Models and algorithms for the robust resource constrained shortest path problem

Da Lu and Fatma Gzara Department of Management Sciences, University of Waterloo 200 University Avenue West, Waterloo, ON, Canada

Abstract

We study the robust resource constrained shortest path problem (RCSPP) under uncertainty in cost and multiple resource consumption. Contrary to the deterministic RCSPP where the cost and the consumption of resources on an arc are known and fixed, the robust RCSPP models the case where both the cost and the resource consumption are random, and it determines a robust minimum cost path that is feasible with respect to multiple resource constraints. We present a robust optimization model, propose graph reduction techniques tailored for the robust problem, and develop a modified label-setting algorithm that introduces a new dominance rule. We perform extensive numerical testing to compare the modified label-setting algorithm with direct solution of an equivalent deterministic mixed-integer programming model, a sequential algorithm that solves a series of deterministic RCSPP, and a label-setting algorithm proposed by Pessoa et al. [2015]. The label-setting algorithm is comparable to the label-setting algorithm by Pessoa et al. [2015] and outperforms all other approaches significantly.

Keywords: robust resource constrained shortest path, robust optimization, graph reduction, label-setting.

1. Introduction

Shortest path problems have been widely studied in Operations Research because of their theoretical and practical relevance. While the basic shortest path problem (SPP) is easy to solve and lies at the heart of network flows, extensions with additional restrictions on paths present challenges to solve. Shortest paths appear frequently in practice whenever there is interest to send flow from an origin to a destination in applications as diverse as vehicle routing and scheduling, airline operations planning, transportation, and telecommunications network planning. They also arise often as subproblems when solving optimization problems on networks by decomposition techniques like Lagrangian relaxation, column generation, and Benders decomposition. When additional requirements, such as visiting nodes within a time window, using a limited resource, and avoiding certain paths and cycles are imposed, the problem is referred as constrained shortest path problem (CSPP). We refer interested readers to the surveys by Irnich and Desaulniers [2005]; Irnich [2008]; Pugliese and Guerriero [2013] for classification, modeling issues and solution methodologies for CSPP. In particular, in the deterministic resource constrained shortest path problem (RCSPP) each arc consumes a given amount of a resource with limited availability. The deterministic RCSPP finds a minimum cost path feasible with respect to resource consumption constraints.

In this paper, we study the robust RCSPP with multiple resources by introducing uncertain cost and resource consumption on arcs. More specifically, the uncertain parameters are defined by an interval of uncertainty where the realization of a parameter may take any value within the corresponding interval. The lower limit of the interval of uncertainty is referred to as the nominal value of the parameter and the nominal RCSPP arises when all random parameters are at their nominal values. We present a robust model to find the minimum cost robust path that remains feasible when a subset of random parameters deviate from their nominal values. Next, we review the literature relevant to the deterministic RCSPP, and the relevant literature on robust optimization.

1.1 Literature review on the deterministic RCSPP

The solution methodologies for the deterministic RCSPP include Lagrangian relaxation, labeling algorithms, heuristics and enumerative approaches. Lagrangian relaxation is used by Handler and Zang [1980] who relax the resource constraint, resulting in a shortest path problem with Lagrangian length as subproblem. If the dual gap after solving the Lagrangian dual problem is nonzero, a kth-shortest path algorithm of Yen [1971] is implemented. The parameter k is initialized at 2 and is increased gradually until the gap closes. Beasley and Christofides [1989] use similar relaxation and close the dual gap through branch-and-bound. The branching scheme starts at the origin and builds a partial path. Each branch corresponds to a deterministic RCSPP from the end node of the current partial path to the destination. The next branch to explore is determined based on the Lagrangian subproblem solution. Beasley and Christofides [1989] also propose graph reduction techniques based on the minimum consumption of each resource and the minimum Lagrangian length between a pair of nodes. Borndörfer et al. [2001] use a similar approach to solve the deterministic RCSPP. However, they add an additional goal consumption for each resource and penalize any deviation from the goal. Santos et al. [2007] improve the algorithm of Handler and Zang [1980] with a refined search direction based on the tightness of the resource limit.

Dynamic programming formulations leading to labeling algorithms form another exact method-

ology for the deterministic RCSPP. Descretes [1988] proposes a label correcting algorithm that extends pareto optimal partial paths along the graph from origin to destination. Dumitrescu and Boland [2003] improve and compare a set of algorithms, including Lagrangian relaxation, label setting algorithm, and heuristics with a cost scaling technique. They improve the preprocessing by iteratively using the techniques in Beasley and Christofides [1989] until no more reduction is possible. For the label setting algorithm, they strengthen the feasibility check by considering for each resource the sum of the incurred resource consumption of a partial path and the minimum resource requirement from the end of a partial path to the destination. They also propose an exact weight scaling algorithm that repeatedly performs the label setting algorithm on a graph with resource consumptions on arcs and scaled resource upper bounds. During the process, the minimum cost path provides a lower bound on the original problem even if it is infeasible. As the scaled values ultimately converge to their original values, the algorithm is guaranteed to find an optimal solution. Zhu and Wilhelm [2012] propose a three stage algorithm to solve deterministic RCSPP on an acyclic graph. They reduce the graph using a technique similar to that of Dumitrescu and Boland [2003] in the first stage. Then, they expand it to a graph corresponding to an unconstrained shortest path problem, and solve as SPP using Dijkstra's algorithm. Since the extended graph from one such transformation is reusable for different arc cost, the approach is suitable for column generation where arc costs change in the process. Lozano and Medaglia [2013] use a depth first search strategy to extend labels. As a result, the number of labels stored at each node can be limited at the expense of extending more partial paths that could have been identified as dominated.

Heuristic algorithms for the deterministic RCSPP are based on cost scaling. Hassin [1992] proposes a polynomial approximation scheme for deterministic RCSPP with nonnegative integer costs on arcs and a single resource constraint. The algorithm starts from an upper bound UB and a lower bound LB and determines whether a resource feasible path with cost no more than $\sqrt{UB * LB}$ exists. This is done approximately by scaling arc costs and solving the scaled problem with a label setting algorithm. With approximation factor ϵ , UB or LB is updated as $\sqrt{UB * LB}(1 + \epsilon)$ or $\sqrt{UB * LB}$ depending on whether such path exists. The algorithm is suggested to terminate when $UB/LB \leq 2$. Lorenz and Raz [2001] propose a similar scaling approach and an initialization of UB that guarantees UB/LB is less than or equal to the number of arcs in the graph.

Moreover, Irnich [2008] surveyed the literature in CSPP by focusing on different types of resource extension functions (REF). The aim is to identify properties of REF that may be used for reverse search in the network and may be generalized for partial paths instead of arcs. Such inversion and generalization help accelerate the solution of CSPP. An extensive survey of CSPP is provided by Pugliese and Guerriero [2013].

1.2 Literature review on robust RCSPP and related problems

Robust programming deals with optimization problems where the modeling parameters are uncertain. Uncertainty is described by a set of possible realizations, called the support of the uncertainty. The optimization model finds a minimum cost solution that stays feasible under all realizations in the uncertainty support. The supports studied in the literature are convex support, such as ellipsoidal support, polyhedral support Ben-Tal and Nemirovski [1999] and cardinality constrained support Bertsimas and Sim [2003]. Cardinality constrained support, or budgeted uncertainty, corresponds to the case where each constraint/objective coefficient varies within an interval, and the total number of coefficients changing simultaneously in each constraint/objective function is limited by a constant, referred to as the protection level or budget size. Bertsimas and Sim [2003] provide an equivalent MIP reformulation for robust discrete optimization problem under such support including the robust SPP. Moreover, they prove that for robust combinatorial optimization problems with budgeted uncertainty on objective coefficients, the problem can be solved as a series of deterministic counterparts. Alvarez Miranda et al. [2013] and Goetzmann et al. [2012] generalize the result to combinatorial optimization problems with uncertainty in the constraints. The probabilistic guarantee for constraints with budgeted uncertainty is derived by Bertsimas and Sim [2004] and extended by Poss [2014a] and Poss [2014b] to variable budgeted uncertainty where the budget size is allowed to depend on decision variables. Ben-Tal et al. [2009] and Bertsimas et al. [2011] provide comprehensive reviews on robust optimization.

The literature on robust RCSPP is scant. However, at the same time when we were conducting this research, Pessoa et al. [2015] independently carried out a study of robust RCSPP and suggested a dominance rule which is different from ours. They prove that the problem is NP-hard in the strong sense when the uncertainty set is unbounded. For budgeted uncertainty sets, the robust shortest path problem with a capacity constraint can be solved pseudopolynomially. They proposed a labelsetting algorithm for the case with time windows that creates as many dummy resources as the budget size for the existing time resource. The dummy resources are associated with budgeted uncertainties for which the budget sizes vary from zero to the original budget size. A partial path dominates another partial path ending at the same node when it consumes less or equal resources under all the budgeted uncertaintites. The dominance rule we propose is different in that it uses robust resource consumption up to a node i and an upper bound on the maximum variation under the budgeted size from i to the destination. We show in Section 3.1 that each of the dominance rules is able to eliminate dominated partial paths that the other does not. On the other hand, there are several studies on the robust shortest path problem, see for example Catanzaro et al. [2011]; Gabrel et al. [2013]; Yu and Yang [1998]; Resende [2015]; Karasan et al. [2001]. Unlike the problem treated in this paper and that of Pessoa et al. [2015], in the robust SPP there are no additional resource constraints on the paths, i.e., there is no feasibility issue and only optimality of a path is impacted by the uncertainty. In particular the dominace rule suggested by Resende [2015] extends that of the determinitic RCSPP by creating a cost label for each scenario. Similar to Pessoa et al. [2015], a partial path is dominated by another partial path ending at the same node if it has higher or equal cost under all scenarios.

Beside the studies in robust constrained shortest path problem, several studies on robust vehicle routing problems exit. Specifically, Sungur et al. [2008] are the first to study a robust capacitated vehicle routing problem (CVRP) with uncertain demands. They extend the deterministic CVRP formulation to the robust case based on the Miller-Tucker-Zemlin formulation, and focus on three types of uncertainty supports, including convex hull support, hyper-cube support and ellipsoidal support. Under these supports, the authors prove that to solve the robust CVRP it is sufficient to solve a deterministic CVRP corresponding to the worst case scenario. A robust vehicle routing problem with time windows is recently studied by Agra et al. [2013]. They provide two formulations based on resource inequalities and path inequalities, and prove that it is sufficient to consider a subset of the extreme points of the uncertainty support. When the uncertainty support is cardinality constrained, they further reduce the subset of the extreme points of the uncertainty polytope. The resource inequality formulation is solved implicitly by a column and row generation procedure and the path inequality formulation is solved by a cutting plane algorithm. The most recent work by Gounaris et al. [2013] focuses on robust CVRP with uncertain customer demands. They propose a generalized hyper-cube support that is encoded by the intersection of a hyper-rectangle with a halfspace that imposes an upper bound on total customer demand, and show that an equivalent deterministic CVRP can be derived. The robust counterparts of the two-index vehicle flow, the Miller-Tucker-Zemlin, the one-commodity flow, the two-commodity flow and the vehicle assignment formulations are provided and reformulated as MIP problems under the convex polyhedral support. Moreover, when the demand support is a set of disjoint generalized hypercube supports or a convex hull resulting from an affine transformation of a hypercube, the authors derive analytic solutions to evaluate the total demand of a subset of customers in the worst case. These analytic solutions are used to find rounded capacity inequalities and the models are solved by branch-and-cut.

The main contributions in this paper are a new dominance rule for the robust RCSPP, a modified labelling algorithm, and extension of the resource based reduction and Lagrangian cost based reduction of the graph to identify nodes/arcs that cannot be in an optimal robust path. The classical dominance rule for SPP and RCSPP is not valid because when comparing two partial paths, one partial path dominated by another one in a deterministic setting might lead to a better complete path in a robust context. This is because for each resource, the total consumption in a robust context not only depends on the deterministic data but also on a subset of the resource deviations on the complete path, where the prespecified protection level determines the size of the subset. Pessoa et al. [2015] extend the classical dominance rule by creating dummy labels. On the other hand, we propose a new dominance rule to compare two partial paths under the robust framework by developing for each resource and each partial path an upper bound on the sum of resource deviations up to the destination. To calculate these upper bounds, we devise a specialized label correcting algorithm.

We compare the modified label setting algorithm with direct solution of the MIP reformulation using CPLEX 12.4, the label setting algorithm proposed by Pessoa et al. [2015], and the sequential algorithm that solves a series of deterministic RCSPP. The results show the superiority of the modified label-setting algorithm over direct solution of the MIP reformulation and the sequential algorithm. The latter shows poor scalability when the number of resources or the number of distinct deviations increase.

The rest of the paper is organized as follows. Section 2 defines the robust RCSPP and presents the robust formulation, an equivalent MIP reformulation and the sequential algorithm. The graph reduction techniques for the robust RCSPP are presented in Section 2.2. Section 3 develops the new dominance rule and the modified label-setting algorithm. Section 4 reports on the computational testing and Section 5 concludes the paper.

2. The robust RCSPP

In this section, we first present the robust RCSPP formulation and an equivalent MIP formulation, and derive the sequential algorithm. In Section 2.2, we generalize the preprocessing techniques of the deterministic RCSPP to reduce the graph for robust RCSPP using resource based reduction and Lagrangian cost based reduction.

Let us define a graph G = (N, A), where N is the set of nodes indexed by i = 1, ..., |N| and A is the set of arcs represented by $(i, j) \in A$. Let $o \in N$ denote the origin, and $d \in N$ denote

the destination. Traveling in the network consumes a number of resources. Each resource has a limit on available capacity, representing the maximum amount of the resource that can be used on a feasible path. The cost of an arc is represented by a special resource with infinite capacity. Let Rdenote the set of resources indexed by r = 1, ..., |R|, where resource r = 1 is used for the cost. For each arc $(i, j) \in A$, $t_{ijr} \ge 0$ is the minimum consumption of resource r on arc (i, j), also referred to as nominal consumption. $h_{ijr} \ge 0$ is the maximum deviation from the nominal consumption. A realization of the consumption of resource r on (i, j), denoted by \hat{t}_{ijr} is assumed to vary randomly in the interval $[t_{ijr}, t_{ijr} + h_{ijr}]$. When arc (i, j) shows no uncertainty in the consumption of resource r, h_{ijr} is set to 0. The limit on resource r is denoted by B_r . The decision variable y_{ij} takes value 1 if arc (i, j) is selected in the shortest path, and 0 otherwise. To protect the solution from uncertainty, a prespecified parameter Γ_r , called protection level, is defined for each resource r. It allows at most Γ_r arcs to deviate from the nominal values of resource r for any path at any given time. Given a path p involving arcs $S^p \subseteq A$, the worst deviation from the nominal consumption of resource r is determined by $\max_{\{S_r|S_r \subseteq S^p, |S_r| \le \Gamma_r\}} \sum_{(i,j) \in S_r} h_{ijr}.$ The maximum consumption by path p of resource r given Γ_r is calculated as $\sum_{(i,j) \in S^p} t_{ijr} + \max_{\{S_r|S_r \subseteq S^p, |S_r| \le \Gamma_r\}} \sum_{(i,j) \in S_r} h_{ijr}$ and is referred to as the robust consumption of resource r. As Γ_r increases, more deviations are considered in the robust consumption of resource r. The robust consumption of resource r = 1 is defined as the robust cost. A path is considered robust if its robust consumption of resource r is no more than B_r for each resource $r \in R \setminus \{1\}$. The robust RCSPP is modeled as follows:

[P]

$$\min \sum_{(i,j)\in A} t_{ij1} y_{ij} + \max_{\{S_1|S_1\subseteq A, |S_1|\leq \Gamma_1\}} \sum_{(i,j)\in S_1} h_{ij1} y_{ij}$$
(1)

s.t.
$$\sum_{i:(o,j)\in A} y_{o,j} = 1$$
 (2)

$$\sum_{i:(i,j)\in A} y_{ij} - \sum_{i:(j,i)\in A} y_{ji} = 0 \quad \forall j \in N \setminus \{o,d\}$$
(3)

$$\sum_{i:(i,d)\in A} y_{i,d} = 1 \tag{4}$$

$$\sum_{(i,j)\in A} t_{ijr} y_{ij} + \max_{\{S_r | S_r \subseteq A, |S_r| \le \Gamma_r\}} \sum_{(i,j)\in S_r} h_{ijr} y_{ij} \le B_r \quad r = 2, ..., |R|$$
(5)

$$y_{ij} \in \{0,1\} \quad \forall (i,j) \in A \tag{6}$$

The objective function (1) minimizes the total robust cost given protection level Γ_1 . Constraints (2)-(4) are flow balance constraints. Constraint (5) requires that the robust consumption of resource

r on a feasible path must be less than or equal to resource limit B_r . A feasible path for robust RCSPP protects against uncertainty with a prespecified level for each resource. A shortest path for robust RCSPP is a feasible path that has the minimum robust cost under protection level Γ_1 .

