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Abstract. Approximation algorithms like sum-up rounding that allow to

compute integer-valued approximations of the continuous controls in a weak∗

sense have attracted interest recently. They allow to approximate (optimal)

feasible solutions of continuous relaxations of mixed-integer control problems

(MIOCPs) with integer controls arbitrarily close. To this end, they use com-
pactness properties of the underlying state equation, a feature that is tied to

the infinite-dimensional vantage point. In this work, we consider a class of

MIOCPs that are constrained by pointwise mixed state-control constraints.
We show that a continuous relaxation that involves so-called vanishing con-

straints has beneficial properties for the described approximation methodol-

ogy. Moreover, we complete recent work on a variant of the sum-up rounding
algorithm for this problem class. In particular, we prove that the observed

infeasibility of the produced integer-valued controls vanishes in an L∞-sense
with respect to the considered relaxation. Moreover, we improve the bound

on the control approximation error to a value that is asymptotically tight.

1. Introduction

Mixed-Integer Optimal Control Problems (MIOCPs) are a powerful tool to model
many real-world problems, see e.g. [19] for a library of MIOCP problems. Inter-
est in this problem class dates back to the 1980s, e.g. [3], and a recent survey of
mathematical approaches and algorithms for solving MIOCPs may be found in [18].
Following the direct approach to optimal control when solving MIOCPs leads to
mixed-integer nonlinear optimization problems (MINLPs), which may fall into the
class of NP-hard problems [6]. Relaxations also often turn out to be nonconvex
due to the nonlinearity of the differential equation. The comparative study [21]
showed that MINLP approaches to MIOCP are generally not computationally at-
tractive at the moment. Different authors have proposed to use optimal-control
based branch&bound methods [7], or variable time transformation methods [5, 8].
Indirect approaches that make use of so-called hybrid maximum principles are pro-
posed by e.g. [23] but are challenging to apply in practice due to their immediate ap-
plicability to only a selected and usually small problem class. A convexification and
relaxation approach to MIOCP based on a density result in the space of measurable
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controls was proposed by [17], with follow-up work reported in, e.g., [13,14,20,22].
A related approach was recently proposed by [24,25].

This work is concerned with this convexification and relaxation approach to
MIOCP. We consider the following general class of MIOCPs, cf. [13, 14],

inf
x,u,v

j(x)

s.t. ẋ(t) = f(x(t), v(t)) for a.a. t ∈ [0, T ], x(0) = x0,
v(t) ∈ V for a.a. t ∈ [0, T ],

0 ≤ c(x(t), v(t)) for a.a. t ∈ [0, T ],

(MIOCP)

for some T > 0. Here, we consider x ∈ W 1,∞((0, T ),Rnx) – the space of Rnx -
valued essentially bounded and measurable functions with essentially bounded and
measurable weak derivative – and v ∈ L∞([0, T ],Rnv ) – the space of essentially
bounded and measurable functions. Moreover, we assume a finite and discrete set
V = {v1, . . . , vM} ⊂ Rnv with M ∈ N, and a domain Dx ⊂ Rnx . The functions
f : Dx × V → Rnx and c : Dx × V → Rnc are Lipschitz continuous in the first
argument. For the objective function j we assume j ∈ C(L2((0, T ),Rnx),R), the
space of continuous functions that maps square integrable functions to values in R.

The equivalence of various classes of MIOCPs to their so-called partially outer
convexified counterpart problems is established in [1,4,13,15–17,20,22]. The partial
outer convexification of (MIOCP) is given by

inf
x,u,ω

j(x)

s.t. ẋ(t) =
∑M
i=1 ωi(t) · f(x(t), vi) for a.a. t ∈ [0, T ], x(0) = x0,

ω(t) ∈ {0, 1}M for a.a. t ∈ [0, T ],

1 =
∑M
i=1 ωi(t) for a.a. t ∈ [0, T ],

−δ ≤ ωi(t) · c(x(t), vi) for a.a. t ∈ [0, T ] and 1 ≤ i ≤M

(BCδ)

for δ = 0. A relaxation of the mixed state-control constraint arises for δ > 0. An-
other relaxation of (MIOCP) naturally arises from weakening the SOS-1 property
of ω to convex combinations and setting δ = 0,

min
x,u,α

j(x)

s.t. ẋ(t) =
∑M
i=1 αi(t) · (x(t), vi) for a.a. t ∈ [0, T ], x(0) = x0,

α(t) ∈ [0, 1]M for a.a. t ∈ [0, T ],

1 =
∑M
i=1 αi(t) for a.a. t ∈ [0, T ],

0 ≤ αi(t) · c(x(t), vi) for a.a. t ∈ [0, T ] and 1 ≤ i ≤M.

(RC)

We give a motivation why we consider specifically this continuous relaxation of
(MIOCP) in Section 2. While the existence of a minimizing sequence may be the
best we can hope for (MIOCP) and (BCδ) with δ = 0 (even) in the absence of
the mixed constraint, the problem (RC) always admits a solution in the absence
of the mixed constraint. This follows from an abstract extreme value theorem,
the compactness of the control-to-state operator for the introduced ODE setting,
and the weak∗ compactness of the set of admissible controls of (RC), cf. [15].
Throughout the remainder, we may hence assume that (RC) admits a solution.

We are interested in the relation of relaxed optimal solutions (x(α∗), α∗) of (RC)
to feasible points (x(ω∗), ω∗) of (BCδ) for δ > 0 with low objective value. From
the literature [13,14], the following strong result is known.
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Proposition 1.1 ([13,14]). Let (x(α), α) be feasible for (RC). Then for all δ > 0
and all ε > 0 there exists ω such that (x(ω), ω) is feasible for (BCδ) and

|j(x(α))− j(x(ω))| < ε.

A counterexample in a degenerate situation for the case δ = 0 is given in [4,
13, 14]. Constructive proofs for Proposition 1.1 exist in the absence of the mixed
constraint, see [13, 16, 20]. However, the proof of Proposition 1.1 in [13, 14] in the
presence of the mixed constraint is non-constructive and makes use of the Krein–
Milman theorem.

The key ingredient in the constructive proofs in the absence of the mixed con-
straint is the family of sum-up rounding algorithms (SUR). They allow to construct
these binary-valued functions ω from a relaxed control function α and a rounding
grid with grid constant (that is maximum interval length) ∆̄ such that

sup
t∈[0,T ]

∥∥∥∥∫ t

0

α(s)− ω(s) ds

∥∥∥∥
∞
≤ C∆̄(P)

holds for some C > 0 that only depends on M . If the mixed constraint is absent,
Sager proved C ∈ O(M) in [17, 22], and established the application the MIOCP
approximation problem. In [13], the authors showed C ∈ O(logM) for equidistant
grids in this case. By Theorem 3.4 in [16] it follows from (P) that ωn produced by
SUR converge to α in the weak∗ topology of L∞ for a sequence of refined rounding
grids such that ∆̄n → 0. The estimate (P) is key to obtain a priori estimates on
the resulting difference in the corresponding state vectors and the objective values,
see e.g. [10].

Addressing the issue of the mixed constraints, the authors proposed the sum-up-
rounding variant SUR-SOS-VC and showed that (P) holds with the non-optimal
constant C = M + 1 in [13]. A rigorous proof that the sum-up rounding variant
SUR-SOS-VC also drives the constraint infeasibility to zero is still missing however.

1.1. Contributions. This work completes the recent findings in two ways. For the
sum-up-rounding variant SUR-SOS-VC, we prove an improved constant C = bM/2c
for the estimate (P). This constant is asymptotically tight by way of an example
in the supplementary material of [13] that reaches this bound.

Moreover, we close the aforementioned gap in the literature. We consider the
constraint infeasibility δ > 0 in (BCδ) for the binary-valued control ω produced
by the the sum-up-rounding variant SUR-SOS-VC. We show that it tends to zero
when the grid constant of the rounding grid ∆̄ tends to zero.

In summary, we show that the claim of Proposition 1.1 can be established al-
gorithmically using the sum-up rounding variant SUR-SOS-VC (on sufficiently fine
rounding grids). We also provide details why the formulation of the relaxation of
the mixed-contraint is beneficial for this purpose. In particular, we can avoid strong
structural assumptions on the function c.

1.2. Structure of the Article. Section 2 analyzes the properties of the relaxation
(RC) of (MIOCP). This answers the question why the approximation is executed
on the convexification outside of the argument of f and c. Section 3 introduces
fundamental definitions, states the new approximation result to be proved, and
shows that Proposition 1.1 follows from the new approximation result and the
considerations in Section 2. Section 4 presents a prototypical mixed-integer optimal
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control problem with a non-convex constraint that requires the use of SUR-SOS-
VC. Section 5 carries out the proof under the assumption that a certain sequence
exists and can be constructed. A proof of the existence of the required sequence is
the content of Section 6, where we also provide two algorithms for constructing the
sequence. We close with some concluding remarks in Section 7.

1.3. Notation. With the symbol N we denote the set of natural numbers without
zero. We abbreviate [n] := {1, . . . , n} for n ∈ N. The canonical unit vectors in Rn
are denoted by ei for i ∈ [n]. We consider Rn+ := {x ∈ Rn : xi > 0 ∀i ∈ [n]}. For
any vector x ∈ Rn, we define its positive and negative part x+ := max{0Rn , x} and
x− := −min{0Rn , x}. We denote the {0, 1}-valued characteristic function of a set
A by χA. We consider discretizations 0 = t0 < . . . < tN = T of [0, T ], and define
the interval lengths hn := tn − tn−1 for n ∈ [N ]. Their maximum is denoted by
∆̄ := max{hn : n ∈ [N ]}. The average values of the binary control and the relaxed
control α on the n-th interval are denoted by ωn ∈ RM and αn ∈ RM ,

ωn :=
1

hn

∫ tn

tn−1

ω(t) dt, αn :=
1

hn

∫ tn

tn−1

α(t) dt.(1.1)

We define the integrated control deviation between the relaxed and the binary
control up to the n-th interval by

φn :=

∫ tn

t0

α(t)− ω(t) dt =

n∑
k=1

(αk − ωk)hk ∈ RM .(1.2)

2. Motivation of the Continuous Relaxation

In this section, we motivate the use of the particular continuous relaxation (RC)
and argue that it has beneficial properties that are not easily found in other possible
relaxations.

2.1. Differential Equation Relaxation. Considering the problem class (MIOCP)
and the continuous relaxation (RC), the question may occur why ẋ(t) = f(x(t), v(t))
is relaxed using outer convexification,

ẋ(t) =

M∑
i=1

αi(t)f(x(t), vi),

M∑
i=1

αi(t) = 1 for a.a. t ∈ [0, T ](OC1)

instead of the so-called inner convexification

ẋ(t) = fi (x(t), ṽ(t)) , ṽ(t) ∈ conv{v1, . . . , vM} for a.a. t ∈ [0, T ].(IC1)

The results from [16], in particular Thm. 3.4, imply that a norm approximation
of the state vector follows if the state equation of the continuous relaxation used
satisfies a compactness (complete continuity) property:

• For the relaxation (OC1) used in (RC), the implication

ωn ⇀∗ α̃ =⇒ xn → x̃ in L2((0, T ),Rnx)

must hold, wherein xn denotes the solution of the state equation for ωn, x̃
denotes the solution of the state equation for α̃ in the relaxation, and ⇀∗

denotes weak∗ convergence in L∞.
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• Similarly, for the relaxation (IC1), the state equation has to satisfy the
implication

vn ⇀∗ ṽ =⇒ xn → x̃ in L2((0, T ),Rnx)

wherein xn denotes the solution of the state equation for vn and ṽ denotes
the solution of the state equation for x̃.

We note that the setup we choose here is included in the considerations of [16]
(choose X = Rnx and A = 0) and satisfies these compactness properties.

The relaxation after partial outer convexification (RC) is beneficial for several
reasons.

(1) The function f need not be defined for all values in conv{v1, . . . , vM} and,
depending on the application setting, a valid extrapolation of f from the
domain {v1, . . . , vM} onto its convex hull may be difficult to come by.

(2) The authors have experienced that it is often easier to check the compact-
ness property in the partial outer convexification setting.

