]

Rearranging (20), we have

\[
\Rightarrow \lambda_m^2 v^m_i(s, \pi^2) + (1 - \lambda_m^2) v^m_i(s, \pi^1) \geq \lambda_m^2 v^m_i(s, \pi^1) + (1 - \lambda_m^2) v^m_i(s, \pi^1).
\]

Adding (22) and (24), we have:

\[
\lambda_m^2 (v^m_i(s, \pi^2) - v^m_i(s, \pi^1)) + (1 - \lambda_m^2) (v^m_i(s, \pi^2) - v^m_i(s, \pi^1)) \geq 0 \tag{23}
\]

\[
\Rightarrow - \lambda_m^2 (v^m_i(s, \pi^2) - v^m_i(s, \pi^1)) - (1 - \lambda_m^2) (v^m_i(s, \pi^1) - v^m_i(s, \pi^1)) \geq 0. \tag{24}
\]

Adding (22) and (24), we have:

\[
(\lambda_m^2 - \lambda_m^2) (v^m_i(s, \pi^1) - v^m_i(s, \pi^2)) + ((1 - \lambda_m^2) - (1 - \lambda_m^2)) (v^m_i(s, \pi^1) - v^m_i(s, \pi^2)) \geq 0
\]

\[
\Rightarrow (\lambda_m^2 - \lambda_m^2) (v^m_i(s, \pi^1) - v^m_i(s, \pi^2)) + v^m_i(s, \pi^2) - v^m_i(s, \pi^1) \geq 0. \tag{25}
\]

Because \(\lambda_m^1 > \lambda_m^2 \), it must be that

\[
v^m_i(s, \pi^1) - v^m_i(s, \pi^2) + v^m_i(s, \pi^2) - v^m_i(s, \pi^1) \geq 0
\]

\[
\Rightarrow v^m_i(s, \pi^2) - v^m_i(s, \pi^1) \geq v^m_i(s, \pi^1) - v^m_i(s, \pi^1)
\]

\[
\Rightarrow v^m_i(s, \pi^2) > v^m_i(s, \pi^1), \tag{26}
\]

where (26) follows because of (19). However, because \(v^m_i(s, \pi^1) < v^m_i(s, \pi^2) \) and \(v^m_i(s, \pi^1) < v^m_i(s, \pi^2) \), this implies that

\[
\lambda_m^1 v^m_i(s, \pi^1) + (1 - \lambda_m^1) v^m_i(s, \pi^1) < \lambda_m^1 v^m_i(s, \pi^2) + (1 - \lambda_m^1) v^m_i(s, \pi^2),
\]

which contradicts that the approximation algorithm would have selected action \(\pi_1^m(s) \) for the weighted value problem with \(\lambda_m = \lambda_m^1 \). Therefore, it must be the case that if \(\lambda_m^1 > \lambda_m^2 \), then

\[
v^m(\hat{\pi}((\lambda^1))) \geq v^m(\hat{\pi}(\lambda^2)).
\]

\(\square \)

Proposition 10 For \(|\mathcal{M}| = 2 \), any policy generated via WSU will be such that

\[
W(\hat{\pi}(\lambda)) \geq \lambda v^1(\pi^2) + (1 - \lambda) v^2(\pi^1),
\]

where \(\pi^m \) is the optimal policy for model \(m \).
Proof of Proposition 10. Let λ be the weight on model 1, π^1 be an optimal policy for model 1, and π^2 be an optimal policy for model 2. Due to the result of Proposition 1, it follows that

$$v^1(\hat{\pi}(\lambda)) \geq v^1(\pi^2), \quad \forall \lambda \in [0, 1],$$
$$v^2(\hat{\pi}(\lambda)) \geq v^2(\pi^1), \quad \forall \lambda \in [0, 1],$$

and therefore,

$$W(\hat{\pi}(\lambda)) = \lambda v^1(\hat{\pi}(\lambda)) + (1 - \lambda) v^2(\hat{\pi}(\lambda)) \geq \lambda v^1(\pi^2) + (1 - \lambda) v^2(\pi^1).$$

Appendix B: Solution methods for the adaptive problem

In this appendix, we describe an exact solution method that can be used to solve the adaptive problem for an MMDP. We begin by describing Procedure 2 which is an exact solution method for solving the adaptive weighted value problem. The correctness of this solution method follows from Proposition 2 which states that every MMDP is a special case of a POMDP and that the maximum weighted value is equivalent to the expected discounted rewards of the corresponding POMDP. Therefore, we transform the MMDP into a POMDP and use a solution method analogous to a well-known solution method for POMDPs (Smallwood and Sondik 1973). This method exploits the property that the value function is piece-wise linear convex and therefore can be represented as the maximum over a set of supporting hyperplanes (Proposition 4).

