Abstract

We study the problem of finding the Löwner-John ellipsoid, i.e., an ellipsoid with minimum volume that contains a given convex set. We reformulate the problem as a generalized copositive program, and use that reformulation to derive tractable semidefinite programming approximations for instances where the set is defined by affine and quadratic inequalities. We prove that, when the underlying set is a polytope, our method never provides an ellipsoid of higher volume than the one obtained by scaling the maximum volume inscribed ellipsoid. We empirically demonstrate that our proposed method generates high-quality solutions faster than solving the problem to optimality. Furthermore, we outperform the existing approximation schemes in terms of solution time and quality. We present applications of our method to obtain piecewise-linear decision rule approximations for dynamic distributionally robust problems with random recourse, and to generate ellipsoidal approximations for the set of reachable states in a linear dynamical system when the set of allowed controls is a polytope.

1 Introduction

We consider the minimum volume ellipsoid problem (MVEP), which can be stated as follows [10, 42]: “Given a set \(P \subset \mathbb{R}^K \), find an ellipsoid \(E_{mve} \) with minimum volume that contains \(P \).” In this paper, we focus on sets \(P \) that satisfy the following assumption.

Assumption 1. The set \(P \) is compact, convex, and full-dimensional.

Compactness guarantees the existence of a bounding ellipsoid. The convexity assumption is made without loss of generality; if the set is not convex, then we can instead consider its convex hull without affecting \(E_{mve} \). If \(P \) is not full-dimensional, then the ellipsoid \(E_{mve} \) is degenerate with zero volume. For sets \(P \) satisfying Assumption 1, such an ellipsoid, also known as the Löwner-John ellipsoid, is unique and affine-invariant,
making it an attractive outer approximation of P. We refer the reader to [22] for an excellent article about the lives of the eponymous researchers Karel Löwner and Fritz John, the history of the MVEP which dates back to late 1930s, and some important properties of Löwner-John ellipsoids. The MVEP arises in many applications studied in the literature. Several authors have studied outer ellipsoidal approximations for the set of reachable points in control systems [28, 14], as it is easier to check whether a point lies in an ellipsoid than in the comparatively complicated reachable set. Rimon and Boyd [35] advocate the use of E_{mve} for collision detection in robotics. Here, one checks whether the ellipsoids collide as opposed to the sets that they approximate. Other applications of the MVEP include outlier detection [1, 39], pattern recognition [17], computer graphics [15], and facility location [16].

For some sets P, it is possible to identify E_{mve} in polynomial time. For example, if P is defined as the convex hull of a finite number of points, then the complexity of finding E_{mve} is polynomial in the problem size [27, 41]. When P is a union of ellipsoids, one can employ the S-lemma to compute E_{mve} in polynomial time [44]. However, excluding these special cases, finding E_{mve} is, in general, a difficult problem. For example, if P is a polytope defined by affine inequalities, or if P is an intersection of ellipsoids, then finding E_{mve} is NP-hard [10, 18].

Gotoh and Konno [18] present a constraint-generation approach to solve the MVEP exactly when P is a polytope defined by affine inequalities. The approach starts with a collection of points contained in P and finds the ellipsoid of minimum volume containing those points. Then feasible points lying outside the current ellipsoid are successively generated, and the ellipsoid is updated to include the new point, until a desired optimality tolerance is reached. However, generating a point that lies in P but outside the current candidate ellipsoid at each iteration is very slow, as it entails solving a non-convex optimization problem. Therefore, this approach is computationally expensive, and one has to resort to approximation schemes.

One popular approximation method for the MVEP is based on identifying and scaling the maximum volume inscribed ellipsoid (MVIE), i.e., the ellipsoid with maximum volume contained in P. In particular, it is known that scaling the MVIE around its center by a factor of K results in an ellipsoid that contains P, thereby serving as an approximation of E_{mve} [24]. Moreover, the MVIE can be found in polynomial time if P is defined by affine and quadratic inequalities [26]. However, this approach, which we refer to as the SMVIE (scaled MVIE) approach, produces highly suboptimal ellipsoids because of the scaling factor K. Another method for approximating the MVEP is by utilizing the well-known S-procedure. Boyd et al. [9] discuss the application of the S-procedure to generate approximations for the MVEP when P is either an intersection or a Minkowski sum of ellipsoids.