(3) For given ωn feasible for (BCδ), we may recover vn(t) :=
∑M
i=1 ω

n
i (t)vi

and, because vn(t) is a sum of characteristic functions of disjoint sets, we

immediately have
∑M
i=1 ω

n
i (t)f(xn(t), vi) = f(xn(t), vn(t)).

In particular, (3) implies that

f(xn, vn) =

M∑
i=1

ωni f(xn, vi) ⇀∗
M∑
i=1

α̃if(x̃, vi) in L∞((0, T ))

if the compactness property holds because the product of weakly and norm-convergent
sequences converges weakly. Moreover, this result holds regardless of the value of

the inner convexification f
(
x̃,
∑M
i=1 α̃ivi

)
, which cannot be guaranteed to coincide

with
∑M
i=1 α̃if(x̃, vi) without further and severely restrictive assumptions on f .

2.2. Constraint Relaxation. Similarly, one may pose the question why the point-
wise inequality constraint 0 ≤ c(x(t), v(t)) is relaxed by

0 ≤ αi(t) · c(x(t), vi) for all i ∈ [M ](VC)

instead of requiring

0 ≤ c(x(t), v(t)),(IC2)

or even the more benign formulation

0 ≤
M∑
i=1

αi(t)c(x(t), vi).(OC2)

Here, a similar argument holds, which we formalize in the following theorem.

Theorem 2.1. Let (ωn)n∈N ⊂ L∞((0, T ),RM ) satisfy
∑M
i=1 ω

n
i (t) = 1 and ωn(t) ∈

{0, 1}M for a.a. t ∈ [0, T ] for all n ∈ N. Let α̃ ∈ L∞((0, T ),RM ) satisfy
∑M
i=1 α̃i(t) =

1 and α̃(t) ∈ [0, T ]M for a.a. t ∈ [0, T ] for all n ∈ N. Let (∆̄n)n∈N be a sequence of
positive scalars that satisfies ∆̄n → 0.

Let ωn and α̃ satisfy (P) with ∆̄ = ∆̄n for all n ∈ N. Then,

(1) ωn ⇀∗ α̃ in L∞((0, T ),RM ).

(2) xn → x̃ in C([0, T ],Rnx) and ẋn ⇀∗ ˙̃x in L∞((0, T ),Rnx), where xn and x̃
are the solutions of the state equation of (RC) / (BCδ) for ωn and α̃.



6 PAUL MANNS, CHRISTIAN KIRCHES, AND FELIX LENDERS

(3) Let suppωni ⊂ supp α̃i for all i ∈ {1, . . . ,M} and all n ∈ N, where supp f
denotes the essential support of f . If 0 ≤ α̃i(t)c(x̃(t), vi) a.e. then −δni ≤
ωni c(x

n(t), vi) a.e. for all n ∈ N with δni → 0.

Proof. The first claim follows from the considerations in [16] with the choices X =
Rnx , A = 0. This also gives xn → x in C([0, T ],Rnx). Since the f(·, vi) are Lipschitz
continuous for all i ∈ [M ] it holds that f(xn, vi) → f(x̃, vi) in C([0, T ],Rnx). A
standard argument gives ωni f(xn, vi) ⇀

∗ α̃if(x̃, vi), which yields the second claim.
To see the third claim, let n ∈ N and i ∈ [M ]. We first observe that 0 =

ωni c(x
n, vi) a.e. on (suppωni )c. Moreover, we have 0 ≤ c(x̃, vi) on supp α̃i from the

prerequisites. Since suppωni ⊂ supp α̃i, this implies 0 ≤ c(x̃, vi) = ωni c(x̃, vi) on
suppωni . The second claim implies c(xn, vi) → c(x̃, vi) uniformly. Thus if we set
δni to the essential infimum of the feasibility violation, that is

δni := −min {sup{K ∈ R : K < ωni (t)f(xn(t), vi) for a.a. t ∈ [0, T ]}, 0} ,

we obtain δni → 0. �

Theorem 2.1 (3) means that the limes inferior of the essential infimum of ωni ·
c(xn, vi) is bounded from below by the zero function. We thus have a posteriori that
the feasibility violation δ in (BCδ) vanishes uniformly under the provided support
condition. We will later see that this condition is much stronger than necessary if
the ωn are computed by the modified sum-up rounding variant. However, the idea
to restrict the support of the binary controls ωn appropriately is key to obtain this
property. We highlight that again, this holds indepedently of other properties of the
function c, which also need not be extrapolated to the whole of conv{v1, . . . , vM}.

Assume that the inner convexification (IC2) is used in (RC) and 0 ≤ c(x̃(t), ṽ(t))

holds. We rewrite ṽ ∈ L∞((0, T ),Rnv ) as ṽ(t) =
∑M
i=1 α̃i(t)vi with α(t) ∈ [0, 1]M

and
∑M
i=1 α̃i(t) = 1 for a.a. t ∈ [0, T ]. Then, the approximation ωn ⇀∗ α̃ and the

reconstructions vn(t) :=
∑
i=1 ω

n
i (t)vi give

c(xn, vn) =

M∑
i=1

ωni c(x
n, vi) ⇀

∗
M∑
i=1

α̃ic(x̃, vi),(2.1)

that is the weak∗ limit is the formulation (OC2), which does not necessarily coincide
with c(x̃, ṽ) and for which we can only safely assume that

M∑
i=1

α̃i(t)c(x̃(t), vi) ≥ c(x̃(t), ṽ(t)) ≥ 0

holds if the function c(x, ·) is convex for all x ∈ Rnx . An application, where this is
violated is offered in §4.

While this may look like an argument for (OC2) at first, we only have weak∗

convergence here. Thus, although the constraint (OC2) implies the desired behavior
of the limit by virtue of (2.1), we still cannot expect δ → 0. This is caused by the
fact that residuals c(x̃(t), vi) may have opposite signs for 1 ≤ i ≤ M , and may
cancel out to result in a nonnegative residual sum. After sum-up rounding, only
one binary indicator ωi(t) > 0 remains and cancellation does not take place, leading
to infeasibility.

For these reasons, we consider the inequality constraint (VC) in the constraint
formulation of (RC).
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3. Statement of the Result

We begin with the analyzed algorithm class and the considered specializations.

Algorithm 3.1 Sum-Up Rounding (SUR)

Input: Rounding grid t0 < . . . < tN , and relaxed control α.
Input: Sets of admissible rounding indices ∅ 6= F1,. . .,∅ 6= FN .

1: φ0 := 0RM
2: for n = 1, . . . , N do

3: γn := φn−1 +
∫ tn
tn−1

α(t) dt

4: ωn,i =

{
1 : i = arg max {γn,j : j ∈ Fn} ,
0 : else,

for all i ∈ [M ]

5: φn :=
∫ tn
t0
α(t)− ω(t) dx

6: return ω(t) :=
∑N−1
n=1 χ[tn−1,tn)(t)ωn + χ[tN−1,tN ](t)ωN for t ∈ [t0, tN ].

The operation arg max is implemented such that in case of ambiguity of the
maximum the smallest of the maximizing indices is returned.

Clearly, this algorithm is in O(N). If ω may be set to 1 in any entry in all
intervals, we obtain the original rounding scheme introduced by Sager [17] under
the name SUR-SOS1.

Definition 3.1 (SUR-SOS). The Standard SOS-Sum-Up Rounding Algorithm is
defined as SUR with

Fn := {1, . . . ,M} for all n ∈ [N ].(SUR-SOS)

It respects a bound in the form of (P) and can be applied in the absence of the
combinatorial constraint 0 ≤ c(x(t), v(t)) [13,20]. Partial outer convexification of an
MIOCP that exhibits such a combinatorial constraint leads to a vanishing constraint
in (BCδ) which may experience persistent violations if treated with (SUR-SOS),
that is Theorem 2.1 (3) does not hold. This is illustrated in Example 3.2 below,
which leans on the example in Section 3 of [9].

Example 3.2. Let M = 3, let [t0, tN ] = [0, 1]. We define the function α as

α1(t) := .5χ[0,0.5)(t) + .6χ[0.5,1](t), α2(t) := .5χ[0,0.5)(t), α3(t) := .4χ[0.5,1](t)

for t ∈ [0, 1]. Let n ∈ N. We decompose [0, 1] into N = 2 · 3n equidistant intervals,
that is hk = 0.5 ·3−n for all k ∈ [N ]. We apply (SUR-SOS) and obtain a function ω
such that ω1(t) = 1 on the intervals with odd indices and ω2(t) = 1 on the intervals
with even indices for t ≤ 0.5 + 0.5 · 3−n. This implies

φ3n,1 =
∫ 0.5

0
α1(t)− ω1(t) dt = −0.25 · 3−n,

φ3n,2 =
∫ 0.5

0
α2(t)− ω2(t) dt = 0.25 · 3−n,

φ3n,3 =
∫ 0.5

0
α3(t)− ω3(t) dt = 0.

Thus, for the 3n + 1-st interval, we have

γ3n+1,1 =
∫ 0.5+0.5·3−n

0.5
α1(t) dt+ φ3n,1 = 0.05 · 3−n,

γ3n+1,2 =
∫ 0.5+0.5·3−n

0.5
α2(t) dt+ φ3n,2 = 0.25 · 3−n,

γ3n+1,3 =
∫ 0.5+0.5·3−n

0.5
α3(t) dt+ φ3n,3 = 0.20 · 3−n
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in Algorithm 3.1 and (SUR-SOS) gives ω2(t) = 1 for t ∈ [0.5, 0.5+0.5 ·3−n]. Thus,
‖ω2|[0.5,1]‖L∞ = 1. Now, we assume that c(x(t), v2) = −1 for t ∈ [0.5, 1] for x
solving the state equation for the input α, which is feasible for (RC) with δ = 0.
Let y solve the state equation for ω. We refine the discretization by increasing n
and by virtue of the approximation properties, we obtain

sup {K ∈ R : K < ω2(t)c(y(t), v2) for a.a. t ∈ [0.5, 1]} → −1

for n→∞. Thus, δ 6→ 0 when the rounding grid is refined.

To overcome this problem, the following SUR variant is introduced in [13].

Definition 3.3 (SUR-SOS for Vanishing Constraints). The Vanishing-Constraint
SOS-Sum-Up Rounding Algorithm is defined as SUR with

Fn :=

{
i ∈ [M ] :

∫ tn

tn−1

αi(t) dt > 0

}
for all n ∈ [N ].(SUR-SOS-VC)

The rule (SUR-SOS-VC) restricts the set of indices in which ω(t) may be 1 on the
k-th interval to the ones where α(t) is strictly greater than zero on a set of positive
measure. Thus Algorithm 3.1 with the choice (SUR-SOS-VC) yields ω2(t) = 0 for
t ∈ [0.5, 0.5 + 0.5 · 3−n] for the setting of Example 3.2.

This is always the case. Because the estimate (P) still holds for (SUR-SOS-VC)
albeit with a larger constant, we obtain δ → 0 when the rounding grid is refined
and α was feasible for (RC), see the arguments in [13, 14]. We are ready to state
the main result of this article below, which establishes the estimate (P).

Theorem 3.4. Let α ∈ L∞([0, T ],RM ) with α(t) ∈ [0, 1]M and
∑M
i=1 αi(t) = 1 for

a.a. t ∈ [0, T ], and 0 = t0 < . . . < tN = T be given. Then, Algorithm 3.1 with
the choice (SUR-SOS-VC) produces ω ∈ L∞([0, T ],RM ) with ω(t) ∈ {0, 1}M and∑M
i=1 ωi(t) = 1 for a.a. t ∈ [0, T ] such that

sup
t∈[0,T ]

∥∥∥∥∫ t

0

α(s)− ω(s) ds

∥∥∥∥
∞
≤
⌊
M

2

⌋
∆̄.(3.1)

Proof. The proof is assembled as the proof of Theorem 5.15. �

Numerical results suggest that bM/2cmay be slightly suboptimal. We conjecture
that the sharp bound is 0.5(M −1). An example in [13] demonstrates that it is not
possible to improve upon that bound.

Combining Theorems 2.1 and 3.4, we are able to show that Algorithm 3.1 with
the choice (SUR-SOS-VC) establishes Proposition 1.1 in the presence of the mixed
state-control constraints.

