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Abstract

We study the robust resource constrained shortest path problem (RCSPP) under uncer-
tainty in cost and multiple resource consumption. Contrary to the deterministic RCSPP
where the cost and the consumption of resources on an arc are known and fixed, the robust
RCSPP models the case where both the cost and the resource consumption are random, and
it determines a robust minimum cost path that is feasible with respect to multiple resource
constraints. We present a robust optimization model, propose graph reduction techniques
tailored for the robust problem, and develop a modified label-setting algorithm that intro-
duces a new dominance rule. We perform extensive numerical testing to compare the modified
label-setting algorithm with direct solution of an equivalent deterministic mixed-integer pro-
gramming model, a sequential algorithm that solves a series of deterministic RCSPP, and a
label-setting algorithm proposed by Pessoa et al. [2015]. The label-setting algorithm is compa-
rable to the label-setting algorithm by Pessoa et al. [2015] and outperforms all other approaches
significantly.

Keywords: robust resource constrained shortest path, robust optimization, graph reduction, label-
setting.

1. Introduction

Shortest path problems have been widely studied in Operations Research because of their theoret-

ical and practical relevance. While the basic shortest path problem (SPP) is easy to solve and lies

at the heart of network flows, extensions with additional restrictions on paths present challenges

to solve. Shortest paths appear frequently in practice whenever there is interest to send flow from

an origin to a destination in applications as diverse as vehicle routing and scheduling, airline oper-

ations planning, transportation, and telecommunications network planning. They also arise often

as subproblems when solving optimization problems on networks by decomposition techniques like

Lagrangian relaxation, column generation, and Benders decomposition. When additional require-

ments, such as visiting nodes within a time window, using a limited resource, and avoiding certain
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paths and cycles are imposed, the problem is referred as constrained shortest path problem (CSPP).

We refer interested readers to the surveys by Irnich and Desaulniers [2005]; Irnich [2008]; Pugliese

and Guerriero [2013] for classification, modeling issues and solution methodologies for CSPP. In

particular, in the deterministic resource constrained shortest path problem (RCSPP) each arc con-

sumes a given amount of a resource with limited availability. The deterministic RCSPP finds a

minimum cost path feasible with respect to resource consumption constraints.

In this paper, we study the robust RCSPP with multiple resources by introducing uncertain

cost and resource consumption on arcs. More specifically, the uncertain parameters are defined

by an interval of uncertainty where the realization of a parameter may take any value within the

corresponding interval. The lower limit of the interval of uncertainty is referred to as the nominal

value of the parameter and the nominal RCSPP arises when all random parameters are at their

nominal values. We present a robust model to find the minimum cost robust path that remains

feasible when a subset of random parameters deviate from their nominal values. Next, we review the

literature relevant to the deterministic RCSPP, and the relevant literature on robust optimization.

1.1 Literature review on the deterministic RCSPP

The solution methodologies for the deterministic RCSPP include Lagrangian relaxation, labeling

algorithms, heuristics and enumerative approaches. Lagrangian relaxation is used by Handler and

Zang [1980] who relax the resource constraint, resulting in a shortest path problem with Lagrangian

length as subproblem. If the dual gap after solving the Lagrangian dual problem is nonzero, a kth-

shortest path algorithm of Yen [1971] is implemented. The parameter k is initialized at 2 and is

increased gradually until the gap closes. Beasley and Christofides [1989] use similar relaxation and

close the dual gap through branch-and-bound. The branching scheme starts at the origin and builds

a partial path. Each branch corresponds to a deterministic RCSPP from the end node of the current

partial path to the destination. The next branch to explore is determined based on the Lagrangian

subproblem solution. Beasley and Christofides [1989] also propose graph reduction techniques based

on the minimum consumption of each resource and the minimum Lagrangian length between a pair

of nodes. Borndörfer et al. [2001] use a similar approach to solve the deterministic RCSPP. However,

they add an additional goal consumption for each resource and penalize any deviation from the goal.

Santos et al. [2007] improve the algorithm of Handler and Zang [1980] with a refined search direction

based on the tightness of the resource limit.

Dynamic programming formulations leading to labeling algorithms form another exact method-
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ology for the deterministic RCSPP. Desrochers [1988] proposes a label correcting algorithm that

extends pareto optimal partial paths along the graph from origin to destination. Dumitrescu and

Boland [2003] improve and compare a set of algorithms, including Lagrangian relaxation, label set-

ting algorithm, and heuristics with a cost scaling technique. They improve the preprocessing by

iteratively using the techniques in Beasley and Christofides [1989] until no more reduction is pos-

sible. For the label setting algorithm, they strengthen the feasibility check by considering for each

resource the sum of the incurred resource consumption of a partial path and the minimum resource

requirement from the end of a partial path to the destination. They also propose an exact weight

scaling algorithm that repeatedly performs the label setting algorithm on a graph with resource

consumptions on arcs and scaled resource upper bounds. During the process, the minimum cost

path provides a lower bound on the original problem even if it is infeasible. As the scaled values

ultimately converge to their original values, the algorithm is guaranteed to find an optimal solution.

Zhu and Wilhelm [2012] propose a three stage algorithm to solve deterministic RCSPP on an acyclic

graph. They reduce the graph using a technique similar to that of Dumitrescu and Boland [2003]

in the first stage. Then, they expand it to a graph corresponding to an unconstrained shortest

path problem, and solve as SPP using Dijkstra’s algorithm. Since the extended graph from one

such transformation is reusable for different arc cost, the approach is suitable for column generation

where arc costs change in the process. Lozano and Medaglia [2013] use a depth first search strategy

to extend labels. As a result, the number of labels stored at each node can be limited at the expense

of extending more partial paths that could have been identified as dominated.

Heuristic algorithms for the deterministic RCSPP are based on cost scaling. Hassin [1992]

proposes a polynomial approximation scheme for deterministic RCSPP with nonnegative integer

costs on arcs and a single resource constraint. The algorithm starts from an upper bound UB and a

lower bound LB and determines whether a resource feasible path with cost no more than
√
UB ∗ LB

exists. This is done approximately by scaling arc costs and solving the scaled problem with a label

setting algorithm. With approximation factor ε, UB or LB is updated as
√
UB ∗ LB(1 + ε) or

√
UB ∗ LB depending on whether such path exists. The algorithm is suggested to terminate when

UB/LB ≤ 2. Lorenz and Raz [2001] propose a similar scaling approach and an initialization of UB

that guarantees UB/LB is less than or equal to the number of arcs in the graph.

Moreover, Irnich [2008] surveyed the literature in CSPP by focusing on different types of resource

extension functions (REF). The aim is to identify properties of REF that may be used for reverse

search in the network and may be generalized for partial paths instead of arcs. Such inversion and

generalization help accelerate the solution of CSPP. An extensive survey of CSPP is provided by
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Pugliese and Guerriero [2013].

1.2 Literature review on robust RCSPP and related problems

Robust programming deals with optimization problems where the modeling parameters are uncer-

tain. Uncertainty is described by a set of possible realizations, called the support of the uncertainty.

The optimization model finds a minimum cost solution that stays feasible under all realizations in

the uncertainty support. The supports studied in the literature are convex support, such as el-

lipsoidal support, polyhedral support Ben-Tal and Nemirovski [1999] and cardinality constrained

support Bertsimas and Sim [2003]. Cardinality constrained support, or budgeted uncertainty, cor-

responds to the case where each constraint/objective coefficient varies within an interval, and the

total number of coefficients changing simultaneously in each constraint/objective function is limited

by a constant, referred to as the protection level or budget size. Bertsimas and Sim [2003] provide

an equivalent MIP reformulation for robust discrete optimization problem under such support in-

cluding the robust SPP. Moreover, they prove that for robust combinatorial optimization problems

with budgeted uncertainty on objective coefficients, the problem can be solved as a series of de-

terministic counterparts. Álvarez Miranda et al. [2013] and Goetzmann et al. [2012] generalize the

result to combinatorial optimization problems with uncertainty in the constraints. The probabilistic

guarantee for constraints with budgeted uncertainty is derived by Bertsimas and Sim [2004] and

extended by Poss [2014a] and Poss [2014b] to variable budgeted uncertainty where the budget size

is allowed to depend on decision variables. Ben-Tal et al. [2009] and Bertsimas et al. [2011] provide

comprehensive reviews on robust optimization.

The literature on robust RCSPP is scant. However, at the same time when we were conducting

this research, Pessoa et al. [2015] independently carried out a study of robust RCSPP and suggested

a dominance rule which is different from ours. They prove that the problem is NP-hard in the strong

sense when the uncertainty set is unbounded. For budgeted uncertainty sets, the robust shortest

path problem with a capacity constraint can be solved pseudopolynomially. They proposed a label-

setting algorithm for the case with time windows that creates as many dummy resources as the

budget size for the existing time resource. The dummy resources are associated with budgeted

uncertainties for which the budget sizes vary from zero to the original budget size. A partial path

dominates another partial path ending at the same node when it consumes less or equal resources

under all the budgeted uncertaintites.The dominance rule we propose is different in that it uses

robust resource consumption up to a node i and an upper bound on the maximum variation under

4



the budgeted size from i to the destination. We show in Section 3.1 that each of the dominance

rules is able to eliminate dominated partial paths that the other does not. On the other hand, there

are several studies on the robust shortest path problem, see for example Catanzaro et al. [2011];

Gabrel et al. [2013]; Yu and Yang [1998]; Resende [2015]; Karasan et al. [2001]. Unlike the problem

treated in this paper and that of Pessoa et al. [2015], in the robust SPP there are no additional

resource constraints on the paths, i.e., there is no feasibility issue and only optimality of a path is

impacted by the uncertainty. In particular the dominace rule suggested by Resende [2015] extends

that of the determinitic RCSPP by creating a cost label for each scenario. Similar to Pessoa et al.

[2015], a partial path is dominated by another partial path ending at the same node if it has higher

or equal cost under all scenarios.

Beside the studies in robust constrained shortest path problem, several studies on robust vehicle

routing problems exit. Specifically, Sungur et al. [2008] are the first to study a robust capacitated

vehicle routing problem (CVRP) with uncertain demands. They extend the deterministic CVRP

formulation to the robust case based on the Miller-Tucker-Zemlin formulation, and focus on three

types of uncertainty supports, including convex hull support, hyper-cube support and ellipsoidal

support. Under these supports, the authors prove that to solve the robust CVRP it is sufficient

to solve a deterministic CVRP corresponding to the worst case scenario. A robust vehicle routing

problem with time windows is recently studied by Agra et al. [2013]. They provide two formulations

based on resource inequalities and path inequalities, and prove that it is sufficient to consider a

subset of the extreme points of the uncertainty support. When the uncertainty support is cardinality

constrained, they further reduce the subset of the extreme points of the uncertainty polytope. The

resource inequality formulation is solved implicitly by a column and row generation procedure and

the path inequality formulation is solved by a cutting plane algorithm. The most recent work by

Gounaris et al. [2013] focuses on robust CVRP with uncertain customer demands. They propose

a generalized hyper-cube support that is encoded by the intersection of a hyper-rectangle with a

halfspace that imposes an upper bound on total customer demand, and show that an equivalent

deterministic CVRP can be derived. The robust counterparts of the two-index vehicle flow, the

Miller-Tucker-Zemlin, the one-commodity flow, the two-commodity flow and the vehicle assignment

formulations are provided and reformulated as MIP problems under the convex polyhedral support.

Moreover, when the demand support is a set of disjoint generalized hypercube supports or a convex

hull resulting from an affine transformation of a hypercube, the authors derive analytic solutions to

evaluate the total demand of a subset of customers in the worst case. These analytic solutions are

used to find rounded capacity inequalities and the models are solved by branch-and-cut.
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The main contributions in this paper are a new dominance rule for the robust RCSPP, a modi-

fied labelling algorithm, and extension of the resource based reduction and Lagrangian cost based

reduction of the graph to identify nodes/arcs that cannot be in an optimal robust path. The classi-

cal dominance rule for SPP and RCSPP is not valid because when comparing two partial paths, one

partial path dominated by another one in a deterministic setting might lead to a better complete

path in a robust context. This is because for each resource, the total consumption in a robust

context not only depends on the deterministic data but also on a subset of the resource deviations

on the complete path, where the prespecified protection level determines the size of the subset.

Pessoa et al. [2015] extend the classical dominance rule by creating dummy labels. On the other

hand, we propose a new dominance rule to compare two partial paths under the robust framework

by developing for each resource and each partial path an upper bound on the sum of resource

deviations up to the destination. To calculate these upper bounds, we devise a specialized label

correcting algorithm.

We compare the modified label setting algorithm with direct solution of the MIP reformulation

using CPLEX 12.4, the label setting algorithm proposed by Pessoa et al. [2015], and the sequential

algorithm that solves a series of deterministic RCSPP. The results show the superiority of the

modified label-setting algorithm over direct solution of the MIP reformulation and the sequential

algorithm. The latter shows poor scalability when the number of resources or the number of distinct

deviations increase.

The rest of the paper is organized as follows. Section 2 defines the robust RCSPP and presents

the robust formulation, an equivalent MIP reformulation and the sequential algorithm. The graph

reduction techniques for the robust RCSPP are presented in Section 2.2. Section 3 develops the new

dominance rule and the modified label-setting algorithm. Section 4 reports on the computational

testing and Section 5 concludes the paper.