2.1 An equivalent MIP reformulation of robust RCSPP

The robust model [P] is not readily solvable because of the robust terms in the objective function and constraints. Based on Theorem 2 of Bertsimas and Sim [2003], we now present an equivalent linear MIP reformulation that may be solved by any MIP solver. Let Y be the feasible set defined by flow balance constraints (2)-(4) and (6), and $\mathbf{y} \in Y$ be the vector of y_{ij} . For ease of exposition, we define y_r^a , t_r^a and h_r^a as replicas of y_{ij} , t_{ijr} and h_{ijr} when arc (i, j) has the *a*th highest deviation with respect to resource r. Without loss of generality, for each resource r, we sort the arcs using index a = 1, ..., |A| such that $h_r^1 \ge h_r^2 \ge ... \ge h_r^{|A|-1} \ge h_r^{|A|}$, and $h_r^{|A|+1} = 0$. $\mathbf{y_r}$ and $\mathbf{t_r}$ are vectors of y_r^a and t_r^a , respectively. Define u_r^a as a binary variable that takes value 1 if $h_r^a y_r^a$ is selected to maximize the robust term and 0 otherwise. Then, [P] is rewritten as follows:

[P1]

$$Z = \min \mathbf{t}_{1} \mathbf{y}_{1} + \max_{\substack{0 \le u_{1}^{a} \le 1 \\ \sum_{a=1}^{|A|} u_{1}^{a} \le \Gamma_{1}}} \sum_{a=1}^{|A|} h_{1}^{a} y_{1}^{a} u_{1}^{a}$$

s.t. $\mathbf{y} \in Y$
 $\mathbf{t}_{\mathbf{r}} \mathbf{y}_{\mathbf{r}} + \max_{\substack{0 \le u_{r}^{a} \le 1 \\ \sum_{a=1}^{|A|} u_{r}^{a} \le \Gamma_{r}}} \sum_{a=1}^{|A|} h_{r}^{a} y_{r}^{a} u_{r}^{a} \le B_{r} \quad r = 2, ..., |R|$

where $\max_{\substack{0 \le u_r^a \le 1\\ \sum_{a=1}^{|A|} u_r^a \le \Gamma_r}} \sum_{a=1}^{|A|} h_r^a y_r^a u_r^a, r = 1, ..., |R| \text{ are the robust terms. Let } v_r \text{ be the dual variable of } v_r$

constraint $\sum_{a=1}^{|A|} u_r^a \leq \Gamma_r$, and q_r^a be the dual variable of constraint $0 \leq u_r^a \leq 1$. Applying Theorem 2 of Bertsimas and Sim [2003] to [P1], we obtain an equivalent MIP formulation:

[P-MIP]

$$Z = \min \mathbf{t}_1 \mathbf{y}_1 + \Gamma_1 v_1 + \sum_{a=1}^{|A|} q_1^a$$
s.t. $\mathbf{y} \in Y$

$$(7)$$

$$\mathbf{t}_{r}\mathbf{y}_{r} + \Gamma_{r}v_{r} + \sum_{a=1}^{|A|} q_{r}^{a} \le B_{r} \quad r = 2, ..., |R|$$
(8)

$$v_r + q_r^a \ge h_r^a y_r^a$$
 $a = 1, ..., |A|, r = 1, ..., |R|$ (9)

$$q_r^a, v_r \ge 0$$
 $a = 1, ..., |A|, r = 1, ..., |R|$ (10)

The robust terms in [P1] are transformed into minimization problems by duality. The objective functions of the resulting dual problems are captured in the objective function of [P-MIP] and constraints (8), respectively. The constraints of the resulting dual minimization problems are added as constraint set (9) to [P-MIP]. As a result, the model has a total of |N|+|A||R|+|R|-1 constraints, |A| binary variables and |A||R| continuous variables. Although [P-MIP] may be solved directly using any deterministic MIP solver, this proved to be inefficient as shown in Section 4. An alternative approach is to further transform the problem into a sequence of deterministic RCSPP following the transformation in Poss [2014a] and Poss [2014b].

This sequential approach is detailed in Algorithm 6 in Appendix A. It creates a sequence of RCSPP and solves the resulting deterministic problems using a label setting algorithm. For a problem with |R| resources and n_r distinct deviations that are less than or equal to $h_r^{\Gamma_r}$, i.e. $n_r = |\{e|h_r^e \neq h_r^{e'}, e \neq e', e = \Gamma_r, ..., |A| + 1, e' = \Gamma_r, ..., |A| + 1\}|$, in each resource $r \in R$, the total number of problems to solve in the worst case is $\prod_{r=1}^{|R|} n_r$. Algorithm 6 grows fast when |R| or n_r increases.

2.2 Reduction of graph G

It is known in the literature that reducing the graph on which RCSPP is defined by eliminating arcs and nodes that cannot be in an optimal solution helps solve larger instances. Beasley and Christofides [1989] present two types of graph reduction techniques for RCSPP. One of the techniques determines whether a node/arc should be removed based on the minimum resource consumption required to traverse that node/arc. The other technique relaxes the resource constraints in a Lagrangian fashion. Then, for each node/arc, it finds a lower bound on the cost of paths traversing that node/arc. The lower bound is compared against an upper bound to determine whether the node/arc may be removed. When ignoring uncertainty, the cost and resource consumption happen at the nominal level and the nominal problem is a deterministic RCSPP given by: [PR1]

$$\min \sum_{(i,j)\in A} t_{ij1} y_{ij} \tag{11}$$

t. (2) - (4), (6)

$$\sum_{(i,j)\in A} t_{ijr} y_{ij} \le B_r \quad r = 2, ..., |R|$$
(12)

Since constraints (5) are more restricting than constraints (12), and the robust term in (1) is nonegative, the optimal objective value of [PR1] provides a lower bound to [P]. The lower bound may be further improved by deriving bounds on the robust resource consumption. Define the shortest length l as the minimum number of arcs needed to go from o to d in graph G without enforcing resource limits. Let $\hat{\Gamma}_r = \min\{l, \Gamma_r\}$. For any path p, the robust consumption of resource r is at least $\sum_{(i,j)\in S^p} t_{ijr} + H_r$, where $H_r = \min_{\{S_r|S_r\subseteq A, |S_r|=\hat{\Gamma}_r\}} \sum_{(i,j)\in S_r} h_{ijr}$ is a constant for resource r. Subtracting H_r from the corresponding resource limit B_r leads to the following modified RCSPP: [PR2]

 $\mathbf{s}.$

$$\min \sum_{(i,j)\in A} t_{ij1}y_{ij} + H_1$$
s.t. (2) - (4), (6)
$$\sum_{(i,j)\in A} t_{ijr}y_{ij} \le B_r - H_r \quad r = 2, ..., |R|$$
(13)
(14)

Since

$$H_r \le \max_{\{S_r | S_r \subseteq A, |S_r| \le \Gamma_r\}} \sum_{(i,j) \in S_r} h_{ijr} y_{ij}, \quad r = 1, ..., |R|$$

any feasible path to [P] is also feasible to [PR2] and its objective value in [P] is no less than its objective value in [PR2]. Using these results, we derive two sets of reduction rules for graph G. The first set of rules is based on resource capacity constraints, and the second is based on Lagrangian bounds.

2.2.1 Resource based reduction

Removing the resource constraints (14) from [PR2], and the constant term H_1 from the objective function, we obtain a deterministic shortest path problem [SPP] as follows:

[SPP]

min
$$\sum_{(i,j)\in A} t_{ij1}y_{ij}$$
 (15)
s.t. (2) - (4), (6).

Define D_{ij}^r as the minimum cost from node *i* to node *j* with consumption of resource *r* as the arc cost. Then, node *i* satisfying the following inequality may be removed from graph *G*:

$$D_{oi}^{r} + D_{id}^{r} > B_{r} - H_{r} \quad r = 2, ..., |R|.$$
(16)

In inequality (16), if the minimum consumption of resource r from o to d through node i exceeds $B_r - H_r$, any path visiting node i is infeasible to [P]. Moreover, arc (i, j) satisfying the following inequality may be removed from graph G:

$$D_{oi}^{r} + t_{ijr} + D_{jd}^{r} > B_{r} - H_{r} \quad r = 2, ..., |R|.$$
(17)

Inequality (17) states that if the minimum consumption of resource r from o to d through arc (i, j) is greater than $B_r - H_r$, any path traversing arc (i, j) is infeasible to [P]. The minimum cost from origin to all nodes in graph G may be calculated using a label setting algorithm. Similarly, the minimum cost from all nodes to destination may be calculated on the reversed graph of G. Algorithm 3 in Appendix A summarizes the steps of resource based reduction.

2.2.2 Lagrangian cost based reduction

Introducing Lagrangian multipliers $\mu_r \ge 0, r = 2, ..., |R|$ to resource constraints (14), the relaxed problem of [PR2] is:

[PR3]

$$Z^{LR} = \min \sum_{(i,j)\in A} t_{ij1}y_{ij} + H_1 + \sum_{r=2}^{|R|} \mu_r \left(\sum_{(i,j)\in A} t_{ijr}y_{ij} - B_r + H_r \right)$$
s.t. (2) - (4), (6) . (18)

If the solution \bar{y}_{ij} of [PR3] is feasible for [P], it gives an upper bound

 $Z^{UB} = \sum_{(i,j)\in A} t_{ij1}\bar{y}_{ij} + \max_{\{S_1|S_1\subseteq A, |S_1|\leq \Gamma_1\}} \sum_{(i,j)\in S_1} h_{ij1}\bar{y}_{ij} \text{ to the optimal objective value of the original problem [P].}$

The Lagrangian cost for arc $(i, j) \in A$ is given by $\overline{t}_{ij1} = t_{ij1} + \sum_{r=2}^{|R|} \mu_r t_{ijr}$. The minimum Lagrangian cost over the set of paths P(i, j) from node i to node j is given by $L_{ij}(\mu) = \min_{p \in P(i,j)} \sum_{(i',j') \in S^p} \overline{t}_{i'j'1}$

for a given set of multipliers $\mu_r, r = 2, ..., |R|$. Any node *i* satisfying the following inequality may be removed from graph *G*:

$$L_{oi}(\mu) + L_{id}(\mu) + H_1 - \sum_{r=2}^{|R|} \mu_r(B_r - H_r) > Z^{UB}$$
(19)

The left hand side of inequality (19) calculates the minimum objective value measured by function (18) among all paths from o to d through node i. If it is greater than the objective value of the current best solution to [P], any path traversing node i is not optimal to [P]. An arc $(i, j) \in A$ may be removed from G if the following inequality is satisfied:

$$L_{oi}(\mu) + \bar{t}_{ij1} + L_{jd}(\mu) + H_1 - \sum_{r=2}^{|R|} \mu_r(B_r - H_r) > Z^{UB}$$
(20)

In inequality (20), if the minimum objective value given by function (18) among all paths from o to d through arc (i, j) is greater than the upper bound on [P], an optimal solution to [P] does not involve arc (i, j). To determine multipliers $\mu_r, r = 2, ..., |R|$, we use Kelley's cutting plane algorithm (Kelley [1960]) to solve the Lagrangian dual problem of [PR3]. The reduction based on Lagrangian cost is summarized in Algorithm 4 in Appendix A.

The overall graph reduction procedure is detailed in Algorithm 5 in Appendix A. It starts with resource based reduction (Algorithm 3). Paths found during resource based reduction are used to construct cuts to initialize the Lagragian master problem. Then, Kelley's cutting plane algorithm is used to solve the Lagrangian master problem of [PR3]. Optimal Lagrangian multipliers $\mu_r, r = 2, ..., |R|$ are used to calculate the Lagrangian cost for each arc, and Lagrangian based reduction (Algorithm 4) is applied. During the procedure, any path feasible to [P] is used to update Z^{UB} . If l increases or set A reduces in a reduced graph G, H_r may increase to make constraint (14) tighter. The resulting [PR2] may have an increased optimal objective value that in turn may further reduce graph G. Hence, resource based reduction and Lagrangian cost based reduction are applied iteratively until the graph can not be reduced any more.

3. Label setting algorithm

One important component of label setting algorithm for the deterministic RCSPP is the dominance rule that avoids extending unpromising partial paths. The dominance rule is described as follows. Let $c_{ir}^p = \sum_{(j,k)\in S^p} t_{jkr}$ be the nominal consumption of resource r for path p from origin o to node i. A label associated with node i is denoted by vector $C_i^p = [c_{i1}^p, ..., c_{i|R|}^p]$. For two labels at node i, C_i^1 dominates C_i^2 , represented by $C_i^1 < C_i^2$, if there exists resource $\bar{r} \in R$ such that $c_{i\bar{r}}^1 < c_{i\bar{r}}^2$ and $c_{ir}^1 \leq c_{ir}^2$ for $r \in R \setminus \{\bar{r}\}$. The algorithm starts at the origin and proceeds by extending nondominated partial paths. A pseudo-code of the algorithm is given in Algorithm 1.

We now present an example to show that this dominance rule is invalid for the robust RCSPP. Then, we provide a new dominance rule that considers not only the deviations on the arcs of a partial path but also on the possible arcs that may be appended after. Such consideration guarantees the dominance relation as it uses an upper bound on the maximum deviation of a complete path extended from the current partial path. To calculate the upper bounds, we devise a label correcting algorithm that calculates the Γ_r maximum deviations relevant to each node. Lastly, we present the complexity of the complete label setting algorithm, discuss the distinction from the dominance rule proposed by Pessoa et al. [2015], and use examples to show that each rule may identify dominated paths that the other fails to.

Define $\lambda_{ir}^p = c_{ir}^p + \max_{\{S:|S| \leq \Gamma_r, S \subseteq S^p\}} \sum_{(j,k) \in S} h_{jkr}$ as the robust consumption of resource r for path p from origin o to node i, $\Lambda_i^p = [\lambda_{i1}^p, ..., \lambda_{i|R|}^p]$ as the resource consumption vector of robust RCSPP. Figure 1 shows a network of RCSPP with 2 resources. The origin and destination in Figure 1 are nodes 1 and 4, respectively. On each arc, the first and the second numbers between parentheses represent the consumption of resources 1 and 2 on that arc. The limit on resource 2 is 20. There are two paths 1 and 2 from origin to destination consisting of arcs $\{(1,3), (3,4)\}$ and $\{(1,2), (2,3), (3,4)\}$ with labels $C_4^1 = [7,9]$ and $C_4^2 = [8,9]$, respectively. Path $\{(1,3), (3,4)\}$ is the optimal path. Moreover, as C_3^1 dominates C_3^2 , discarding C_3^2 at node 3 does not affect optimality. Figure 2 adds deviations to the graph in Figure 1. A pair of numbers in curly brackets shows the deviations of resources 1 and 2 on each arc. Setting the protection level Γ to 2 for both resources, then $\Lambda_3^1 = [12, 11]$ and $\Lambda_3^2 = [17, 14]$. Based on the dominance rule for RCSPP, Λ_3^2 is dominated by Λ_3^1 , only one path to node 4 remains with label $\Lambda_4^1 = [22, 19]$. However, the optimal path is path 2 with $\Lambda_4^2 = [21, 18]$. This shows that the dominance rule for RCSPP is invalid. The reason is that when reaching node 3, path 2 has already encountered the first two biggest deviationss for each resource, whereas path 1 only encountered one of its two deviations for each resource. Therefore, to derive a valid dominance rule, we need not only consider the information given by Λ_i^p but also the information from node i to the destination d.

Algorithm 1 Label setting algorithm for deterministic RCSPP

1: Definition:

- 2: P_i : the set of non-dominated labels at node i
- 3: Unprocessed: keeps the labels that are created but not processed yet.
- 4: $W(i) = \{j | (i, j) \in A\}$: the set of nodes that connects node i with an arc $(i, j) \in A$.
- 5: $\operatorname{REF}(C_i^p, j)$: the nondecreasing resource extension function that calculates the resource consumption at node j when C_i^p is extended through arc (i, j).
- 6: $Feasible(C_j^p)$: returns true if $c_{i1}^p \leq UB$ and $c_{ir}^p \leq B_r, r = 2, ..., |R|$ and false otherwise.
- 7: Dominance (C_i^p, P_i) : returns true if C_i^p is not dominated by the labels in P_i and false otherwise 8: Initialization:
- 9: UB = the objective value of best feasible path obtained during preprocessing or from heuristic.
- 10: $p = 0, C_o^p = [0, ..., 0] \in \mathbb{R}^{|R|}.$
- 11: Mark C_o^p as non-dominated.
- 12: $P_o \leftarrow \{C_o^p\}, Unprocessed \leftarrow \{C_o^p\}.$
- 13: for all $i \in N \setminus \{o\}$ do
- $P_i \leftarrow \{(\infty, B_2, ..., B_{|R|})\}.$ 14:

15: end for

- 16: while $Unprocessed \neq \emptyset$ do
- Extract $C_i^{\bar{p}} \in Unprocessed$ 17:
- if $C_i^{\bar{p}}$ is not dominated then 18:

19:	for	all	i	\in	W	(i)	do

- p = p + 1.20:
- $C_j^p = \operatorname{REF}(C_i^{\bar{p}}, j).$ 21:

```
if Feasible(C_j^p) indicates C_j^p is feasible then
22:
                  if Dominance(C_j^p, P_j) indicate C_j^p is not dominated then
23:
```

- $P_j \leftarrow P_j \bigcup \{C_j^p\}$ 24:
- if j = d and $c_{j1} < UB$ then 25:
 - Update UB and the current best path.

```
else
27:
```

```
Unprocessed \leftarrow Unprocessed \bigcup \{C_i^p\}
```

```
29:
                       end if
```

```
end if
30:
```

```
31:
               end if
```

end for 32:

```
Mark C_i^{\bar{p}} as processed.
33:
```

```
Unprocessed \leftarrow Unprocessed \setminus \{C_i^{\bar{p}}\}
34:
```

```
end if
35:
```

26:

28:

36: end while

Figure 1: A network for deterministic resource constrained shortest path problem.

Figure 2: A network for robust resource constrained shortest path problem.