Theorem 3.5. Let (x(α), α) be feasible for (RC). Let δ > 0 and ε > 0. Then
for a sequence of rounding grids indexed by n with ∆̄n → 0, the ωn produced by
Algorithm 3.1 with the choice (SUR-SOS-VC) applied to α satisfies the following
assertions. There exists n0 ∈ N such that for all n ≥ n0 it holds that

(1) The tuple (x(ωn), ωn) is feasible for (BCδ).
(2) |j(x(α))− j(x(ωn))| < ε.

Proof. By virtue of Theorem 3.4 the estimate (P) holds for ω = ωn with C = bM/2c
and ∆̄ = ∆̄n → 0. The application of Theorem 2.1 implies x(ωn) → x(α) in
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C([0, T ],Rnx). Since C([0, T ],Rnx) embeds into L2([0, T ],Rnx) continuously, the
continuity of j yields the second claim.

Theorem 2.1 is not directly applicable to prove the first claim and we perform a
case distinction to leverage the continuity properties and Definition 3.3.

We consider the set {s ∈ [0, T ] : c(x(α)(s), vi) ≥ 0}. We note that x(ωn)→ x(α)
implies c(x(ωn), vi)→ c(x(α), vi). Thus the limes inferior for n→∞ of the essential
infimum of the term ωni c(x(ωn), vi) over the set {s ∈ [0, T ] : c(x(α)(s), vi) ≥ 0} is
bounded from below by the zero function.

Let t ∈ {s ∈ [0, T ] : c(x(α)(s), vi) < 0}. Then the continuity of c(x(α), vi)
implies that there exists h > 0 such that for all s ∈ (t − h, t + h) it holds that
c(x(α(s)), vi) < 0. Consequently, α(s) = 0 for all s ∈ (t − h, t + h). Then there
exists n0 ∈ N such that for all n ≥ n0 the following holds. There exists an interval
In = [tk−1, tk) or In = [tk−1, tk] (where tk−1, tk are consecutive grid points of the
n-th rounding grid) such that In ⊂ (t−h, t+h). Consequently, i /∈ Fk for the n-th
rounding grid by Definition 3.3 and thus ωni (t) = 0. Thus ωni (t)c(x(ωni (t)), vi) = 0
for n ≥ n0.

Combining these considerations, we observe that the limes inferior for n→∞ of
the essential infimum of the product ωni c(x(ωni ), vi) is bounded from below by the
zero function. This proves the first claim. �

4. A Mixed-Integer Optimal Control Application

In this section, we introduce a nonlinear mixed-integer optimal control problem
with a structurally non-convex constraint on the integer control. Our purpose is
to demonstrate the vanishing constraint relaxation, the modification of the sum-
up rounding algorithm for reconstructing a feasible control from a solution of the
relaxation (RC), and its effect on feasibility of the resulting state-control trajectory.
We consider the dynamic system

ẋ(t) =
1

Ax(t)

[
B(v(t))u(t)−D(v(t))x(t)− Ex2(t)− F (t)

]
, x(0) = x̂0 (> 0)(4.1)

that models a vehicle’s velocity x(t) along a spatial coordinate t. The vehicle has
a gearbox v(t) ∈ {1, . . . ,M}, mass A, and accelerates according to continuous
control u. We note that our considerations still hold in the presence of additional
continuously-valued controls, see also [16, 20]. Factors B(v(t)) and D(v(t)) model
gearbox transmission ratio and efficiency as well as engine friction, both depending
on the integer gear choice v(t). Factor E models gearbox independent friction from
turbulence, and factor F (t) models the road’s slope. Technical details, units, and
parameter values may be found in, e.g., [12]. The initial value x̂0 is bounded away
from zero. With a compact range of admissible controls, (4.1) is locally Lipschitz.

While the continuous control 0 ≤ u(t) ≤ ū is subject to simple lower and upper
bounds, the integer gearbox control is subject to velocity dependent constraints to
prevent stalling or over-revving,

0 ≤ x(t)− xmin(v(t)), 0 ≤ xmax(v(t))− x(t), 0 ≤ umax(x(t))− u(t)(4.2)

Again, data for all bounds and constraints can be found in [12]. The function xmin
in the first constraint in (4.2) is concave in [1,M ], giving that (IC2) is not a sensible
choice for the relaxation, see §2. The constraint structure also implies that the right
hand side of (4.1) is Lipschitz continuous in x on the feasible set.
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Given a road scenario F (t), we seek to minimize a weighted compromise between
energy consumption Q and deviation from a desired velocity,

min
u,v

∫ t

0

λ1Q(x(t), u(t), v(t)) + λ2(x(t)− xdesired)2 dt.(4.3)

The model (4.1) and objective (4.3) are reformulated according to partial outer
convexification by introducing an indicator function αi(t) ∈ [0, 1], 1 ≤ i ≤ M , for
each gear choice. Constraints (4.2) are formulated as

0 ≤ αi(t)(x(t)− xmin(i)), 0 ≤ αi(t)(xmax(i)− x(t)) for 1 ≤ i ≤M.

In Tab. 1, we assess the relaxed solutions computed from the inner convexifica-
tion (IC2) (second column), from the outer convexification (OC2) relaxation (third
column), and from the vanishing constraint relaxation (VC) (fourth column) for
N = 160 intervals (bottom row).

For the relaxations (IC2) and (OC2), Alg. 3.1 with the choice (SUR-SOS-VC)
is applied to the optimal relaxed indicators α∗ on grids with N = 20, 40, 80, 160
intervals (top to fourth row) to obtain binary indicators ω representing ṽ at the
potential expense of increasing the objective function and violating constraints. We

recall that the binary indicators satisfy
∑M
i=1 ωi(t) = 1 for a.a. t ∈ [0, T ]. Thus for

a.a. t ∈ [0, T ] there exists j ∈ [M ] such that c(x(t), ṽ(t)) =
∑M
i=1 ωi(t)c(x(t), vi) =

ωj(t)c(x(t), vj) with ṽ(t) =
∑M
i=1 ωi(t)vi. Thus the constraint violation induced by

the rounded controls coincides for all formulations and only one value is reported.
We show optimal objective function values (4.3), and violations of (VC) averaged

over all intervals and gear choices. The solution computed for the (VC) relaxation
is obviously feasible for (VC). It is even binary feasible on 158 out of 160 intervals,
such that rounding on grids coarser than N = 160 is not sensible. The feasibility is
maintained during rounding up to numerical precision (although a small violation
would not contradict Thm 3.5). The approximation obtained is shown in Figure 1.

Table 1. Computational results demonstrating the approxima-
tion property of the vanishing constraint relaxation and Alg. 3.1
with the choice (SUR-SOS-VC).

(IC2) (OC2) (VC)
N objective infeas. objective infeas. objective

20 54407.9 20.6283 66384.8 24.1391
40 56596.3 11.9143 62763.0 3.34661
80 55616.5 16.2796 55330.3 4.15014
160 51633.5 16.0770 57212.3 2.58715 59874.7

rel. 51872.2 165.259 55773.4 2.08015 59867.5

To compute solutions, we used a direct collocation discretization with implicit
Euler elements of the respective ODE, objective, and constraints formulation. For
the relaxation (VC), we obtain a finite dimensional mathematical program with
vanishing constraints (MPVC) that is solved using Hoheisel’s smoothing relaxation
homotopy approach [11] up to a smoothing tolerance of 10−4. All smooth NLPs are
solved by the solver IPOPT [26] with a tolerance of 10−5. The total computation
time was less than 10 minutes on an Intel Core i7 running at 3.3 GHz.
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(a) Binary indicators ωi after applying Alg. 3.1 with (SUR-SOS-VC). Black indicates
one, white indicates zero.

(b) State trajectory x(t) (velocity, blue) and control trajectory u(t) (torque, red).

Figure 1. State and control (B) and integer control (A) trajecto-
ries obtained after applying SUR-SOS-VC to the optimal solution
of the VC relaxation for N = 160. The solution is an optimal re-
sponse to a slope profile F (t) in (4.1) with a slope on the section
n ∈ [30, 60].

5. Proof of Theorem 3.4

We begin this section by establishing an equivalent discrete view on the estimate
(3.1) in Section 5.1. Then, we present the key idea of the proof based on the
established discrete view in Section 5.2. We introduce an existence statement in
Section 5.3, which plays an important role in the proof. Then, we supply some
preparatory lemmata and obtain that (3.1) holds with the right hand side (M+1)∆̄
from the literature in Section 5.4. Afterwards, we carry out the formal proof and
prove the bound bM/2c ∆̄ in Section 5.5.

5.1. A discrete view on (3.1). The interval [0, T ] is compact and the fundamental
theorem of calculus gives that the supremum in (3.1) is attained. The function α is
non-negative and entry-wise bounded by 1, and the function ω is piecewise constant
per interval [tk−1, tk) for k ∈ [N ]. Thus we obtain that α − ω is intervalwise
monotone, which implies that the supremum is attained at an interval boundary.
These considerations give

sup
t∈[0,T ]

∥∥∥∥∫ t

0

α(s)− ω(s) ds

∥∥∥∥
∞

= max
n∈[N ]

∥∥∥∥∥
n∑
k=1

hk(αk − ωk)

∥∥∥∥∥
∞

= max
n∈[N ]

‖φn‖∞ ,(5.1)

after inserting the intervalwise averages αn and ωn from (1.1).
Thus, we infer (3.1) by showing

max
n∈[N ]

‖φn‖∞ ≤ bM/2c ∆̄(5.2)
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for all decompositions 0 = t0 < . . . < tN = T of [0, T ] for all N ∈ N and all functions

α ∈ L∞([0, T ],RM ) with α(t) ∈ [0, 1]M and
∑M
i=1 αi(t) = 1 for a.a. t ∈ [0, T ]. The

function ω is computed by Algorithm 3.1 with the choice (SUR-SOS-VC).
The exactness of the discrete view obtained in (5.1) and the averages (1.1) allow

us to prove (5.2) for all matrices α with entries in [0, 1] and a row-sum of 1, that is
for all α ∈ AN ⊂ RN×M with

AN :=

{
α ∈ [0, 1]N×M :

M∑
i=1

αn,i = 1 for all n ∈ [N ]

}
.

Because of the iterative definition of Algorithm 3.1 there is a functional de-
pendence of ωn and φn on (αk)k≤n and (hk)k≤n. In particular we could write
φn((αk)k≤n, (hk)k≤n) and ωn((αk)k≤n, (hk)k≤n). While we omit this functional de-
pendence in the notation to avoid notational bloat, we emphasize that it is very
important for the remainder of the manuscript and will be used frequently.

We also consider ω and φ as elements (matrices) in RN×M in the remainder of
the manuscript using the definitions (1.1) and (1.2), as well as h ∈ RN .

5.2. Key Idea. As noted above, the integrated control deviation up to the n-
th interval φn depends on the interval-wise averaged relaxed controls αk and the
interval lengths hk for only k ≤ n. Now, when interested in proving some particular
property of the quantities φn, consider the following situation: Assume that we
have established said property of φn uniformly for all n ∈ [N ], all α ∈ AN , all
h ∈ RN+ , and for all N ∈ N. Then this property necessarily holds after extending
the sequences α and h by executing the following steps.

(1) First, fix quantities (αk)k≤n ∈ An and (hk)k≤n.
(2) Second, pick N ∈ N, N > n, and construct quantities (αk)n<k≤N and

(hk)n<k≤N such that the extended sequences α and h satisfy α ∈ AN and
0 < hk ≤ max{h` : ` ∈ [n]} holds for all k ∈ [N ].

(3) Finally, apply Algorithm 3.1 with the choice (SUR-SOS-VC) to the se-
quences α and h to compute the extended sequence φ.

This insight is used several times as a key step in a proof by contradiction as follows.
Assume that a particular bound we seek to establish on entries or sums of entries
of φn is violated for some n. Then we extend α and h by constructing finitely many
quantities αk and hk for k > n such that we obtain a contradiction to fundamental
properties of the φk that can be verified independently. We then conclude that the
assumed violation has led to contradiction, hence the bound has to hold.

One of the constructions that leads to a contradiction is both technical to formu-
late and to prove and thus requires detailed comments. It is explained in Section
5.3 below. It is then used in the proof of our claims in Section 5.5 to keep the
argument of the main claims concise. Finally, its proof is carried out constructively
in Section 6.