In the worst-case, the number of hyperplanes needed to represent the value function could potentially be as large as $1 + |A| + \sum_{t=1}^{T-1} |A|^{|S|+T-t}$ for $T \geq 2$, but in many cases the number of hyperplanes that are actually needed to represent the optimal value function is much smaller. Pruning describes the methods by which hyperplanes that are not needed to represent the optimal value function are discarded. The pruning method described in Procedure 3 is based on the LP method described in Smallwood and Sondik (1973), but exploits the result of Proposition 2 for computational gain. This result states that only certain parts of the information space are reachable due to the special structure of the MMDP and this allows for the LP problems for pruning to be decomposed into a set of smaller LPs.

For this procedure, we will use the information state as defined in Definition 3 and define the following notation:

$$r^m_{T+1} := \begin{bmatrix} r_{T+1}(1) \\ \vdots \\ r_{T+1}(|S|) \end{bmatrix}, r^m_t(a_t) := \begin{bmatrix} r_t(1, a_t) \\ \vdots \\ r_t(|S|, a_t) \end{bmatrix}, \forall m \in \mathcal{M}, \forall a_t \in \mathcal{A},$$
For every action, we define the block diagonal matrix:

\[
P_t(a_t) := \begin{bmatrix}
P^1_t(a_t) & 0 & \cdots & 0 \\
0 & P^2_t(a_t) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P^M_t(a_t)
\end{bmatrix},
\]

where each matrix \(P^m_t(a_t), \forall m \in \mathcal{M}\) is the transition probability matrix in decision epoch \(t \in \mathcal{T}\) associated with action \(a_t \in \mathcal{A}\) for model \(m \in \mathcal{M}\). The matrix \(Q\) represents the analog of the conditional probability matrix for observations:

\[
Q := [I_{|S|}, \ldots, I_{|S|}]^{\prime},
\]

where \(I_{|S|}\) denotes an \(|S| \times |S|\) identity matrix. We use \(Q(s_t)\) to denote the column vector corresponding to \(s_t \in \mathcal{S}\) such that the elements indexed \((s, m)\) in this vector have values

\[
q(s_t|(s,m)) = \begin{cases}
1 & \text{if } s = s_t \\
0 & \text{otherwise}
\end{cases}
\]

for all \(m \in \mathcal{M}\).

The space of all information states at time \(t\) is

\[
B_t = \left\{ b_t : b_t(s, m) \geq 0, \forall(s, m) \in \mathcal{S} \times \mathcal{M}, \sum_{m \in \mathcal{M}} b_t(s, m) = 1, \forall s \in \mathcal{S} \right\}.
\]

Procedure 2 is a backwards induction algorithm which generates a set of hyperplanes at each decision epoch. Procedure 3 eliminates hyperplanes that are not necessary to represent the optimal value function. The DM selects the optimal sequence of actions for the observed history in an analogous way to a POMDP: update the information state based on the observation and select the action corresponding to the maximizing hyperplane at this particular information state.
Procedure 2 Algorithm for solving the adaptive weighted value problem (2)
Input: MMDP

Initialize $B_{T+1} = \{r_{T+1}\}$

The value-to-go at time $T+1$. $v_{T+1}(b_{T+1}) = \beta_{T+1}r_{T+1}b_{T+1}$, $\forall b_{T+1} \in B_{T+1}$

$t \leftarrow T$

while $t \geq 0$ do

for Every action a_t do

$B_t(a_t) \leftarrow \{\beta_t(a_t) : \beta_t(a_t) = r_t(a_t) + \sum_{s_{t+1} \in S} P_t(a_t)\text{diag}(Q(s_{t+1}))\beta_{t+1}^{s_{t+1}}$, $\forall \beta_1^{t+1} \times \cdots \times \beta_{|S|}^{t+1} \in B_t \times \cdots \times B_{t+1}\}$

end for

$B_t \leftarrow \cup_{a_t \in A} B_t(a_t)$

State-wise Prune(B_t)

The value-to-go at time t is $v_t(b_t) = \max_{\beta_t \in B_t} \beta_t(b_t)$, $\forall b_t \in B_t$

$t \leftarrow t - 1$

end while

Output: Collection B_0, \ldots, B_T

Procedure 3 State-wise Prune
Input: A set of vectors in $\mathbb{R}^{(|S| \times |M|)}$, B.

for Every vector $\beta \in B$ do

for Every state $s \in S$ do

Let $B(s) = \{\beta_s : \beta_s(m) = \beta(s, m), \beta \in B\}$

Solve the LP (27)

$$z_s^* = \min_{\mu_s \in \mathcal{A}(|M|), x \in \mathbb{R}} \begin{cases} x - \beta'_s \mu_s & \text{subject to} \\ x \geq \beta'_s \mu_s & \forall \beta_s \in B(s), \\ \sum_{m \in M} \mu_s(m) = 1 \end{cases} \quad (27)$$

If $\prod_{s \in S} z_s^* > 0$, remove β from B.

end for

end for

Output: B