3.1 Label setting algorithm for robust RCSPP

Let $G_i = (N_i, A_i)$ denote a subgraph of G rooted at i, i.e., N_i is the set of nodes reachable from node i, and A_i is the set of arcs $\{(j, k) \in A : j, k \in N_i\}$. Δ_{ir} is the set of arcs with the highest Γ_r deviations across G_i when $\Gamma_r < |A_i|$, or are the $|A_i|$ arcs when $\Gamma_r \ge |A_i|$:

$$\Delta_{ir} = \underset{S_{ir}:S_{ir}\subseteq A_i, |S_{ir}|\leq \Gamma_r}{\arg\max} \sum_{(j,k)\in S_{ir}} h_{jkr}, r \in R, i \in N.$$

To determine Δ_{ir} , we suggest the following modified label correcting algorithm (MLCA) as shown in Algorithm 7. Let $\overline{G} = (N, \overline{A})$ be the reverse graph of G and associate with arc $(j, i) \in \overline{A}$ weight h_{ijr} . Note that for every arc $(j, i) \in \overline{A}$ and every resource r, the highest Γ_r arc weights of G_j cannot all be strictly higher than those of G_i , since by the existence of arc $(i, j) \in A, A_j \subseteq A_i$. Associate with each node i and resource r, a label V(ir) which stores at most Γ_r elements. Each element corresponds to an arc $(k, j) \in \overline{A}$ and is formatted as $f = \{h_{jkr}, (k, j)\}$. The set of arcs involved in V(ir) is denoted by A(V(ir)). For arc $(j, i) \in \overline{A}$, let $hmin_i = \min\{h_{jkr} : (k, j) \in A(V(ir))\}$ when $|A(V(ir))| = \Gamma_r$, and 0 otherwise; and let $hmax_j = \max\{h_{kk'r}|(k, k') \in A(V(jr))\setminus A(V(ir))\}$ when $A(V(jr))\setminus A(V(ir)) \neq \emptyset$, and 0 otherwise. Then, $hmin_i \ge hmax_j, \forall (j, i) \in \overline{A}$ is an optimality condition for V(ir). The label correcting algorithm works on the reverse graph $\overline{G} = (N, \overline{A})$ once for each resource $r \in R$ and starts by initilaizing the label $V(ir) = [\{0, (0, 0)\}], i \in N$. For every arc $(j, i) \in \overline{A}$ such that $hmin_i < hmax_j, V(ir)$ does not include the arcs with the highest deviations and is updated as $\left[\{h_{kk'r}, (k', k)\} : (k', k) \in A', A' = \operatornamewithlimits{arg max}_{A \subseteq A(V(ir)) \cup A(V(jr))} \underbrace{k', k'_r}_A h_{kk'r} \right]$. The algorithm stops when there are no arcs that violate the optimality condition. The finiteness of the algorithm follows from that of the label correcting algorithm for SPP. The main differences are in that the arc weights are only used once to initialize the labels, and node labels are of size Γ_r for each resource r.

For a path p from origin o to node i composed of arcs S^p , let us define S^p_r as a subset of S^p for each resource $r \in R$, and

$$\Phi_{ir}^p = \operatorname*{arg\,max}_{S_r^p:S_r^p\subseteq S^p,|S_r^p|\leq \Gamma_r} \sum_{(j,k)\in S_r^p} h_{jkr}$$

as the set of arcs such that the sum of their deviations of resource r is maximized under protection level Γ_r . Then, for $r \in R$, an upper bound on the total deviation of consumption of resource runder protection level Γ_r for a path to destination d extended from p is

$$\xi_{ir}^{p} = \max_{\{\Upsilon \subseteq \Phi_{ir}^{p} \cup \Delta_{ir}, |\Upsilon| \leq \Gamma_{r}\}} \sum_{(j,k) \in \Upsilon} h_{jkr},$$

where $\Phi_{ir}^p \cup \Delta_{ir}$ consists of a subset of arcs from path p and a subset of arcs from A_i . $\Xi_i^p = [\xi_{i1}^p, ..., \xi_{i|R|}^p]$ represents a vector that consists of the upper bound on the total deviation of each resource consumption for a path to destination d extended from p.

Theorem 1. Let $\langle p_a, p_b \rangle$ denote the concatenation of paths p_a and p_b , where the ending node of p_a is the starting node of p_b . Given partial paths p_1 and p_2 both from origin o to node i, path p_3 from node i to the destination d, if $C_i^1 + \Xi_i^1 \langle \Lambda_i^2$, path $p_4 = \langle p_1, p_3 \rangle$ dominates path $p_5 = \langle p_2, p_3 \rangle$. Label C_i^2 may be eliminated at node i.

Proof of Theorem 1. For path 1 and $\forall r \in R$,

$$\xi_{ir}^{1} = \max_{\{\Upsilon \subseteq \Phi_{ir}^{p} \cup \Delta_{ir}, |\Upsilon| \le \Gamma_{r}\}} \sum_{(j,k) \in \Upsilon} h_{jkr}$$
$$= \max_{\{\Upsilon | \Upsilon \subseteq S^{1} \cup A_{i}, |\Upsilon| \le \Gamma_{r}\}} \sum_{(j,k) \in \Upsilon} h_{jkr}$$
(21)

$$\geq \max_{\{S_r^4 | S_r^4 \subseteq S^1 \cup S^3, | S_r^4 | \le \Gamma_r\}} \sum_{(j,k) \in S_r^4} h_{jkr}$$
(22)

$$= \max_{\{S_r^4 | S_r^4 \subseteq S^4, |S_r^4| \le \Gamma_r\}} \sum_{(j,k) \in S_r^4} h_{jkr}$$
(23)

Equality (21) holds due to the definition of Φ_{ir}^p and Δ_{ir} . Inequality (22) holds because $S^3 \subseteq A_i$. $\xi_{ir}^1 \ge \max_{\{S_r^4 | S_r^4 \subseteq S^4, |S_r^4| \le \Gamma_r\}} \sum_{(j,k) \in S_r^4} h_{jkr}$ leads to

$$c_{ir}^{1} + \max_{\{S_{r}^{4}|S_{r}^{4} \subseteq S^{4}, |S_{r}^{4}| \le \Gamma_{r}\}} \sum_{(j,k) \in S_{r}^{4}} h_{jkr} \le c_{ir}^{1} + \xi_{ir}^{1}$$
(24)

Recall that $\lambda_{ir}^p = c_{ir}^p + \max_{\{S_r^p | S_r^p \subseteq S^p, |S_r^p| \le \Gamma_r\}} \sum_{(i,j) \in S_r^p} h_{jkr}$, then

$$\lambda_{ir}^2 \le c_{ir}^2 + \max_{\{S_r^5 | S_r^5 \le S^2 \cup S^3 = S^5, |S_r^5| \le \Gamma_r\}} \sum_{(j,k) \in S_r^5} h_{jkr} \quad r = 1, ..., |R|$$
(25)

If $c_{i\overline{r}}^1 + \xi_{i\overline{r}}^1 < \lambda_{i\overline{r}}^2$ for resource $\overline{r} \in R$, $C_i^1 + \Xi_i^1 < \Lambda_i^2$ leads to the following set of inequalities:

$$c_{ir}^{1} + \xi_{ir}^{1} \le \lambda_{ir}^{2} \le c_{ir}^{2} + \max_{\{S_{r}^{5} | S_{r}^{5} \le S^{5}, |S_{r}^{5}| \le \Gamma_{r}\}} \sum_{(j,k) \in S_{r}^{5}} h_{jkr} \quad \forall r \in R \setminus \{\overline{r}\}$$
(26)

$$c_{i\overline{r}}^{1} + \xi_{i\overline{r}}^{1} < \lambda_{i\overline{r}}^{2} \le c_{i\overline{r}}^{2} + \max_{\{S_{\overline{r}}^{5} | S_{\overline{r}}^{5} \subseteq S^{5}, |S_{\overline{r}}^{5}| \le \Gamma_{\overline{r}}\}} \sum_{(j,k) \in S_{\overline{r}}^{5}} h_{jk\overline{r}}$$

$$(27)$$

Hence,

$$c_{ir}^{1} + \max_{\{S_{r}^{4}|S_{r}^{4} \subseteq S^{4}, |S_{r}^{4}| \le \Gamma_{r}\}} \sum_{(j,k) \in S_{r}^{4}} h_{jkr} \le c_{ir}^{2} + \max_{\{S_{r}^{5}|S_{r}^{5} \subseteq S^{5}, |S_{r}^{5}| \le \Gamma_{r}\}} \sum_{(i,j) \in S_{r}^{5}} h_{jkr} \quad \forall r \in R \setminus \{\overline{r}\}$$
(28)

$$c_{i\overline{r}}^{1} + \max_{\left\{S_{\overline{r}}^{4}|S_{\overline{r}}^{4}\subseteq S^{4},|S_{\overline{r}}^{4}|\leq\Gamma_{\overline{r}}\right\}} \sum_{(j,k)\in S_{\overline{r}}^{4}} h_{jk\overline{r}} < c_{i\overline{r}}^{2} + \max_{\left\{S_{\overline{r}}^{5}|S_{\overline{r}}^{5}\subseteq S^{5},|S_{\overline{r}}^{5}|\leq\Gamma_{\overline{r}}\right\}} \sum_{(i,j)\in S_{\overline{r}}^{5}} h_{jk\overline{r}}$$
(29)

Moreover, as the nominal consumption of resource $r \in R$ on path 3 is $c_{dr}^4 - c_{ir}^1$, which equals $c_{dr}^5 - c_{ir}^2$, adding $c_{dr}^4 - c_{ir}^1$ and $c_{dr}^5 - c_{ir}^2$ to the left and right hand sides of inequalities (28) and (29) results in

$$c_{dr}^{4} + \max_{\{S_{r}^{4}|S_{r}^{4}\subseteq S^{4}, |S_{r}^{4}|\leq\Gamma_{r}\}} \sum_{(j,k)\in S_{r}^{4}} h_{jkr} = \lambda_{dr}^{4} \leq c_{dr}^{5} + \max_{\{S_{r}^{5}|S_{r}^{5}\subseteq S^{5}, |S_{r}^{5}|\leq\Gamma_{r}\}} \sum_{(j,k)\in S_{r}^{5}} h_{jkr} = \lambda_{dr}^{5} \quad \forall r \in R \setminus \{\bar{r}\}$$

$$(30)$$

$$c_{d\bar{r}}^{4} + \max_{\left\{S_{\bar{\tau}}^{4}|S_{\bar{\tau}}^{4} \subseteq S^{4}, |S_{\bar{\tau}}^{4}| \le \Gamma_{\bar{\tau}}\right\}} \sum_{(j,k) \in S_{\bar{\tau}}^{4}} h_{jk\bar{\tau}} = \lambda_{d\bar{\tau}}^{4} < c_{d\bar{\tau}}^{5} + \max_{\left\{S_{\bar{\tau}}^{5}|S_{\bar{\tau}}^{5} \subseteq S^{5}, |S_{\bar{\tau}}^{5}| \le \Gamma_{\bar{\tau}}\right\}} \sum_{(j,k) \in S_{\bar{\tau}}^{5}} h_{jk\bar{\tau}} = \lambda_{d\bar{\tau}}^{5}$$
(31)

Hence $\Lambda_d^4 < \Lambda_d^5$. As path 3 can be any path from *i* to *d*, C_i^1 dominates C_i^2 .

The dominance rule in Theorem 1 says that partial path p_1 dominates partial p_2 if it consumes less or equally of every resource $r \in R$, and strictly less for at least one resource, where p_1 's consumption includes the highest Γ_r arc deviations up to the destination, while that of p_2 does not. For the instance in Figure 2, partial path $\{(1,3)\}$ does not dominate partial path $\{(1,2), (2,3)\}$ because by considering the cost deviations 4 and 5 on arcs (1,3) and (3,4), the cost of partial path $\{(1,2), (2,3)\}$ does not dominate $\{(1,3)\}$ for the same reason. The modified label-setting algorithm equipped with the new dominance rule is detailed in Algorithm 2.

The dominance rule by Pessoa et al. [2015] creates $\Gamma_r + 1$ dummy resources for each existing resource and uses a dominance rule as follows. Let $\lambda_{ir}^p(\gamma) = c_{ir}^p + \max_{\{S:|S| \leq \gamma, S \subseteq A^p\}} \sum_{(i,j) \in S} h_{ijr}$ be the

Algorithm 2 MLS: Modified label setting algorithm for robust RCSPP

```
1: Definition:
```

- 2: V_{ir}^p : a sorted vector containing Γ_r variations of resource $r \in R$ in descending order associated with path p ending at node i.
- 3: \mathbf{V}_{i}^{p} : a list consists of V_{ir}^{p} , $r \in R$.
- 4: Initialization:
- 5: UB = the objective value of the best feasible path obtained during preprocessing or from heuristic.
- 6: $p = 0, C_o^p = (0, ..., 0) \in \mathbb{R}^{|R|}$.
- 7: Mark C_{α}^{p} as non-dominated.
- 8: Associate C_i^p with a vector $\mathbf{V}_i^p = \emptyset$.
- 9: for all $r \in R$ do
- $\mathbf{V}_{i}^{p} \leftarrow \mathbf{V}_{i}^{p} \bigcup \{V_{ir}^{p}\}, \text{ where } V_{ir}^{p} = [0, ..., 0] \in \mathbb{R}^{\Gamma_{r}}.$ 10:
- 11: end for
- 12: $P_o \leftarrow \{C_o^p\}, Unprocessed \leftarrow \{C_o^p\}.$
- 13: for all $i \in N \setminus \{o\}$ do
- $P_i \leftarrow \{(\infty, B_2, ..., B_{|R|})\}.$ 14:
- 15: end for
- 16: while $Unprocessed \neq \emptyset$ do
- Extract $C_i^{\bar{p}} \in Unprocessed$. 17:
- if $C_i^{\bar{p}}$ is not dominated then 18:

```
for all j \in W(i) do
19:
```

```
p = p + 1.
20:
```

```
Create a vector \mathbf{V}_{i}^{p} = \{V_{1r}^{\bar{p}}, ..., V_{i|R|}^{\bar{p}}\}.
21:
```

```
22:
```

- $C_j^p = Robust_REF(C_i^{\bar{p}}, j, \mathbf{V}_j^p).$ if $Robust_Feasible(C_j^p, \mathbf{V}_j^p)$ indicates C_j^p is feasible, then 23:
 - if Robust_Dominance $(C_j^p, P_j, \mathbf{V}_j^p)$ indicates C_j^p is not dominated, then

```
Mark C_i^p as non-dominated.
25:
```

```
P_j \leftarrow P_j \cup \{C_j^p\}.
26:
```

```
Unprocessed \leftarrow Unprocessed \bigcup \{C_i^p\}.
```

```
end if
28:
```

```
end if
29:
```

```
end for
30:
```

24:

27:

```
31:
       end if
```

```
Mark C_i^{\bar{p}} as processed.
32:
```

```
Unprocessed \leftarrow Unprocessed \setminus \{C_i^{\bar{p}}\}.
33:
```

34: end while

1:	function $Robust_REF(C_i^{\bar{p}}, j, \mathbf{V}_i^p)$
2:	Create C_i^p .
3:	for all $r \in R$ do
4:	$c_{jr}^p = c_{ir}^{\bar{p}} + t_{ijr}.$
5:	for all $g \in V_{jr}^p$ do
6:	$\mathbf{if} \ h_{ijr} > g \ \mathbf{then}$
7:	$V_{jr}^p \leftarrow V_{jr}^p \bigcup \{h_{ijr}\}.$
8:	$\mathbf{i}\mathbf{f} V_{jr}^p > \Gamma_r \mathbf{then}$
9:	Find the minimum element g_{min} in V_{ir}^p .
10:	$V_{jr}^p \leftarrow V_{jr}^p \setminus \{g_{min}\}.$
11:	end if
12:	Break.
13:	end if
14:	end for
15:	end for
16:	Return C_j^p .
17:	end function

1:	function Robust_Feasible (C_i^p, \mathbf{V}_i^p)
2:	$var = sum of all elements in V_{i1}^p$.
3:	if $c_{i1}^p + var \geq UB$ then
4:	Return false.
5:	end if
6:	for all $r \in R \setminus \{1\}$ do
7:	$var = sum of all elements in V_{ir}^p$
8:	if $c_{ir}^p + var > B_r$ then
9:	Return false.
10:	end if
11:	end for
12:	Return true.
13:	end function

1:	function Robust_Dominance($C_i^p, \mathbf{V}_i^p, P_i$)
2:	for all $C_i^{\overline{p}} \in P_i$ do
3:	$\mathbf{if} C_i^{\bar{p}} + \Xi_i^{\bar{p}} < \Lambda_i^p \mathbf{then}$
4:	Mark C_i^p as dominated.
5:	Return false.
6:	$\mathbf{else} \mathbf{if} C^p_i + \Xi^p_i < \Lambda^{ar{p}}_i \mathbf{then}$
7:	Mark $C_i^{\bar{p}}$ as dominated.
8:	Delete $\mathbf{V}_{\mathbf{i}}^{\mathbf{\bar{p}}}$.
9:	if $C_i^{\bar{p}}$ is processed then
10:	$P_i \leftarrow P_i \setminus \{C_i^{\bar{p}}\}$
11:	end if
12:	end if
13:	end for
14:	Return true.
15:	end function

robust resource consumption r for path p from origin o to node i under a budgeted uncertainty with a protection level of γ , $\tilde{\Lambda}_i^p = [\lambda_{ir}^p(\gamma) : r = 1, ..., |R|, \gamma = 0, ..., \Gamma_r]$ as the resource consumption vector. Given paths p_1 and p_2 both from origin o to node i, if $\lambda_{ir}^1(\gamma) \leq \lambda_{ir}^2(\gamma), r = 1, ..., |R|, \gamma = 0, ..., \Gamma_r$ and at least one inequality is strict, then path p_2 is dominated by path p_1 .