5.3. A Technical Proposition. Many of our statements use the order by magni-
tude of the entries in the positive and negative part of φn for some interval n. We
introduce the required notation below. For the integrated control deviation φn up
to the n-th interval, I−n denotes set of indices of non-positive entries of φn for some
interval n, and I+

n the set of indices of non-negative entries. For the coordinate
entries of φn, `+n denotes the index of the `-th largest entry of φ+

n and `−n denotes



SUM-UP ROUNDING IN THE PRESENCE OF VANISHING CONSTRAINTS 13

the index of the `-th largest entry of φ−n (i.e., the index of the `-th smallest index
of φn). The following definition formalizes these descriptions.

Definition 5.1 (Encoding of the order within φ±n ). For n ∈ [N ], we define the sets

I−n := {i ∈ [M ] : φn,i ≤ 0}, I−−n := {i ∈ [M ] : φn,i < 0},
I+
n := {i ∈ [M ] : φn,i ≥ 0}, I++

n := {i ∈ [M ] : φn,i > 0}.

For φ ∈ RN×M and n ∈ [N ], we define the index `+n ∈ [M ] as the index of the
`-th largest entry of φ+

n , and `−n ∈ [M ] as the index of the `-th largest entry of φ−n ,
that is

φ+
n,1n
≥ . . . ≥ φ+

n,Mn
, and φ−n,1n ≥ . . . ≥ φ

−
n,Mn

.

Now, let (αk)k≤n ⊂ [0, 1]M with
∑M
i=1 αk,i = 1 for all k ≤ n, and (hk)k≤n ⊂

R+ be given. Then the application of Algorithm 3.1 up to iteration n yields an
integrated control deviation φn ∈ RM .

In our proof we make use of the fact that there always is n1 ∈ N such that

a certain control sequence (αk)n+1≤k≤n1
⊂ RM with

∑M
i=1 αk,i = 1 for all k ∈

{n + 1, . . . , n1} and an interval lengths sequence (hk)n+1≤k≤n1
⊂ R+ with hk ≤

max{h` : 1 ≤ ` ≤ n} for k ∈ {n + 1, . . . , n1} exist. This existence is non-trivial,
and is established in Proposition 5.3. which we prove constructively in §6.

The construction of both sequences is such that the entries of the resulting
integrated deviation φn1

exhibit a certain shape, defined formally in Definition 5.2
below and referred to as an ε-a-stairs-shape, if Alg. 3.1 with rule (SUR-SOS-VC)
is applied to (αk)k≤n1

and (hk)k≤n1
. Colloquially, after reordering, two subsequent

entries of φn1
have a distance of approximately max{hk : k ≤ n} or zero.

Definition 5.2 (ε-a-stairs-shape). Let K ∈ N, ε > 0, and a > 0. Let x ∈ RK
satisfy x1 ≥ . . . ≥ xK ≥ 0. Then, we say that x is ε-a-stairs-shaped if there exists
m ∈ [K] such that

xj − xj+1 ∈ (a− ε, a+ ε) for all j ∈ [m], and(5.3)

xj ∈ [0, a) for all j ∈ {m+ 1, . . . ,K}.(5.4)

Proposition 5.3. Let n ∈ N, (αk)k≤n ∈ An, and (hk)k≤n ⊂ R+ be given. Let
∆̄ := max{hk : k ≤ n}. Let φn ∈ RM be the integrated control deviation devia-
tion produced in iteration n by the application of Alg. 3.1 with (SUR-SOS-VC) to
(αk)k≤n and (hk)k≤n. Let J ⊂ I+

n or J ⊂ I−n .
Then, there exists n1 ∈ N, and (αk)n+1≤k≤n1

with (αk)k≤n1
∈ An1

that satisfy
the following. The application of Alg. 3.1 with (SUR-SOS-VC) to (αk)k≤n1

and
(hk)k≤n1

with hn+1 = . . . = hn1
= ∆̄ yields (ωk)k≤n1

and (φk)k≤n1
such that

(1) ‖φ+
n ‖1 = ‖φ+

k ‖1 for all k ∈ {n+ 1, . . . , n1},
(2) ‖φ−n ‖1 = ‖φ−k ‖1 for all k ∈ {n+ 1, . . . , n1},
(3) φn,i = φk,i for all k ∈ {n+ 1, . . . , n1} for all i ∈ [M ]\J ,
(4) {φn1,j : j ∈ J} is ε-∆̄-stairs-shaped.

Proof. The claims follow from Lemma 6.3 found at the end of §6. �

To illustrate Definition 5.2 and Proposition 5.3, we transform the set of scalars
{ϕ1,0, . . . , ϕ1,9} ⊂ R+ over 200 iterations into a set {ϕ200,0, . . . , ϕ200,9} ⊂ R+ that
is ε-∆̄-stairs-shaped. The resulting trajectories are plotted in Figure 2. For this
example, we chose ∆̄ = 1 and ε = 10−3. Moreover, the ϕn,· are integrated control
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deviations resulting from the application of Algorithm 3.1 with (SUR-SOS-VC) on
certain controls α and ‖ϕ1,n‖1 = ‖ϕ1,0‖1 for all n ∈ [200]. The .

0 50 100 150 200
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n

ϕn,0
ϕn,1
ϕn,2
ϕn,3
ϕn,4
ϕn,5
ϕn,6
ϕn,7
ϕn,8
ϕn,9

∆̄

Figure 2. Transformation of a vector ϕ1,· into an 10−3-1-stairs-
shaped vector ϕ200,·.

5.4. Preparations. Some of our results work for different choices of the sets Fn of
admissible rounding indices in Alg. 3.1. We introduce an assumption that is satisfied
for the choices (SUR-SOS) and (SUR-SOS-VC), but is slightly more general.

Assumption 5.4 (Admissible indices for rounding). For all n ∈ [N ], let the input
set Fn in Alg. 3.1 satisfy

{i ∈ [M ] : αn,i > 0} ⊂ Fn.

Alg. 3.1 and the prerequisites of Thm. 3.4 imply the following well-known prop-
erties of the sequences ω ∈ RN×M and φ ∈ RN×M produced.

Lemma 5.5. Let α ∈ AN , h ∈ RN+ . Then, ω ∈ RN×M and φ ∈ RN×M produced
by Algorithm 3.1 satisfy the following. For all n ∈ [N ] it holds that

1. φn,i ≥ 0 for at least one i ∈ [M ], and φn,i ≤ 0 for at least one i ∈ [M ],

2.

M∑
i=1

φ+
n,i =

M∑
i=1

φ−n,i,

3. ωn,i ∈ {0, 1} for all i ∈ [M ] and

M∑
i=1

ωn,i = 1.

Let α̃ ∈ AN+1, h̃ ∈ RN+1
+ with α̃n = αn for all n ∈ [N ] and h̃n = hn for all n ∈ [N ].

Then, ω̃ ∈ RN+1×M and φ̃ ∈ RN+1×M produced by Algorithm 3.1 satisfy

4. φ̃n = φn and ω̃n = ωn for all n ∈ [N ].

Proof. The first two claims follow from Alg. 3.1 and the prerequisites of Thm. 3.4
with the discrete view established in §5.1, cf. [13, 17]. �
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Lemma 5.6. Let α ∈ AN , h ∈ RN+ . Then, ω ∈ RN×M and φ ∈ RN×M produced
by Algorithm 3.1 satisfy the following. Let n ∈ [N ], i ∈ [M ]. If φn,i < φn−1,i, then

ωn,i = 1, and

φn,j − φn,i ≤ hn for all j ∈ Fn

hold. Under Assumption 5.4, if Fn = {i}, then φn = φn−1 holds.

Proof. We have that φn,i = (αn,i−ωn,i)hn+φn−1,i. Thus αn,i < ωn,i, which implies
that control index i was selected for rounding in Alg. 3.1 ln. 4, that is ωn,i = 1 and
ωn,j = 0 for j 6= i. For j = i the inequality is trivial. For j 6= i we assume the
converse inequality φn,j − φn,i > hn and deduce

γn,j = φn−1,j + αn,jhn = φn,j > φn,i + hn = φn−1,i + αn,ihn − hn + hn = γn,i,

which contradicts i ∈ arg max{γn,j : j ∈ Fn} in Algorithm 3.1 ln. 4.
Assumption 5.4 and Algorithm 3.1, specifically line 4, yield αn,i = ωn,i = 1 and

αn,j = ωn,j = 0 for j 6= i, which implies the second claim. �

The following lemma characterizes (‖φn‖1)n∈[N ] for sequences (φn)n∈[N ] pro-
duced by (SUR-SOS-VC). It plays an important role in the construction algorithms
to obtain the desired result.

Lemma 5.7. Let α ∈ AN , h ∈ RN+ and let Assumption 5.4 hold. Then ω ∈ RN×M
and φ ∈ RN×M produced by Algorithm 3.1 satisfy the following for all n ∈ [N ].

1. If hn≥ max
i∈Fn

φn−1,i + αn,ihn, then ‖φn‖1 = min

{
‖φ′‖1

∣∣∣ φ′=φn−1+αnhn−whn
w∈{0,1}M , ‖w‖1=1
wi=1 =⇒ i∈Fn

}
.

2. If hn≤ max
i∈Fn

φn−1,i + αn,ihn, then ‖φn‖1 ≤ ‖φn−1‖1.

3. If 0 ≥ max
i∈Fn

φn−1,i + αn,ihn, then ‖φn‖1 = ‖φn−1‖1.

Proof. Algorithm 3.1, line 4 selects i ∈ arg max{γn,j : j ∈ Fn} in iteration n ∈ [N ].

(1) We need to prove ‖φ′‖1 ≥ ‖φn‖1 for any admissible φ′ and w. Let φ′ =
φn−1 + αnhn − whn be admissible and wj = 1 with j ∈ Fn. Then

‖φ′‖1 − ‖φn‖1 =

M∑
`=1

(|φn−1,` + αn,`hn − δj`hn| − |φn−1,` + αn,`hn − δi`hn|)

= |γn,j − hn|+ |γn,i| − |γn,j | − |γn,i − hn|,

where δ denotes the Kronecker delta. Thus to obtain ‖φ′‖1 ≥ ‖φn‖1 it
suffices to show

|γn,j − hn|+ |γn,i| ≥ |γn,j |+ |γn,i − hn|(5.5)

We know max{γn,` : ` ∈ Fn} − hn ≤ 0 and thus, (5.5) is equivalent to

−γn,j + hn + |γn,i| ≥ |γn,j | − γn,i + hn

⇐⇒ |γn,i|+ γn,i ≥ |γn,j |+ γn,j .

We have γn,i ≥ γn,j by choice of i. Moreover, the fact that a ≥ b implies
a + |a| ≥ b + |b| for a, b ∈ R follows from a case distinction on the sign of
b. This yields the first claim.
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(2) From hn ≤ max{γn,j : j ∈ Fn}, we obtain

‖φn‖1 =

M∑
j=1

|γn,j − ωn,jhn| = φn−1,i + αn,ihn − hn +
∑
j 6=i

|φn−1,j + αn,jhn|.

We apply the triangle inequality and
∑
j∈[M ] αn,j = 1 to obtain

‖φn‖1 ≤ ‖φn−1‖1 + αn,ihn − hn +
∑
j 6=i

αn,jhn = ‖φn−1‖1.

(3) The premises imply γn,j ≤ 0 and thus φn−1,j ≤ 0 for all j ∈ Fn. We deduce

‖φn‖1 =
∑

j∈[M ]\Fn

|φn,j |+
∑
j∈Fn

|γn,j − ωn,jhn|

=
∑

j∈[M ]\Fn

|φn−1,j | −
∑
j∈Fn

(φn−1,j + αn,jhn − ωn,jhn)

=
∑
j∈[M ]

|φn−1,j | −
∑
j∈Fn

(αn,jhn − ωn,jhn) = ‖φn−1‖1,

where the last identity follows from
∑
j∈Fn αn,i = 1 by Assumption 5.4.

�
Remark 5.8.

(1) For (SUR-SOS), we have Fn = {1, . . . ,M} and Lemma 5.5 implies that the
case (3) in Lemma 5.7 cannot occur.