2. The robust RCSPP

In this section, we first present the robust RCSPP formulation and an equivalent MIP formulation,

and derive the sequential algorithm. In Section 2.2, we generalize the preprocessing techniques of

the deterministic RCSPP to reduce the graph for robust RCSPP using resource based reduction

and Lagrangian cost based reduction.

Let us define a graph G = (N,A), where N is the set of nodes indexed by i = 1, ..., |N | and

A is the set of arcs represented by (i, j) ∈ A. Let o ∈ N denote the origin, and d ∈ N denote
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the destination. Traveling in the network consumes a number of resources. Each resource has a

limit on available capacity, representing the maximum amount of the resource that can be used on

a feasible path. The cost of an arc is represented by a special resource with infinite capacity. Let R

denote the set of resources indexed by r = 1, ..., |R|, where resource r = 1 is used for the cost. For

each arc (i, j) ∈ A, tijr ≥ 0 is the minimum consumption of resource r on arc (i, j), also referred

to as nominal consumption. hijr ≥ 0 is the maximum deviation from the nominal consumption. A

realization of the consumption of resource r on (i, j), denoted by t̂ijr is assumed to vary randomly

in the interval [tijr, tijr +hijr]. When arc (i, j) shows no uncertainty in the consumption of resource

r, hijr is set to 0. The limit on resource r is denoted by Br. The decision variable yij takes

value 1 if arc (i, j) is selected in the shortest path, and 0 otherwise. To protect the solution from

uncertainty, a prespecified parameter Γr, called protection level, is defined for each resource r. It

allows at most Γr arcs to deviate from the nominal values of resource r for any path at any given

time. Given a path p involving arcs Sp ⊆ A, the worst deviation from the nominal consumption

of resource r is determined by max
{Sr|Sr⊆Sp,|Sr|≤Γr}

∑
(i,j)∈Sr

hijr. The maximum consumption by path p of

resource r given Γr is calculated as
∑

(i,j)∈Sp

tijr + max
{Sr|Sr⊆Sp,|Sr|≤Γr}

∑
(i,j)∈Sr

hijr and is referred to as the

robust consumption of resource r. As Γr increases, more deviations are considered in the robust

consumption of resource r. The robust consumption of resource r = 1 is defined as the robust cost.

A path is considered robust if its robust consumption of resource r is no more than Br for each

resource r ∈ R \ {1}. The robust RCSPP is modeled as follows:

[P]

min
∑

(i,j)∈A

tij1yij + max
{S1|S1⊆A,|S1|≤Γ1}

∑
(i,j)∈S1

hij1yij (1)

s.t.
∑

j:(o,j)∈A

yo,j = 1 (2)

∑
i:(i,j)∈A

yij −
∑

i:(j,i)∈A

yji = 0 ∀j ∈ N\{o, d} (3)

∑
i:(i,d)∈A

yi,d = 1 (4)

∑
(i,j)∈A

tijryij + max
{Sr|Sr⊆A,|Sr|≤Γr}

∑
(i,j)∈Sr

hijryij ≤ Br r = 2, ..., |R| (5)

yij ∈ {0, 1} ∀(i, j) ∈ A (6)

The objective function (1) minimizes the total robust cost given protection level Γ1. Constraints

(2)-(4) are flow balance constraints. Constraint (5) requires that the robust consumption of resource
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r on a feasible path must be less than or equal to resource limit Br. A feasible path for robust

RCSPP protects against uncertainty with a prespecified level for each resource. A shortest path for

robust RCSPP is a feasible path that has the minimum robust cost under protection level Γ1.

2.1 An equivalent MIP reformulation of robust RCSPP

The robust model [P] is not readily solvable because of the robust terms in the objective function

and constraints. Based on Theorem 2 of Bertsimas and Sim [2003], we now present an equivalent

linear MIP reformulation that may be solved by any MIP solver. Let Y be the feasible set defined

by flow balance constraints (2)-(4) and (6), and y ∈ Y be the vector of yij. For ease of exposition,

we define yar , t
a
r and har as replicas of yij, tijr and hijr when arc (i, j) has the ath highest deviation

with respect to resource r. Without loss of generality, for each resource r, we sort the arcs using

index a = 1, ..., |A| such that h1
r ≥ h2

r ≥ ... ≥ h
|A|−1
r ≥ h

|A|
r , and h

|A|+1
r = 0. yr and tr are vectors

of yar and tar , respectively. Define uar as a binary variable that takes value 1 if hary
a
r is selected to

maximize the robust term and 0 otherwise. Then, [P] is rewritten as follows:

[P1]

Z = min t1y1 + max
0≤ua1≤1∑|A|
a=1 u

a
1≤Γ1

|A|∑
a=1

ha1y
a
1u

a
1

s.t. y ∈ Y

tryr + max
0≤uar≤1∑|A|
a=1 u

a
r≤Γr

|A|∑
a=1

hary
a
ru

a
r ≤ Br r = 2, ..., |R|

where max
0≤uar≤1∑|A|
a=1 u

a
r≤Γr

|A|∑
a=1

hary
a
ru

a
r , r = 1, ..., |R| are the robust terms. Let vr be the dual variable of

constraint
|A|∑
a=1

uar ≤ Γr, and qar be the dual variable of constraint 0 ≤ uar ≤ 1. Applying Theorem 2

of Bertsimas and Sim [2003] to [P1], we obtain an equivalent MIP formulation:
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[P-MIP]

Z = min t1y1 + Γ1v1 +

|A|∑
a=1

qa1 (7)

s.t. y ∈ Y

tryr + Γrvr +

|A|∑
a=1

qar ≤ Br r = 2, ..., |R| (8)

vr + qar ≥ hary
a
r a = 1, ..., |A|, r = 1, ..., |R| (9)

qar , vr ≥ 0 a = 1, ..., |A|, r = 1, ..., |R| (10)

The robust terms in [P1] are transformed into minimization problems by duality. The objective

functions of the resulting dual problems are captured in the objective function of [P-MIP] and

constraints (8), respectively. The constraints of the resulting dual minimization problems are added

as constraint set (9) to [P-MIP]. As a result, the model has a total of |N |+|A||R|+|R|−1 constraints,

|A| binary variables and |A||R| continuous variables. Although [P-MIP] may be solved directly using

any deterministic MIP solver, this proved to be inefficient as shown in Section 4. An alternative

approach is to further transform the problem into a sequence of deterministic RCSPP following the

transformation in Poss [2014a] and Poss [2014b].

This sequential approach is detailed in Algorithm 6 in Appendix A. It creates a sequence of

RCSPP and solves the resulting deterministic problems using a label setting algorithm. For a

problem with |R| resources and nr distinct deviations that are less than or equal to hΓr
r , i.e. nr =

|{e|her 6= he
′
r , e 6= e′, e = Γr, ..., |A|+ 1, e′ = Γr, ..., |A|+ 1}|, in each resource r ∈ R, the total number

of problems to solve in the worst case is
∏|R|

r=1 nr. Algorithm 6 grows fast when |R| or nr increases.

2.2 Reduction of graph G

It is known in the literature that reducing the graph on which RCSPP is defined by eliminat-

ing arcs and nodes that cannot be in an optimal solution helps solve larger instances. Beasley

and Christofides [1989] present two types of graph reduction techniques for RCSPP. One of the

techniques determines whether a node/arc should be removed based on the minimum resource con-

sumption required to traverse that node/arc. The other technique relaxes the resource constraints in

a Lagrangian fashion. Then, for each node/arc, it finds a lower bound on the cost of paths traversing

that node/arc. The lower bound is compared against an upper bound to determine whether the

node/arc may be removed. When ignoring uncertainty, the cost and resource consumption happen

at the nominal level and the nominal problem is a deterministic RCSPP given by:
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[PR1]

min
∑

(i,j)∈A

tij1yij (11)

s.t. (2) - (4), (6)∑
(i,j)∈A

tijryij ≤ Br r = 2, ..., |R| (12)

Since constraints (5) are more restricting than constraints (12), and the robust term in (1) is

nonegative, the optimal objective value of [PR1] provides a lower bound to [P]. The lower bound

may be further improved by deriving bounds on the robust resource consumption. Define the

shortest length l as the minimum number of arcs needed to go from o to d in graph G without

enforcing resource limits. Let Γ̂r = min{l,Γr}. For any path p, the robust consumption of resource

r is at least
∑

(i,j)∈Sp

tijr +Hr, where Hr = min{Sr|Sr⊆A,|Sr|=Γ̂r}
∑

(i,j)∈Sr

hijr is a constant for resource r.

Subtracting Hr from the corresponding resource limit Br leads to the following modified RCSPP:

[PR2]

min
∑

(i,j)∈A

tij1yij +H1 (13)

s.t. (2) - (4), (6)∑
(i,j)∈A

tijryij ≤ Br −Hr r = 2, ..., |R| (14)

Since

Hr ≤ max
{Sr|Sr⊆A,|Sr|≤Γr}

∑
(i,j)∈Sr

hijryij, r = 1, ..., |R|

any feasible path to [P] is also feasible to [PR2] and its objective value in [P] is no less than its

objective value in [PR2]. Using these results, we derive two sets of reduction rules for graph G. The

first set of rules is based on resource capacity constraints, and the second is based on Lagrangian

bounds.

2.2.1 Resource based reduction

Removing the resource constraints (14) from [PR2], and the constant term H1 from the objective

function, we obtain a deterministic shortest path problem [SPP] as follows:
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[SPP]

min
∑

(i,j)∈A

tij1yij (15)

s.t. (2) - (4), (6).

Define Dr
ij as the minimum cost from node i to node j with consumption of resource r as the arc

cost. Then, node i satisfying the following inequality may be removed from graph G:

Dr
oi +Dr

id > Br −Hr r = 2, ..., |R|. (16)

In inequality (16), if the minimum consumption of resource r from o to d through node i exceeds

Br − Hr, any path visiting node i is infeasible to [P]. Moreover, arc (i, j) satisfying the following

inequality may be removed from graph G:

Dr
oi + tijr +Dr

jd > Br −Hr r = 2, ..., |R|. (17)

Inequality (17) states that if the minimum consumption of resource r from o to d through arc

(i, j) is greater than Br −Hr, any path traversing arc (i, j) is infeasible to [P]. The minimum cost

from origin to all nodes in graph G may be calculated using a label setting algorithm. Similarly,

the minimum cost from all nodes to destination may be calculated on the reversed graph of G.

Algorithm 3 in Appendix A summarizes the steps of resource based reduction.

2.2.2 Lagrangian cost based reduction

Introducing Lagrangian multipliers µr ≥ 0, r = 2, ..., |R| to resource constraints (14), the relaxed

problem of [PR2] is:

[PR3]

ZLR = min
∑

(i,j)∈A

tij1yij +H1 +

|R|∑
r=2

µr

 ∑
(i,j)∈A

tijryij −Br +Hr

 (18)

s.t. (2) - (4), (6) .

If the solution ȳij of [PR3] is feasible for [P], it gives an upper bound

ZUB =
∑

(i,j)∈A
tij1ȳij + max

{S1|S1⊆A,|S1|≤Γ1}

∑
(i,j)∈S1

hij1ȳij to the optimal objective value of the original

problem [P].

The Lagrangian cost for arc (i, j) ∈ A is given by tij1 = tij1+
|R|∑
r=2

µrtijr. The minimum Lagrangian

cost over the set of paths P (i, j) from node i to node j is given by Lij(µ) = minp∈P (i,j)

∑
(i′,j′)∈Sp ti′j′1

11



for a given set of multipliers µr, r = 2, ..., |R|. Any node i satisfying the following inequality may

be removed from graph G:

Loi(µ) + Lid(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB (19)

The left hand side of inequality (19) calculates the minimum objective value measured by function

(18) among all paths from o to d through node i. If it is greater than the objective value of the

current best solution to [P], any path traversing node i is not optimal to [P]. An arc (i, j) ∈ A may

be removed from G if the following inequality is satisfied:

Loi(µ) + tij1 + Ljd(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB (20)

In inequality (20), if the minimum objective value given by function (18) among all paths from o

to d through arc (i, j) is greater than the upper bound on [P], an optimal solution to [P] does not

involve arc (i, j). To determine multipliers µr, r = 2, ..., |R|, we use Kelley’s cutting plane algorithm

(Kelley [1960]) to solve the Lagrangian dual problem of [PR3]. The reduction based on Lagrangian

cost is summarized in Algorithm 4 in Appendix A.

The overall graph reduction procedure is detailed in Algorithm 5 in Appendix A. It starts

with resource based reduction (Algorithm 3). Paths found during resource based reduction are

used to construct cuts to initialize the Lagragian master problem. Then, Kelley’s cutting plane

algorithm is used to solve the Lagrangian master problem of [PR3]. Optimal Lagrangian multipliers

µr, r = 2, ..., |R| are used to calculate the Lagrangian cost for each arc, and Lagrangian based

reduction (Algorithm 4) is applied. During the procedure, any path feasible to [P] is used to update

ZUB. If l increases or set A reduces in a reduced graph G, Hr may increase to make constraint

(14) tighter. The resulting [PR2] may have an increased optimal objective value that in turn may

further reduce graph G. Hence, resource based reduction and Lagrangian cost based reduction are

applied iteratively until the graph can not be reduced any more.

3. Label setting algorithm

One important component of label setting algorithm for the deterministic RCSPP is the dominance

rule that avoids extending unpromising partial paths. The dominance rule is described as follows.