The dominance rules are different and each may identify dominated paths that are missed by the other. To illustrate consider the two graphs in Figures 3 and 4, with |R| = 2, $\Gamma_1 = 0$ and $\Gamma_2 = 2$, i.e. the cost resource is not subject to uncertainty. In both graphs, let path p_1 be $\{(1,2), (2,4)\}$, path p_2 be $\{(1,3), (3,4)\}$, and path p_3 be $\{(4,5)\}$. In Figure 3, according to the dominance rule by Pessoa et al. [2015], the labels at node 4 are $\tilde{\Lambda}_4^1 = [3, 6, 12.5, 13]$ and $\tilde{\Lambda}_4^2 = [3, 9, 12, 15]$. None of the labels is dominated. However, our dominance rule compares $C_4^1 + \Xi_3^1 = [3, 13.5]$ with $\Lambda_4^2 = [3, 15]$, resulting in path p_1 dominating path p_2 . In Figure 4, the dominance rules by Pessoa et al. [2015] compares $\tilde{\Lambda}_4^1 = [3, 6, 11, 14]$ and $\tilde{\Lambda}_4^2 = [3, 9, 12, 15]$, resulting in p_1 dominating p_2 . On the other hand, our dominance rule compares $C_4^1 + \Xi_4^1 = [3, 16]$ with $\Lambda_4^2 = [3, 15]$ and $C_4^2 + \Xi_4^2 = [3, 17]$ with $\Lambda_4^1 = [3, 14]$, and none of the paths is dominated. The example shows that both dominance rules may successfully identify dominated paths that the other fails to.

The complexity of Algorithm 1 is proved to be $O(|A|B^{|R|})$ for deterministic RCSPP when there is at least one resource with positive consumption for all arcs and appropriate data structure is implemented (Desrochers [1988]). The proposed label setting algorithm, Algorithm 2, implements once the label correcting algorithm for each resource. Compared to the label correcting algorithm for SPP, updating the labels takes time $O(\Gamma_r)$ and the label correcting algorithm uses time

Figure 3: A network where dominance rule in Theorem 1 identifies path p_1 dominating path p_2 .

Figure 4: A network where dominance rule of Pessoa et al. [2015] identifies path p_1 dominating path p_2 .

 $O(\sum_{r\in R} \Gamma_r(|A||N|))$. Algorithm 2 differs from Algorithm 1 in updating a sorted vector V_{jr}^p in function $Robust_REF(C_j^p, \mathbf{V}_j^p)$ for each resource r = 1, ..., |R|. Updating V_{jr}^p takes time $O(\Gamma_r)$. Therefore, Algorithm 2 runs in time $O((1 + \sum_{r\in R} \Gamma_r)|A|B^{|R|})$. When R = 1, Algorithm 2 time is $O(\Gamma|A|B)$ while that of Pessoa et al. [2015] is $O(\Gamma|A|B^{\Gamma+1})$.

4. Numerical testing

In this section, we report on extensive numerical testing to compare the modified label-setting algorithm (**MLS**), i.e. Algorithm 2, with the solution of the MIP reformulation [P-MIP] directly as a linear mixed integer program, and the sequential algorithm. Before any of the approaches is used, we first reduce the problem using the graph reduction algorithm of Section 2.1. Then, each of the three approaches is used to solve the reduced instances. We also compare (**MLS**) to the algorithm of Pessoa et al. [2015] denoted by (**PPGP**). All algorithms are coded in C++, and MIP and LP models are solved using CPLEX 12.6.1. Testing is carried out on a workstation with Xeon processor and 8GB RAM.

We perform testing using two datasets. The first set consists of 60 random instances, denoted

by LG, based on 24 instances from Beasley and Christofides [1989], denoted by BC as shown in Table 1. For example, LG instances 7, 13, 19 and 25 are based on BC instance 5. BC instances 1-4, 9-12, 17-20 have one resource, while instances 5-8, 13-6, 21-24 have 10 resources, in addition to cost. BC instances 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 are generated and 22 using the scheme of Handler and Zang [1980]. This scheme is designed such that the optimal path has a low ranking when the unconstrained paths are ordered from lowest cost to highest cost. Specifically, the nodes in these instances are randomly generated on a square. The cost on arc (i, j) is an integer based on the Euclidean distance between nodes i and j. Resource consumption on an arc is determined by multiplying the reciprocal of arc cost by a uniformly generated random variable. As a result, resource consumption is inversely related to arc cost. In BC instances 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23 and 24, both cost and resource consumption are uniformly generated integers in [0, 5]. Arc (i, j) is determined by randomly generating i from [1, |N|] and j from $[i + 1, \min(|N|, i + |N|/4)]$.

R - 1	1	1	10	2	3	4	10
	BC	$\mathbf{L}\mathbf{G}$	BC		\mathbf{L}	G	
	1	1	5	7	13	19	25
	2	2	6	8	14	20	26
	3	31	7	37	43	49	55
	4	32	8	38	44	50	56
	9	3	13	9	15	21	27
	10	4	14	10	16	22	28
	11	33	15	39	45	51	57
	12	34	16	40	46	52	58
	17	5	21	11	17	23	29
	18	6	22	12	18	24	30
	19	35	23	41	47	53	59
	20	36	24	42	48	54	60

Table 1: Relationship between **BC** instances and **LG** instances.

In our tests, **LG** instances with 2, 3 and 4 resources are obtained from **BC** instances with 10 resources where the first 2, 3 and 4 resources are considered.

The second set of instances is based on the 210 instances from Santos et al. [2007] with a maximum of 40000 nodes, 800000 arcs and 1 resource. The testing on these instances focuses on comparing the solution time of solving the MIP reformulation and the modified label-setting algorithm.

In both datasets, the deviation h_{ijr} in cost and resource consumption is an integer generated in the interval $[0, t_{ijr}]$ following a uniform distribution. The protection level is varied between 2 and 5 resulting in a total of 840 instances. We report on the effect of graph reduction on the size of the instances and on the quality of the initial lower and upper bounds. Then, we compare the three solution approaches of robust RCSPP.

4.1 Effects of graph reduction

Table 2 summarizes the results of the graph reduction algorithm. Average results are reported and grouped according to resource consumption. Specifically, instances with resource consumption inversely related to cost are denoted as *Inverse*, and instances with uniformly generated resource consumption are denoted as *Uniform*. Avg_A% denotes the average percentage of arcs remaining after graph reduction. Avg_UBG% refers to the average gap calculated as $100 * \frac{(UB-LB)}{LB}$ where UB and LB are the upper and lower bounds obtained during the graph reduction. Avg_OPG% refers to the average gap calculated as $100 * \frac{Opt-LB}{LB}$ where Opt refers to the optimal objective value obtained after solving the instance by the modified label-setting algorithm. The graph reduction runs in less than 0.0005 seconds in all instances, so individual times are not reported. When resource consumption is inversely related to cost, the number of arcs of the reduced graph is 10.85% of the original graph. Reduction is less significant for uniform resource consumption with about 72% of the arcs remaining in the reduced graph.

The quality of the lower and upper bounds show similar trends. The average gap between optimal objective value and LB is 91.87% of LB and the average gap between UB and LB is 107.02% of LB for *Inverse* instances. On the other hand, the average gaps for *Uniform* instances are 181.88% and 327.60%.

These statistics suggest that **Uniform** instances have more dense networks and may be more difficult to solve. Because the performance of Lagrangian based reduction depends on the quality of the Lagrangian multipliers and the UB, we expect that having tight *LB* and *UB* tends to result in a smaller network after reduction. This is shown by the positive correlation between **Avg_A%** and **Avg_UBG%**. A single implementation of resource based reduction under protection level Γ removes at least as many vertices and arcs as it does under $\Gamma - 1$. This is because H_r increases when Γ increases. As a result, the right hand sides of inequalities (16) and (17) become more restricting. However, when Γ increases, Lagrangian cost based reduction may be stronger or weaker depending on the upper bound, H_r and μ_r . In Table 3, **Avg_Res%** and **Avg_Lag%** report the average percentage of arcs removed by resource based reduction and Lagrangian cost based reduction, respectively. The additional number of arcs removed from $\Gamma = 2$ to $\Gamma = 3$ is higher under the Lagrangian based reduction. The percentages are stable for higher values of Γ . This is because $\hat{\Gamma}_r = \min\{l, \Gamma_r\}.$

Inverse	$Avg_UBG\%$	Avg_OPG%	Avg_A%
$\Gamma = 2$	80.93	80.75	5.26
$\Gamma = 3$	114.26	91.98	12.63
$\Gamma = 4$	116.26	97.18	12.75
$\Gamma = 5$	116.63	97.55	12.76
Average	107.02	91.87	10.85
Uniform			
$\Gamma = 2$	230.75	137.77	62.56
$\Gamma = 3$	344.03	201.52	74.38
$\Gamma = 4$	367.80	192.79	75.38
$\Gamma = 5$	367.80	195.45	75.46
Average	327.60	181.88	71.94

Table 2: Summary results on graph reduction procedure.

Table 3: Percentage of arcs removed by resource based reduction and Lagrangian cost based reduction.

	Inv	erse	Unit	form
	$Avg_Res\%$	Avg_Lag%	$Avg_Res\%$	Avg_Lag%
$\Gamma = 2$	52.66	42.09	10.52	26.92
$\Gamma = 3$	53.07	34.31	9.99	15.63
$\Gamma = 4$	53.08	34.17	9.96	14.67
$\Gamma = 5$	53.08	34.16	9.96	14.58

4.2 Comparison of solution approaches for robust RCSPP

For the first dataset, Tables 5 to 9 report on the size of the original graph given by the number of nodes |N| and number of arcs |A|, the number of resources |R| - 1, the lower and upper bounds and the relative gap after graph reduction, the clock time used by the sequential algorithm, by CPLEX on the original graph (**OG**) with default optimality tolerance and on the reduced graph (**RG**) under three optimality tolerances ep1 = 0.05%, ep2 = 0.01% and ep3 = 0.001%, and the modified label setting algorithm, and the optimal objective value (**Opt**). Tables 6 to 9 report on detailed statistics on all 60 instances with protection levels 2 to 5, respectively, and Table 5 gives average results. The best average solution time under the three optimality tolerances is presented in Table 5 under column **RG**. As the underlying network is relatively small, the computational time used by the label correcting algorithm is negligible and is not reported.

Both the modified label-setting algorithm and CPLEX successfully solved all feasible instances, and determined that the rest are infeasible. The sequential algorithm fails to solve instances 25-30 and 55-60 for $\Gamma = 2, 3$. For instances with up to four resources, it used 64.39 seconds and 343.42 seconds which is 487 and 1431 times slower than the modified label-setting algorithm. Since the sequential algorithm is dominated for $\Gamma = 2, 3$ and instances become more difficult for $\Gamma = 4, 5$, we omitted the comparison with the sequential algorithm for the rest of the testing. Note that the sequential algorithm solves a set of independent problems which could benefit from parallel implementation. The modified label-setting algorithm achieves significantly smaller computational times than CPLEX. Times vary between 0.001 and 0.522 with an average 0.02. The modified label-setting algorithm is on average 160 times faster than the best time achieved by CPLEX under all optimality tolerances. Moreover, a smaller optimality tolerance does not always result in larger time because CPLEX may develop different branching trees under different optimality tolerances. Looking at the average times for increasing Γ , there is no evidence that instances become harder with higher Γ both for modified label-setting algorithm and CPLEX. On the other hand, graph reduction reduces time of CPLEX by about 50%.

While instance 54 is infeasible in the original data, the other infeasible instances are infeasible because of the robust term. For all infeasible instances in Tables 6 to 9, we increased the resource capacities and rerun the testing. In this testing the default optimality tolerance is used by CPLEX. Table 11 reports on these instances and confirms the findings.

The results in Table 5 suggest again that **Uniform** instances are more difficult to solve than **Inverse** instances. The modified label-setting algorithm solves **Inverse** instances in an average of 0.0004 seconds which is about 76 times faster than the average time used to solve **Uniform** instances. The average times used by CPLEX on reduced graph are 0.144 seconds and 7.777 seconds for **Inverse** and **Uniform** instances, respectively. Again, the size of the network after graph reduction is an important factor affecting the difficulty of the instances.

We compare (MLS) and (PPGP) on the first dataset without applying graph reduction and without cost uncertainty in the objective function. Table 10 shows the resulting computational time for both approaches. While the times for both algorithms are very small, less than 0.02 seconds in most instances, PPGP seems to be faster on these instances.

For the 210 large instances, Table 4 reports on the average times used by modified label correcting algorithm MLCA, MLS, and CPLEX on the reduced graph with optimality tolerance 0.05%. For CPLEX we report both the time until an optimal solution is first detected (Incum) and the total time (RG_ep1). As the network becomes larger, the time consumed by the modified label correcting algorithm dominates the entire solution process. It consumes an average of 194.63 seconds before MLS starts, while MLS only uses an average of 0.20 seconds. On the other hand, CPLEX consumes

an average of 1329.96 seconds while the optimal solution is detected in an average of 1052.87 seconds. The last column gives the ratio $\frac{\text{MLCA}+\text{MLS}}{\text{RG}_{-\text{epl}}}$. On average, CPLEX uses 9.5 times more than the total time used by MLCA and MLS.

	MICA	MIG	CPI	LEX	RG
	MLCA	MLS	Incum	RG_ep1	MLCA+MLS
$\Gamma = 2$	51.474	0.078	722.289	898.607	17.431
$\Gamma = 3$	129.440	0.166	1045.055	1260.740	9.727
$\Gamma = 4$	233.714	0.227	1235.319	1462.152	6.250
$\Gamma = 5$	363.921	0.322	1208.822	1698.321	4.663

Table 4: Average computational time for large instances.

5. Conclusion

In this paper, we address the robust resource constrained shortest path problem where the cost and resource consumption parameters on an arc are defined by intervals and a protection level is prespecified for each random parameter. We extend the resource based and Lagrangian relaxation based graph reduction techniques for the resource constrained shortest path problem to the robust case. The results show that graph reduction helps to reduce the overall solution time significantly. A new dominance rule is developed and used within a label setting algorithm to solve the robust problem. The new dominance rule is theoretically different from that of Pessoa et al. [2015] as each rule is able to identify dominated partial paths that the other fails to. Numerical testing shows that the modified label setting algorithm based on the new dominance rule dominates the direct solution of an equivalent MIP reformulation and the sequential algorithm, but slightly inferior to the label setting algorithm based on the dominance rule proposed by Pessoa et al. [2015].

References

- Agra, A., Christiansen, M., Figueiredo, R., Hvattum, L. M., Poss, M., and Requejo, C. The robust vehicle routing problem with time windows. *Computers & Operations Research*, 40(3):856–866, 2013.
- Alvarez Miranda, E., Ljubić, I., and Toth, P. A note on the bertsimas & sim algorithm for robust combinatorial optimization problems. 4OR, 11(4):349–360, 2013. ISSN 1619-4500.
- Ball, M. *Network routing*. Handbooks in operations research and management science. Elsevier, 1995.
- Beasley, J. E. and Christofides, N. An algorithm for the resource constrained shortest path problem. *Networks*, 19(4):379–394, 1989.
- Ben-Tal, A. and Nemirovski, A. Robust convex optimization. Mathematics of Operations Research, 23(4):769–805, 1998.
- Ben-Tal, A. and Nemirovski, A. Robust solutions of uncertain linear programs. Operations Research Letters, 25(1):1–13, 1999.
- Ben-Tal, A. and Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain data. *Mathematical Programming*, 88(3):411–424, 2000.
- Ben-Tal, A., Ghaoui, L. E., and Nemirovski, A. Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, 2009.
- Bertsimas, D. and Sim, M. Robust discrete optimization and network flows. *Mathematical Pro*gramming, 98(1-3):49–71, 2003.
- Bertsimas, D. and Sim, M. The price of robustness. *Operations Research*, 52(1):35–53, 2004.
- Bertsimas, D., Brown, D., and Caramanis, C. Theory and applications of robust optimization. SIAM Review, 53(3):464–501, 2011.
- Borndörfer, R., Grötschel, M., and Löbel, A. Scheduling duties by adaptive column generation, 2001.
- Catanzaro, D., Labbé, M., and Salazar-Neumann, M. Reduction approaches for robust shortest path problems. *Comput. Oper. Res.*, 38(11):1610–1619, 2011.

				Cp	lex	
		R - 1	MLS	OG	RG	Algorithm 6
		1	0.000	0.412	0.028	0.475
		2	0.000	1.776	0.419	3.216
		3	0.000	2 508	0.052	52 585
	Inverse	4	0.000	6 580	0.002	456.052
		10	0.000	15 520	0.030 0.017	400.002
		Average	0.000	5 350	0.017	128 082
$\Gamma = 2$		Average	0.000	0.519	0.110	0.014
		1	0.013	1.147	0.097	0.014
		2	0.002	1.147	0.240	0.022
	Uniform	3	0.014	2.298	1.021	0.400
		4	0.034	3.349	1.987	2.339
		10	0.094	34.812	30.908	0.005
		Average	0.032	8.424	7.031	0.695
Av	verage		0.016	6.891	3.571	64.389
		1	0.000	0.603	0.120	0.957
		2	0.001	1.349	0.182	6.231
	Inverse	3	0.001	2.510	0.115	122.837
	Inverse	4	0.001	7.153	0.170	2614.169
		10	0.001	16.633	0.078	
Гэ		Average	0.001	5.650	0.133	686.048
1 = 3		1	0.026	1.025	0.772	0.015
		2	0.009	1.296	0.554	0.021
	TT .C	3	0.029	5.204	2.668	0.863
	Uniform	4	0.053	9.624	5.801	2.238
		10	0.024	41.386	29.076	
		Average	0.028	11.707	7.774	0.784
Aτ	erage	iiiiiago	0.014	8.678	3.953	343,416
	orage	1	0.001	0.586	0.115	0101110
		2	0.000	1 605	0.364	
		3	0.001	2 768	0.185	
	Inverse	4	0.001	2.100	0.100	
		10	0.001	18 764	0.211 0.076	
		Avorago	0.001	6 3/8	0.010	
$\Gamma = 4$		Average	0.001	0.940	0.190	
		1	0.028	1 500	0.004	
		2	0.010	1.589	0.580	
	Uniform	3	0.053	9.023	3.991	
		4	0.064	15.729	10.291	
		10	0.017	40.021	26.928	
		Average	0.034	13.435	8.495	
Av	verage		0.017	9.892	4.342	
		1	0.000	0.823	0.089	
		2	0.001	3.377	0.226	
	Inverse	3	0.000	3.242	0.135	
	mverse	4	0.001	7.536	0.185	
		10	0.000	16.758	0.071	
$\Gamma - \Xi$		Average	0.000	6.347	0.141	
I = 0		1	0.028	1.387	0.821	
		2	0.016	1.985	0.546	
	TT :C	3	0.053	7.739	5.442	
	Uniform	4	0.062	14.260	7.925	
		10	0.019	40.139	24.308	
		Average	0.036	13.102	7.808	
Аъ	verage		0.018	9.724	3.975	
			0.010	··· - ·	5.5.0	

Table 5: Summary of computational time.