(2) In the case hn ≤ max{γn,i : i ∈ Fn}, the rounding index i ∈ Fn for ωn,i = 1
does not satisfy i ∈ arg min{‖φn−1 + αnhn − ejhn‖1 : j ∈ Fn}.

(3) Because of Lemma 5.5 (2), any increase in the sum-norm of φn, that is
‖φn‖1 > ‖φn−1‖1, is equivalent to increases of half size in φ−n and φ+

n ,

‖φn‖1 − ‖φn−1‖1 = 2(‖φ+
n ‖1 − ‖φ+

n−1‖1) = 2(‖φ−n ‖1 − ‖φ−n−1‖1).

Because of ‖φn‖1 ≤ ‖φn−1‖1, case (1) of Lemma 5.7 holds and the rounding
index i selected in Algorithm 3.1 ln. 4 satisfies 0 > φn,i > −hn ≥ −∆̄.

We supply a statement that is shown in [13], which gives the existence of a finite
bound on ‖φn‖∞.

Theorem 5.9. Let N ∈ N. Let α ∈ AN , h ∈ RN+ , ∆̄ = max{hn : n ∈ [N ]}.
Then ω ∈ RN×M and φ ∈ RN×M produced by Algorithm 3.1 with the choice
(SUR-SOS-VC) for F1,. . .,FN satisfy the following for all n ∈ [N ].

‖φn‖∞ ≤ (M + 1)∆̄.

Theorem 5.9 allows us to deduce that a the desired bound exists although we
have to prove its value. We introduce a symbol for the bound below for a given
∆̄ ∈ R+,

Φs := sup
N∈N

sup
α∈AN ,h∈(0,∆̄]N

sup
n∈[N ]

‖φsn‖∞ for s ∈ {+,−}.(5.6)
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5.5. Establishing the Tight Bound for (SUR-SOS-VC). Let φ ∈ RN×M be
produced by Algorithm 3.1 with the choice (SUR-SOS-VC). We first prove bounds
on the sum of the largest entries of φ+

n and φ−n that hold uniformly for all n ∈ [N ],
and which depend on the supremum of ‖φ+

n ‖∞ (‖φ−n ‖∞) over n. Then, we proceed
with an argument by contradiction. We assume that the supremum of ‖φ+

n ‖∞ or
‖φ−n ‖∞ over n violates the claimed bound and show that the bounds proved in the
first step and Proposition 5.3 lead to a contradiction.

5.5.1. Bounds on Sums of the Largest Entries of φ+
n and φ−n . We introduce the

following sets of iterations n ∈ [N ] for which at least j strictly negative (positive)
entries of φn exist.

Definition 5.10. Let N ∈ N be given. For j ∈ [M ], we define the sets

K+
j := {n ∈ N : j ≤ |I++

n |} and K−j := {n ∈ N : j ≤ |I−−n |}.

Using the sets K+
j and K−j , we can formulate the following theorem, which states

that the suprema of the sums of the largest entries of φ+
n and φ−n can be written as

a sum of uniformly decreasing summands in terms of the quantities Φ+ and Φ−.

Theorem 5.11. Let ∆̄ > 0, s ∈ {+,−}, B :=
⌊
Φs/∆̄

⌋
, b ∈ [B]. Then, it holds

that

sup
N∈N

sup
α∈AN ,h∈(0,∆̄]N

sup
n∈[N ]

b∑
i=1

φsisn =

b∑
i=1

(Φs − (i− 1)∆̄).

Moreover, B ≤M .

Proof. We prove the inequality ≤ in Lemma 5.12 and the inequality ≥ in Lemma
5.13, which are stated and proved below. While the upper bound in Lemma 5.12
is proved for B = min{bΦs/∆̄c,M − 1}, the steps in the proof of the lower bounds
in Lemma 5.13 are valid without the additional requirement B ≤M − 1.

If B ≥ M , Lemma 5.13 establishes Ks
M 6= ∅ for some N ∈ N, α ∈ AN , and h ∈

(0, ∆̄]N . However, this means that M entries of φn are strictly negative (positive)
for some n, which contradicts Lemma 5.5 that states that at most M − 1 entries of
φn can be strictly positive (negative). �

Assuming that at least b strictly negative (positive) entries exist, we establish
the upper bound on the sum of b largest strictly negative (positive) entries in φn.

Lemma 5.12. Let ∆̄ > 0, s ∈ {+,−}, B := min{
⌊
Φs/∆̄

⌋
,M − 1}. For all N ∈ N

and for all α ∈ AN , if Ks
B 6= ∅ then we have for all b ∈ [B] the estimate

sup
n∈Ks

b

b∑
i=1

φsn,isn ≤
b∑
i=1

(Φs − (i− 1)∆̄).

Proof. By Lemma 5.5 there exist at most M−1 strictly negative (positive) entries of
φn. Therefore B = min{bΦs/∆̄c,M−1} ensures well-definedness of the expressions
in the subsequent steps.

By definition, the assertion holds true for b = 1. We proceed inductively and
assume the claim holds for b ∈ [B − 1]. We show that it holds for b + 1 by
contradiction. Suppose the claim does not hold for b+ 1, that is

b+1∑
i=1

φsn,isn >

b+1∑
i=1

(Φs − (i− 1)∆̄).(5.7)
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for some α ∈ AN and some n ∈ Ks
b+1. We set

d :=

b+1∑
i=1

φsn,isn −
b+1∑
i=1

(Φs − (i− 1)∆̄).

The left hand side of the inequality (5.7) is the sum of the largest b + 1 entries
of the positive (negative) part of φn. We observe that this quantity only depends
on α1,. . .,αn and h1,. . .,hn.

We apply Proposition 5.3 and deduce that for all 0 < ε, there exists n1 ∈ N,

αn+1,. . .,αn1 and hn+1,. . .,hn1 with
∑M
i=1 αk,i = 1 and hk ∈ ∆̄ for all k ∈ {n +

1, . . . , n1} such that φsn1,1n , . . . , φ
s
n1,(b+1)n

are ε-∆̄-stairs-shaped when Algorithm

3.1 is applied to α1, . . . , αn1
and h1, . . . , hn1

.
Because of Proposition 5.3 (1), (2), and (3) we obtain

b+1∑
i=1

φsk,isn =

b+1∑
i=1

φsn,isn >
(5.7)

b+1∑
i=1

(
Φs − (i− 1)∆̄

)
for all k ∈ {n, . . . , n1}. We apply Lemma A.1 (with the choice f = ∆̄ and g = 0) to
this inequality and the induction hypothesis and obtain φsk,in > ∆̄ for all i ∈ [b+ 1]

and n ≤ k < n1, which allows us to restrict to the case (5.3) in Definition 5.2.
Furthermore, Proposition 5.3 (1), (2), and (3) and an insertion also yield

b+1∑
i=1

φsn1,isn
=

b+1∑
i=1

(
Φs − (i− 1)∆̄ +

d

b+ 1

)
.(5.8)

Consequently, the consecutive summands of the right hand side differ by exactly
∆̄ and the summands on the left hand side are ε-∆̄-stairs-shaped. We pass to the
limit ε→ 0 and obtain that

φsn1,1n1
→ Φs +

d

k + 1
,

that is that the largest summand on the left tends to the largest summand of the
right side of (5.8). This follows because both sums have the same number of sum-
mands, and the difference between subsequent summands in descending ordering
tends to ∆̄ in the limit ε→ 0 by Proposition 5.3.

Because of d > 0 we have φsn1,1n1
> Φs for some ε > 0 small enough, which

contradicts the definition of Φs and closes the proof of the induction step. �

The lower bound on the sum of the largest entries is proved in Lemma 5.13,
which also gives that sufficiently many strictly positive (negative) entries exist.

Lemma 5.13. Let ∆̄ > 0, s ∈ {+,−}, B :=
⌊
Φs/∆̄

⌋
, ε > 0. There exists N ∈ N

and α ∈ AN such that for all b ∈ [B] we have Ks
b 6= ∅ and

sup
n∈Ks

b

b∑
i=1

φsn,isn >

(
b∑
i=1

Φs − (i− 1)∆̄

)
− εb,

where εb := ε
2B−b

.

Proof. By definition of Φs in (5.6), the claim holds true for b = 1. We proceed
inductively and assume the claim holds true for some b ∈ [B − 1]. Then, Lemma
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5.14, in particular (5.10) with ε = εb, gives Ks
b+1 6= ∅ and n∗ ∈ Ks

b+1 such that

sup
n∈Ks

b+1

b+1∑
i=1

φsn,isn ≥
b+1∑
i=1

φsn∗,is
n∗
>

(
b+1∑
i=1

Φs − (i− 1)∆̄

)
− εb+1,

which proves the claim. �

Lemma 5.14 referenced in the proof above for the induction step is proved below.

Lemma 5.14. Let ∆̄ > 0, s ∈ {+,−}, B := bΦs/∆̄c, b ∈ [B − 1]. Let N ∈ N and
α ∈ AN satisfy Ks

b 6= ∅ and

b∑
i=1

φsn,isn >

(
b∑
i=1

Φs − (i− 1)∆̄

)
− ε.(5.9)

for some n ∈ Ks
b and 0 < ε < ∆̄. Then, Ks

b+1 6= ∅ and there exists n∗ ≤ n such
that

b+1∑
i=1

φsn∗,is
n∗
>

(
b∑
i=1

Φs − (i− 1)∆̄

)
− 2ε, and(5.10)

φsn∗,bs
n∗
≥ Φs − (b− 1)∆̄− ε.

Proof. Without loss of generality, we consider the first interval n such that the
prerequisites hold. Lemma 5.12 gives

b−1∑
i=1

φsn,isn ≤
b−1∑
i=1

(Φs − (i− 1)∆̄).

Furthermore, n ∈ Ks
b implies n ∈ Ks

b−1. We combine this with (5.9) and obtain

φsn,bsn > Φs − (b− 1)∆̄− ε ≥
b≤B−1

2∆̄− ε > ∆̄.(5.11)

by means of Lemma A.1 (with the choice f = ∆̄ and g = ε). Moreover, φsisn > 0 for

all i ∈ [M ].
Because n is the first interval such that these conditions hold, one entry of φsn

was increased compared to φsn−1. We distinguish the sign s.
Case s = −. By definition, we have φn−1 +αnhn−ωnhn = φn. Thus for s = −,

the increased entry has to be the rounding index i∗ ∈ Fn, that is ωn = ei∗ . Since
the sum of the biggest b entries increased, it is also true that i∗ ∈ {1−n , . . . , b−n } =: J .
Moreover, (5.11) yields that

φn−1,j ≤ φn,j − αn,jhn + ωn,jhn ≤ φn,j + ∆̄ <
(5.11)

0

for all j ∈ J . This in turn implies that there exists another entry j∗ ∈ Fn\{1−n , . . . , b−n }
because otherwise

∑
j∈J φ

−
n,j =

∑
j∈J φ

−
n−1,j by definition of Algorithm 3.1.

We obtain that φ−n,j∗ < 0 from (5.11) and Lemma 5.6, which also gives

φ−n,j∗ ≥
Lem. 5.6

φ−n,i∗ − ∆̄ >
(5.11)

Φs − b∆̄− ε ≥
b≤B−1

∆̄− ε.

Case s = +. Again, we denote the rounding index by i∗ ∈ Fn. Since the sum
of the biggest b entries increased, it holds that i∗ /∈ {1−n , . . . , b−n } =: J . Because n
is the first interval such that the sum breaks the bound, there exists another entry
j∗ such that j∗ ∈ Fn ∩ J .
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Again, we estimate with the help of (5.11) and Lemma 5.6 (with swapped roles
of i∗ and j∗)

φ+
n,i∗ ≥

Lem. 5.6
φ+
n,j∗ − ∆̄ >

(5.11)
Φs − b∆̄− ε ≥

b≤B−1
∆̄− ε.

In both cases, we obtain n∗ := n ∈ Ks
b+1. Moreover, we choose ` = j∗ if s = −

and ` = i∗ if s = + and obtain the estimate
b+1∑
i=1

φsn∗,is
n∗
≥

b∑
i=1

φsn∗,is
n∗

+ φsn∗,` >

(
b+1∑
i=1

Φs − (i− 1)∆̄

)
− 2ε

from the estimates in the case distinction above and the prerequisites. �

5.5.2. Bounds on the Largest Entries of φ+
n and φ−n . Theorem 5.11 enables us to

prove the following theorem, which also establishes (3.1), (5.2) and Theorem 3.4.