Let cpir =
∑

(j,k)∈Sp tjkr be the nominal consumption of resource r for path p from origin o to node

i. A label associated with node i is denoted by vector Cp
i = [cpi1, ..., c

p
i|R|]. For two labels at node i,
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C1
i dominates C2

i , represented by C1
i < C2

i , if there exists resource r ∈ R such that c1
ir < c2

ir and

c1
ir ≤ c2

ir for r ∈ R\{r̄}. The algorithm starts at the origin and proceeds by extending nondominated

partial paths. A pseudo-code of the algorithm is given in Algorithm 1.

We now present an example to show that this dominance rule is invalid for the robust RCSPP.

Then, we provide a new dominance rule that considers not only the deviations on the arcs of a partial

path but also on the possible arcs that may be appended after. Such consideration guarantees the

dominance relation as it uses an upper bound on the maximum deviation of a complete path

extended from the current partial path. To calculate the upper bounds, we devise a label correcting

algorithm that calculates the Γr maximum deviations relevant to each node. Lastly, we present the

complexity of the complete label setting algorithm, discuss the distinction from the dominance rule

proposed by Pessoa et al. [2015], and use examples to show that each rule may identify dominated

paths that the other fails to.

Define λpir = cpir + max{S:|S|≤Γr,S⊆Sp}
∑

(j,k)∈S hjkr as the robust consumption of resource r for

path p from origin o to node i, Λp
i = [λpi1, ..., λ

p
i|R|] as the resource consumption vector of robust

RCSPP. Figure 1 shows a network of RCSPP with 2 resources. The origin and destination in

Figure 1 are nodes 1 and 4, respectively. On each arc, the first and the second numbers between

parentheses represent the consumption of resources 1 and 2 on that arc. The limit on resource 2

is 20. There are two paths 1 and 2 from origin to destination consisting of arcs {(1, 3), (3, 4)} and

{(1, 2), (2, 3), (3, 4)} with labels C1
4 = [7, 9] and C2

4 = [8, 9], respectively. Path {(1, 3), (3, 4)} is the

optimal path. Moreover, as C1
3 dominates C2

3 , discarding C2
3 at node 3 does not affect optimality.

Figure 2 adds deviations to the graph in Figure 1. A pair of numbers in curly brackets shows the

deviations of resources 1 and 2 on each arc. Setting the protection level Γ to 2 for both resources,

then Λ1
3 = [12, 11] and Λ2

3 = [17, 14]. Based on the dominance rule for RCSPP, Λ2
3 is dominated by

Λ1
3, only one path to node 4 remains with label Λ1

4 = [22, 19]. However, the optimal path is path 2

with Λ2
4 = [21, 18]. This shows that the dominance rule for RCSPP is invalid. The reason is that

when reaching node 3, path 2 has already encountered the first two biggest deviationss for each

resource, whereas path 1 only encountered one of its two deviations for each resource. Therefore,

to derive a valid dominance rule, we need not only consider the information given by Λp
i but also

the information from node i to the destination d.

13



Algorithm 1 Label setting algorithm for deterministic RCSPP

1: Definition:
2: Pi: the set of non-dominated labels at node i
3: Unprocessed: keeps the labels that are created but not processed yet.
4: W (i) = {j|(i, j) ∈ A}: the set of nodes that connects node i with an arc (i, j) ∈ A.
5: REF(C p̄

i ,j): the nondecreasing resource extension function that calculates the resource con-
sumption at node j when Cp

i is extended through arc (i, j).
6: Feasible(Cp

j ): returns true if cpi1 ≤ UB and cpir ≤ Br, r = 2, ..., |R| and false otherwise.
7: Dominance(Cp

i , Pi): returns true if Cp
i is not dominated by the labels in Pi and false otherwise

8: Initialization:
9: UB = the objective value of best feasible path obtained during preprocessing or from heuristic.

10: p = 0, Cp
o = [0, ..., 0] ∈ R|R|.

11: Mark Cp
o as non-dominated.

12: Po ← {Cp
o}, Unprocessed← {Cp

o}.
13: for all i ∈ N\{o} do
14: Pi ← {(∞, B2, ..., B|R|)}.
15: end for
16: while Unprocessed 6= ∅ do
17: Extract C p̄

i ∈ Unprocessed
18: if C p̄

i is not dominated then
19: for all j ∈ W (i) do
20: p = p+ 1.
21: Cp

j =REF(C p̄
i ,j).

22: if Feasible(Cp
j ) indicates Cp

j is feasible then
23: if Dominance(Cp

j , Pj) indicate Cp
j is not dominated then

24: Pj ← Pj
⋃
{Cp

j }
25: if j = d and cj1 < UB then
26: Update UB and the current best path.
27: else
28: Unprocessed← Unprocessed

⋃
{Cp

j }
29: end if
30: end if
31: end if
32: end for
33: Mark C p̄

i as processed.
34: Unprocessed← Unprocessed\{C p̄

i }
35: end if
36: end while
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Figure 1: A network for deterministic resource constrained shortest path problem.
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{6,5}{6,5} {7,4}{7,4}

{9,6}{9,6} {6,4}{6,4}

Figure 2: A network for robust resource constrained shortest path problem.

3.1 Label setting algorithm for robust RCSPP

Let Gi = (Ni, Ai) denote a subgraph of G rooted at i, i.e., Ni is the set of nodes reachable from

node i, and Ai is the set of arcs {(j, k) ∈ A : j, k ∈ Ni}. ∆ir is the set of arcs with the highest Γr

deviations across Gi when Γr < |Ai|, or are the |Ai| arcs when Γr ≥ |Ai|:

∆ir = arg max
Sir:Sir⊆Ai,|Sir|≤Γr

∑
(j,k)∈Sir

hjkr, r ∈ R, i ∈ N.

To determine ∆ir, we suggest the following modified label correcting algorithm (MLCA) as shown

in Algorithm 7. Let G = (N,A) be the reverse graph of G and associate with arc (j, i) ∈ A weight

hijr. Note that for every arc (j, i) ∈ A and every resource r, the highest Γr arc weights of Gj cannot

all be strictly higher than those of Gi, since by the existence of arc (i, j) ∈ A,Aj ⊆ Ai. Associate

with each node i and resource r, a label V (ir) which stores at most Γr elements. Each element

corresponds to an arc (k, j) ∈ Ā and is formatted as f = {hjkr, (k, j)}. The set of arcs involved

in V (ir) is denoted by A(V (ir)). For arc (j, i) ∈ A, let hmini = min{hjkr : (k, j) ∈ A(V (ir))}
when |A(V (ir))| = Γr, and 0 otherwise; and let hmaxj = max{hkk′r|(k, k′) ∈ A(V (jr))\A(V (ir))}
when A(V (jr))\A(V (ir)) 6= ∅, and 0 otherwise. Then, hmini ≥ hmaxj,∀(j, i) ∈ A is an optimality

condition for V (ir). The label correcting algorithm works on the reverse graph G = (N,A) once for

each resource r ∈ R and starts by initilaizing the label V (ir) = [{0, (0, 0)}], i ∈ N . For every arc

(j, i) ∈ A such that hmini < hmaxj, V (ir) does not include the arcs with the highest deviations

and is updated as

[
{hkk′r, (k′, k)} : (k′, k) ∈ A′, A′ = arg max

Ã⊆A(V (ir))
⋃
A(V (jr))

∑
(k′,k)∈Ã

hkk′r

]
. The algorithm
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stops when there are no arcs that violate the optimality condition. The finiteness of the algorithm

follows from that of the label correcting algorithm for SPP. The main differences are in that the arc

weights are only used once to initialize the labels, and node labels are of size Γr for each resource r.

For a path p from origin o to node i composed of arcs Sp, let us define Spr as a subset of Sp for

each resource r ∈ R, and

Φp
ir = arg max

Sp
r :Sp

r⊆Sp,|Sp
r |≤Γr

∑
(j,k)∈Sp

r

hjkr

as the set of arcs such that the sum of their deviations of resource r is maximized under protection

level Γr. Then, for r ∈ R, an upper bound on the total deviation of consumption of resource r

under protection level Γr for a path to destination d extended from p is

ξpir = max
{Υ⊆Φp

ir∪∆ir,|Υ|≤Γr}

∑
(j,k)∈Υ

hjkr,

where Φp
ir ∪ ∆ir consists of a subset of arcs from path p and a subset of arcs from Ai. Ξp

i =

[ξpi1, ..., ξ
p
i|R|] represents a vector that consists of the upper bound on the total deviation of each

resource consumption for a path to destination d extended from p.

Theorem 1. Let < pa, pb > denote the concatenation of paths pa and pb, where the ending node of

pa is the starting node of pb. Given partial paths p1 and p2 both from origin o to node i, path p3 from

node i to the destination d, if C1
i + Ξ1

i < Λ2
i , path p4 =< p1, p3 > dominates path p5 =< p2, p3 >.

Label C2
i may be eliminated at node i.

Proof of Theorem 1. For path 1 and ∀r ∈ R,

ξ1
ir = max

{Υ⊆Φp
ir∪∆ir,|Υ|≤Γr}

∑
(j,k)∈Υ

hjkr

= max
{Υ|Υ⊆S1∪Ai,|Υ|≤Γr}

∑
(j,k)∈Υ

hjkr (21)

≥ max
{S4

r |S4
r⊆S1∪S3,|S4

r |≤Γr}

∑
(j,k)∈S4

r

hjkr (22)

= max
{S4

r |S4
r⊆S4,|S4

r |≤Γr}

∑
(j,k)∈S4

r

hjkr (23)

Equality (21) holds due to the definition of Φp
ir and ∆ir. Inequality (22) holds because S3 ⊆ Ai.

ξ1
ir ≥ max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr leads to

c1
ir + max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr ≤ c1
ir + ξ1

ir (24)
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Recall that λpir = cpir + max
{Sp

r |Sp
r⊆Sp,|Sp

r |≤Γr}

∑
(i,j)∈Sp

r

hjkr, then

λ2
ir ≤ c2

ir + max
{S5

r |S5
r⊆S2∪S3=S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr r = 1, ..., |R| (25)

If c1
ir + ξ1

ir < λ2
ir for resource r ∈ R, C1

i + Ξ1
i < Λ2

i leads to the following set of inequalities:

c1
ir + ξ1

ir ≤ λ2
ir ≤ c2

ir + max
{S5

r |S5
r⊆S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr ∀r ∈ R\{r} (26)

c1
ir + ξ1

ir < λ2
ir ≤ c2

ir + max
{S5

r |S
5
r⊆S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr (27)

Hence,

c1
ir + max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr ≤ c2
ir + max

{S5
r |S5

r⊆S5,|S5
r |≤Γr}

∑
(i,j)∈S5

r

hjkr ∀r ∈ R\{r} (28)

c1
ir + max
{S4

r |S
4
r⊆S4,|S4

r |≤Γr}

∑
(j,k)∈S4

r

hjkr < c2
ir + max

{S5
r |S

5
r⊆S5,|S5

r |≤Γr}

∑
(i,j)∈S5

r

hjkr (29)

Moreover, as the nominal consumption of resource r ∈ R on path 3 is c4
dr−c1

ir, which equals c5
dr−c2

ir,

adding c4
dr − c1

ir and c5
dr − c2

ir to the left and right hand sides of inequalities (28) and (29) results in

c4
dr + max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr = λ4
dr ≤ c5

dr + max
{S5

r |S5
r⊆S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr = λ5
dr ∀r ∈ R\{r}

(30)

c4
dr + max
{S4

r |S
4
r⊆S4,|S4

r |≤Γr}

∑
(j,k)∈S4

r

hjkr = λ4
dr < c5

dr + max
{S5

r |S
5
r⊆S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr = λ5
dr (31)

Hence Λ4
d < Λ5

d. As path 3 can be any path from i to d, C1
i dominates C2

i .

The dominance rule in Theorem 1 says that partial path p1 dominates partial p2 if it consumes

less or equally of every resource r ∈ R, and strictly less for at least one resource, where p1’s

consumption includes the highest Γr arc deviations up to the destination, while that of p2 does not.

For the instance in Figure 2, partial path {(1, 3)} does not dominate partial path {(1, 2), (2, 3)}
because by considering the cost deviations 4 and 5 on arcs (1, 3) and (3, 4), the cost of partial

path {(1, 3)} is higher than the nominal cost of the other partial path. Similarly, partial path

{(1, 2), (2, 3)} does not dominate {(1, 3)} for the same reason. The modified label-setting algorithm

equipped with the new dominance rule is detailed in Algorithm 2.

The dominance rule by Pessoa et al. [2015] creates Γr + 1 dummy resources for each existing

resource and uses a dominance rule as follows. Let λpir(γ) = cpir+max{S:|S|≤γ,S⊆Ap}
∑

(i,j)∈S hijr be the
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Algorithm 2 MLS: Modified label setting algorithm for robust RCSPP

1: Definition:
2: V p

ir: a sorted vector containing Γr variations of resource r ∈ R in descending order associated
with path p ending at node i.

3: Vp
i : a list consists of V p

ir, r ∈ R.
4: Initialization:
5: UB = the objective value of the best feasible path obtained during preprocessing or from

heuristic.
6: p = 0, Cp

o = (0, ..., 0) ∈ R|R|.
7: Mark Cp

o as non-dominated.
8: Associate Cp

i with a vector Vp
i = ∅.

9: for all r ∈ R do
10: Vp

i ← Vp
i

⋃
{V p

ir}, where V p
ir = [0, ..., 0] ∈ RΓr .

11: end for
12: Po ← {Cp

o}, Unprocessed← {Cp
o}.