	Original graph					Reduced graph						CPLEX						
	:				1 AZ	1.41	D	- L = =07	τD	UD	C	MLS	00	DC an1	LEX DC2	DC2	Algorithm 6	Opt
	1 Instance	100	055	h - 1	12	10	6 01	Lag 70	122	191	26.00	0	0.995	0.015	0.002	0.002	0.000	191
	2	100	955	1	7	19	7 33	91.10	140	165	10 74	0	0.225	0.013	0.002	0.002	0.009	165
	3	200	2040	1	7	7	99.66	0.00	420	-	-	0	0.210	0.001	0.000	0.000	0.005	-
	4	200	2040	1	7	7	99.66	0.00	420	_	-	0	0.478	0.000	0.000	0.000	0.004	-
	5	500	4858	1	184	396	0.60	91.25	488.571	1061	117.16	0.001	1.287	0.234	0.280	0.234	1.839	937
	6	500	4858	1	55	81	0.89	97.45	654	977	49.39	0	1.157	0.016	0.015	0.016	0.988	977
	7	100	990	2	6	6	1.31	98.08	91	104	14.29	0	0.304	0.001	0.016	0.001	0.009	104
	8	100	990	2	62	184	4.24	77.17	89	182	104.49	0	0.538	0.125	0.140	0.125	6.538	159
	9	200	2080	2	10	13	25.43	73.94	271	385	42.07	0	0.609	0.016	0.001	0.015	0.016	385
	10	200	2080	2	195	1269	38.99	0.00	267.971	-	-	0.002	1.188	1.185	1.373	1.217	9.19	566
	11	500	4847	2	55	79	87.79	10.58	863	1878	117.61	0	3.247	0.031	0.015	0.032	1.514	1513
	12	500	4847	2	46	63	95.52	3.18	867	2194	153.06	0	2.810	0.016	0.016	0.015	2.03	2194
	13	100	990	3	6	6	1.52	97.88	91	104	14.29	0	0.250	0.015	0.002	0.002	0.014	104
	14	100	990	3	62	182	4.34	77.27	89	182	104.49	0	0.520	0.141	0.140	0.140	225.431	159
Inverse	15	200	2080	3	86	198	73.46	17.02	268	844	214.93	0.001	2.431	0.172	0.172	0.171	31.488	666
	16	200	2080	3	41	67	82.21	14.57	510	758	48.63	0	2.091	0.015	0.016	0.015	17.043	758
	17	500	4847	3	54	77	87.93	10.48	863	1878	117.61	0	3.518	0.016	0.016	0.031	14.308	1513
	18	100	4847	3	46	63 11	95.75	2.95	807	2194	153.06	0	0.022	0.015	0.015	0.015	27.226	2194
	19	100	990	4	9	20	4.55	90.57	105	127	23.30	0	0.570	0.010	0.005	0.015	0.290 407.645	127
	20	200	2080	4	68	138	4.00 79.31	91.02 91.06	450	844	87.56	0	3 539	0.010	0.015	0.032	407.045	740
	21	200	2000	4	41	68	89.86	6.88	509	028	82 32	0	3 563	0.031	0.031	0.031	256 119	815
	22	500	4847	4	47	63	90.06	8.64	863	1878	117.61	0	11 010	0.031	0.001	0.031	268 447	1878
	24	500	4847	4	102	161	96.68	0.00	858	-	-	0.001	22.994	0.078	0.078	0.078	1344.3	3599
	25	100	990	10	9	11	7.68	91.21	103	127	23.30	0	0.696	0.016	0.016	0.015	-	127
	26	100	990	10	9	11	14.04	84.85	108	159	47.22	0	0.773	0.017	0.031	0.032	-	159
	27	200	2080	10	16	19	99.09	0.00	393.98	-	-	0	4.050	0.001	0.001	0.001	-	-
	28	200	2080	10	0	0	100.00	0.00	-10000	-	-	0	2.652	0	0	0	-	-
	29	500	4847	10	40	53	91.79	7.12	863	1878	117.61	0	24.355	0.046	0.032	0.031	-	1878
	30	500	4847	10	71	109	97.75	0.00	858	-	-	0.001	36.110	0.094	0.078	0.078	-	-
	31	100	959	1	97	845	2.92	8.97	1.5	12	700.00	0.013	0.253	0.187	0.328	0.203	0.01	5
	32	100	959	1	88	541	3.65	39.94	2	10	400.00	0.016	0.906	0.203	0.172	0.187	0.008	7
	33	200	1971	1	98	216	2.94	86.10	6	8	33.33	0.001	0.317	0.031	0.031	0.047	0.008	8
	34	200	1971	1	194	1915	2.84	0.00	6	39	550.00 166.67	0.021	0.621	0.359	0.312	0.358	0.011	8
		500	4978	1	407	4401 9700	0.99	4.40	6	10	100.07	0.025	1.209	0.009	0.827	0.842	0.027	0
	30 27	100	4978	1	445 80	2199	0.41	6 11	2 275	14	155.55	0.015	0.467	0.790	0.811	0.812	0.022	9
	38	100	999	2	89	601	10.41	20.11	3.625	10	175.86	0.005	0.407	0.290	0.312	0.312	0.031	9 10
	39	200	1960	2	94	183	11.63	79.03	5.25	9	71.43	0.002	0.410	0.400	0.020	0.021	0.015	9
	40	200	1960	2	184	1767	9.85	0.00	5.75	-	-	0.002	1.030	0.982	0.983	0.905	0.037	12
	41	500	4868	2	59	96	8.38	89.65	4	6	50.00	0	3.178	0.016	0.031	0.016	0.016	6
	42	500	4868	2	49	83	11.65	86.65	4	6	50.00	0	1.793	0.016	0.015	0.016	0.016	6
	43	100	999	3	90	889	11.01	0.00	3.8202	35	816.18	0.027	1.336	1.185	1.170	1.202	0.074	10
	44	100	999	3	90	878	12.11	0.00	4.52778	-	-	0.015	1.433	1.029	1.030	1.030	0.974	16
Uniform	45	200	1960	3	184	1774	9.49	0.00	5.25	-	-	0.037	2.768	1.810	1.950	1.825	1.116	14
UIIIOIIII	46	200	1960	3	181	1734	11.53	0.00	5.75	-	-	0.007	2.426	1.747	1.747	1.669	0.197	16
	47	500	4868	3	103	178	11.40	84.94	4	7	75.00	0	16.661	0.062	0.047	0.063	0.037	7
	48	500	4868	3	36	49	12.86	86.13	4	7	75.00	0	3.162	0.031	0.016	0.015	0.036	7
	49	100	999	4	90	889	11.01	0.00	3.86654	-	-	0.037	2.602	1.903	1.950	1.872	2.531	14
	50	100	999	4	90	878	12.11	0.00	4.57734	-	-	0.005	1.552	1.311	1.310	1.326	1.841	16
	51	200	1960	4	182	1754	10.51	0.00	5.79245	-	-	0.154	8.471	4.774	4.789	4.852	5.408	18
	52 52	200	1900	4	181	1/18	12.35	0.00	0.70245		75.00	0.007	0.400 0.245	1.320	1.404	1.358	2.205	22
	03 54	500	4808	4	97 36	100	12.78	85.00	4	7	70.00 64.71	0.001	8.340 6.060	0.062	0.047	0.047	1.060	7
	04 55	100	4008	4	00 00	49	16.09	0.00	4.20	1	04.71	0.001	0.009	1.007	0.010	0.010	1.009	(
	56 56	100	999	10	90 80	730	26.02	0.00	5 38910	2	-	0.009	1 500	1.997	2.111	1.045	-	-
	57	200	1960	10	180	1705	13.01	0.00	6 85302	-	-	0.002	11 919	9.282	9.984	9 453	-	-
	58	200	1960	10	177	1618	17.45	0.00	8.99812	-	-	0	8.161	6.505	6.162	6.848	-	-
	59	500	4868	10	469	4559	6.35	0.00	3.49231	-	-	0.522	158.220	115.597	111.977	112.851	-	-
	60	500	4868	10	469	4495	7.66	0.00	4.26087	-	-	0.026	67.346	44.461	43.867	44.882	-	-

Table 6: Detailed results with protection level $\Gamma = 2$.

	Original graph Reduced graph													(15)	Time			
	instance			B = 1	N		Bes%	– Lag%	LB	UB	Gan%	MLS	0G	CP. BG ep1	BG ep2	BG en3	Algorithm 6	Opt
	1	100	955	1	14	20	7.120419	90.78534	136	186	36.76471	0	0.244	0.016	0.015	0.016	0.009	186
	2	100	955	1	100	892	6.596859	0	131	434	231.2977	0	0.326	0.328	0.343	0.327	0.99	203
	3	200	2040	1	7	7	99.65686	0	420	-	-	0	0.190	0.000	0.000	0.000	0.005	-
	4	200	2040	1	7	7	99.65686	0	420	-	-	0	0.196	0.015	0.000	0.000	0.006	-
	5	500	4858	1	244	614	0.679292	86.68176	489.571	1140	132.8569	0.001	1.265	0.343	0.375	0.359	3.654	958
	7	100	4606	2	09	111	0.804555	40.80800	80	210	146.0674	0.001	1.597	0.051	0.010	0.010	15 502	1024
	8	100	990	2	62	184	4.242424	77.17172	89	182	104.4944	0.001	0.253 0.257	0.110	0.187	0.109	5.723	160
	9	200	2080	2	10	13	25.57692	73.79808	272	390	43.38235	Ő	0.483	0.015	0.001	0.016	0.017	390
	10	200	2080	2	195	1269	38.99038	0	267.971	-	-	0.002	1.103	0.796	0.780	0.765	11.482	628
	11	500	4847	2	55	79	87.82752	10.5426	876	1923	119.5205	0	2.857	0.031	0.016	0.015	1.612	1552
	12	500	4847	2	68	103	95.39922	2.475758	872	2447	180.6193	0	3.136	0.016	0.046	0.016	2.962	2447
	13	100	990	3	95	480	1.212121	50.30303	89	219	146.0674	0.001	0.355	0.187	0.234	0.280	413.982	128
	14	200	990 2080	3	102	182 267	4.343434 75.01346	11.27273	89 260	182	104.4944 243.8662	0.001	0.348	0.150	0.172	0.218	191.239 36.072	100 722
Inverse	16	200	2080	3	57	107	85.72115	9.134615	512	951	85.74219	0.001	4.870	0.078	0.078	0.078	31.004	951
	17	500	4847	3	54	77	87.97194	10.43945	881	1923	118.2747	0	3.073	0.016	0.016	0.031	16.992	1552
	18	500	4847	3	67	100	95.66742	2.269445	872	2447	180.6193	0	3.829	0.031	0.016	0.031	47.734	2447
	19	100	990	4	9	11	2.323232	96.56566	103	128	24.27184	0	0.368	0.015	0.003	0.003	3.065	128
	20	100	990	4	40	86	5.858586	85.45455	94.6444	182	92.29875	0	0.595	0.047	0.031	0.047	1938.42	182
	21	200	2080	4	83	185	75.48077	15.625	451	925	105.0998	0.001	3.518	0.202	0.188	0.187	738.652	925
	22	200	2080	4	40 246	70 520	90.24038	0.105709	01Z 858	951	85.74219	0.003	3.242 10.172	0.031	0.031	0.031	305.115 11954-1	951 2462
	23	500	4847	4	102	161	96.67836	0	858	- <u>-</u>		0.003	16.023	0.062	0.062	0.063	1445.66	- 2402
	25	100	990	10	9	11	7.676768	91.21212	103	128	24.27184	0	0.696	0.015	0.015	0.016	-	128
	26	100	990	10	11	16	16.9697	81.41414	108	182	68.51852	0	1.107	0.016	0.031	0.016	-	182
	27	200	2080	10	16	19	99.08654	0	393.98	-	-	0	4.398	0.001	0.001	0.001	-	-
	28	200	2080	10	0	0	100	0	-10000	-	-	0	2.640	0	0	0	-	-
	29	500	4847	10	107	180	92.36641	3.91995	869	2462	183.3142	0.002	54.473	0.375	0.359	0.359	-	2462
	30	500	4847	10	71	109	97.75119	0	000	-	-	0.001	30.481	0.002	0.002	0.078	-	
	31	100	959	1	98	877	2.815433	5.735141	1.5	13	766.6667	0.036	0.910	0.359	0.343	0.343	0.009	7
	32	100	959	1	92	647	3.441084	29.09281	2	11	450	0.021	0.293	0.156	0.172	0.156	0.008	8
	33	200	1971	1	194	1915	2.841197	0	6	42	600	0.04	0.648	0.655	0.655	0.671	0.011	10
	34 25	200	1971	1	194	1915	2.841197	0 959551	6	42	000 199 9999	0.022	0.398	0.343	0.312	0.344	0.01	8
	36	500	4978	1	409	3370	6 347931	2.652551	6	15	150	0.020	1.775	0.889	0.874	2.295	0.033	0
	37	100	9999	2	90	870	10.41041	2.502503	3.375	13	285.1852	0.013	0.524	1.155	1.123	1.155	0.024	10
	38	100	999	2	90	895	10.41041	0	3.625	-	-	0.037	1.452	1.092	1.108	1.061	0.026	13
	39	200	1960	2	94	183	11.63265	79.03061	5.25	9	71.42857	0	0.601	0.046	0.032	0.031	0.014	9
	40	200	1960	2	184	1767	9.846939	0	5.75	-	-	0.002	0.979	1.279	0.936	1.092	0.021	12
	41	500	4868	2	142	279	9.161873	85.10682	3.28571	7	113.0438	0	2.632	0.109	0.109	0.110	0.022	7
	42	000 100	4808	2	49	83	11.04749	80.04749	4 3 8202	30 D	020 880	0.001	1.385	0.016	0.015	0.200	0.016	0 14
	40	100	999	3	90	878	12 11211	0	4 52778	-	-	0.027	1.669	1 295	1 326	1 326	0.978	21
	45	200	1960	3	184	1774	9.489796	ŏ	5.25	-	-	0.03	3.125	2.231	2.138	2.169	1.07	15
Uniform	46	200	1960	3	181	1734	11.53061	0	5.75	-	-	0.018	2.548	2.403	2.434	2.355	0.973	18
	47	500	4868	3	252	658	9.737058	76.7461	3.3125	8	141.5094	0.001	7.613	0.421	0.406	0.437	0.045	8
	48	500	4868	3	469	4553	6.47083	0	3.65625	-	-	0.068	14.951	8.892	8.783	8.814	1.133	17
	49	100	999	4	90	889	11.01101	0	3.86654	-	-	0.02	2.149	2.184	2.199	2.169	1.37	15
	50	100	1060	4	190	878 1754	10 5109	0	4.57734	-	-	0.003	1.388	1.341	1.341 6 474	1.310	1.974	-
	52	200	1960	4	181	1718	12.34694	0	0.79240 6.70245		-	0.103	0.475 6.381	4,181	4,149	0.888 4.196	2.307	-
	53	500	4868	4	238	611	12.18159	75.26705	3.32819	8	140.3709	0.001	9.316	0.578	0.577	0.593	1.011	8
	54	500	4868	4	469	4553	6.47083	0	3.71429	-	-	0.183	32.037	19.999	20.280	19.812	4.51	22
	55	100	999	10	90	839	16.01602	0	4.15904	-	-	0.004	2.046	1.528	1.545	1.451	-	-
	56	100	999	10	89	730	26.92693	0	5.38219	-	-	0.001	2.046	0.858	0.858	0.842	-	-
	57	200	1960	10	180	1705	13.0102	0	6.85392	-	-	0.003	12.564	10.249	10.062	10.187	-	-
	58 50	200	1960	10	177	1618	6 247576	0	8.99812	-	-	U 0.196	11.214	0.045 01.40 [±]	7.207	0.002	-	-
	59 60	500	4868	10	469 469	4495	7.662284	0	5.49251 4.26087		-	0.120	78,528	91.490 65.115	91.270 65.333	50.215 65.099	-	-
	00	000	1000	10	405	1100	1.002204	v	1.20001			0.01	70.040	50.110	35.000	00.000		

Table 7: Detailed results with protection level $\Gamma = 3$.