Theorem 5.15. Let s ∈ {+,−}. It holds that

Φs ≤ bM/2c ∆̄.

Proof. We define Bs := bΦs/∆̄c for s ∈ {+,−}.
Let s ∈ {+,−} and assume that the converse estimate

Φs > (bM/2c+ c) ∆̄(5.12)

holds for some c > 0. Then, Theorem 5.11 implies that for all 0 < ζ there exist
N ∈ N, α ∈ AN , h ∈ (0, ∆̄]N , and n ∈ [N ] such that

bM/2c∑
i=1

φsn,isn >

bM/2c∑
i=1

Φs − (i− 1)∆̄

− ζ.(5.13)

In particular, this holds if ζ < c∆̄ as well. Moreover, we assume that n is chosen
minimally, that is that interval n is the first interval such that the inequality (5.13)
holds. The necessary amount of strictly negative (positive) entries exist by virtue
of Lemma 5.13.

Theorem 5.11 also implies that

bM/2c−1∑
i=1

φsn,isn ≤

bM/2c−1∑
i=1

Φs − (i− 1)∆̄

 ,

and thus we apply Lemma A.1 to infer

φsn,bM/2csn
> ∆̄ + c∆̄− ζ >

ζ<c∆̄
∆̄.

Because n ∈ N is minimal, we may consider the same case distinction as in the
proof of Lemma 5.14 to deduce that there is ` ∈ Fn\{1sn, . . . , bM/2csn} such that

φsn,` > 0,

which implies Ks
bM/2c+1 6= ∅, that is that bM/2c + 1 strictly positive (negative)

entries exist in interval n.
Now, if s = +, let r = − and if s = −, let r = +. By definition it holds that

|Irn| ≤ bM/2c. We combine the fact that sum over the positive entries of φn has to
coincide with the sum over the negative entries, see Lemma 5.5, to obtain∑

i∈Irn

φrn,i =
Lem. 5.5

∑
i∈Isn

φsn,i ≥
bM/2c+1∑
i=1

φsisn >

bM/2c+1∑
i=1

Φs − (i− 1)∆̄

− ζ.
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Moreover, Theorem 5.11 also implies∑
i∈Irn

φrn,i ≤
G∑
i=1

(Φr − (i− 1)∆̄)

for some G ≤ |Irn| ≤ bM/2c.
We combine these inequalities to obtain

(G+ 1) Φs − bM/2c∆̄− ζ ≤ GΦr,

where we dropped the summands i = G+ 1, . . . , bM/2c in the sum over the entries
with sign s. We insert (5.12) and ζ < c∆̄ to obtain

GΦs < GΦr.

Consequently, bM/2c < Φs < Φr.
Thus the reasoning from (5.12) on can be carried out for the sign r instead of s

as well because we did not use the specific value of s in the arguments above. This
implies

bM/2c < Φr < Φs

as well. This contradicts the assumption (5.12) and closes the proof. �

6. Construction Algorithms

This section establishes Proposition 5.3 constructively. Let discretized relaxed
controls (αk)k≤n and interval lengths (hk)k≤n be given. Let J be a subset of
the positive or the negative entries of the integrated control deviation φn, which
arises from the application of Algorithm 3.1 with (SUR-SOS-VC). Let ε > 0 and
∆̄ := max{h` : ` ∈ [n]}. We present several algorithms which construct further
controls (αk)n+1≤k≤n1 .

If Algorithm 3.1 is continued from interval (iteration) n + 1 to n1 with these
controls and the interval lengths (hk)n+1≤k≤n1

≡ max{h` : ` ∈ [n]} it yields an
integrated control deviation φn1

. We prove that {φ+
n1,j

: j ∈ J} (or {φ−n1,j
: j ∈ J})

is ε-∆̄-stairs-shaped, and that for all j ∈ [M ]\J it holds that φn,j = . . . = φn1,j .
We prove Proposition 5.3 using a bottom-up approach. First, we analyze the

properties of Algorithm 6.1 and another construction for a relaxed control in one
interval to obtain two ways to modify the integrated control deviation φn. These
results are then used as repeatedly executed building blocks in Algorithm 6.2. We
finish by showing that Algorithm 6.2 produces a sequence of relaxed controls and
interval lengths that satisfy the claims of Proposition 5.3.

Algorithm 6.1 is used to extend (αk)k≤n ∈ An to (αk)k≤n1
∈ An1

and to extend
(hk)k≤n to (hk)k≤n1 for some n1 ≥ n. The construction is such that after applying
Algorithm 3.1 with (SUR-SOS-VC) to α and h it holds that φn1,i = φn1,j+∆̄ for two
predefined i, j with φn,i ≥ 0 and φn,j ≥ 0 and φn,i+φn,j ≥ ∆̄ (or φn,i ≤ 0, φn,j ≤ 0
and φn,i + φn,j ≤ −∆̄) while the other entries of φn,. . .,φn1 remain unchanged.

Lemma 6.1 (Asymptotics and termination of Algorithm 6.1). Let n ∈ N, let
(αk)k≤n ∈ An, and let (hk)k≤n ⊂ R+ with ∆̄ := max{hk : k ∈ [n]}. Let (φk)k≤n be
the result of the application of Algorithm 3.1 with (SUR-SOS-VC) to (αk)k≤n and
(hk)k≤n. Let s ∈ {+,−}. Let i, j satisfy the requirements of Algorithm 6.1. Then,
Algorithm 6.1 terminates after finitely many iterations with result αn+1,. . .,αn1

∈
RM and hn+1 = . . . = hn1

= ∆̄ := max{h` : ` ∈ [n]} such that (αk)k≤n1
∈ An1

.
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Algorithm 6.1 Compute (αk)n<k≤n1
to achieve φn1,i = φn1,j + ∆̄

Require: Interval index n, 0 < ε < 0.5.
Require: (αk)k≤n ∈ An, (hk)k≤n, ∆̄ := max{hk : k ∈ [n]}.
Require: (φk)k≤n ← apply Alg. 3.1 with (SUR-SOS-VC) to (αk)k≤n and (hk)k≤n.
Require: s ∈ {+,−}, indices i 6= j ∈ Isn such that φsn,i ≥ φsn,j , φsn,i + φsn,j ≥ ∆̄.

1: k ← n+ 1
2: while φsk−1,i 6= φsk−1,j + ∆̄ and φsk−1,j 6= φsk−1,i + ∆̄ do

3: hk ← ∆̄

4: t− ←
s=−


1− ε A : φk−1,i − φk−1,j ∈ (−∞,−2∆̄],
φk−1,j−φk−1,i−∆̄

2∆̄
B : φk−1,i − φk−1,j ∈ (−2∆̄,−∆̄),

φk−1,j−φk−1,i+∆̄

2∆̄
C : φk−1,i − φk−1,j ∈ (−∆̄, 0].

5: t+ ←
s=+


ε A : φk−1,i − φk−1,j ∈ [2∆̄,∞),
φk−1,j−φk−1,i+3∆̄

2∆̄
B : φk−1,i − φk−1,j ∈ (∆̄, 2∆̄),

φk−1,j−φk−1,i+∆̄

2∆̄
C : φk−1,i − φk−1,j ∈ [0, ∆̄).

6: αk ← tsei + (1− ts)ej
7: (φ`)`≤k ← apply Alg. 3.1 with (SUR-SOS-VC) to (α`)`≤k and (h`)`≤k.
8: k ← k + 1

9: n1 ← k − 1 return αn+1,. . .,αn1 ; hn+1,. . .,hn1 .

If Algorithm 3.1 with (SUR-SOS-VC) is applied to α and h, the resulting binary
control and integrated control deviation satisfy

φn1,` =


φn,` if ` /∈ {i, j},
φn,i+φn,j+∆̄

2 or
φn,i+φn,j−∆̄

2 if ` = i,
φn,i+φn,j−∆̄

2 if ` = j and φn,i =
φn,i+φn,j+∆̄

2 ,
φn,i+φn,j+∆̄

2 if ` = j and φn,i =
φn,i+φn,j−∆̄

2 .

(6.1)

In particular, ‖φn‖1 = . . . = ‖φn1
‖1.

Proof. The consistency of the computed (φ`)`≤k for all k follows from Lemma 5.5.
For some iteration k − 1 we assume inductively that φk−1,` = φn,` if ` /∈ {i, j};

φsk−1,i +φsk−1,j = φsn,i +φsn,j ≥ ∆̄; i, j ∈ Isn; φsk−1,i ≥ φsk−1,j if φsk−1,i−φsk−1,j > ∆̄.
The prerequisites imply that this claim holds for the choice k − 1 = n. Thus we

prove the induction step next and analyze finite termination and the claimed result
on termination afterwards.

To this end, we analyze the effect of the rounding rule (SUR-SOS-VC) in Algo-
rithm 3.1 in the cases A, B, and C if the algorithm has not terminated. By con-
struction of α it holds that Fk ⊂ {i, j}, which already proves φn,` = φk−1,` = φk,`
for ` /∈ {i, j}.

We consider case A. We have αk,i > 0, and αk,j > 0 and thus Fk = {i, j} by
(SUR-SOS-VC). If s = −, we estimate

γk,i = φk−1,i + (1− ε)hk ≤ φk−1,j + (1− ε)hk − 2∆̄
hk=∆̄
<

0<ε<0.5
φk−1,j + εhk = γk,j .

If s = +, we estimate

γk,i = φk−1,i + εhk ≥ φk−1,j + εhk + 2∆̄
hk=∆̄
>

0<ε<0.5
φk−1,j + (1− ε)hk = γk,j .
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For s = −, Alg. 3.1 ln. 4 selects j as the rounding index and for s = +, Alg. 3.1
ln. 4 selects i as the rounding index. In both cases, the difference between the
corresponding entries in φk is reduced, that is

φsk−1,i − φsk−1,j −
(
φsk,i − φsk,j

)
= 2(1− ε)hk = 2(1− ε)∆̄.

Since this difference is less than 2∆̄ and φsk,j was increased we still have φsk,i ≥ φsk,j >
0. Moreover αk,i + αk,j = ωk,i + ωk,j = 1 and thus φsk,i + φsk,j = φsk−1,i + φsk−1,j ,
which closes the induction step for case A.

We consider case B. If s = − it holds that ∆̄ ≤ φk−1,j − φk−1,i ≤ 2∆̄, which
gives

t− =
φk−1,j − φk−1,i − ∆̄

2∆̄
∈
(

0,
1

2

)
.

Thus αk is well-defined, and i, j ∈ Fk. We compute

γk,i = φk−1,i + αk,ihk = φk−1,i + t−∆̄ =
φk−1,i + φk−1,j

2
− ∆̄

2
, and

γk,j = φk−1,j + αk,jhk = φk−1,j + (1− t−)∆̄ =
φk−1,i + φk−1,j

2
+

3∆̄

2
.

If s = + it holds that −2∆̄ ≤ φk−1,j − φk−1,i ≤ −∆̄, which gives

t+ =
φk−1,j − φk−1,i + 3∆̄

2∆̄
∈
(

1

2
, 1

)
.

Thus αk is well-defined, and i, j ∈ Fk. We compute

γk,i = φk−1,i + αk,ihk = φk−1,i + t+∆̄ =
φk−1,i + φk−1,j

2
+

3∆̄

2
, and

γk,j = φk−1,j + αk,jhk = φk−1,j + (1− t+)∆̄ =
φk−1,i + φk−1,j

2
− ∆̄

2
.

For s = −, Alg. 3.1 ln. 4 selects j as the rounding index and for s = +, Alg. 3.1 ln.
4 selects i as the rounding index. In both cases, the obtained formulas for γk,i and
γk,j yield φsk,i = φsk,j + ∆̄ after subtracting ωk,ihk and ωk,jhk. Moreover, this gives
φk,j ≥ 0 if s = + and φk,j ≤ 0 if s = −, as well as φk,i + φk,j = φk−1,i + φk−1,j ,
which closes the induction step for case B.

We consider case C. We have

t− = t+ =
φk−1,j − φk−1,i + ∆̄

2∆̄
∈ (0, 1).