13: for all i ∈ N\{o} do
14: Pi ← {(∞, B2, ..., B|R|)}.
15: end for
16: while Unprocessed 6= ∅ do
17: Extract C p̄

i ∈ Unprocessed.
18: if C p̄

i is not dominated then
19: for all j ∈ W (i) do
20: p = p+ 1.
21: Create a vector Vp

j = {V p̄
1r, ..., V

p̄
i|R|}.

22: Cp
j = Robust REF (C p̄

i , j,V
p
j ).

23: if Robust Feasible(Cp
j ,V

p
j ) indicates Cp

j is feasible, then
24: if Robust Dominance(Cp

j , Pj,V
p
j ) indicates Cp

j is not dominated, then
25: Mark Cp

j as non-dominated.
26: Pj ← Pj

⋃
{Cp

j }.
27: Unprocessed← Unprocessed

⋃
{Cp

j }.
28: end if
29: end if
30: end for
31: end if
32: Mark C p̄

i as processed.
33: Unprocessed← Unprocessed\{C p̄

i }.
34: end while
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1: function Robust REF (C p̄
i , j, Vp

j )
2: Create Cp

j .
3: for all r ∈ R do
4: cpjr = cp̄ir + tijr.
5: for all g ∈ V p

jr do
6: if hijr > g then
7: V p

jr ← V p
jr

⋃
{hijr}.

8: if |V p
jr| > Γr then

9: Find the minimum element gmin in V p
jr.

10: V p
jr ← V p

jr\{gmin}.
11: end if
12: Break.
13: end if
14: end for
15: end for
16: Return Cp

j .
17: end function

1: function Robust Feasible(Cp
i ,Vp

i )
2: var = sum of all elements in V p

i1.
3: if cpi1 + var ≥ UB then
4: Return false.
5: end if
6: for all r ∈ R\{1} do
7: var = sum of all elements in V p

ir

8: if cpir + var > Br then
9: Return false.

10: end if
11: end for
12: Return true.
13: end function
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1: function Robust Dominance(Cp
i , Vp

i , Pi)
2: for all C p̄

i ∈ Pi do
3: if C p̄

i + Ξp̄
i < Λp

i then
4: Mark Cp

i as dominated.
5: Return false.
6: else if Cp

i + Ξp
i < Λp̄

i then
7: Mark C p̄

j as dominated.

8: Delete Vp̄
i .

9: if C p̄
i is processed then

10: Pi ← Pi\{C p̄
i }

11: end if
12: end if
13: end for
14: Return true.
15: end function

robust resource consumption r for path p from origin o to node i under a budgeted uncertainty with

a protection level of γ, Λ̃p
i = [λpir(γ) : r = 1, ..., |R|, γ = 0, ...,Γr] as the resource consumption vector.

Given paths p1 and p2 both from origin o to node i, if λ1
ir(γ) ≤ λ2

ir(γ), r = 1, ..., |R|, γ = 0, ...,Γr

and at least one inequality is strict, then path p2 is dominated by path p1.

The dominance rules are different and each may identify dominated paths that are missed by the

other. To illustrate consider the two graphs in Figures 3 and 4, with |R| = 2, Γ1 = 0 and Γ2 = 2,

i.e. the cost resource is not subject to uncertainty. In both graphs, let path p1 be {(1, 2), (2, 4)},
path p2 be {(1, 3), (3, 4)}, and path p3 be {(4, 5)}. In Figure 3, according to the dominance rule by

Pessoa et al. [2015], the labels at node 4 are Λ̃1
4 = [3, 6, 12.5, 13] and Λ̃2

4 = [3, 9, 12, 15]. None of the

labels is dominated. However, our dominance rule compares C1
4 + Ξ1

3 = [3, 13.5] with Λ2
4 = [3, 15],

resulting in path p1 dominating path p2. In Figure 4, the dominance rules by Pessoa et al. [2015]

compares Λ̃1
4 = [3, 6, 11, 14] and Λ̃2

4 = [3, 9, 12, 15], resulting in p1 dominating p2. On the other

hand, our dominance rule compares C1
4 + Ξ1

4 = [3, 16] with Λ2
4 = [3, 15] and C2

4 + Ξ2
4 = [3, 17] with

Λ1
4 = [3, 14], and none of the paths is dominated. The example shows that both dominance rules

may successfully identify dominated paths that the other fails to.

The complexity of Algorithm 1 is proved to be O(|A|B|R|) for deterministic RCSPP when there

is at least one resource with positive consumption for all arcs and appropriate data structure is

implemented (Desrochers [1988]). The proposed label setting algorithm, Algorithm 2, implements

once the label correcting algorithm for each resource. Compared to the label correcting algo-

rithm for SPP, updating the labels takes time O(Γr) and the label correcting algorithm uses time
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Figure 3: A network where dominance rule in Theorem 1 identifies path p1 dominating path p2.
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Figure 4: A network where dominance rule of Pessoa et al. [2015] identifies path p1 dominating
path p2.

O(
∑

r∈R Γr(|A||N |)). Algorithm 2 differs from Algorithm 1 in updating a sorted vector V p
jr in

function Robust REF (Cp
j ,V

p
j ) for each resource r = 1, ..., |R|. Updating V p

jr takes time O(Γr).

Therefore, Algorithm 2 runs in time O((1 +
∑

r∈R Γr)|A|B|R|). When R = 1, Algorithm 2 time is

O(Γ|A|B) while that of Pessoa et al. [2015] is O(Γ|A|BΓ+1).

4. Numerical testing

In this section, we report on extensive numerical testing to compare the modified label-setting

algorithm (MLS),i.e. Algorithm 2, with the solution of the MIP reformulation [P-MIP] directly

as a linear mixed integer program, and the sequential algorithm. Before any of the approaches is

used, we first reduce the problem using the graph reduction algorithm of Section 2.1. Then, each

of the three approaches is used to solve the reduced instances. We also compare (MLS) to the

algorithm of Pessoa et al. [2015] denoted by (PPGP). All algorithms are coded in C++, and MIP

and LP models are solved using CPLEX 12.6.1. Testing is carried out on a workstation with Xeon

processor and 8GB RAM.

We perform testing using two datasets. The first set consists of 60 random instances, denoted
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by LG, based on 24 instances from Beasley and Christofides [1989], denoted by BC as shown in

Table 1. For example, LG instances 7, 13, 19 and 25 are based on BC instance 5. BC instances

1− 4, 9− 12, 17− 20 have one resource, while instances 5− 8, 13− 6, 21− 24 have 10 resources, in

addition to cost. BC instances 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 are generated and 22 using the scheme

of Handler and Zang [1980]. This scheme is designed such that the optimal path has a low ranking

when the unconstrained paths are ordered from lowest cost to highest cost. Specifically, the nodes

in these instances are randomly generated on a square. The cost on arc (i, j) is an integer based on

the Euclidean distance between nodes i and j. Resource consumption on an arc is determined by

multiplying the reciprocal of arc cost by a uniformly generated random variable. As a result, resource

consumption is inversely related to arc cost. In BC instances 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23 and

24, both cost and resource consumption are uniformly generated integers in [0, 5]. Arc (i, j) is

determined by randomly generating i from [1, |N |] and j from [i+ 1,min(|N |, i+ |N |/4)].

Table 1: Relationship between BC instances and LG instances.

|R| − 1 1 1 10 2 3 4 10
BC LG BC LG

1 1 5 7 13 19 25
2 2 6 8 14 20 26
3 31 7 37 43 49 55
4 32 8 38 44 50 56
9 3 13 9 15 21 27
10 4 14 10 16 22 28
11 33 15 39 45 51 57
12 34 16 40 46 52 58
17 5 21 11 17 23 29
18 6 22 12 18 24 30
19 35 23 41 47 53 59
20 36 24 42 48 54 60

In our tests, LG instances with 2, 3 and 4 resources are obtained from BC instances with 10

resources where the first 2, 3 and 4 resources are considered.

The second set of instances is based on the 210 instances from Santos et al. [2007] with a

maximum of 40000 nodes, 800000 arcs and 1 resource. The testing on these instances focuses

on comparing the solution time of solving the MIP reformulation and the modified label-setting

algorithm.

In both datasets, the deviation hijr in cost and resource consumption is an integer generated in

the interval [0, tijr] following a uniform distribution. The protection level is varied between 2 and 5
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resulting in a total of 840 instances. We report on the effect of graph reduction on the size of the

instances and on the quality of the initial lower and upper bounds. Then, we compare the three

solution approaches of robust RCSPP.

4.1 Effects of graph reduction

Table 2 summarizes the results of the graph reduction algorithm. Average results are reported

and grouped according to resource consumption. Specifically, instances with resource consumption

inversely related to cost are denoted as Inverse, and instances with uniformly generated resource

consumption are denoted as Uniform. Avg A% denotes the average percentage of arcs remaining

after graph reduction. Avg UBG% refers to the average gap calculated as 100 ∗ (UB−LB)
LB

where

UB and LB are the upper and lower bounds obtained during the graph reduction. Avg OPG%

refers to the average gap calculated as 100 ∗ Opt−LB
LB

where Opt refers to the optimal objective value

obtained after solving the instance by the modified label-setting algorithm. The graph reduction

runs in less than 0.0005 seconds in all instances, so individual times are not reported. When resource

consumption is inversely related to cost, the number of arcs of the reduced graph is 10.85% of the

original graph. Reduction is less significant for uniform resource consumption with about 72% of

the arcs remaining in the reduced graph.

The quality of the lower and upper bounds show similar trends. The average gap between optimal

objective value and LB is 91.87% of LB and the average gap between UB and LB is 107.02% of LB

for Inverse instances. On the other hand, the average gaps for Uniform instances are 181.88%

and 327.60%.

These statistics suggest that Uniform instances have more dense networks and may be more

difficult to solve. Because the performance of Lagrangian based reduction depends on the quality

of the Lagrangian multipliers and the UB, we expect that having tight LB and UB tends to result

in a smaller network after reduction. This is shown by the positive correlation between Avg A%

and Avg UBG%. A single implementation of resource based reduction under protection level Γ

removes at least as many vertices and arcs as it does under Γ−1. This is because Hr increases when

Γ increases. As a result, the right hand sides of inequalities (16) and (17) become more restricting.

However, when Γ increases, Lagrangian cost based reduction may be stronger or weaker depending

on the upper bound, Hr and µr. In Table 3, Avg Res% and Avg Lag% report the average

percentage of arcs removed by resource based reduction and Lagrangian cost based reduction,

respectively. The additional number of arcs removed from Γ = 2 to Γ = 3 is higher under the
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Lagrangian based reduction. The percentages are stable for higher values of Γ. This is because

Γ̂r = min{l,Γr}.

Table 2: Summary results on graph reduction procedure.

Inverse Avg UBG% Avg OPG% Avg A%
Γ = 2 80.93 80.75 5.26
Γ = 3 114.26 91.98 12.63
Γ = 4 116.26 97.18 12.75
Γ = 5 116.63 97.55 12.76

Average 107.02 91.87 10.85
Uniform

Γ = 2 230.75 137.77 62.56
Γ = 3 344.03 201.52 74.38
Γ = 4 367.80 192.79 75.38
Γ = 5 367.80 195.45 75.46

Average 327.60 181.88 71.94

Table 3: Percentage of arcs removed by resource based reduction and
Lagrangian cost based reduction.

Inverse Uniform
Avg Res% Avg Lag% Avg Res% Avg Lag%

Γ = 2 52.66 42.09 10.52 26.92
Γ = 3 53.07 34.31 9.99 15.63
Γ = 4 53.08 34.17 9.96 14.67
Γ = 5 53.08 34.16 9.96 14.58

4.2 Comparison of solution approaches for robust RCSPP

For the first dataset, Tables 5 to 9 report on the size of the original graph given by the number of

nodes |N | and number of arcs |A|, the number of resources |R| − 1, the lower and upper bounds

and the relative gap after graph reduction, the clock time used by the sequential algorithm, by

CPLEX on the original graph (OG) with default optimality tolerance and on the reduced graph

(RG) under three optimality tolerances ep1 = 0.05%, ep2 = 0.01% and ep3 = 0.001%, and the

modified label setting algorithm, and the optimal objective value (Opt). Tables 6 to 9 report on

detailed statistics on all 60 instances with protection levels 2 to 5, respectively, and Table 5 gives

average results. The best average solution time under the three optimality tolerances is presented

in Table 5 under column RG. As the underlying network is relatively small, the computational time

used by the label correcting algorithm is negligible and is not reported.

Both the modified label-setting algorithm and CPLEX successfully solved all feasible instances,

and determined that the rest are infeasible. The sequential algorithm fails to solve instances 25-30
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and 55-60 for Γ = 2, 3. For instances with up to four resources, it used 64.39 seconds and 343.42

seconds which is 487 and 1431 times slower than the modified label-setting algorithm. Since the

sequential algorithm is dominated for Γ = 2, 3 and instances become more difficult for Γ = 4, 5,

we omitted the comparison with the sequential algorithm for the rest of the testing. Note that

the sequential algorithm solves a set of independent problems which could benefit from parallel

implementation. The modified label-setting algorithm achieves significantly smaller computational

times than CPLEX. Times vary between 0.001 and 0.522 with an average 0.02. The modified label-

setting algorithm is on average 160 times faster than the best time achieved by CPLEX under all

optimality tolerances. Moreover, a smaller optimality tolerance does not always result in larger

time because CPLEX may develop different branching trees under different optimality tolerances.