													т	· · · · ·			
	Origin	al gra	ph	Redu	ced gr	aph							1	Ime CP	LEX		Ont
	instance	N	A	R - 1	N	A	Res%	Lag%	LB	UB	Gap%	MLS	OG	RG_ep1	RG_ep2	RG_ep3	Opt
	1	100	955	1	14	20	7.120419	90.78534	136	186	36.76471	0	0.215	0.002	0.015	0.002	186
	2	100	955	1	100	892	6.596859	0	131	450	243.5115	0.001	0.395	0.312	0.437	0.749	203
	3	200	2040	1	7	7	99.65686	0	420	-	-	0	0.201	0.000	0.000	0.000	-
	4	200	2040	1	7	7	99.65686	0	420	-	-	0	0.186	0.000	0.015	0.000	-
	5	500	4858	1	260	685	0.741046	85.1585	490.571	1160	136.4591	0.001	1.296	0.343	0.343	0.374	959
	5	100	4808	1	90	149	0.988001	95.94483	001	1003	146.0674	0.001	1.221	0.031	0.031	0.031	1003
	8	100	990	2	90 62	400	1.010101	49.69699	89 80	182	140.0074	0	0.255	0.187	0.218	0.187	128
	9	200	2080	2	10	13	25 57692	73 79808	272	390	43 38235	0	0.315	0.004	0.034	0.035	390
	10	200	2080	2	195	1269	38,99038	0	267.971	-		0.002	1.062	1.872	1.903	1.872	636
	11	500	4847	2	55	79	87.86878	10.50134	876	1935	120.8904	0	5.119	0.016	0.015	0.016	1935
	12	500	4847	2	68	103	95.39922	2.475758	872	2454	181.422	0	2.418	0.031	0.016	0.016	2454
	13	100	990	3	95	480	1.212121	50.30303	89	219	146.0674	0.001	0.415	0.702	0.655	0.655	128
	14	100	990	3	62	182	4.343434	77.27273	89	182	104.4944	0	0.528	0.156	0.156	0.156	160
Inverse	15	200	2080	3	104	283	76.10577	10.28846	269	937	248.3271	0.001	1.658	0.219	0.218	0.218	727
	16	200	2080	3	57	107	85.72115	9.134615	515	954	85.24272	0.001	6.536	0.047	0.047	0.047	954
	10	500	4847	3 9	04 67	100	88.0132 05.66749	10.39818	881	1935	119.0308	0.001	3.795	0.040	0.031	0.015	1930
	10	100	4847	3	07	1100	95.00742	2.209440	103	2404	24 27184	0.001	0.345	0.031	0.031	0.010	2404 198
	20	100	990	4	40	86	5 858586	85 45455	94 6444	182	92 29875	0	0.545	0.047	0.047	0.015	182
	21	200	2080	4	84	190	75.67308	15.19231	453	937	106.8433	0.001	5.742	0.312	0.297	0.296	937
	22	200	2080	4	46	76	90.24038	6.105769	515	954	85.24272	0	3.101	0.031	0.031	0.031	954
	23	500	4847	4	246	529	89.08603	0	858	-	-	0.003	17.982	0.796	0.812	0.827	2565
	24	500	4847	4	102	161	96.67836	0	858	-	-	0	20.391	0.062	0.063	0.078	-
	25	100	990	10	9	11	7.676768	91.21212	103	128	24.27184	0	0.678	0.015	0.016	0.016	128
	26	100	990	10	11	16	16.9697	81.41414	108	182	68.51852	0	1.122	0.032	0.031	0.031	182
	27	200	2080	10	16	19	99.08654	0	393.98	-	-	0	2.892	0.001	0.015	0.001	-
	28	200	2080	10	0	0	100	0	-	-	-	0	2.678	0	0	0	-
	29	500	4847	10	71	201	92.24202	3.010481	800	2909	190.1894	0.002	42.088	0.343	0.343	0.359	2909
	50	500	4047	10	11	103	31.10113	0	000			0.001	42.000	0.005	0.005	0.002	
-	31	100	959	1	98	899	2.919708	3.336809	1.5	14	833.3333	0.034	0.242	0.358	0.484	0.328	7
	32	100	959	1	92	713	3.336809	22.31491	2	12	500	0.026	0.311	0.344	0.296	0.343	9
	33	200	1971	1	194	1915	2.841197	0	6	44	633.3333	0.037	0.535	0.453	0.453	0.468	10
	34	200	1971	1	194	1915	2.841197	0	6	44	633.3333	0.028	0.394	0.358	0.374	0.374	8
	35	500	4978	1	469	4539	5.966252	2.852551	6	17	183.3333	0.027	2.133	1.747	1.731	1.731	12
	36	500	4978	1	460	3846	6.368019	16.37204	6	16	166.6667	0.013	1.277	0.889	0.889	0.858	9
	37	100	999	2	90	870	10.41041	2.502503	3.375	13	285.1852	0.014	0.743	1.107	1.107	1.092	11
	38	200	1060	2	90	895	10.41041	U 70.02061	3.625 5.95	-	-	0.033	1.529	0.718	0.671	0.608	13
		200	1960	2	94 184	1767	0.846030	19.03001	0.20 5.75	9	11.42607	0.001	0.585	1.155	1.170	1 185	9 19
	40	500	4868	2	280	827	8 052588	74 95892	3.28571	8	143 4786	0.007	3 606	0.515	0.499	0.546	8
	42	500	4868	2	49	83	11.64749	86.64749	4	6	50	0	1.823	0.016	0.016	0.015	6
	43	100	999	3	90	889	11.01101	0	3.8202	42	999.4189	0.024	2.027	0.952	0.936	0.951	14
	44	100	999	3	90	878	12.11211	0	4.52778	-	-	0.029	1.925	1.685	1.685	1.669	-
Uniform	45	200	1960	3	184	1774	9.489796	0	5.25	-	-	0.027	3.654	2.449	2.730	2.465	15
Cimorini	46	200	1960	3	181	1734	11.53061	0	5.75	-	-	0.017	3.783	3.042	3.073	3.183	19
	47	500	4868	3	252	658	9.737058	76.7461	3.3125	8	141.5094	0.001	5.109	0.468	0.640	0.499	8
	48	500	4868	3	469	4553	6.47083	0	3.65625	-	-	0.222	37.642	15.350	15.444	15.351	20
	49	100	999	4	90	889	11.01101	0	3.86654	-	-	0.017	2.449	1.966	2.200	1.794	15
	50	200	1060	4	190	1754	10.5102	0	4.07704	-	-	0.005	1.005	1.497 5.170	1.498 5.911	5 164	
	52	200	1960	4	181	1718	12.34694	0	6.70245	-	-	0.103	5.743	4.275	4.212	4.306	- 20
	53	500	4868	4	238	611	12.18159	75.26705	3.32819	8	140.3709	0.001	6.289	0.578	0.577	0.578	8
	54	500	4868	4	469	4553	6.47083	0	3.71429	-	-	0.253	67.678	49.062	48.860	48.408	-
	55	100	999	10	90	839	16.01602	0	4.15904	-	-	0.005	3.250	1.638	1.622	1.653	-
	56	100	999	10	89	730	26.92693	0	5.38219	-	-	0.001	0.843	0.593	0.546	0.546	-
	57	200	1960	10	180	1705	13.0102	0	6.85392	-	-	0.004	13.348	8.144	7.800	7.597	-
	58	200	1960	10	177	1618	17.44898	0	8.99812	-	-	0	3.837	2.465	2.449	2.324	-
	59	500	4868	10	469	4559	6.347576	0	3.49231	-	-	0.085	145.019	91.339	92.805	92.103	-
	60	500	4868	10	469	4495	7.662284	0	4.26087	-	-	0.009	73.827	58.812	58.750	57.346	-

Table 8: Detailed results with protection level $\Gamma = 4$.