Several authors have identified sufficient conditions under which a convex set contains another convex set. Ben-Tal and Nemirovski [4] discuss sufficient conditions which guarantee that a semidefinite-representable set contains a hypercube. Helton et al. [21] generalize this result by deriving sufficient conditions for a
semidefinite-representable set to contain another such set. Kellner et al. [25] provide slightly improved sufficient conditions compared to the ones in [21]. Although these articles do not focus on the MVEP specifically, their results can be used to approximate E_{mve} if P is semidefinite-representable (see Appendix A.3). To the best of our knowledge, there are no results that provide a finite system of constraints that are necessary and sufficient to ensure that an ellipsoid contains another set. This gap in knowledge is our main focus.

In this article, we prove that checking whether an ellipsoid contains P is equivalent to solving a finite-dimensional generalized copositive (GC) feasibility problem. We use this result to reformulate the MVEP exactly as a GC program. This representation of the MVEP enables us to leverage state-of-the-art approximation schemes available for GC programming problems. In particular, GC programs yield a hierarchy of optimization problems which provide an increasingly tight restriction to the original problem [29, 33, 45]. While our exact reformulation holds for any P satisfying Assumption 1, we focus primarily on developing approximations in the case where P is defined by affine and convex quadratic inequalities. We demonstrate that, for these sets, the resulting approximation can be formulated as a semidefinite program (SDP), which can be solved in polynomial time. Since these SDPs are restrictions of the GC reformulation, they provide a feasible ellipsoid that contains P.

There has been previous work on developing exact copositive programming reformulations for otherwise difficult problems, and using those reformulations to generate tractable approximations [8, 11, 13, 31, 19, 32, 34]. Our results add to this literature by demonstrating the ability of generalized copositive programs to exactly model the MVEP. To the best of our knowledge, we are the first to propose such a reformulation and approximation method for solving the MVEP.

We present theoretical and empirical comparisons of our method against the other state-of-the-art schemes to approximate the MVEP. We prove that if P is a polytope, then the volume of the ellipsoid generated by our proposed method never exceeds that of the SMVIE. We demonstrate through examples that the ratio of the volume of the latter ellipsoid to that of the former can be arbitrarily high. Furthermore, when P is a polytope, we show that the S-procedure does not improve upon the SMVIE approach. Therefore, S-procedure cannot produce ellipsoids of lower volume than our method. This result is surprising since the S-procedure has been successfully applied to generate high-quality approximations for E_{mve} in cases where P is either an intersection or a Minkowski sum of ellipsoids (see [9, Section 3.7] and references therein). Through our experiments, we demonstrate that our approach yields near-optimal solutions to the MVEP much faster than solving it to optimality using the constraint-generation approach of [18]. We further demonstrate that our proposed method is significantly faster, and provides ellipsoids of lower volume, than those obtained using the sufficient conditions by Kellner et al. [25].

We demonstrate the utility of our approximations to the MVEP on two applications. First, we consider a
two-stage distributionally robust optimization (DRO) problem with random recourse. Such a problem is NP-hard even in the absence of random recourse [6]. Bertsimas and Dunning [7] study a piecewise static decision rules approximation for the case of dynamic robust optimization, which leads to a tractable reformulation. Although they do not consider a DRO model, this approach can be extended to such a setting. In contrast, we focus on piecewise linear decision (PLD) rules approximation. In the presence of random recourse, finding the optimal PLD rule is NP-hard. However, we can find feasible PLD rules using the S-procedure. Unfortunately, these decision rules are often of poor quality. The effectiveness of the S-procedure in finding good PLD rules can be improved by considering an ellipsoid that covers the support set, i.e., the set of allowed values for the uncertain parameters. We show that the size of this ellipsoid can have a drastic effect on the quality of the PLD rules (see Examples 2 and 3). We use our method to find these bounding ellipsoids, and show, via an inventory management model, that the resulting PLD rules significantly outperform the ones that use a loose ellipsoid and the piecewise static decision rules. Second, we utilize our method to generate high-quality ellipsoidal approximations to the set of reachable states in a linear dynamical system when the control set, i.e., the set of allowed controls, is a polytope. This complements the existing schemes that provide similar approximations when the control set is an ellipsoid [28, 14].