Thus αk is well-defined, and i, j ∈ Fk. Inserting t− and t+ into the update formula
for γ gives

γk,i = γk,j =
φk−1,i + φk−1,j

2
+

∆̄

2
.

Depending on whether i < j or j < i holds, either i or j is selected as rounding
index and it holds φsk,i = φsk,j + ∆̄ or φsk,j = φsk,i + ∆̄ accordingly. The induction

hypothesis φsk−1,i + φsk−1,j ≥ ∆̄ implies that after subtracting ωk,ihk and ωk,jhk
from γk,i and γk,j respectively, we obtain φk,j ≥ 0 and φk,i ≥ 0 if s = + as well as
φk,i ≤ 0 and φk,j ≤ 0 if s = −.

These cases are exhaustive because of the following. The algorithm terminates
immediately after case B or C occurred since the construction leads to a satisfaction
of the termination criterion since either φsk,i = φsk,j + ∆̄ or φsk,j = φsk,i + ∆̄. Thus if

the algorithm starts with 0 ≤ φsk,i − φsk,j < 2∆̄ in the first iteration, the algorithm
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terminates immediately or after handling case B or C after one iteration. If case A
occurs, the difference φsk,i−φsk,j shrinks by 2(1− ε)∆̄ ≥ ∆̄ each time case A occurs
until case B or C occurs. Then, the algorithm terminates in the next iteration.

The algorithm terminates if φk−1,i = φk−1,j + ∆̄ or φk−1,j = φk−1,i + ∆̄. The
first case in (6.1) follows from the induction hypothesis. The induction hypothesis
also implies i, j ∈ Is` for all ` ∈ {n, . . . , n1}, which together with the invariance of
the other entries gives φn1,i + φn1,j = φn,i + φn,j . Thus, the termination criterion
and and the finite termination imply the claims. �

The second building block extends given discretized relaxed controls (αk)k≤n ∈
An and interval lengths (hk)k≤n by one interval to (αk)k≤n+1 ∈ An+1 and (hk)k≤n+1.

Let (φk)k≤n+1 be the integrated control deviations resulting from the application
of Algorithm 3.1 with (SUR-SOS-VC) to them. If the sum of the values of two fixed
positive (negative) entries of φn is less than ∆̄ := max{hk : k ∈ [n]} the control
αn+1 is computed such that one of them is zero and the other has the value of the
sum of both in φn+1. The formula for the choice of αn+1 is established in Lemma
6.2 below.

Lemma 6.2. Let n ∈ N, let (αk)k≤n ∈ An, and let (hk)k≤n ⊂ R+ with ∆̄ :=
max{hk : k ∈ [n]}. Let (φk)k≤n be the result of the application of Algorithm 3.1
with (SUR-SOS-VC) to (αk)k≤n and (hk)k≤n. Let s ∈ {+,−}. Let i, j ∈ Isn be such
that i 6= j and φsn,i + φsn,j < ∆̄. We define hn+1 := ∆̄ and αn+1 := ei(1 − t) + ejt
with

t =

1− φ+
n,j

∆̄
if s = +,

φ−n,j
∆̄

if s = −.
Then, (αk)k≤n+1 ∈ An+1. Let (φk)k≤n+1 be the result of the application of Algo-
rithm 3.1 with (SUR-SOS-VC) to (αk)k≤n+1 and (hk)k≤n+1. Then,

φn+1,` =


φn,` if ` /∈ {i, j},
φn,i + φn,j if ` = i,

0 if ` = j.

In particular, ‖φn‖1 = ‖φn+1‖1.

Proof. The prerequisite φsn,i + φsn,j < ∆̄ implies t ∈ (0, 1). Thus Fn+1 = {i, j} by
definition of (SUR-SOS-VC), which implies φn+1,` = φn,` for ` /∈ {i, j}. Moreover,
t ∈ (0, 1) also implies that (αk)k≤n+1 ∈ An+1. We compute γn+1 = φn + αn+1∆̄
and obtain

γn+1,i =

{
φn,i + φn,j if s = +,

φn,i + φn,j + ∆̄ if s = −,
and

γn+1,j =

{
∆̄ if s = +,

0 if s = −.

For both s = + and s = − the rounding decision in Algorithm 3.1 ln. 4 implies
φn+1,i = φn,i + φn,j and φn+1,j = 0, which closes the proof. �

Now, we state and analyze Algorithm 6.2, which creates controls αn+1,. . .,αn1

such that after the application of Algorithm 3.1 with (SUR-SOS-VC) the set {φsn1,j
:

j ∈ J} is ε-∆̄-stairs-shaped for s ∈ {+,−} and a predefined set J ⊂ Isn. Its analysis
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gives a constructive proof of Proposition 5.3, which uses Algorithm 6.1 and the
construction from Lemma 6.2 as building blocks.

Algorithm 6.2 Compute (αk)n<k≤n1 such that φsn1
is ε-∆̄-stairs-shaped

Require: Interval index n, ε > 0.
Require: (αk)k≤n ∈ An, (hk)k≤n, ∆̄ := max{hk : k ∈ [n]}.
Require: (φk)k≤n ← apply Alg. 3.1 with (SUR-SOS-VC) to (αk)k≤n and (hk)k≤n.
Require: s ∈ {+,−}, J ⊂ Isn.
Require: For iteration k, `Jk `Jk denotes the index j such that φsk,j is the `-th

largest number in {φsk,j : j ∈ J}.
1: k ← n, κ← n
2: while {φsk,j : j ∈ J} is not ε-∆̄-stairs-shaped do

3: a, b← 1Jk , 1
J
k

4: for ` = 1, . . . , |J | − 1 do

5: a, b←

{
b, (`+ 1)Jk if φsκ,b ≥ φsκ,(`+1)Jk

(`+ 1)Jk , b if φsκ,b < φs
κ,(`+1)Jk

6: if φsκ,a + φsκ,b ≥ ∆̄ and φsκ,a − φsκ,b 6= ∆̄ and φsκ,b 6= 0 then

7: (ακ+`)1≤`≤L, (hκ+`)1≤`≤L ← Alg. 6.1(s, (α`)`≤κ, (h`)`≤κ, a, b)
8: else if φsκ,a − φsκ,b 6= ∆̄ and φsκ,b 6= 0 then
9: L← 1

10: t←

1− φ+
n,b

∆̄
if s = +,

φ−n,b
∆̄

if s = −.
11: ακ+1 ← ea(1− t) + ebt
12: hκ+1 ← ∆̄
13: else
14: L→ 0
15: κ← κ+ L
16: (φ`)`≤κ ← apply Alg. 3.1 with (SUR-SOS-VC) to (α`)`≤κ and (h`)`≤κ

17: k ← κ
18: n1 ← k
19: return αn+1,. . .,αn1 ; hn+1,. . .,hn1 .

Lemma 6.3 (Asymptotics and termination of Algorithm 6.2). Let n ∈ N, let
(αk)k≤n ∈ An, and let (hk)k≤n ⊂ R+ with ∆̄ := max{hk : k ∈ [n]}. Let (φk)k≤n be
the result of the application of Algorithm 3.1 with (SUR-SOS-VC) to (αk)k≤n and
(hk)k≤n. Let s ∈ {+,−}, and let J ⊂ Isn. Then, Algorithm 6.2 terminates after
finitely many iterations with result αn+1,. . .,αn1

and hn+1,. . .,hn1
such that

(1) (αk)k≤n1 ∈ An1 , and
(2) hn+1 = . . . = hn1 .

Moreover let (φk)k≤n1
be the result of the application of Algorithm 3.1 with (SUR-SOS-VC)

to (αk)k≤n and (hk)k≤n. It also holds that

(3) φn,i = . . . = φn1,i for all i ∈ [M ]\J , and
(4) Isn = . . . = Isn1

,
(5) ‖φsn‖1 = . . . = ‖φsn1

‖1,

(6) {φsn1,j
: j ∈ J} is ε-∆̄-stairs-shaped.
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Proof. We split the proof into two steps. First, we show that Algorithm 6.2 termi-
nates with the correct result if it terminates. Then we show that the termination
criterion is satisfied after finitely many iterations.

The values of αk for k > n are determined in Lines 7 and 11. In the former case
(αk)k≤κ+L ∈ Ak+N follows from Lemma 6.1 at the end of an iteration of the inner
loop. In the latter case (αk)κ+L ∈ Ak+N follows from Lemma 6.2 at the end of an
iteration of the inner loop. Since these are all statements that compute new αk and
hk, this shows claim (1) if the algorithm terminates.

The values of hk for k > n are determined in Lines 7 and 12. In the former case
Lemma 6.1 yields hk = ∆̄ and in the latter case this follows by inspecting Line 12.
This shows claim (2) if the algorithm terminates.

To operate with the indices in set J ⊂ [M ] we use the notation that is introduced
in the requirements of Algorithm 6.2. For interval k, the symbol `Jk denotes the
index j such that φsk,j is the `-th largest number in {φsk,j : j ∈ J}, where we allow

` ∈ [J ].
Lemma 6.1 implies that φκ,i = . . . = φκ+L,i for i ∈ [M ]\{a, b} if the condition

in Line 6 holds true and Lemma 6.2 implies the same if the condition in Line 8
holds true in the inner iteration of Algorithm 6.2. Since these are all statements
that compute new αk and hk and in all iterations it holds that a, b ∈ J by virtue
of the recursive construction in Lines 3 and 5, it follows that φn,i = . . . = φn1,i and
claim (3) holds if the algorithm terminates.

We note that the computed (φ`)`≤κ are consistent, that is that after each inner
iteration the entries (φ`)`≤κ−L coincide with (φ`)`≤κ from the previous iteration.
This follows from the elementary properties of Algorithm 3.1 established in Lemma
5.5. Thus, Lemma 6.1 and Lemma 6.2 together with the consistency of (φ`)`≤κ
over the iterations imply inductively that Isn = . . . = Isκ and ‖φsn‖1 = . . . = ‖φsκ‖1
for all generated κ. Thus the claims (4) and (5) hold if the algorithm terminates.

Finally by definition of the termination criterion in Line 2 the claim (6) holds if
the algorithm terminates.

It remains to show that claim (6) is satisfied after finitely many iterations. The
statements in Lines 6 and 8 imply that Algorithm 6.2 cannot produce controls such
that entries that are zero in φk are nonzero in later iterations, that is nonzero in
φk+` for some ` > 0. However, nonzero entries in φk can become zero in later
iterations due to the controls produced by Algorithm 6.1 in Line 7, or the control
in the else-if-branch starting in Line 8. This follows from Lemma 6.1 in the former
and Lemma 6.2 in the latter case. The prerequisites of Lemma 6.1 and Lemma 6.2
are always satisfied because of the conditions ensured in Lines 6 and 8.

Consequently, the number of nonzero entries φk,j 6= 0 for j ∈ J is non-increasing
over the iterations k and bounded by |J |, the number of elements in J . Thus the
set of entries in φk, which are altered in the for-loop beginning in Line 4, does
not change anymore after finitely many iterations. Moreover, the modifications
are all due the controls produced by Algorithm 6.1, which is invoked in Line 7.
Consequently, it remains to show that if the set of nonzero entries of φk does not
change anymore for all iterations k ≥ k0 for some k0 ∈ N, then the termination
criterion is satisfied for some k1 ≥ k0. By construction of the for-loop the if-
statement 6 always evaluates to true until some entry in {φs`,j : j ∈ J} in decreasing
order is zero. Thus, we may assume φsκ,j > 0 for all j ∈ J and all κ in the iterations
in the for-loop without loss of generality.
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We show that in this case one for-loop produces controls such that the change in
the entries of φk from Line 3 to Line 17 can be described by a linear transformation.
A spectral analysis of this linear transformation implies convergence of the φk such
that {φsk,j : j ∈ J} is ε-∆̄-stairs-shaped eventually.