Instance NI Id Id Id Res Lage LB UT Gap MLS OC BGC, PD RC, PQ RC, PQ RC, PQ RC, PQ <		Origin	Original graph Reduced graph								CPLEX (
1 1 100 655 7 111 150 857 871 0 0.999 0.015 0.002 186 3 200 2040 1 7 7 96,5566 0 420 - 0 0.233 0.0215 0.033 0.218 0.234 0.000 - 4 200 2400 1 7 7 99,5566 0 420 - 0 0.233 0.033 0.218 0.234 0.000 - 0.000 0.000 0.000 0.000 0.000 0.001 1.016 0.033 0.137 0.131 0.0131 0.0131 0.0131 0.0131 0.013 0.011 1.016 0.000 0.011 0.000 0.013 0.013 0.011 1.016 0.013 0.011 1.016 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013		instance	N	A	B - 1	N	A	Res%	Lag%	LB	UB	Gan%	MLS	OG	BG en1	BG ep2	RG en3	Opt
2 100 955 1 100 852 0.0332 223 0.033 0.035 0.000 - - 0 0.228 0.000 0.005 0.000 - 4 200 2040 1 7 7 99.66666 0 420 - 0 0.228 0.000 0.000 0.000 - 0 0.272 0.000 0.001		1	100	955	1	14	20	7.120419	90.78534	136	186	36.76471	0	0.399	0.002	0.015	0.002	186
3 200 2040 1 7 7 90.65686 0 420 0 0.223 0.000 0.000 0 0.224 0.000 0.000 0.000 5 500 4585 1 90 16 90.5586 50.44818 657 100 0.035 0.031 0.011 100 7 100 900 2 02 144 142/2147 17.1717 189 182 104.6074 0 0.338 0.100 0.011 0.011 1016 135 145 116		2	100	955	1	100	892	6.596859	0	131	455	247.3282	ő	0.353	0.218	0.234	0.343	203
4 200 2040 1 7 7 90.6658 0.0 200 0.0000		3	200	2040	1	7	7	99.65686	Ő	420			Ő	0.263	0.000	0.015	0.000	
5 500 6858 1 200 685 0.741106 83.1585 490.71 1100 36.4591 0.01 1.775 0.280 0.281 0.0181 0.018 0.0181 0.018 0.0181 0.018 0.0181 0.018 0.0183 0.018 0.0183 0.018 0.0183 0.018 0.0183 0.018 0.0183 0.018 0.0183 0.011 0.003 0.011 0.018 0.0183 0.011 0.018 0.0183 0.011 0.012 0.011 0.012 0.014 0.015 0.011 0.012		4	200	2040	1	7	7	99.65686	Õ	420	-	-	Ő	0.272	0.000	0.000	0.000	-
6 500 4858 1 90 140 0989 95 146 07 0.031 0		5	500	4858	1	260	685	0.741046	85.1585	490.571	1160	136.4591	0.001	1.775	0.280	0.281	0.297	959
7 100 900 2 62 64 1.177 89 20 14 60.071 0 0.333 0.188 0.187 1.28 9 200 2080 2 10 13 25.77808 72.7808 272 200 43.3325 0 0.001<		6	500	4858	1	90	149	0.988061	95.94483	657	1063	61.79604	0	1.876	0.031	0.031	0.016	1063
8 100 990 2 2 12 12 14/444 0 0.33 0.100 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.010 0.010 0.016 0.001 0.015 0.016 0.016 0.016 0.016 0.015 0.013 0.015 0.015 0.013 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.015 0.013 0.016 0.013 0.016 0.013 0.016 0.011 0.016 0.011 0.016 0.011 0.013 0.014 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.		7	100	990	2	95	486	1.010101	49.89899	89	219	146.0674	0	0.393	0.188	0.187	0.187	128
9 200 2080 2 10 13 25.7992 73.7866 272 200 43.8235 0 0.0735 0.01 4.00 1.035 63.66 11 500 4477 2 65 70 87.8678 10.5134 876 1955 120.801 0.06 0.01 0.660 0.01 0.600 0.031 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.01 0.01 0.060 0.01 0.050 0.01 0.050 0.01 0.050 0.01 0.050 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		8	100	990	2	62	184	4.242424	77.17172	89	182	104.4944	0	0.383	0.109	0.093	0.110	160
10 200 2080 2 550 4877 2 - 0.002 7.22 1.014 1.108 1.358 636 12 500 4847 2 68 103 950.292 2.77578 872 2454 18.1422 0.001 0.545 0.234 0.230 0.230 12.1212 50.0348 757 11.41 0.001 0.545 0.234 0.033 0.032 24.54 14 100 900 3 0.2 128 2.434343 77.2723 89 122 10.010 0.068 0.339 0.339 77.7 16 200 288 3 15 19.3488 0.014 0.016 0.011 0.013 0.031 0.331 0.332 0.331 0.332 0.334 0.331 0.334 0.331 0.332 0.331 0.332 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.331 0.3		9	200	2080	2	10	13	25.57692	73.79808	272	390	43.38235	0	0.673	0.001	0.016	0.001	390
11 500 48.47 2 55 79 87.88775 0.5013 87.6 120.304 0 62.20 0.015 0.016 0.015 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.012 100 0.022 124 10 900 3 67 10.317 10.28464 269 937 248.3271 0.001 0.046 0.047 0.041 17 500 48.47 3 67 77 88.012 10.318415 514 10.3 10.44 10.016 0.016 0.031 128 10 09 4 40 65 58.586 5.54.55 9.44 122.271 0 3.566 0.016 0.031 10.231 124 21 100 90 14 10.275708 51.19231 <td></td> <td>10</td> <td>200</td> <td>2080</td> <td>2</td> <td>195</td> <td>1269</td> <td>38.99038</td> <td>0</td> <td>267.971</td> <td>-</td> <td>-</td> <td>0.002</td> <td>1.725</td> <td>1.014</td> <td>1.108</td> <td>1.358</td> <td>636</td>		10	200	2080	2	195	1269	38.99038	0	267.971	-	-	0.002	1.725	1.014	1.108	1.358	636
12 500 4847 2 668 1.30 95.092 2.4757.8 872 2451 181.422 0.001 0.856 0.015 0.031 0.025 228 14 100 900 3 662 182 3.43143 77.2723 89 182 104.4944 0.001 3.056 0.359 1.359 1.458 1.24212 10 1.066 0.161 0.0131 1.252 10 900 4 91 2.3258586 S.54555 91.444 182 2.2414 0 0.544 0.0015 0.016 0.016 1.242 1.0244 0.023 1.243 1.222 1.00 0.011 1.02 2.269 0.556 0.13 1.282 1.22712 0.033 1.041 1.243		11	500	4847	2	55	79	87.86878	10.50134	876	1935	120.8904	0	6.220	0.031	0.015	0.016	1935
13 100 990 3 95 480 1.21212 6.0303 89 219 146.0674 0.001 0.545 0.234 0.203 0.2172 120 Inverse 15 200 2080 3 57 10077 10.28846 209 937 248.3271 0.001 0.046 0.047 0.047 0.041 0.147 10.017 11.01 0.016 0.031 1935 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.018 10.0		12	500	4847	2	68	103	95.39922	2.475758	872	2454	181.422	0.001	10.866	0.015	0.031	0.032	2454
Inverse 14 100 990 3 66 12 12 10.4444 0 0.405 0.140 0.156 0.172 160 16 200 2080 3 17 107 85.7215 9.13415 515 954 85.24272 0.01 3.068 0.047 0.041 0.0417 0.0417 0.0417 0.011 0.015 0.0116 0.0011 0.013 0.011 0.0116 0.0011 0.0116 0.0011 0.011<		13	100	990	3	95	480	1.212121	50.30303	89	219	146.0674	0.001	0.545	0.234	0.203	0.250	128
Inverse 15 200 208 3 57 10.1 233 61.057 10.2384 209 93 248.221 0.01 3.068 0.359 0.359 0.359 0.359 0.359 0.359 0.359 10.359 10.358 10.3688 0.468 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.041 0.053 0.031 0.053 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.24 0.234		14	100	990	3	62	182	4.343434	77.27273	89	182	104.4944	0	0.405	0.140	0.156	0.172	160
Initials 16 200 208 3 57 107 85,72115 9.13415 515 954 85,24272 0 5.886 0.046 0.047 0.047 95.148 18 500 4447 3 547 100 95.66764 2.269445 872 2454 181.422 0 0.511 0.0616 0.031 123 20 100 900 4 40 85 55.558 94.6444 182 22.2784 0 0.511 0.063 0.062 0.031 1224 200 2080 4 46 76 90.2403 61.15769 515 954 85.24272 0.0366 0.047 0.031 0.032 954 24 500 4947 4 102 16 96.0753 0 858 - - 0.031 1.0031 0.032 182 24 500 497 10 11 16 16.9607 91.21212 <t< td=""><td>Invorco</td><td>15</td><td>200</td><td>2080</td><td>3</td><td>104</td><td>283</td><td>76.10577</td><td>10.28846</td><td>269</td><td>937</td><td>248.3271</td><td>0.001</td><td>3.068</td><td>0.359</td><td>0.359</td><td>0.359</td><td>727</td></t<>	Invorco	15	200	2080	3	104	283	76.10577	10.28846	269	937	248.3271	0.001	3.068	0.359	0.359	0.359	727
17 500 4847 3 54 77 88.0132 10.39818 881 1935 119.6368 0. 4.724 0.016 0.016 0.031 1254 19 100 990 4 9 11 2.32322 95.65666 103 128 24.27184 0 0.544 0.015 0.016 0.002 1.031 1225 200 2080 4 48 190 7.67308 15.15231 453 937 106.8433 0.001 5.924 0.234 0.24 0.24 0.24 0.24 0.24 0.24 0.24	mverse	16	200	2080	3	57	107	85.72115	9.134615	515	954	85.24272	0	5.886	0.046	0.047	0.047	954
18 500 447 3 67 100 990 4 9 100 990 4 9 100 990 4 9 100 11 23222 96.566 103 128 24271184 0 0.5111 0.063 0.002 0.0311 1232 200 2080 4 44 67 69 20.2083 61.0750 515 94 85.2272 0 3.566 0.047 0.031 0.032 95.4 2100 990 10 91 7.66786 0 858 - - 0.003 17.404 0.062 0.066 0.066 2.063 2.062 2.06 1.000 0.01 1.1 16 16.6667 81.4141 108 182 68.5180 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032		17	500	4847	3	54	77	88.0132	10.39818	881	1935	119.6368	0	4.724	0.016	0.016	0.031	1935
19 100 990 4 9 11 2.32322 95.6566 103 128 24.27184 0 0.544 0.015 0.015 0.006 0.003 182 21 200 2080 4 84 190 7.67308 15.19231 453 937 106.8433 0.001 5.924 0.234 0.246 0.343 0.344 2603 0.447 1.0 1.0 0.10 0 - 0.0 0.246 0.344 0.244 0.24 0.246<		18	500	4847	3	67	100	95.66742	2.269445	872	2454	181.422	0	4.826	0.016	0.031	0.031	2454
20 100 990 4 40 85 585566 58,45455 94,6444 182 22,257 0 0.511 0.063 0.062 0.031 0.324 937 22 200 2080 4 46 76 90,24038 6.105769 515 954 85.82 - 0.001 17,404 0.780 0.792 201 25 100 990 10 911 7.676768 91.2121 133 228 24.2714 0 0.694 0.060 0.066 0.066 200 2080 10 16 19 99.06664 0 393.98 - - 0 3.458 0.001 0.001 0.001 - - 0 3.458 0.001 0.001 - - 0 3.458 0.001 0.001 - - 0 3.458 0.001 0.001 0.001 - - 0 2.558 0.047 0.124 0.312 7.31		19	100	990	4	9	11	2.323232	96.56566	103	128	24.27184	0	0.544	0.015	0.016	0.003	128
21 200 2080 4 84 190 75.67308 15.19231 453 937 106.4330 0.001 5.856 0.07 0.031 0.032 954 23 500 4847 4 216 566 6785 0 858 - - 0.001 17.404 0.076 0.079 0.719 2603 25 100 990 10 11 16 16.5967 81.4141 108 128 24.2184 0 0.064 0.006 0.0062 128 27 200 2080 10 16 19 99.08674 0 303.38 - - 0 3.458 0.001 0.001 0.002 128 200 2080 10 0 10 0 -10000 - 0 2.0558 0.047 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312		20	100	990	4	40	86	5.858586	85.45455	94.6444	182	92.29875	0	0.511	0.063	0.062	0.031	182
22 200 2080 4 46 76 90.2038 6.105709 515 954 85.8 - - 0.0031 17.440 0.780 0.795 0.749 2603 24 500 4847 4 102 16 96.67836 0 858 - - 0.001 17.340 0.780 0.722 - 0.063 0.062 - - 0.001 1.730 0.780 0.072 1.833 0.031 0.031 0.031 0.032 1.82 - 0 3.458 0.001 0.001 - 0.000 - 0 3.468 0.031 0.031 0.032 1.82 28 200 2080 10 0 0 0.000 - 0 3.308 - 0 3.468 0.344 0.313 0.312 7.3 29 500 4877 10 77 109 97.75119 0 853.3333 0.032 0.502 0.		21	200	2080	4	84	190	75.67308	15.19231	453	937	106.8433	0.001	5.892	0.234	0.234	0.234	937
23 500 4847 4 246 502 89.08603 0 858 - - 0.001 17.300 0.062 0.063 0.01 - 0.02 0.500 0.031<		22	200	2080	4	46	76	90.24038	6.105769	515	954	85.24272	0	3.566	0.047	0.031	0.032	954
24 500 4847 4 102 161 96.67836 0 888 - - 0.001 17.300 0.0062 0.0066 0.001 0.002 0.003 0.031 0.032 0.031 0.032 </td <td></td> <td>23</td> <td>500</td> <td>4847</td> <td>4</td> <td>246</td> <td>529</td> <td>89.08603</td> <td>0</td> <td>858</td> <td>-</td> <td>-</td> <td>0.003</td> <td>17.404</td> <td>0.780</td> <td>0.795</td> <td>0.749</td> <td>2603</td>		23	500	4847	4	246	529	89.08603	0	858	-	-	0.003	17.404	0.780	0.795	0.749	2603
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		24	500	4847	4	102	161	96.67836	0	858	-	-	0.001	17.300	0.062	0.063	0.062	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25	100	990	10	9	11	7.676768	91.21212	103	128	24.27184	0	0.694	0.006	0.006	0.006	128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	100	990	10	11	10	16.9697	81.41414	202.00	182	68.51852	0	1.363	0.031	0.031	0.032	182
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		27	200	2080	10	10	19	99.08054	0	393.98	-	-	0	3.458	0.001	0.001	0.001	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		28	200	2080	10	100	0	100	0	-10000	-	-	0 000	3.000	0 244	0 242	0 244	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		29	500	4847	10	71	208	92.24202	3.400001	800	2603	200.5774	0.002	02.408	0.344	0.343	0.344	2603
$ Uniform \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		30	300	4047	10	/1	109	91.10119	0	000	-	-	0	29.000	0.047	0.124	0.003	-
32 100 959 1 92 713 3.336809 22.31491 2 12 500 0.029 0.530 0.234 0.281 0.234 9 33 200 1971 1 194 1915 2.841197 0 6 45 660.6667 0.037 0.637 0.300 0.390 0.390 10 34 200 1971 1 194 1915 2.841197 0 6 46 66.6667 0.017 2.809 1.848 1.699 1.700 10 37 100 999 2 90 895 1.041041 0 3.625 - - 0.066 1.853 1.263 1.264 1.248 13 39 200 1960 2 94 183 11.63265 79.03061 5.25 - - 0.066 1.853 1.263 1.264 1.248 13 41 500 468 2 280 <td></td> <td>31</td> <td>100</td> <td>959</td> <td>1</td> <td>98</td> <td>899</td> <td>2.919708</td> <td>3.336809</td> <td>1.5</td> <td>14</td> <td>833.3333</td> <td>0.032</td> <td>0.502</td> <td>0.374</td> <td>0.312</td> <td>0.312</td> <td>7</td>		31	100	959	1	98	899	2.919708	3.336809	1.5	14	833.3333	0.032	0.502	0.374	0.312	0.312	7
Uniform 1 100 101 101 0 6 45 650 0.033 0.033 0.390 0.374 8 35 500 4978 1 460 3846 6.36619 16.7204 6 16 166.6667 0.017 2.809 1.681 1.669 1.700 102 37 100 999 2 90 895 10.41041 0 3.625 - 0.007 0.930 0.032 0.031 0.032 1.033 1.033 1.033 1.033 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 <td< td=""><td></td><td>32</td><td>100</td><td>959</td><td>1</td><td>92</td><td>713</td><td>3 336809</td><td>22 31491</td><td>2</td><td>12</td><td>500</td><td>0.029</td><td>0.530</td><td>0.234</td><td>0.281</td><td>0.234</td><td>9</td></td<>		32	100	959	1	92	713	3 336809	22 31491	2	12	500	0.029	0.530	0.234	0.281	0.234	9
No. No. <td></td> <td>33</td> <td>200</td> <td>1971</td> <td>1</td> <td>194</td> <td>1915</td> <td>2.841197</td> <td>0</td> <td>6</td> <td>45</td> <td>650</td> <td>0.037</td> <td>0.637</td> <td>0.390</td> <td>0.390</td> <td>0.390</td> <td>10</td>		33	200	1971	1	194	1915	2.841197	0	6	45	650	0.037	0.637	0.390	0.390	0.390	10
Matrix Solu 4978 1 469 453 5.966252 2.85251 6 17 183.333 0.026 3.304 1.919 1.918 1.918 1.21 36 500 4978 1 460 3846 6.368019 16.3724 6 16 166.6667 0.017 2.895 0.670 0.702 0.686 11 37 100 999 2 90 895 10.4104 0 3.675 3 174.074 0.026 1.853 1.263 1.264 1.248 1.3 39 200 1960 2 94 183 1.63265 79.03061 5.25 9 71.42857 0 0.932 0.032 0.031 0.032 0.033 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.734 1.41 0.43 100 9.99 3 90 89 1.041101 0 3.222 1.3		34	200	1971	1	194	1915	2.841197	0	6	46	666.6667	0.029	0.538	0.374	0.390	0.374	8
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		35	500	4978	1	469	4539	5.966252	2.852551	6	17	183.3333	0.026	3.304	1.919	1.918	1.918	12
37 100 999 2 90 895 10.41041 0 3.375 43 1174.074 0.022 1.385 0.670 0.702 0.686 11 38 100 999 2 90 895 10.41041 0 3.255 - - 0.066 1.853 1.263 1.264 1.248 13 39 200 1960 2 144 1507 9.846939 0 5.75 - - 0.007 0.992 0.733 <td></td> <td>36</td> <td>500</td> <td>4978</td> <td>1</td> <td>460</td> <td>3846</td> <td>6.368019</td> <td>16.37204</td> <td>6</td> <td>16</td> <td>166.6667</td> <td>0.017</td> <td>2.809</td> <td>1.684</td> <td>1.669</td> <td>1.700</td> <td>10</td>		36	500	4978	1	460	3846	6.368019	16.37204	6	16	166.6667	0.017	2.809	1.684	1.669	1.700	10
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		37	100	999	2	90	895	10.41041	0	3.375	43	1174.074	0.022	1.385	0.670	0.702	0.686	11
39 200 1960 2 94 18.3 11.63265 79.03061 5.25 9 71.42857 0 0.030 0.032 0.031 0.032 10.33 12 40 200 1960 2 184 1767 9.846939 0 5.75 - - 0.07 0.992 0.733 0.733 0.733 12 41 500 4868 2 280 827 8.05288 74.95892 3.2817 8.0 1.434786 0.01 4.403 0.06 0.016		38	100	999	2	90	895	10.41041	0	3.625	-	-	0.066	1.853	1.263	1.264	1.248	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		39	200	1960	2	94	183	11.63265	79.03061	5.25	9	71.42857	0	0.930	0.032	0.031	0.032	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	200	1960	2	184	1767	9.846939	0	5.75	-	-	0.007	0.992	0.733	0.733	0.733	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		41	500	4868	2	280	827	8.052588	74.95892	3.28571	8	143.4786	0.001	4.493	0.577	0.562	0.562	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		42	500	4868	2	49	83	11.64749	86.64749	4	6	50	0	2.256	0.016	0.016	0.015	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		43	100	999	3	90	889	11.01101	0	3.8202	43	1025.596	0.027	2.067	1.544	1.482	1.467	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		44	100	999	3	90	878	12.11211	0	4.52778	-	-	0.03	3.232	1.825	1.747	1.747	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Uniform	45	200	1960	3	184	1774	9.489796	0	5.25	-	-	0.03	6.420	2.745	2.761	2.762	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 mior m	46	200	1960	3	181	1734	11.53061	0	5.75	-	-	0.019	3.613	3.495	3.542	3.400	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		47	500	4868	3	252	658	9.737058	76.7461	3.3125	8	141.5094	0.001	5.570	0.499	0.515	0.546	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		48	500	4868	3	469	4553	6.47083	0	3.65625	-	-	0.209	25.529	22.667	22.604	23.244	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		49	100	999	4	90	889	11.01101	0	3.86654	-	-	0.017	2.714	1.888	2.044	1.919	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	100	999	4	90	878	12.11211	0	4.57734	-	-	0.003	2.523	0.531	0.562	0.561	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		51	200	1960	4	182	1754	10.5102	0	5.79245	-	-	0.103	6.801	5.694	5.772	5.913	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		52	200	1960	4	181	1718	12.34694	0	6.70245	-	-	0.006	7.468	4.165	4.087	4.088	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		53	500	4868	4	238	611	12.18159	75.26705	3.32819	8	140.3709	0.001	6.598	0.608	0.515	0.499	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		54	500	4868	4	469	4553	0.47083	U	3.71429	-	-	0.241	59.453	34.663	35.256	34.617	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55 56	100	999	10	90	839	16.01602	0	4.15904	-	-	0.005	2.139	1.716	1.888	1.716	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		00 57	200	1020	10	190	1705	20.92093	0	0.38219 6.85209	-	-	0.001	0.991	0.530	0.530	0.030	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		07 50	200 200	1900	10	177	1619	15.0102	0	0.00392	-	-	0.004	10.101	9.047	9.134	9.013 9.511	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50	200 500	1900	10	460	4550	6 347576	0	3 40221	-	-	0.001	151.075	2.011	2.202	2.011	-
		60	500	4868	10	469	4495	7.662284	0	4.26087	-	-	0.01	66.974	45.256	45.163	44.928	-

Table 9: Detailed results with protection level $\Gamma = 5$.

		0-	ringl -	ant		F - 9			Γ. 2			Γ. /			Γ. Ε	
	Instance	N	$\frac{\text{ginal gr}}{ A }$	aph R	Ont	$\Gamma = 2$ MLS	PPGP	Ont	$\Gamma = 3$ MLS	PPGP	Ont	$\Gamma = 4$ MLS	PPGP	Ont	$\Gamma = 5$ MLS	PPGP
	1	100	955	1	131	0.001	0	131	0.001	0	131	0.001	0	131	0.002	0
	2	100	955	1	131	0.001	õ	142	0.001	õ	142	0.001	õ	142	0.002	Ő
	3	100	959	1	4	0.024	0.001	5	0.019	0.002	5	0.024	0.002	5	0.027	0.001
	4	100	959	1	5	0.04	0.001	6	0.033	0.002	6	0.021	0.002	6	0.025	0.001
	5	200	2040	1	100000	0.002	0	100000	0.003	0	100000	0.004	0	100000	0.003	0
	6	200	2040	1	100000	0.002	0	100000	0.002	0	100000	0.004	0	100000	0.004	0.001
	7	200	1971	1	6	0.005	0.003	7	0.013	0.004	7	0.017	0.003	7	0.023	0.004
	8	200	1971	1	7	0.014	0.003	7	0.013	0.004	7	0.075	0.003	7	0.044	0.004
	9	500	4858	1	652	0.02	0.003	690	0.026	0.003	690	0.04	0.002	690	0.041	0.003
	10	500	4008	1	8	0.017	0.005	8	0.027	0.002	8	0.052	0.002	8	0.04	0.005
	12	500	4978	1	8	0.007	0.007	8	0.003	0.000	8	0.029	0.007	9	0.017	0.008
	13	100	990	2	89	0.0012	0.001	100	0.0012	0.011	100	0.0023	0.000	100	0.003	0.000
	14	100	990	2	100	0.001	Ő	100	0.003	ŏ	100	0.002	0.001	100	0.004	Ő
TT :C	15	100	999	2	6	0.003	0.005	7	0.008	0.005	7	0.009	0.006	7	0.008	0.006
Uniform	16	100	999	2	7	0.004	0.004	8	0.004	0.004	8	0.005	0.004	10	0.008	0.004
	17	200	2080	2	339	0.004	0.001	339	0.006	0.001	339	0.009	0.001	339	0.009	0.001
	18	200	2080	2	426	0.007	0.001	426	0.01	0.001	426	0.008	0.001	426	0.01	0.001
	19	200	1960	2	7	0.004	0.004	7	0.008	0.004	7	0.013	0.005	7	0.015	0.005
	20	200	1960	2	8	0.004	0.003	8	0.006	0.003	8	0.007	0.003	8	0.009	0.003
	21	500	4847	2	1335	0.024	0	1335	0.034	0.001	1477	0.038	0.001	1477	0.065	0
	22	500	4847	2	1477	0.01	0	1477	0.034	0	1477	0.065	0.001	1477	0.074	0.001
	23	500	4808	2	4	0.009	0.019	4	0.008	0.017	9 E	0.044	0.017	э Е	0.031	0.019
	24	300	4808	2	0 80	0.004	0.012	0 100	0.009	0.011	9 100	0.014	0.01	0 100	0.005	0.011
	20	100	990	3	100	0.002	0	100	0.003	0.001	100	0.004	0	100	0.005	0.001
	27	100	999	3	7	0.002	0.005	10	0.011	0.001	10	0.012	0.004	10	0.013	0.004
	28	100	999	3	11	0.006	0.002	16	0.004	0.001	100000	0.006	0.001	100000	0.006	0.001
	29	200	2080	3	552	0.006	0.001	552	0.013	0.001	552	0.013	0	552	0.012	0
	30	200	2080	3	552	0.008	0.001	651	0.014	0	651	0.011	0	651	0.014	0
	31	200	1960	3	10	0.01	0.006	10	0.012	0.006	11	0.013	0.005	12	0.021	0.005
	32	200	1960	3	12	0.006	0.002	13	0.006	0.002	13	0.007	0.001	13	0.008	0.001
	33	500	4847	3	1335	0.029	0.001	1335	0.054	0	1477	0.062	0	1477	0.106	0.001
	34	500	4847	3	1477	0.016	0	1477	0.037	0.001	1477	0.092	0	1477	0.11	0
	35	500	4868	3	5	0.063	0.032	5	0.055	0.025	5	0.03	0.025	5	0.093	0.025
	30	500	4868	3	5	0.014	0.013	11	0.013	0.01	17	0.043	0.01	17	0.048	0.01
	37	100	990	4	100	0.002	0	110	0.003	0.001	110	0.005	0	100	0.007	0
	30	100	990	4	1100	0.003	0.002	119	0.004	0.002	119	0.000	0 002	119	0.007	0 002
	40	100	999	4	11	0.002	0.002	100000	0.000	0.002	100000	0.003	0.002	100000	0.005	0.002
	41	200	2080	4	642	0.002	0.001	651	0.018	0.001	651	0.004	0	651	0.005	0.001
	42	200	2080	4	569	0.011	0	651	0.017	0	651	0.013	ŏ	651	0.019	Ő
	43	200	1960	4	14	0.018	0.006	14	0.018	0.004	15	0.021	0.004	15	0.025	0.004
	44	200	1960	4	15	0.004	0.001	100000	0.005	0.001	100000	0.006	0.001	100000	0.009	0.001
Uniform	45	500	4847	4	1477	0.039	0	1797	0.081	0.001	1797	0.084	0	1797	0.124	0
Omform	46	500	4847	4	2936	0.023	0	100000	0.062	0	100000	0.127	0	100000	0.143	0
	47	500	4868	4	5	0.016	0.04	5	0.035	0.027	5	0.023	0.022	5	0.077	0.025
	48	500	4868	4	5	0.021	0.013	15	0.027	0.009	100000	0.047	0.008	100000	0.053	0.008
	49	100	990	10	100	0.006	0	100	0.008	0.001	100	0.014	0	100	0.018	0
	50	100	990	10	100	0.006	0	119	0.011	0	119	0.014	0	119	0.018	0.001
	51	100	999	10	100000	0.003	0.001	100000	0.005	0.001	100000	0.008	0	100000	0.01	0
	02 52	200	3080	10	100000	0.003	0	100000	0.005	0.001	100000	0.007	0	100000	0.011	0.001
	ээ 54	200	2080	10	100000	0.022	0	100000	0.030	0.001	100000	0.04	0	100000	0.044	0
	54 55	200	2000 1960	10	100000	0.024	0.001	100000	0.034	0	100000	0.055	0.001	100000	0.044	0.001
	56	200	1960	10	100000	0.006	0.001	100000	0.009	0	100000	0.014	0.001	100000	0.021	0.001
	57	500	4847	10	1477	0.101	0.001	1797	0.189	0.001	1797	0.21	0.001	1797	0.274	õ
	58	500	4847	10	100000	0.079	0	100000	0.18	0	100000	0.283	0	100000	0.329	ŏ
	59	500	4868	10	100000	0.046	0.01	100000	0.037	0.006	100000	0.047	0.005	100000	0.064	0.006
	60	500	4868	10	100000	0.019	0.002	100000	0.029	0.003	100000	0.041	0.001	100000	0.057	0.001
					Avg	0.014	0.004	Avg	0.022	0.003	Avg	0.032	0.003	Avg	0.040	0.003
				_												