We summarize the main contributions of the article below.

1) We provide necessary and sufficient finite-dimensional conic inequalities that certify whether an ellipsoid contains a set \(\mathcal{P} \) satisfying Assumption 1. We use these conditions to derive a generalized copositive reformulation of the MVEP.

2) When \(\mathcal{P} \) is defined by affine and convex quadratic inequalities, we derive a tractable SDP restriction to the GC reformulation, which results in a feasible ellipsoid that contains \(\mathcal{P} \). We prove that the volume of the resulting ellipsoid never exceeds that of the SMVIE approach. To the best of our knowledge, our approximation is the first one to have this property. We further show that the ratio of the volume of the SMVIE to the volume of the ellipsoid generated by our method can be arbitrarily high.

3) We demonstrate through extensive numerical experiments that our method is significantly faster than solving the problem to optimality. The experiments further indicate that our method significantly outperforms the SMVIE approach in terms of solution quality. Also, our method outperforms the scheme which utilizes the sufficient conditions of [25] both in terms of solution time and quality.

4) We present two important applications of our approach. Firstly, we exploit the bounding ellipsoids to obtain improved decision rule approximations to two-stage DRO models with random recourse, which have resisted effective solution schemes so far. Secondly, we provide ellipsoidal approximations for the set of reachable states in a linear dynamical system when the control set is a polytope.

This article is organized as follows. In Section 2, we describe the MVEP and reformulate it as an
equivalent GC program. In Section 3, we use that reformulation to derive a tractable SDP that generates a
near-optimal approximation to \(E_{\text{mve}} \) when the set is defined by affine and quadratic inequalities. In Section 4,
we explain the application of our approach for obtaining improved decision rules approximation for a two-
stage DRO model with random recourse. In Section 5, we present the numerical experiments comparing
the volumes of the ellipsoids generated by our method against those found using the other approaches. We
also present experiments on distributionally robust inventory management problem, and linear dynamical
systems. Finally, we conclude in Section 6.

1.1 Preliminaries

Notation For a positive integer \(I \), we use \([I]\) to denote the index set \(\{1, 2, \ldots, I\} \). We denote the vector of \ones by \(e \), and the identity matrix by \(I \); their dimensions will be clear from the context. We use \(\mathbb{R}^K(\mathbb{R}^+) \) to
denote the set of (non-negative) vectors of length \(K \), and \(S^K(\mathbb{S}^+_+ \) to denote the set of all \(K \times K \) symmetric
(positive semidefinite) matrices. In addition, \(\mathbb{S}^+ \) represents the set of positive definite matrices. The
functions \(\text{tr}(\cdot) \) and \(\text{det}(\cdot) \) denote the trace and the determinant of the input matrix, respectively. We define
\(\text{Diag}(v) \) as a diagonal matrix with vector \(v \) on its main diagonal. The symbols \(\|v\|_1 \) and \(\|v\| \) denote the
\(\ell_1 \)-norm and \(\ell_2 \)-norm of vector \(v \), respectively. The vertical concatenation of two scalars or vectors \(u \) and \(v \)
is denoted by \([u; v] \). We represent the conic hull of a set \(C \) by \(\text{cone}(C) \). For a matrix \(M \in \mathbb{R}^{I \times J} \), we use
\(M_{ij} \in \mathbb{R}^J \) to denote its \(j \)-th column, and \(M^* \in \mathbb{R}^I \) to denote the transpose of its \(i \)-th row.

Generalized Copositive Matrices We use \(\mathcal{C}(\mathcal{K}) \) to denote the set of generalized copositive matrices
with respect to cone \(\mathcal{K} \subseteq \mathbb{R}^K \), i.e., \(\mathcal{C}(\mathcal{K}) = \{M \in \mathbb{S}^K : x^T M x \geq 0 \ \forall x \in \mathcal{K}\} \). We use \(\mathcal{C}^*(\mathcal{K}) \) to denote the
set of generalized completely positive matrices with respect to cone \(\mathcal{K} \), i.e., \(\mathcal{C}^*(\mathcal{K}) = \{M \in \mathbb{S}^K : M = \sum_{i \in I} x_i x_i^T, x_i \in \mathcal{K}\} \) where \(I \) is a positive integer. The cones \(\mathcal{C}(\mathcal{K}) \) and \(\mathcal{C}^*(\mathcal{K}) \) are duals of each other [40].