Looking at the average times for increasing Γ, there is no evidence that instances become harder

with higher Γ both for modified label-setting algorithm and CPLEX. On the other hand, graph

reduction reduces time of CPLEX by about 50%.

While instance 54 is infeasible in the original data, the other infeasible instances are infeasible

because of the robust term. For all infeasible instances in Tables 6 to 9, we increased the resource

capacities and rerun the testing. In this testing the default optimality tolerance is used by CPLEX.

Table 11 reports on these instances and confirms the findings.

The results in Table 5 suggest again that Uniform instances are more difficult to solve than

Inverse instances. The modified label-setting algorithm solves Inverse instances in an average

of 0.0004 seconds which is about 76 times faster than the average time used to solve Uniform

instances. The average times used by CPLEX on reduced graph are 0.144 seconds and 7.777

seconds for Inverse and Uniform instances, respectively. Again, the size of the network after

graph reduction is an important factor affecting the difficulty of the instances.

We compare (MLS) and (PPGP) on the first dataset without applying graph reduction and

without cost uncertainty in the objective function. Table 10 shows the resulting computational time

for both approaches. While the times for both algorithms are very small, less than 0.02 seconds in

most instances, PPGP seems to be faster on these instances.

For the 210 large instances, Table 4 reports on the average times used by modified label correcting

algorithm MLCA, MLS, and CPLEX on the reduced graph with optimality tolerance 0.05%. For

CPLEX we report both the time until an optimal solution is first detected (Incum) and the total

time (RG ep1). As the network becomes larger, the time consumed by the modified label correcting

algorithm dominates the entire solution process. It consumes an average of 194.63 seconds before

MLS starts, while MLS only uses an average of 0.20 seconds. On the other hand, CPLEX consumes
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an average of 1329.96 seconds while the optimal solution is detected in an average of 1052.87 seconds.

The last column gives the ratio MLCA+MLS
RG ep1

. On average, CPLEX uses 9.5 times more than the

total time used by MLCA and MLS.

Table 4: Average computational time for large instances.

MLCA MLS
CPLEX RG

MLCA+MLSIncum RG ep1
Γ = 2 51.474 0.078 722.289 898.607 17.431
Γ = 3 129.440 0.166 1045.055 1260.740 9.727
Γ = 4 233.714 0.227 1235.319 1462.152 6.250
Γ = 5 363.921 0.322 1208.822 1698.321 4.663

5. Conclusion

In this paper, we address the robust resource constrained shortest path problem where the cost

and resource consumption parameters on an arc are defined by intervals and a protection level is

prespecified for each random parameter. We extend the resource based and Lagrangian relaxation

based graph reduction techniques for the resource constrained shortest path problem to the robust

case. The results show that graph reduction helps to reduce the overall solution time significantly.

A new dominance rule is developed and used within a label setting algorithm to solve the robust

problem. The new dominance rule is theoretically different from that of Pessoa et al. [2015] as each

rule is able to identify dominated partial paths that the other fails to. Numerical testing shows

that the modified label setting algorithm based on the new dominance rule dominates the direct

solution of an equivalent MIP reformulation and the sequential algorithm, but slightly inferior to

the label setting algorithm based on the dominance rule proposed by Pessoa et al. [2015].
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Table 5: Summary of computational time.

|R| − 1 MLS
Cplex

Algorithm 6
OG RG

Γ = 2

Inverse

1 0.000 0.412 0.028 0.475
2 0.000 1.776 0.419 3.216
3 0.000 2.508 0.052 52.585
4 0.000 6.580 0.036 456.052
10 0.000 15.520 0.017

Average 0.000 5.359 0.110 128.082

Uniform

1 0.015 0.512 0.697 0.014
2 0.002 1.147 0.243 0.022
3 0.014 2.298 1.321 0.406
4 0.034 3.349 1.987 2.339
10 0.094 34.812 30.908

Average 0.032 8.424 7.031 0.695
Average 0.016 6.891 3.571 64.389

Γ = 3

Inverse

1 0.000 0.603 0.120 0.957
2 0.001 1.349 0.182 6.231
3 0.001 2.510 0.115 122.837
4 0.001 7.153 0.170 2614.169
10 0.001 16.633 0.078

Average 0.001 5.650 0.133 686.048

Uniform

1 0.026 1.025 0.772 0.015
2 0.009 1.296 0.554 0.021
3 0.029 5.204 2.668 0.863
4 0.053 9.624 5.801 2.238
10 0.024 41.386 29.076

Average 0.028 11.707 7.774 0.784
Average 0.014 8.678 3.953 343.416

Γ = 4

Inverse

1 0.001 0.586 0.115
2 0.000 1.605 0.364
3 0.001 2.768 0.185
4 0.001 8.018 0.211
10 0.001 18.764 0.076

Average 0.001 6.348 0.190

Uniform

1 0.028 0.815 0.684
2 0.010 1.589 0.580
3 0.053 9.023 3.991
4 0.064 15.729 10.291
10 0.017 40.021 26.928

Average 0.034 13.435 8.495
Average 0.017 9.892 4.342

Γ = 5

Inverse

1 0.000 0.823 0.089
2 0.001 3.377 0.226
3 0.000 3.242 0.135
4 0.001 7.536 0.185
10 0.000 16.758 0.071

Average 0.000 6.347 0.141

Uniform

1 0.028 1.387 0.821
2 0.016 1.985 0.546
3 0.053 7.739 5.442
4 0.062 14.260 7.925
10 0.019 40.139 24.308

Average 0.036 13.102 7.808
Average 0.018 9.724 3.975
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Table 6: Detailed results with protection level Γ = 2.

Original graph Reduced graph
Time

Opt
MLS

CPLEX
Algorithm 6

instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG ep1 RG ep2 RG ep3

Inverse

1 100 955 1 13 19 6.91 91.10 133 181 36.09 0 0.225 0.015 0.002 0.002 0.009 181
2 100 955 1 7 7 7.33 91.94 149 165 10.74 0 0.218 0.001 0.015 0.001 0.007 165
3 200 2040 1 7 7 99.66 0.00 420 - - 0 0.204 0.000 0.000 0.000 0.005 -
4 200 2040 1 7 7 99.66 0.00 420 - - 0 0.478 0.000 0.000 0.000 0.004 -
5 500 4858 1 184 396 0.60 91.25 488.571 1061 117.16 0.001 1.287 0.234 0.280 0.234 1.839 937
6 500 4858 1 55 81 0.89 97.45 654 977 49.39 0 1.157 0.016 0.015 0.016 0.988 977
7 100 990 2 6 6 1.31 98.08 91 104 14.29 0 0.304 0.001 0.016 0.001 0.009 104
8 100 990 2 62 184 4.24 77.17 89 182 104.49 0 0.538 0.125 0.140 0.125 6.538 159
9 200 2080 2 10 13 25.43 73.94 271 385 42.07 0 0.609 0.016 0.001 0.015 0.016 385
10 200 2080 2 195 1269 38.99 0.00 267.971 - - 0.002 1.188 1.185 1.373 1.217 9.19 566
11 500 4847 2 55 79 87.79 10.58 863 1878 117.61 0 3.247 0.031 0.015 0.032 1.514 1513
12 500 4847 2 46 63 95.52 3.18 867 2194 153.06 0 2.810 0.016 0.016 0.015 2.03 2194
13 100 990 3 6 6 1.52 97.88 91 104 14.29 0 0.250 0.015 0.002 0.002 0.014 104
14 100 990 3 62 182 4.34 77.27 89 182 104.49 0 0.520 0.141 0.140 0.140 225.431 159
15 200 2080 3 86 198 73.46 17.02 268 844 214.93 0.001 2.431 0.172 0.172 0.171 31.488 666
16 200 2080 3 41 67 82.21 14.57 510 758 48.63 0 2.091 0.015 0.016 0.015 17.043 758
17 500 4847 3 54 77 87.93 10.48 863 1878 117.61 0 3.518 0.016 0.016 0.031 14.308 1513
18 500 4847 3 46 63 95.75 2.95 867 2194 153.06 0 6.622 0.015 0.015 0.016 27.226 2194
19 100 990 4 9 11 2.32 96.57 103 127 23.30 0 0.376 0.016 0.003 0.015 3.298 127
20 100 990 4 21 39 4.55 91.52 96.6444 159 64.52 0 0.629 0.016 0.015 0.032 407.645 159
21 200 2080 4 68 138 72.31 21.06 450 844 87.56 0 3.532 0.078 0.062 0.078 456.505 740
22 200 2080 4 41 68 89.86 6.88 509 928 82.32 0 3.563 0.031 0.031 0.031 256.119 815
23 500 4847 4 47 63 90.06 8.64 863 1878 117.61 0 11.010 0.031 0.016 0.031 268.447 1878
24 500 4847 4 102 161 96.68 0.00 858 - - 0.001 22.994 0.078 0.078 0.078 1344.3 3599
25 100 990 10 9 11 7.68 91.21 103 127 23.30 0 0.696 0.016 0.016 0.015 - 127
26 100 990 10 9 11 14.04 84.85 108 159 47.22 0 0.773 0.017 0.031 0.032 - 159
27 200 2080 10 16 19 99.09 0.00 393.98 - - 0 4.050 0.001 0.001 0.001 - -
28 200 2080 10 0 0 100.00 0.00 -10000 - - 0 2.652 0 0 0 - -
29 500 4847 10 40 53 91.79 7.12 863 1878 117.61 0 24.355 0.046 0.032 0.031 - 1878
30 500 4847 10 71 109 97.75 0.00 858 - - 0.001 36.110 0.094 0.078 0.078 - -

Uniform

31 100 959 1 97 845 2.92 8.97 1.5 12 700.00 0.013 0.253 0.187 0.328 0.203 0.01 5
32 100 959 1 88 541 3.65 39.94 2 10 400.00 0.016 0.906 0.203 0.172 0.187 0.008 7
33 200 1971 1 98 216 2.94 86.10 6 8 33.33 0.001 0.317 0.031 0.031 0.047 0.008 8
34 200 1971 1 194 1915 2.84 0.00 6 39 550.00 0.021 0.621 0.359 0.312 0.358 0.011 8
35 500 4978 1 467 4461 5.99 4.40 6 16 166.67 0.025 1.209 0.889 0.827 0.842 0.027 11
36 500 4978 1 443 2799 6.41 37.36 6 14 133.33 0.013 1.181 0.796 0.811 0.812 0.022 9
37 100 999 2 89 834 10.41 6.11 3.375 12 255.56 0.005 0.467 0.296 0.312 0.312 0.031 9
38 100 999 2 89 601 10.41 29.43 3.625 10 175.86 0.002 0.418 0.406 0.328 0.327 0.019 10
39 200 1960 2 94 183 11.63 79.03 5.25 9 71.43 0 0.677 0.046 0.032 0.031 0.015 9
40 200 1960 2 184 1767 9.85 0.00 5.75 - - 0.002 1.030 0.982 0.983 0.905 0.037 12
41 500 4868 2 59 96 8.38 89.65 4 6 50.00 0 3.178 0.016 0.031 0.016 0.016 6
42 500 4868 2 49 83 11.65 86.65 4 6 50.00 0 1.793 0.016 0.015 0.016 0.016 6
43 100 999 3 90 889 11.01 0.00 3.8202 35 816.18 0.027 1.336 1.185 1.170 1.202 0.074 10
44 100 999 3 90 878 12.11 0.00 4.52778 - - 0.015 1.433 1.029 1.030 1.030 0.974 16
45 200 1960 3 184 1774 9.49 0.00 5.25 - - 0.037 2.768 1.810 1.950 1.825 1.116 14
46 200 1960 3 181 1734 11.53 0.00 5.75 - - 0.007 2.426 1.747 1.747 1.669 0.197 16
47 500 4868 3 103 178 11.40 84.94 4 7 75.00 0 16.661 0.062 0.047 0.063 0.037 7
48 500 4868 3 36 49 12.86 86.13 4 7 75.00 0 3.162 0.031 0.016 0.015 0.036 7
49 100 999 4 90 889 11.01 0.00 3.86654 - - 0.037 2.602 1.903 1.950 1.872 2.531 14
50 100 999 4 90 878 12.11 0.00 4.57734 - - 0.005 1.552 1.311 1.310 1.326 1.841 16
51 200 1960 4 182 1754 10.51 0.00 5.79245 - - 0.154 8.471 4.774 4.789 4.852 5.408 18
52 200 1960 4 181 1718 12.35 0.00 6.70245 - - 0.007 5.460 1.326 1.404 1.358 2.205 22
53 500 4868 4 97 160 12.78 83.94 4 7 75.00 0 8.345 0.062 0.047 0.047 0.977 7
54 500 4868 4 36 49 13.99 85.00 4.25 7 64.71 0.001 6.069 0.016 0.015 0.016 1.069 7
55 100 999 10 90 839 16.02 0.00 4.15904 - - 0.009 2.371 1.997 2.777 2.277 - -
56 100 999 10 89 730 26.93 0.00 5.38219 - - 0.002 1.509 1.077 1.030 1.045 - -
57 200 1960 10 180 1705 13.01 0.00 6.85392 - - 0.006 11.912 9.282 9.984 9.453 - -
58 200 1960 10 177 1618 17.45 0.00 8.99812 - - 0 8.161 6.505 6.162 6.848 - -
59 500 4868 10 469 4559 6.35 0.00 3.49231 - - 0.522 158.220 115.597 111.977 112.851 - -
60 500 4868 10 469 4495 7.66 0.00 4.26087 - - 0.026 67.346 44.461 43.867 44.882 - -
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Table 7: Detailed results with protection level Γ = 3.