Table 10: Comparison to label setting algorithm of Pessoa et al. $\left[2015\right]$

			Original graph			Reduced graph						- o -		
				1.41		1.3.71	1.41	T D		G 67	MLS	CPI	JEX	Opt
	instance	0	[N]	A	R - 1			LB	UB	Gap%	0	OG	RG	010
		3	200	2040	1	4	3	292	316	8.22	0	0.099	0.004	316
		4	200	2040	1	4	3	282	329	16.67	0	0.099	0.005	329
	Inverse	27	200	2080	10	11	14	234	303	29.49	0	0.797	0.013	303
		28	200	2080	10	68	166	202	536	165.35	0.001	14.663	0.289	536
		30	500	4847	10	476	2590	611	1895	210.15	0.009	18.45	10.013	1266
$\Gamma = 2$		55	100	999	10	70	188	3	6	100.00	0.001	0.341	0.042	6
		56	100	999	10	45	95	3	5	66.67	0	0.237	0.027	5
	Uniform	57	200	1960	10	183	1711	5	15	200.00	0.003	1.134	0.976	6
	0	58	200	1960	10	184	1795	5	-	-	0.002	1.631	1.368	8
		59	500	4868	10	69	93	3	4	33.33	0	2.013	0.036	4
		60	500	4868	10	58	79	3	4	33.33	0.001	2.325	0.027	4
		3	200	2040	1	4	3	336	336	0.00	0	0.118	0.004	336
		4	200	2040	1	4	3	343	343	0.00	0	0.098	0.001	343
	Invorso	24	500	4847	4	499	4040	611	2447	300.49	0.008	8.355	6.056	1322
	inverse	27	200	2080	10	26	43	202	390	93.07	0	6.905	0.022	390
		28	200	2080	10	68	166	203	537	164.53	0.001	10.866	0.165	537
		30	500	4847	10	499	4036	611	2447	300.49	0.014	82.068	15.519	1322
г 9		50	100	999	4	45	95	3	5	66.67	0	0.118	0.012	5
1 = 3		52	200	1960	4	184	1795	5	35	600.00	0.001	0.494	0.586	8
		55	100	999	10	70	188	3	6	100.00	0	0.231	0.041	6
	TT : C	56	100	999	10	45	95	3	5	66.67	0.001	0.246	0.027	5
	Uniform	57	200	1960	10	184	1751	5	16	220.00	0.003	0.992	1.015	6
		58	200	1960	10	184	1795	5	-	-	0.002	1.598	1.598	8
		59	500	4868	10	69	93	3	4	33.33	0	1.294	0.035	4
		60	500	4868	10	138	243	3	5	66.67	0.003	2.055	0.157	4
		3	200	2040	1	4	3	336	336	0.00	0	0.171	0.001	336
		4	200	2040	1	4	3	343	343	0.00	0	0.103	0.002	343
	_	24	500	4847	4	499	4042	611	2454	301.64	0.008	10.901	8.207	1371
	Inverse	27	200	2080	10	26	43	202	390	93.07	0	8.454	0.022	390
		28	200	2080	10	68	166	203	537	164 53	0.001	16 482	0.19	537
		30	500	4847	10	499	4038	611	2454	301.64	0.014	21 344	16 645	1411
		44	100	999	3	45	95	3	5	66.67	0.011	0.098	0.011	5
		50	100	999	4	45	95	3	5	66.67	õ	0.126	0.014	5
$\Gamma = 4$		52	200	1960	4	184	1795	5	-		0.001	1.013	0.713	8
		54	500	1868	4	147	260	3	5	66 67	0.001	0.601	0.005	4
		55	100	000	10	70	188	3	6	100.00	0.001	0.001	0.035	6
	Uniform	56	100	999	10	00	205	2	27	200.00	0.001	2 0 9 2	1 4 9 9	7
		57	200	1060	10	190	1705	5	21	420.00	0.009	0.977	0.919	6
		50	200	1060	10	194	1795	5	20	420.00	0.004	0.011	11.09	19
		50	200	1900	10	60	02	.) 9	-	-	0.04	1.659	0.026	12
		- 09 - 60	500	4000	10	460	95	3	4	- 00.00 - 011 11	0.001	7.416	2.057	4
		00	200	4000	10	409	4012	320	20	0.00	0.022	0.10	0.001	992
		3	200	2040	1	4	3 2	330 242	330 242	0.00	0	0.12	0.001	330 242
		4	200	2040	1	4	3	343	343	0.00	0 000	0.1	0.001	343
	Inverse	24	000	4847	4	499	4042	011	2454	301.04	0.008	0.477	10.712	1411
$\Gamma = 5$		27	200	2080	10	26	43	202	390	93.07	0	8.56	0.024	390
		28	200	2080	10	68	166	203	537	164.53	0.001	16.379	0.17	537
		30	500	4847	10	499	4038	611	2454	301.64	0.014	20.297	16.473	1411
		44	100	999	3	45	95	3	5	66.67	0	0.113	0.01	5
		50	100	999	4	45	95	3	5	66.67	0.001	0.125	0.012	5
		52	200	1960	4	184	1795	5	-	-	0.002	1.276	1.223	8
		54	500	4868	4	147	260	3	5	66.67	0.001	0.78	0.106	4
	Uniform	55	100	999	10	70	188	3	6	100.00	0	0.251	0.044	6
		56	100	999	10	90	895	3	27	800.00	0.009	2.768	1.363	7
		57	200	1960	10	184	1795	5	26	420.00	0.004	0.931	0.876	6
		58	200	1960	10	184	1795	5	-	-	0.04	8.218	10.999	12
		59	500	4868	10	69	93	3	4	33.33	0.001	1.429	0.037	4
		60	500	4868	10	469	4572	3	28	833.33	0.022	7.435	3.859	4

Table 11: Results on infeasible instances in Tables 6 to 9 with increased resource limits.

- Desrochers, M. An algorithm for the shortest path problem with resource constraints. Technical Report G-88-27, GEARD, Ecole des H.E.C., Montreal, Canada, 1988.
- Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. Chapter 2 time constrained routing and scheduling. In M.O. Ball, C. M., T.L. Magnanti and Nemhauser, G., editors, *Network Routing*, volume 8 of *Handbooks in Operations Research and Management Science*, pages 35–139. Elsevier, 1995.
- Dumitrescu, I. and Boland, N. Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem. *Networks*, 42(3):135–153, 2003.
- Eggenberg, N., Salani, M., and Bierlaire, M. Robust optimization with recovery: application to shortest paths and airline scheduling. In 7th Swiss Transport Research Conference, Sep 2007.
- Gabrel, V., Murat, C., and Wu, L. New models for the robust shortest path problem: complexity, resolution and generalization. *Annals of Operations Research*, 207(1):97–120, 2013.
- Goetzmann, K.-S., Stiller, S., and Telha, C. Optimization over integers with robustness in cost and few constraints. In Solis-Oba, R. and Persiano, G., editors, *Approximation and Online Algorithms*, volume 7164 of *Lecture Notes in Computer Science*, pages 89–101. 2012.
- Gounaris, C. E., Wiesemann, W., and Floudas, C. A. The robust capacitated vehicle routing problem under demand uncertainty. *Operations Research*, 61(3):677–693, 2013.
- Handler, G. and Zang, I. A dual algorithm for the constrained shortest path problem. *Networks*, 10(4):293–309, 1980.
- Hassin, R. Approximation schemes for the restricted shortest path problem. *Mathematics of Operations Research*, 17(1):36–42, 1992.
- Irnich, S. and Desaulniers, G. Shortest path problems with resource constraints. In Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors, *Column Generation*, pages 33–65. Springer US, 2005.
- Irnich, S. Resource extension functions: properties, inversion, and generalization to segments. OR Spectrum, 30(1):113–148, 2008.
- Karasan, O., Pinar, M., and H., Y. The robust shortest path problem with interval data. *Technical Report*, 2001.

- Kelley, J., J. E. The cutting-plane method for solving convex programs. *Journal of the Society for Industrial and Applied Mathematics*, 8(4):703–712, 1960.
- Lorenz, D. H. and Raz, D. A simple efficient approximation scheme for the restricted shortest path problem. *Operations Research Letters*, 28(5):213–219, 2001.
- Lozano, L. and Medaglia, A. L. On an exact method for the constrained shortest path problem. *Computers & Operations Research*, 40(1):378–384, 2013.
- Lu, D. and Gzara, F. The robust crew pairing problem: model and solution methodology. *Journal* of Global Optimization, 62(1):29–54, 2015.
- Mehlhorn, K. and Ziegelmann, M. Resource constrained shortest paths. In Paterson, M., editor, Algorithms - ESA 2000, volume 1879 of Lecture Notes in Computer Science, pages 326–337. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-41004-1.
- Montemanni, R. and Gambardella, L. An exact algorithm for the robust shortest path problem with interval data. *Computers & Operations Research*, 31(10):1667 1680, 2004.
- Pessoa, A. A., Di Puglia Pugliese, L., Guerriero, F., and Poss, M. Robust constrained shortest path problems under budgeted uncertainty. *Networks*, 66(2):98–111, 2015.
- Poss, M. Robust combinatorial optimization with variable cost uncertainty. European Journal of Operational Research, 237(3):836–845, 2014a.
- Poss, M. Robust combinatorial optimization with variable cost uncertainty. *European Journal of Operational Research*, 237(3):836 845, 2014b.
- Pugliese, L. D. P. and Guerriero, F. A survey of resource constrained shortest path problems: Exact solution approaches. *Networks*, 62(3):183–200, 2013.
- Resende, M. The robust shortest path problem with discrete data. *PhD dissertation*, 2015. URL https://estudogeral.sib.uc.pt/handle/10316/28273.
- Ribeiro, C. C. and Minoux, M. A heuristic approach to hard constrained shortest path problems. Discrete Applied Mathematics, 10(2):125 – 137, 1985.

- Santos, L., Coutinho-Rodrigues, J., and Current, J. R. An improved solution algorithm for the constrained shortest path problem. *Transportation Research Part B: Methodological*, 41(7):756 – 771, 2007.
- Soyster, A. L. Convex programming with set-inclusive constraints and applications to inexact linear programming. *Operations Research*, 21(5):1154–1157, 1973.
- Sungur, I., Ordóñez, F., and Dessouky, M. A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty. *IIE Transactions*, 40(5):509–523, 2008.
- Yen, J. Y. Finding the k shortest loopless paths in a network. Management Science, 17(11):712–716, 1971.
- Yu, G. and Yang, J. On the robust shortest path problem. *Comput. Oper. Res.*, 25(6):457–468, 1998.
- Zhu, X. and Wilhelm, W. E. A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation. *Computers & Operations Research*, 39(2):164–178, 2012.

Appendix

A. Algorithms

The content in this appendix includes all the algorithms used in the paper. Moreover, for the robust RCSPP, functions *Robust_REF*, *Robust_Feasible* and *Robust_Dominance* are modifications of *REF*, *Feasible* and *Dominance*, respectively.

Algorithm 3 Resource based reduction

1: for r = 2, ..., |R| do Set $t_{ij1} = t_{ijr}, \forall (i,j) \in A$ 2:Solve the resulting shortest path problem [SPP] using Dijkstra's algorithm 3: 4: for all $i \in N \setminus \{o, d\}$ do if $D_{oi}^r + D_{id}^r > B_r - H_r$ then 5:Remove node i, and its out-going and in-coming arcs. 6: end if 7: Update N and A8: 9: end for for all $(i, j) \in A$, do 10:if $D_{oi}^{r} + t_{ijr} + D_{jd}^{r} > B_{r} - H_{r}$ then 11: Remove arc (i, j)12:end if 13:if node i has no out-going arcs then 14:Remove node i, and its in-coming arcs 15:end if 16:17:if node *j* has no in-coming arcs then 18:Remove node j, and its out-going arcs. end if 19:Update N and A20: end for 21: 22: end for

Algorithm 4 Lagrangian based reduction

1: for all $i \in N \setminus \{o, d\}$ do if $L_{oi}(\mu) + L_{id}(\mu) + H_1 - \sum_{r=2}^{|R|} \mu_r(B_r - H_r) > Z^{UB}$ then 2: Remove vertex i, and its out-going and in-coming arcs. 3: end if 4: Update N and A5: 6: end for 7: for all $(i, j) \in A$ do if $L_{oi}(\mu) + \bar{t}_{ij1} + L_{jd}(\mu) + H_1 - \sum_{r=2}^{|R|} \mu_r(B_r - H_r) > Z^{UB}$ then 8: 9: remove arc (i, j)end if 10: if node *i* has no out-going arcs then 11: Remove node i and its in-coming arcs 12:end if 13:if node *j* has no in-coming arcs then 14:Remove node j and its out-going arcs 15:16:end if Update N and A. 17:18: end for

Algorithm 5 Graph reduction

- 1: while G is reduced **do**
- 2: Implement Algorithm 3:
- 3: any path found in the process is kept for the initiation of Kelley's cutting plane algorithm.
- 4: any path feasible to problem [P] is used to update Z^{UB} ;
- 5: Implement Kelley's cutting plane algorithm to solve the Lagrangian dual problem of [PR3].
- 6: Use the μ_r at the end of Kelley's cutting plane algorithm to calculate the Lagrangian cost for each arc.
- 7: Implement Algorithm 4.
- 8: end while

Algorithm 6 The sequential algorithm

1:	for $h_1^e = h_1^{\Gamma_1},, h_1^{ A +1}$ and $h_1^e \neq h_1^{e+1}, e = \Gamma_1,, A $ do
2:	if current best solution has an arc with a cost greater than h_1^e then
3:	Find arc $(i, j) \in A$ with arc cost deviation greater than h_1^e
4:	Set $t_{ij1} = t_{ij1} + h_{ij1} - h_1^e$
5:	for $r = 2,, R $ do
6:	for $h_r^e = h_r^{\Gamma_r},, h_r^{ A +1}$ and $h_r^e \neq h_r^{e+1}, e = \Gamma_r,, A $ do
7:	Find arc $(i, j) \in A$ with $t_{ijr} > h_r^e$
8:	Set $t_{ijr} = t_{ijr} + t_{ijr} - h_r^e$
9:	$\mathbf{if} r = R \mathbf{then}$
10:	Implement Algorithm 1 and find the optimal path $\overline{\mathbf{y}}$.
11:	if the cost of $\overline{\mathbf{y}}$ is less than current best solution then
12:	Update current best solution.
13:	end if
14:	end if
15:	end for
16:	end for
17:	end if
18:	end for

Algorithm 7 Modified label correcting for \overline{G} with $h_{ijr}, (j,i) \in \overline{A}$ as arc costs

```
1: Definition:
```

- 2: V(ir): a vector of size Γ_r
- 3: f: an element in V(ir), where the first value records the variation, the second and third values in (,) record the corresponding arc.
- 4: arc(f): returns the arc recorded in f.
- 5: var(f): returns the variation recorded in f.
- 6: M: a priority queue of nodes with top node i having the maximum $hmin_i$.
- 7: Initialization:
- 8: set h_{ijr} as the arc cost for each $(j, i) \in \overline{A}$

```
9: for all i \in N do
```

- 10: create a vector V(ir).
- 11: set all elements in V(i) to $f = \{0, (0, 0)\}$

12: end for

- 13: create a queue M with no duplicated elements
- 14: enqueue d onto M

```
15: while M is not empty do
```

```
j \leftarrow M.top()
16:
        for all (j,i) \in \overline{A} do
17:
            for all f' \in V(jr) \bigcup \{h_{ijr}, (j, i)\} do
18:
                 for all f \in V(ir) do
19:
                     if arc(f') is arc(f) then
20:
                         break
21:
                     else if var(f') > var(f) then
22:
23:
                         insert f' before f
                         pop out the end element of V(ir)
24:
                         enqueue i onto M
25:
                         break
26:
27:
                     end if
                 end for
28:
            end for
29:
        end for
30:
31: end while
32: Return \Delta_{ir} = \{(j, i) | h_{ijr} > 0, \{h_{ijr}, (j, i)\} \in V(ir)\}, \forall i \in N.
```