We start at iteration k with some integrated control deviation vector φk. For the
analysis, we have to monitor the entries of φκ during the iterations ` = 1, . . . , |J |−1
of the for-loop. To avoid a bloated notation, we denote φκ after the `-th iteration
by φ` and φk at the end of the previous for-loop, or equivalently at the beginning

of the current for-loop, by φ0. Similarly, 1J` , . . . , |J |
J
` denotes the `-th largest entry

of {φs`,j : j ∈ J} for ` = 0, . . . , |J | − 1.
Moreover, we refer to the index b computed in Line 5 in the `-th iteration of the

for-loop by b`.
The first iteration of the for-loop invokes Algorithm 6.1, which gives

φs1,1J0
=
φs

0,1J0
+ φs

0,2J0
+ ∆̄

2
, and

φs1,2J0
=
φs

0,1J0
+ φs

0,2J0
− ∆̄

2

by virtue of Lemma 6.1. The other entries do not change. Since the largest entry of
{φs0,j : j ∈ J} was increased, we obtain that 1J1 = 1J0 . However, we do not know the
rank of φs

1,2J0
in a decreasingly ordered {φs0,j : j ∈ J} anymore because the second

largest entry decreased. But combining the notation introduced above with Line 5,
we obtain that b1 = 2J0 .

In the second iteration of the for-loop, either the entry b1, which was just de-
creased, or the entry 3J0 is the second largest entry, that is 2J1 ∈ {b1, 3J0 }. Moreover,
b1 = 2J0 6= 3J0 . Then the second invocation of Algorithm 6.1 yields

φs2,2J2
=
φs1,b1 + φs

0,3J0
+ ∆̄

2

φs2,b2 =
φs1,b1 + φs

0,3J0
− ∆̄

2

by virtue of Lemma 6.1 and the fact that φs1,b1 < φs
1,1J1

and φs
1,3J0
≤ φs

1,2J2
. This also

implies 1J2 = 1J1 .
We continue this reasoning inductively over the iterations ` of the for-loop. We

obtain that `J`−1 ∈ {(` + 1)J0 , b`−1} and (` + 1)J0 6= b`−1, and the invocation of
Algorithm 6.1 gives

φs`,`J`
=
φs`−1,b`−1

+ φs
0,`J0

+ ∆̄

2
,

φs`,b` =
φs`−1,b`−1

+ φs
0,`J0
− ∆̄

2
.

Furthermore for ` ∈ [|J | − 1], we deduce inductively that iJ` = iJ`−1 = . . . = iJi
for all entries i ∈ [`− 1]. Thus in the `-th iteration of the for-loop the `-th largest
entry of all further iterations of the for-loop and thus also of the final iteration of
the for-loop is computed and assigned, that is φs|J|−1,`J|J|−1

= . . . = φs
`,`J`

. In the
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last iteration (iteration |J | − 1) the smallest entry is computed by |J |J|J|−1 = b|J|−1

as well as the corresponding value φs|J|−1,(|J|)J|J|−1

.

Inspecting the recursive formulae derived above we observe that the values {φs`,j :

j ∈ J} depend affinely on the entries in {φs0,j : j ∈ J}. Therefore, we cast the
recursive formulae into the update matrix below that represents the effect of one
run of the for-loop, or alternatively one iteration of the while-loop.



∆̄
φs

|J|−1,1J|J|−1
φs

|J|−1,2J|J|−1
φs

|J|−1,3J|J|−1

.

.

.
φs

|J|−1,(|J|−1)J|J|−1
φs

|J|−1,(|J|)J|J|−1



=



1 0 0 0 0 . . . 0
1
2

1
2

1
2

0 0 . . . 0
1
4

1
4

1
4

1
2

0 . . . 0
1
8

1
8

1
8

1
4

1
2

. . . 0

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.
1

2|J|−1
1

2|J|−1
1

2|J|−1
1

2|J|−2
1

2|J|−3
. . . 1

2

1−2|J|−1

2|J|−1
1

2|J|−1
1

2|J|−1
1

2|J|−2
1

2|J|−3
. . . 1

2





∆̄
φs

0,1J0
φs

0,2J0
φs

0,3J0

.

.

.
φs

0,(|J|−1)J0
φs

0,(|J|)J0



To establish convergence for the repeated application of this update it is ben-
eficial to change the vantage point to the difference φsk,j − φsk,i, where i, j ∈ J

are subsequent entries with respect to the decreasing order of {φsk,j : j ∈ J}. We
consider the vector φ|J|−1 at the end of the for-loop and define

d` := φs|J|−1,`J|J|−1
− φs|J|−1,(`+1)J|J|−1

≥ 0

for ` ∈ {1, . . . , |J | − 1}. We deduce

d|J|−1 = ∆̄,

which follows from the linear transformation above and from the fact that the last
execution of Algorithm 6.1 in the for-loop sets the difference between the values of
the entries a|J|−1 and b|J|−1 to ∆̄. We obtain the formula

d` =
∆̄ +

∑`+1
i=1 fi2

i−1

2`+1
,

for ` ∈ {1, . . . , |J |−1}, where f is defined the same as vector d just with the entries
of φs0 instead of φs|J|−1. That is d contains the differences after the run of the for-

loop and f the differences before the run of the for-loop. This formula follows by a
rearrangement of the summands from the linear update above. The details are in
Lemma A.2.

We put the differences after and before the for-loop run, d and f , with the largest
elements before and after the for-loop run, φs

0,1J0
and φs|J|−1,1J|J|−1

into the linear

update formula

φs
κ|J|−1,j

κ|J|−1
1

d1

d2

...
d|J|−2

d|J|−1


=



1 − 1
2 0 0 . . . 1

2
0 1

4
1
2 0 . . . 1

4
0 1

8
1
4

1
2 . . . 1

8
...

...
. . .

. . .
. . .

...
0 1

2|J|−1
1

2|J|−2
1

2|J|−3 . . . 1
2 + 1

2|J|−1

0 0 0 0 . . . 1





φs
0,1J0
f1

f2

...
f|J|−2

f|J|−1


.

For the remainder of this proof, we denote the update matrix above by the symbol
T . Considering its first line and first column, we obtain that e1 is an eigenvector
to the eigenvalue 1. Furthermore, 1 bounds the other eigenvalues from above by
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the Gershgorin circle theorem. The minor from second column and row on is a

row-stochastic matrix. Thus,
(
0 1 . . . 1

)T
is an eigenvector of the eigenvalue

1. The last row reveals d|J|−1 = f|J|−1 and the first row yields v2 = v|J| for every
eigenvector v of the eigenvalue 1. Inductively, we obtain v2 = v3 = v4 = . . . = v|J|
for all eigenvectors of T to the eigenvalue 1.

Combining this, we obtain a geometric multiplicity of 2 of the eigenvalue 1 with
the corresponding eigenspace

span
{(

1, 0, . . . , 0
)T
,
(
0, 1, . . . , 1

)T}
.

The matrix also maps coordinate-wise nonnegative vectors to coordinate-wise non-
negative vectors. Thus starting at some difference f obtained after a run of the
for-loop, we consider the repeated application of T , which corresponds to the re-
peated execution of the for-loop. Analogously to the convergence of the von-Mises-
iteration, we obtain convergence of the vector dn = Tnf to an element in the
eigenspace to the eigenvalue 1 analogously. The last row of T gives dn|J|−1 = ∆̄

because f|J|−1 = ∆̄ after one run of the for-loop. The structure of the eigenspace
gives the asymptotics (

dn1 , . . . , d
n
|J|−1

)T
→

n→∞

(
∆̄, . . . , ∆̄

)T
.

Inspecting the first row of T this implies a corresponding convergence of the largest
values (φs

0,1J0
)n over the runs n of the for -loop. These asymptotics in turn imply

that {φsk,j : j ∈ J} is ε-∆̄-stairs-shaped after finitely many iterations, which finishes
the proof. �

Corollary 6.4. Proposition 5.3 holds.

7. Concluding Remarks

We have shown that Algorithm 3.1 with the choice (SUR-SOS-VC) allows to
approximate feasible points of the relaxation (RC) arbitrarily close in terms of
feasibility and objective value.

The arguments in the proof of Theorem 3.5 only depend on the validity of the
estimate (P) and the suitable restriction of the admissible rounding indices per
interval introduced in Definition 3.3. Thus Theorem 3.5 stays valid for other ap-
proximation methods if in (P) holds for the restriction of the admissible indices
introduced in Definition 3.3. This is particularly true for the approaches in [2, 21].

Our considerations, specifically Theorem 2.1, also do not hinge on the specific
ODE setting we chosen. In particular, the results generalize to the recently analyzed
generalizations for time-dependent PDEs and multi-dimensional settings in [10,15,
16,27] in a straightforward manner.
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Appendix A. Elememtary Computations

Lemma A.1. Let i ∈ N. Let x̄ ∈ R. Let x1,. . .,xi+1 ∈ R with x1 ≥ . . . ≥ xi+1. Let
the bounds

i∑
j=1

xj ≤
i∑

j=1

(x− (j − 1)f) ,(A.1)

and

i+1∑
j=1

xj >

i+1∑
j=1

x− (j − 1)f

− g(A.2)

be satisfied for some f ∈ R and g ∈ R. Then for all j ∈ [i+ 1] it holds that

xj > x− if − g.

Proof. For j = i+ 1, we assume the converse xi+1 ≤ x− if − g. Then,

i∑
j=1

xj >

i+1∑
j=1

x− (j − 1)f

− g − xi+1

≥

i+1∑
j=1

x− (j − 1)f

− g − x+ if + g

=

 i∑
j=1

x− (j − 1)f

 ,

which contradicts the premise (A.1). Here the first inequality follows from (A.2)
and the second inequality follows from the contradictory claim. Because xi+1 ≤
. . . ≤ x1, the claimed inequality holds for all j ∈ [i+ 1]. �

Lemma A.2 (Formula in Lemma 6.3). In Lemma 6.3, we obtain for ` ∈ {2, . . . , |J |−
2} that

d` =
∆̄ +

∑`+1
i=1 fi2

i−1

2j+1

Proof. We abbreviate yi := φs|J|−1,iJ|J|−1

and xi := φs
0,iJ0

. We proceed inductively

and obtain

d1 = y1 − y2 =
∆̄ + x1 + x2

2
− ∆̄ + x1 + x2 + 2x3

4
=
d1

4
+
d2

2
,

from the transformation matrix in the base case. For j ≤ |J | − 2, we observe the
identity

j∑
i=1

di = y1 − yj+1.
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We insert the lines for y1 and yj+1 from the transformation matrix and obtain

j∑
i=1

di =
x1 + x2 + ∆̄

2
− x1 + x2 + 2x3 + · · ·+ 2jxj+2 + ∆̄

2j+1

=
1

2j+1

(
(2j − 1)(x1 + x2 + ∆̄)− 2x3 − · · · − 2jxj+2

)
=

1

2j+1

(
(2j − 1)(x1 + x2 + ∆̄)− 2x3 − · · · − (2j−1 + 2j)xj+1 + 2jfj+1

)
,

where the last equality follows from the definition of fj+1. We insert the definitions
of f3,. . . ,fj , and add the necessary factors in front of the corresponding x3,. . . .
This gives

j∑
i=1

di =
1

2j+1

(
(2j − 1)(x1 + x2 + ∆̄)− (21 + . . .+ 2j)x3 +

j+1∑
i=3

(
j∑

`=i−1

2`

)
fi

)
We use the formula 2j − 1 = 1 + · · ·+ 2j−1 to obtain

j∑
i=1

di =
1

2j+1

(
(2j − 1)(x1 + ∆̄) + x2 − 2jx2 +

j+1∑
i=2

(
j∑

`=i−1

2`

)
fi

)

=
1

2j+1

(
j−1∑
`=0

2`∆̄ +

j+1∑
i=1

(
j∑

`=i−1

2`

)
fi

)
.

Next, we apply the induction hypothesis to obtain

di =
1

2i+1

(
∆̄ +

i+1∑
`=1

2`−1f`

)
for i ∈ {1, . . . , j − 1}. We sum from one to j − 1 and factor with 1

2j+1 to obtain

j−1∑
i=1

di =
1

2j+1

(
j−1∑
i=1

2j−i∆̄ +

j−1∑
i=1

i+1∑
`=1

2j−i+`−1f`

)

=
1

2j+1

(
j−1∑
`=1

2`∆̄ +

j∑
i=1

fi

j∑
k=i

2k

)
.

Finally, the difference dj =
∑j
i=1 di −

∑j−1
i=1 di and a close inspection of the two

derived sum formulas yield the claim. �
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