Original graph Reduced graph
Time

Opt
MLS

CPLEX
Algorithm 6

instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG ep1 RG ep2 RG ep3

Inverse

1 100 955 1 14 20 7.120419 90.78534 136 186 36.76471 0 0.244 0.016 0.015 0.016 0.009 186
2 100 955 1 100 892 6.596859 0 131 434 231.2977 0 0.326 0.328 0.343 0.327 0.99 203
3 200 2040 1 7 7 99.65686 0 420 - - 0 0.190 0.000 0.000 0.000 0.005 -
4 200 2040 1 7 7 99.65686 0 420 - - 0 0.196 0.015 0.000 0.000 0.006 -
5 500 4858 1 244 614 0.679292 86.68176 489.571 1140 132.8569 0.001 1.265 0.343 0.375 0.359 3.654 958
6 500 4858 1 69 111 0.864553 96.85056 656 1024 56.09756 0 1.397 0.031 0.016 0.016 1.076 1024
7 100 990 2 95 486 1.010101 49.89899 89 219 146.0674 0.001 0.258 0.171 0.156 0.171 15.592 128
8 100 990 2 62 184 4.242424 77.17172 89 182 104.4944 0 0.257 0.110 0.187 0.109 5.723 160
9 200 2080 2 10 13 25.57692 73.79808 272 390 43.38235 0 0.483 0.015 0.001 0.016 0.017 390
10 200 2080 2 195 1269 38.99038 0 267.971 - - 0.002 1.103 0.796 0.780 0.765 11.482 628
11 500 4847 2 55 79 87.82752 10.5426 876 1923 119.5205 0 2.857 0.031 0.016 0.015 1.612 1552
12 500 4847 2 68 103 95.39922 2.475758 872 2447 180.6193 0 3.136 0.016 0.046 0.016 2.962 2447
13 100 990 3 95 480 1.212121 50.30303 89 219 146.0674 0.001 0.355 0.187 0.234 0.280 413.982 128
14 100 990 3 62 182 4.343434 77.27273 89 182 104.4944 0 0.348 0.156 0.172 0.218 191.239 160
15 200 2080 3 102 267 75.91346 11.25 269 925 243.8662 0.001 2.587 0.219 0.218 0.234 36.072 722
16 200 2080 3 57 107 85.72115 9.134615 512 951 85.74219 0.001 4.870 0.078 0.078 0.078 31.004 951
17 500 4847 3 54 77 87.97194 10.43945 881 1923 118.2747 0 3.073 0.016 0.016 0.031 16.992 1552
18 500 4847 3 67 100 95.66742 2.269445 872 2447 180.6193 0 3.829 0.031 0.016 0.031 47.734 2447
19 100 990 4 9 11 2.323232 96.56566 103 128 24.27184 0 0.368 0.015 0.003 0.003 3.065 128
20 100 990 4 40 86 5.858586 85.45455 94.6444 182 92.29875 0 0.595 0.047 0.031 0.047 1938.42 182
21 200 2080 4 83 185 75.48077 15.625 451 925 105.0998 0.001 3.518 0.202 0.188 0.187 738.652 925
22 200 2080 4 46 76 90.24038 6.105769 512 951 85.74219 0 3.242 0.031 0.031 0.031 305.115 951
23 500 4847 4 246 529 89.08603 0 858 - - 0.003 19.172 0.686 0.702 0.702 11254.1 2462
24 500 4847 4 102 161 96.67836 0 858 - - 0.001 16.023 0.062 0.062 0.063 1445.66 -
25 100 990 10 9 11 7.676768 91.21212 103 128 24.27184 0 0.696 0.015 0.015 0.016 - 128
26 100 990 10 11 16 16.9697 81.41414 108 182 68.51852 0 1.107 0.016 0.031 0.016 - 182
27 200 2080 10 16 19 99.08654 0 393.98 - - 0 4.398 0.001 0.001 0.001 - -
28 200 2080 10 0 0 100 0 -10000 - - 0 2.640 0 0 0 - -
29 500 4847 10 107 180 92.36641 3.91995 869 2462 183.3142 0.002 54.473 0.375 0.359 0.359 - 2462
30 500 4847 10 71 109 97.75119 0 858 - - 0.001 36.481 0.062 0.062 0.078 - -

Uniform

31 100 959 1 98 877 2.815433 5.735141 1.5 13 766.6667 0.036 0.910 0.359 0.343 0.343 0.009 7
32 100 959 1 92 647 3.441084 29.09281 2 11 450 0.021 0.293 0.156 0.172 0.156 0.008 8
33 200 1971 1 194 1915 2.841197 0 6 42 600 0.04 0.648 0.655 0.655 0.671 0.011 10
34 200 1971 1 194 1915 2.841197 0 6 42 600 0.022 0.398 0.343 0.312 0.344 0.01 8
35 500 4978 1 469 4539 5.966252 2.852551 6 17 183.3333 0.026 2.124 2.278 2.277 2.293 0.033 12
36 500 4978 1 454 3370 6.347931 25.9542 6 15 150 0.013 1.775 0.889 0.874 0.873 0.02 9
37 100 999 2 90 870 10.41041 2.502503 3.375 13 285.1852 0.013 0.524 1.155 1.123 1.155 0.024 10
38 100 999 2 90 895 10.41041 0 3.625 - - 0.037 1.452 1.092 1.108 1.061 0.026 13
39 200 1960 2 94 183 11.63265 79.03061 5.25 9 71.42857 0 0.601 0.046 0.032 0.031 0.014 9
40 200 1960 2 184 1767 9.846939 0 5.75 - - 0.002 0.979 1.279 0.936 1.092 0.021 12
41 500 4868 2 142 279 9.161873 85.10682 3.28571 7 113.0438 0 2.632 0.109 0.109 0.110 0.022 7
42 500 4868 2 49 83 11.64749 86.64749 4 6 50 0.001 1.585 0.016 0.015 0.265 0.016 6
43 100 999 3 90 889 11.01101 0 3.8202 39 920.889 0.027 1.317 0.952 0.921 0.920 0.978 14
44 100 999 3 90 878 12.11211 0 4.52778 - - 0.027 1.669 1.295 1.326 1.326 0.977 21
45 200 1960 3 184 1774 9.489796 0 5.25 - - 0.03 3.125 2.231 2.138 2.169 1.07 15
46 200 1960 3 181 1734 11.53061 0 5.75 - - 0.018 2.548 2.403 2.434 2.355 0.973 18
47 500 4868 3 252 658 9.737058 76.7461 3.3125 8 141.5094 0.001 7.613 0.421 0.406 0.437 0.045 8
48 500 4868 3 469 4553 6.47083 0 3.65625 - - 0.068 14.951 8.892 8.783 8.814 1.133 17
49 100 999 4 90 889 11.01101 0 3.86654 - - 0.02 2.149 2.184 2.199 2.169 1.37 15
50 100 999 4 90 878 12.11211 0 4.57734 - - 0.003 1.388 1.341 1.341 1.310 1.974 -
51 200 1960 4 182 1754 10.5102 0 5.79245 - - 0.103 6.473 6.521 6.474 6.833 2.567 21
52 200 1960 4 181 1718 12.34694 0 6.70245 - - 0.007 6.381 4.181 4.149 4.196 1.996 -
53 500 4868 4 238 611 12.18159 75.26705 3.32819 8 140.3709 0.001 9.316 0.578 0.577 0.593 1.011 8
54 500 4868 4 469 4553 6.47083 0 3.71429 - - 0.183 32.037 19.999 20.280 19.812 4.51 22
55 100 999 10 90 839 16.01602 0 4.15904 - - 0.004 2.046 1.528 1.545 1.451 - -
56 100 999 10 89 730 26.92693 0 5.38219 - - 0.001 2.046 0.858 0.858 0.842 - -
57 200 1960 10 180 1705 13.0102 0 6.85392 - - 0.003 12.564 10.249 10.062 10.187 - -
58 200 1960 10 177 1618 17.44898 0 8.99812 - - 0 11.214 6.645 7.207 6.662 - -
59 500 4868 10 469 4559 6.347576 0 3.49231 - - 0.126 141.920 91.495 91.276 90.215 - -
60 500 4868 10 469 4495 7.662284 0 4.26087 - - 0.01 78.528 65.115 65.333 65.099 - -
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Table 8: Detailed results with protection level Γ = 4.

Original graph Reduced graph
Time

Opt
MLS

CPLEX
instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG ep1 RG ep2 RG ep3

Inverse

1 100 955 1 14 20 7.120419 90.78534 136 186 36.76471 0 0.215 0.002 0.015 0.002 186
2 100 955 1 100 892 6.596859 0 131 450 243.5115 0.001 0.395 0.312 0.437 0.749 203
3 200 2040 1 7 7 99.65686 0 420 - - 0 0.201 0.000 0.000 0.000 -
4 200 2040 1 7 7 99.65686 0 420 - - 0 0.186 0.000 0.015 0.000 -
5 500 4858 1 260 685 0.741046 85.1585 490.571 1160 136.4591 0.001 1.296 0.343 0.343 0.374 959
6 500 4858 1 90 149 0.988061 95.94483 657 1063 61.79604 0.001 1.221 0.031 0.031 0.031 1063
7 100 990 2 95 486 1.010101 49.89899 89 219 146.0674 0 0.255 0.187 0.218 0.187 128
8 100 990 2 62 184 4.242424 77.17172 89 182 104.4944 0 0.319 0.094 0.094 0.093 160
9 200 2080 2 10 13 25.57692 73.79808 272 390 43.38235 0 0.456 0.001 0.016 0.001 390
10 200 2080 2 195 1269 38.99038 0 267.971 - - 0.002 1.062 1.872 1.903 1.872 636
11 500 4847 2 55 79 87.86878 10.50134 876 1935 120.8904 0 5.119 0.016 0.015 0.016 1935
12 500 4847 2 68 103 95.39922 2.475758 872 2454 181.422 0 2.418 0.031 0.016 0.016 2454
13 100 990 3 95 480 1.212121 50.30303 89 219 146.0674 0.001 0.415 0.702 0.655 0.655 128
14 100 990 3 62 182 4.343434 77.27273 89 182 104.4944 0 0.528 0.156 0.156 0.156 160
15 200 2080 3 104 283 76.10577 10.28846 269 937 248.3271 0.001 1.658 0.219 0.218 0.218 727
16 200 2080 3 57 107 85.72115 9.134615 515 954 85.24272 0.001 6.536 0.047 0.047 0.047 954
17 500 4847 3 54 77 88.0132 10.39818 881 1935 119.6368 0.001 3.795 0.046 0.031 0.015 1935
18 500 4847 3 67 100 95.66742 2.269445 872 2454 181.422 0.001 3.674 0.031 0.031 0.016 2454
19 100 990 4 9 11 2.323232 96.56566 103 128 24.27184 0 0.345 0.016 0.016 0.015 128
20 100 990 4 40 86 5.858586 85.45455 94.6444 182 92.29875 0 0.545 0.047 0.047 0.031 182
21 200 2080 4 84 190 75.67308 15.19231 453 937 106.8433 0.001 5.742 0.312 0.297 0.296 937
22 200 2080 4 46 76 90.24038 6.105769 515 954 85.24272 0 3.101 0.031 0.031 0.031 954
23 500 4847 4 246 529 89.08603 0 858 - - 0.003 17.982 0.796 0.812 0.827 2565
24 500 4847 4 102 161 96.67836 0 858 - - 0 20.391 0.062 0.063 0.078 -
25 100 990 10 9 11 7.676768 91.21212 103 128 24.27184 0 0.678 0.015 0.016 0.016 128
26 100 990 10 11 16 16.9697 81.41414 108 182 68.51852 0 1.122 0.032 0.031 0.031 182
27 200 2080 10 16 19 99.08654 0 393.98 - - 0 2.892 0.001 0.015 0.001 -
28 200 2080 10 0 0 100 0 - - - 0 2.678 0 0 0 -
29 500 4847 10 117 201 92.24262 3.610481 866 2565 196.1894 0.002 63.124 0.343 0.343 0.359 2565
30 500 4847 10 71 109 97.75119 0 858 - - 0.001 42.088 0.063 0.063 0.062 -

Uniform

31 100 959 1 98 899 2.919708 3.336809 1.5 14 833.3333 0.034 0.242 0.358 0.484 0.328 7
32 100 959 1 92 713 3.336809 22.31491 2 12 500 0.026 0.311 0.344 0.296 0.343 9
33 200 1971 1 194 1915 2.841197 0 6 44 633.3333 0.037 0.535 0.453 0.453 0.468 10
34 200 1971 1 194 1915 2.841197 0 6 44 633.3333 0.028 0.394 0.358 0.374 0.374 8
35 500 4978 1 469 4539 5.966252 2.852551 6 17 183.3333 0.027 2.133 1.747 1.731 1.731 12
36 500 4978 1 460 3846 6.368019 16.37204 6 16 166.6667 0.013 1.277 0.889 0.889 0.858 9
37 100 999 2 90 870 10.41041 2.502503 3.375 13 285.1852 0.014 0.743 1.107 1.107 1.092 11
38 100 999 2 90 895 10.41041 0 3.625 - - 0.033 1.529 0.718 0.671 0.608 13
39 200 1960 2 94 183 11.63265 79.03061 5.25 9 71.42857 0.001 0.585 0.047 0.031 0.031 9
40 200 1960 2 184 1767 9.846939 0 5.75 - - 0.007 1.247 1.155 1.170 1.185 12
41 500 4868 2 280 827 8.052588 74.95892 3.28571 8 143.4786 0.002 3.606 0.515 0.499 0.546 8
42 500 4868 2 49 83 11.64749 86.64749 4 6 50 0 1.823 0.016 0.016 0.015 6
43 100 999 3 90 889 11.01101 0 3.8202 42 999.4189 0.024 2.027 0.952 0.936 0.951 14
44 100 999 3 90 878 12.11211 0 4.52778 - - 0.029 1.925 1.685 1.685 1.669 -
45 200 1960 3 184 1774 9.489796 0 5.25 - - 0.027 3.654 2.449 2.730 2.465 15
46 200 1960 3 181 1734 11.53061 0 5.75 - - 0.017 3.783 3.042 3.073 3.183 19
47 500 4868 3 252 658 9.737058 76.7461 3.3125 8 141.5094 0.001 5.109 0.468 0.640 0.499 8
48 500 4868 3 469 4553 6.47083 0 3.65625 - - 0.222 37.642 15.350 15.444 15.351 20
49 100 999 4 90 889 11.01101 0 3.86654 - - 0.017 2.449 1.966 2.200 1.794 15
50 100 999 4 90 878 12.11211 0 4.57734 - - 0.003 1.603 1.497 1.498 1.498 -
51 200 1960 4 182 1754 10.5102 0 5.79245 - - 0.103 10.609 5.179 5.211 5.164 25
52 200 1960 4 181 1718 12.34694 0 6.70245 - - 0.006 5.743 4.275 4.212 4.306 -
53 500 4868 4 238 611 12.18159 75.26705 3.32819 8 140.3709 0.001 6.289 0.578 0.577 0.578 8
54 500 4868 4 469 4553 6.47083 0 3.71429 - - 0.253 67.678 49.062 48.860 48.408 -
55 100 999 10 90 839 16.01602 0 4.15904 - - 0.005 3.250 1.638 1.622 1.653 -
56 100 999 10 89 730 26.92693 0 5.38219 - - 0.001 0.843 0.593 0.546 0.546 -
57 200 1960 10 180 1705 13.0102 0 6.85392 - - 0.004 13.348 8.144 7.800 7.597 -
58 200 1960 10 177 1618 17.44898 0 8.99812 - - 0 3.837 2.465 2.449 2.324 -
59 500 4868 10 469 4559 6.347576 0 3.49231 - - 0.085 145.019 91.339 92.805 92.103 -
60 500 4868 10 469 4495 7.662284 0 4.26087 - - 0.009 73.827 58.812 58.750 57.346 -
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Table 9: Detailed results with protection level Γ = 5.

Original graph Reduced graph
Time

Opt
MLS

CPLEX
instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG ep1 RG ep2 RG ep3

Inverse

1 100 955 1 14 20 7.120419 90.78534 136 186 36.76471 0 0.399 0.002 0.015 0.002 186
2 100 955 1 100 892 6.596859 0 131 455 247.3282 0 0.353 0.218 0.234 0.343 203
3 200 2040 1 7 7 99.65686 0 420 - - 0 0.263 0.000 0.015 0.000 -
4 200 2040 1 7 7 99.65686 0 420 - - 0 0.272 0.000 0.000 0.000 -
5 500 4858 1 260 685 0.741046 85.1585 490.571 1160 136.4591 0.001 1.775 0.280 0.281 0.297 959
6 500 4858 1 90 149 0.988061 95.94483 657 1063 61.79604 0 1.876 0.031 0.031 0.016 1063
7 100 990 2 95 486 1.010101 49.89899 89 219 146.0674 0 0.393 0.188 0.187 0.187 128
8 100 990 2 62 184 4.242424 77.17172 89 182 104.4944 0 0.383 0.109 0.093 0.110 160
9 200 2080 2 10 13 25.57692 73.79808 272 390 43.38235 0 0.673 0.001 0.016 0.001 390
10 200 2080 2 195 1269 38.99038 0 267.971 - - 0.002 1.725 1.014 1.108 1.358 636
11 500 4847 2 55 79 87.86878 10.50134 876 1935 120.8904 0 6.220 0.031 0.015 0.016 1935
12 500 4847 2 68 103 95.39922 2.475758 872 2454 181.422 0.001 10.866 0.015 0.031 0.032 2454
13 100 990 3 95 480 1.212121 50.30303 89 219 146.0674 0.001 0.545 0.234 0.203 0.250 128
14 100 990 3 62 182 4.343434 77.27273 89 182 104.4944 0 0.405 0.140 0.156 0.172 160
15 200 2080 3 104 283 76.10577 10.28846 269 937 248.3271 0.001 3.068 0.359 0.359 0.359 727
16 200 2080 3 57 107 85.72115 9.134615 515 954 85.24272 0 5.886 0.046 0.047 0.047 954
17 500 4847 3 54 77 88.0132 10.39818 881 1935 119.6368 0 4.724 0.016 0.016 0.031 1935
18 500 4847 3 67 100 95.66742 2.269445 872 2454 181.422 0 4.826 0.016 0.031 0.031 2454
19 100 990 4 9 11 2.323232 96.56566 103 128 24.27184 0 0.544 0.015 0.016 0.003 128
20 100 990 4 40 86 5.858586 85.45455 94.6444 182 92.29875 0 0.511 0.063 0.062 0.031 182
21 200 2080 4 84 190 75.67308 15.19231 453 937 106.8433 0.001 5.892 0.234 0.234 0.234 937
22 200 2080 4 46 76 90.24038 6.105769 515 954 85.24272 0 3.566 0.047 0.031 0.032 954
23 500 4847 4 246 529 89.08603 0 858 - - 0.003 17.404 0.780 0.795 0.749 2603
24 500 4847 4 102 161 96.67836 0 858 - - 0.001 17.300 0.062 0.063 0.062 -
25 100 990 10 9 11 7.676768 91.21212 103 128 24.27184 0 0.694 0.006 0.006 0.006 128
26 100 990 10 11 16 16.9697 81.41414 108 182 68.51852 0 1.363 0.031 0.031 0.032 182
27 200 2080 10 16 19 99.08654 0 393.98 - - 0 3.458 0.001 0.001 0.001 -
28 200 2080 10 0 0 100 0 -10000 - - 0 3.006 0 0 0 -
29 500 4847 10 122 208 92.24262 3.466061 866 2603 200.5774 0.002 62.468 0.344 0.343 0.344 2603
30 500 4847 10 71 109 97.75119 0 858 - - 0 29.558 0.047 0.124 0.063 -

Uniform

31 100 959 1 98 899 2.919708 3.336809 1.5 14 833.3333 0.032 0.502 0.374 0.312 0.312 7
32 100 959 1 92 713 3.336809 22.31491 2 12 500 0.029 0.530 0.234 0.281 0.234 9
33 200 1971 1 194 1915 2.841197 0 6 45 650 0.037 0.637 0.390 0.390 0.390 10
34 200 1971 1 194 1915 2.841197 0 6 46 666.6667 0.029 0.538 0.374 0.390 0.374 8
35 500 4978 1 469 4539 5.966252 2.852551 6 17 183.3333 0.026 3.304 1.919 1.918 1.918 12
36 500 4978 1 460 3846 6.368019 16.37204 6 16 166.6667 0.017 2.809 1.684 1.669 1.700 10
37 100 999 2 90 895 10.41041 0 3.375 43 1174.074 0.022 1.385 0.670 0.702 0.686 11
38 100 999 2 90 895 10.41041 0 3.625 - - 0.066 1.853 1.263 1.264 1.248 13
39 200 1960 2 94 183 11.63265 79.03061 5.25 9 71.42857 0 0.930 0.032 0.031 0.032 9
40 200 1960 2 184 1767 9.846939 0 5.75 - - 0.007 0.992 0.733 0.733 0.733 12
41 500 4868 2 280 827 8.052588 74.95892 3.28571 8 143.4786 0.001 4.493 0.577 0.562 0.562 8
42 500 4868 2 49 83 11.64749 86.64749 4 6 50 0 2.256 0.016 0.016 0.015 6
43 100 999 3 90 889 11.01101 0 3.8202 43 1025.596 0.027 2.067 1.544 1.482 1.467 14
44 100 999 3 90 878 12.11211 0 4.52778 - - 0.03 3.232 1.825 1.747 1.747 -
45 200 1960 3 184 1774 9.489796 0 5.25 - - 0.03 6.420 2.745 2.761 2.762 16
46 200 1960 3 181 1734 11.53061 0 5.75 - - 0.019 3.613 3.495 3.542 3.400 20
47 500 4868 3 252 658 9.737058 76.7461 3.3125 8 141.5094 0.001 5.570 0.499 0.515 0.546 8
48 500 4868 3 469 4553 6.47083 0 3.65625 - - 0.209 25.529 22.667 22.604 23.244 20
49 100 999 4 90 889 11.01101 0 3.86654 - - 0.017 2.714 1.888 2.044 1.919 15
50 100 999 4 90 878 12.11211 0 4.57734 - - 0.003 2.523 0.531 0.562 0.561 -
51 200 1960 4 182 1754 10.5102 0 5.79245 - - 0.103 6.801 5.694 5.772 5.913 25
52 200 1960 4 181 1718 12.34694 0 6.70245 - - 0.006 7.468 4.165 4.087 4.088 -
53 500 4868 4 238 611 12.18159 75.26705 3.32819 8 140.3709 0.001 6.598 0.608 0.515 0.499 8
54 500 4868 4 469 4553 6.47083 0 3.71429 - - 0.241 59.453 34.663 35.256 34.617 -
55 100 999 10 90 839 16.01602 0 4.15904 - - 0.005 2.139 1.716 1.888 1.716 -
56 100 999 10 89 730 26.92693 0 5.38219 - - 0.001 0.991 0.530 0.530 0.530 -
57 200 1960 10 180 1705 13.0102 0 6.85392 - - 0.004 15.757 9.547 9.734 9.813 -
58 200 1960 10 177 1618 17.44898 0 8.99812 - - 0.001 3.897 2.511 2.262 2.511 -
59 500 4868 10 469 4559 6.347576 0 3.49231 - - 0.094 151.075 86.394 86.268 86.939 -
60 500 4868 10 469 4495 7.662284 0 4.26087 - - 0.01 66.974 45.256 45.163 44.928 -
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Table 10: Comparison to label setting algorithm of Pessoa et al. [2015].

Original graph Γ = 2 Γ = 3 Γ = 4 Γ = 5
Instance |N | |A| |R| Opt MLS PPGP Opt MLS PPGP Opt MLS PPGP Opt MLS PPGP

Uniform

1 100 955 1 131 0.001 0 131 0.001 0 131 0.001 0 131 0.002 0
2 100 955 1 131 0.001 0 142 0.001 0 142 0.001 0 142 0.002 0
3 100 959 1 4 0.024 0.001 5 0.019 0.002 5 0.024 0.002 5 0.027 0.001
4 100 959 1 5 0.04 0.001 6 0.033 0.002 6 0.021 0.002 6 0.025 0.001
5 200 2040 1 100000 0.002 0 100000 0.003 0 100000 0.004 0 100000 0.003 0
6 200 2040 1 100000 0.002 0 100000 0.002 0 100000 0.004 0 100000 0.004 0.001
7 200 1971 1 6 0.005 0.003 7 0.013 0.004 7 0.017 0.003 7 0.023 0.004
8 200 1971 1 7 0.014 0.003 7 0.013 0.004 7 0.075 0.003 7 0.044 0.004
9 500 4858 1 652 0.02 0.003 690 0.026 0.003 690 0.04 0.002 690 0.041 0.003
10 500 4858 1 690 0.017 0.003 690 0.027 0.002 690 0.052 0.002 690 0.04 0.003
11 500 4978 1 8 0.007 0.006 8 0.008 0.006 8 0.029 0.007 8 0.017 0.008
12 500 4978 1 8 0.012 0.007 8 0.012 0.011 8 0.029 0.008 9 0.017 0.008
13 100 990 2 89 0.001 0 100 0.001 0 100 0.002 0 100 0.003 0
14 100 990 2 100 0.001 0 100 0.003 0 100 0.002 0.001 100 0.004 0
15 100 999 2 6 0.003 0.005 7 0.008 0.005 7 0.009 0.006 7 0.008 0.006
16 100 999 2 7 0.004 0.004 8 0.004 0.004 8 0.005 0.004 10 0.008 0.004
17 200 2080 2 339 0.004 0.001 339 0.006 0.001 339 0.009 0.001 339 0.009 0.001
18 200 2080 2 426 0.007 0.001 426 0.01 0.001 426 0.008 0.001 426 0.01 0.001
19 200 1960 2 7 0.004 0.004 7 0.008 0.004 7 0.013 0.005 7 0.015 0.005
20 200 1960 2 8 0.004 0.003 8 0.006 0.003 8 0.007 0.003 8 0.009 0.003
21 500 4847 2 1335 0.024 0 1335 0.034 0.001 1477 0.038 0.001 1477 0.065 0
22 500 4847 2 1477 0.01 0 1477 0.034 0 1477 0.065 0.001 1477 0.074 0.001
23 500 4868 2 4 0.009 0.019 4 0.008 0.017 5 0.044 0.017 5 0.031 0.019
24 500 4868 2 5 0.004 0.012 5 0.009 0.011 5 0.014 0.01 5 0.06 0.011
25 100 990 3 89 0.002 0 100 0.003 0 100 0.004 0 100 0.005 0.001
26 100 990 3 100 0.002 0 100 0.004 0.001 100 0.004 0 100 0.005 0
27 100 999 3 7 0.006 0.005 10 0.011 0.003 10 0.012 0.004 10 0.013 0.004
28 100 999 3 11 0.006 0.002 16 0.004 0.001 100000 0.006 0.001 100000 0.006 0.001
29 200 2080 3 552 0.006 0.001 552 0.013 0.001 552 0.013 0 552 0.012 0
30 200 2080 3 552 0.008 0.001 651 0.014 0 651 0.011 0 651 0.014 0

Uniform

31 200 1960 3 10 0.01 0.006 10 0.012 0.006 11 0.013 0.005 12 0.021 0.005
32 200 1960 3 12 0.006 0.002 13 0.006 0.002 13 0.007 0.001 13 0.008 0.001
33 500 4847 3 1335 0.029 0.001 1335 0.054 0 1477 0.062 0 1477 0.106 0.001
34 500 4847 3 1477 0.016 0 1477 0.037 0.001 1477 0.092 0 1477 0.11 0
35 500 4868 3 5 0.063 0.032 5 0.055 0.025 5 0.03 0.025 5 0.093 0.025
36 500 4868 3 5 0.014 0.013 11 0.013 0.01 17 0.043 0.01 17 0.048 0.01
37 100 990 4 100 0.002 0 100 0.003 0.001 100 0.005 0 100 0.007 0
38 100 990 4 100 0.003 0 119 0.004 0 119 0.006 0 119 0.007 0
39 100 999 4 11 0.011 0.002 11 0.006 0.002 11 0.008 0.002 11 0.009 0.002
40 100 999 4 11 0.002 0.001 100000 0.002 0.001 100000 0.004 0 100000 0.005 0.001
41 200 2080 4 642 0.007 0.001 651 0.018 0.001 651 0.015 0 651 0.015 0
42 200 2080 4 569 0.011 0 651 0.017 0 651 0.013 0 651 0.019 0
43 200 1960 4 14 0.018 0.006 14 0.018 0.004 15 0.021 0.004 15 0.025 0.004
44 200 1960 4 15 0.004 0.001 100000 0.005 0.001 100000 0.006 0.001 100000 0.009 0.001
45 500 4847 4 1477 0.039 0 1797 0.081 0.001 1797 0.084 0 1797 0.124 0
46 500 4847 4 2936 0.023 0 100000 0.062 0 100000 0.127 0 100000 0.143 0
47 500 4868 4 5 0.016 0.04 5 0.035 0.027 5 0.023 0.022 5 0.077 0.025
48 500 4868 4 5 0.021 0.013 15 0.027 0.009 100000 0.047 0.008 100000 0.053 0.008
49 100 990 10 100 0.006 0 100 0.008 0.001 100 0.014 0 100 0.018 0
50 100 990 10 100 0.006 0 119 0.011 0 119 0.014 0 119 0.018 0.001
51 100 999 10 100000 0.003 0.001 100000 0.005 0.001 100000 0.008 0 100000 0.01 0
52 100 999 10 100000 0.003 0 100000 0.005 0 100000 0.007 0 100000 0.011 0.001
53 200 2080 10 100000 0.022 0 100000 0.035 0.001 100000 0.04 0 100000 0.044 0
54 200 2080 10 100000 0.024 0 100000 0.034 0 100000 0.035 0 100000 0.044 0
55 200 1960 10 100000 0.007 0.001 100000 0.01 0 100000 0.015 0.001 100000 0.021 0.001
56 200 1960 10 100000 0.006 0 100000 0.009 0 100000 0.014 0 100000 0.02 0
57 500 4847 10 1477 0.101 0.001 1797 0.189 0.001 1797 0.21 0.001 1797 0.274 0
58 500 4847 10 100000 0.079 0 100000 0.18 0 100000 0.283 0 100000 0.329 0
59 500 4868 10 100000 0.046 0.01 100000 0.037 0.006 100000 0.047 0.005 100000 0.064 0.006
60 500 4868 10 100000 0.019 0.002 100000 0.029 0.003 100000 0.041 0.001 100000 0.057 0.001

Avg 0.014 0.004 Avg 0.022 0.003 Avg 0.032 0.003 Avg 0.040 0.003
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Table 11: Results on infeasible instances in Tables 6 to 9 with increased resource limits.

Original graph Reduced graph Time
OptMLS CPLEX

instance |N | |A| |R| − 1 |N | |A| LB UB Gap% OG RG

Γ = 2

Inverse

3 200 2040 1 4 3 292 316 8.22 0 0.099 0.004 316
4 200 2040 1 4 3 282 329 16.67 0 0.099 0.005 329
27 200 2080 10 11 14 234 303 29.49 0 0.797 0.013 303
28 200 2080 10 68 166 202 536 165.35 0.001 14.663 0.289 536
30 500 4847 10 476 2590 611 1895 210.15 0.009 18.45 10.013 1266

Uniform

55 100 999 10 70 188 3 6 100.00 0.001 0.341 0.042 6
56 100 999 10 45 95 3 5 66.67 0 0.237 0.027 5
57 200 1960 10 183 1711 5 15 200.00 0.003 1.134 0.976 6
58 200 1960 10 184 1795 5 - - 0.002 1.631 1.368 8
59 500 4868 10 69 93 3 4 33.33 0 2.013 0.036 4
60 500 4868 10 58 79 3 4 33.33 0.001 2.325 0.027 4

Γ = 3

Inverse

3 200 2040 1 4 3 336 336 0.00 0 0.118 0.004 336
4 200 2040 1 4 3 343 343 0.00 0 0.098 0.001 343
24 500 4847 4 499 4040 611 2447 300.49 0.008 8.355 6.056 1322
27 200 2080 10 26 43 202 390 93.07 0 6.905 0.022 390
28 200 2080 10 68 166 203 537 164.53 0.001 10.866 0.165 537
30 500 4847 10 499 4036 611 2447 300.49 0.014 82.068 15.519 1322

Uniform

50 100 999 4 45 95 3 5 66.67 0 0.118 0.012 5
52 200 1960 4 184 1795 5 35 600.00 0.001 0.494 0.586 8
55 100 999 10 70 188 3 6 100.00 0 0.231 0.041 6
56 100 999 10 45 95 3 5 66.67 0.001 0.246 0.027 5
57 200 1960 10 184 1751 5 16 220.00 0.003 0.992 1.015 6
58 200 1960 10 184 1795 5 - - 0.002 1.598 1.598 8
59 500 4868 10 69 93 3 4 33.33 0 1.294 0.035 4
60 500 4868 10 138 243 3 5 66.67 0.003 2.055 0.157 4

Γ = 4

Inverse

3 200 2040 1 4 3 336 336 0.00 0 0.171 0.001 336
4 200 2040 1 4 3 343 343 0.00 0 0.103 0.002 343
24 500 4847 4 499 4042 611 2454 301.64 0.008 10.901 8.207 1371
27 200 2080 10 26 43 202 390 93.07 0 8.454 0.022 390
28 200 2080 10 68 166 203 537 164.53 0.001 16.482 0.19 537
30 500 4847 10 499 4038 611 2454 301.64 0.014 21.344 16.645 1411

Uniform

44 100 999 3 45 95 3 5 66.67 0 0.098 0.011 5
50 100 999 4 45 95 3 5 66.67 0 0.126 0.014 5
52 200 1960 4 184 1795 5 - - 0.001 1.013 0.713 8
54 500 4868 4 147 260 3 5 66.67 0.001 0.601 0.095 4
55 100 999 10 70 188 3 6 100.00 0.001 0.291 0.041 6
56 100 999 10 90 895 3 27 800.00 0.009 3.083 1.422 7
57 200 1960 10 184 1795 5 26 420.00 0.004 0.877 0.818 6
58 200 1960 10 184 1795 5 - - 0.04 8.243 11.98 12
59 500 4868 10 69 93 3 4 33.33 0.001 1.653 0.036 4
60 500 4868 10 469 4572 3 28 833.33 0.022 7.416 3.957 4

Γ = 5

Inverse

3 200 2040 1 4 3 336 336 0.00 0 0.12 0.001 336
4 200 2040 1 4 3 343 343 0.00 0 0.1 0.001 343
24 500 4847 4 499 4042 611 2454 301.64 0.008 6.477 10.712 1411
27 200 2080 10 26 43 202 390 93.07 0 8.56 0.024 390
28 200 2080 10 68 166 203 537 164.53 0.001 16.379 0.17 537
30 500 4847 10 499 4038 611 2454 301.64 0.014 20.297 16.473 1411

Uniform

44 100 999 3 45 95 3 5 66.67 0 0.113 0.01 5
50 100 999 4 45 95 3 5 66.67 0.001 0.125 0.012 5
52 200 1960 4 184 1795 5 - - 0.002 1.276 1.223 8
54 500 4868 4 147 260 3 5 66.67 0.001 0.78 0.106 4
55 100 999 10 70 188 3 6 100.00 0 0.251 0.044 6
56 100 999 10 90 895 3 27 800.00 0.009 2.768 1.363 7
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Appendix

A. Algorithms

The content in this appendix includes all the algorithms used in the paper. Moreover, for the

robust RCSPP, functions Robust REF , Robust Feasible and Robust Dominance are modifications

of REF , Feasible and Dominance, respectively.
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Algorithm 3 Resource based reduction

1: for r = 2, ..., |R| do
2: Set tij1 = tijr,∀(i, j) ∈ A
3: Solve the resulting shortest path problem [SPP] using Dijkstra’s algorithm
4: for all i ∈ N\{o, d} do
5: if Dr

oi +Dr
id > Br −Hr then

6: Remove node i, and its out-going and in-coming arcs.
7: end if
8: Update N and A
9: end for

10: for all (i, j) ∈ A, do
11: if Dr

oi + tijr +Dr
jd > Br −Hr then

12: Remove arc (i, j)
13: end if
14: if node i has no out-going arcs then
15: Remove node i, and its in-coming arcs
16: end if
17: if node j has no in-coming arcs then
18: Remove node j, and its out-going arcs.
19: end if
20: Update N and A
21: end for
22: end for
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Algorithm 4 Lagrangian based reduction

1: for all i ∈ N\{o, d} do

2: if Loi(µ) + Lid(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB then

3: Remove vertex i, and its out-going and in-coming arcs.
4: end if
5: Update N and A
6: end for
7: for all (i, j) ∈ A do

8: if Loi(µ) + tij1 + Ljd(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB then

9: remove arc (i, j)
10: end if
11: if node i has no out-going arcs then
12: Remove node i and its in-coming arcs
13: end if
14: if node j has no in-coming arcs then
15: Remove node j and its out-going arcs
16: end if
17: Update N and A.
18: end for

Algorithm 5 Graph reduction

1: while G is reduced do
2: Implement Algorithm 3:
3: any path found in the process is kept for the initiation of Kelley’s cutting plane algorithm.
4: any path feasible to problem [P] is used to update ZUB;
5: Implement Kelley’s cutting plane algorithm to solve the Lagrangian dual problem of [PR3].
6: Use the µr at the end of Kelley’s cutting plane algorithm to calculate the Lagrangian cost

for each arc.
7: Implement Algorithm 4.
8: end while
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Algorithm 6 The sequential algorithm

1: for he1 = hΓ1
1 , ..., h

|A|+1
1 and he1 6= he+1

1 , e = Γ1, ..., |A| do
2: if current best solution has an arc with a cost greater than he1 then
3: Find arc (i, j) ∈ A with arc cost deviation greater than he1
4: Set tij1 = tij1 + hij1 − he1
5: for r = 2, ..., |R| do

6: for her = hΓr
r , ..., h

|A|+1
r and her 6= he+1

r , e = Γr, ..., |A| do
7: Find arc (i, j) ∈ A with tijr > her
8: Set tijr = tijr + tijr − her
9: if r = |R| then

10: Implement Algorithm 1 and find the optimal path y.
11: if the cost of y is less than current best solution then
12: Update current best solution.
13: end if
14: end if
15: end for
16: end for
17: end if
18: end for
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Algorithm 7 Modified label correcting for Ḡ with hijr, (j, i) ∈ Ā as arc costs

1: Definition:
2: V (ir): a vector of size Γr
3: f : an element in V (ir), where the first value records the variation, the second and third values

in (, ) record the corresponding arc.
4: arc(f): returns the arc recorded in f .
5: var(f): returns the variation recorded in f .
6: M : a priority queue of nodes with top node i having the maximum hmini .
7: Initialization:
8: set hijr as the arc cost for each (j, i) ∈ Ā
9: for all i ∈ N do

10: create a vector V (ir).
11: set all elements in V (i) to f = {0, (0, 0)}
12: end for
13: create a queue M with no duplicated elements
14: enqueue d onto M
15: while M is not empty do
16: j ←M.top()
17: for all (j, i) ∈ Ā do
18: for all f ′ ∈ V (jr)

⋃
{hijr, (j, i)} do

19: for all f ∈ V (ir) do
20: if arc(f ′) is arc(f) then
21: break
22: else if var(f ′) > var(f) then
23: insert f ′ before f
24: pop out the end element of V (ir)
25: enqueue i onto M
26: break
27: end if
28: end for
29: end for
30: end for
31: end while
32: Return ∆ir = {(j, i)|hijr > 0, {hijr, (j, i)} ∈ V (ir)},∀i ∈ N .
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