For any \(P, Q \in \mathbb{S}^K \) and cone \(\bar{\mathcal{C}} \subseteq \mathbb{S}^K \), the conic inequality \(P \succeq_{\bar{\mathcal{C}}} Q \) indicates that \(P - Q \) is an element of \(\bar{\mathcal{C}} \).
We drop the subscript and simply write \(P \succeq Q \), when \(\bar{\mathcal{C}} = \mathbb{S}^+ \). Finally, the relation \(M \succeq_{\mathcal{C}(\mathcal{K})} 0 \) indicates
that \(M \) is strictly copositive, i.e., \(x^T M x > 0 \) for all \(x \in \mathcal{K}, x \neq 0 \).

Ellipsoids We define \(\mathcal{E}(A, b) = \{x \in \mathbb{R}^K : \|Ax + b\|^2 \leq 1\} \) as an ellipsoid with parameters \(A \in \mathbb{S}^K_+ \) and
\(b \in \mathbb{R}^K \). The volume of \(\mathcal{E}(A, b) \), denoted by \(\text{Vol}(\mathcal{E}(A, b)) \), is proportional to \(\text{det}(A^{-1}) = 1/\text{det}(A) \). In this paper, we drop the proportionality constant, and say that \(\text{Vol}(\mathcal{E}(A, b)) = 1/\text{det}(A) \); since we use the volume
as a metric for comparing different ellipsoids, doing so does not affect the results. We define the radius of
a \(K \)-dimensional ellipsoid as \(\text{Vol}(\cdot)^{1/K} \); this metric is proportional to the radius of a sphere with the same
volume as that of the ellipsoid. Finally, we say the two ellipsoids are equal, i.e., \(\mathcal{E}(A_1, b_1) = \mathcal{E}(A_2, b_2) \), if
and only if \(A_1 = A_2 \) and \(b_1 = b_2 \).
2 Generalized Copositive Reformulation

In this section, we develop a generalized copositive reformulation for the MVEP. It is well-known that \(\mathcal{E}_{\text{mve}} = \mathcal{E}(A, b) \) if and only if \((A, b)\) is the unique optimal solution to the following semi-infinite convex optimization problem [42]:

\[
\begin{align*}
\text{minimize} & \quad -\log \det(A) \\
\text{subject to} & \quad A \in S^K, \ b \in \mathbb{R}^K, \ Z(A, b) \leq 1,
\end{align*}
\]

where

\[
Z(A, b) = \sup_{x \in \mathcal{P}} \|Ax + b\|^2 = \sup_{x \in \mathcal{P}} \{x^\top A^2 x + 2b^\top Ax + b^\top b\}.
\] (1)

The objective function of \((\mathcal{MVE})\) minimizes the logarithm of the volume, which implicitly restricts \(A\) to be positive definite. Minimizing the logarithm of the volume makes the objective function convex in \(A\). The constraint \(Z(A, b) \leq 1\) forces every element of \(\mathcal{P}\) to lie inside the ellipsoid. We are now ready to present the main result of this section, where we derive necessary and sufficient conditions for certifying whether an ellipsoid contains another set.

Theorem 1. Let \(\mathcal{P}\) be a set satisfying Assumption 1. Let the cone \(\mathcal{K} \subseteq \mathbb{R}^{K+1}\) be defined as

\[
\mathcal{K} = \text{cone} (\{[x; 1] : \ x \in \mathcal{P}\}).
\] (2)

If \(A \in S^K_{++}\) and \(b \in \mathbb{R}^K\), then the ellipsoid \(\mathcal{E}(A, b)\) contains \(\mathcal{P}\) if and only if there exist \(F \in S^K\), \(g \in \mathbb{R}^K\), \(h \in \mathbb{R}\), such that

\[
\begin{bmatrix}
F & g \\
g^\top & h - 1
\end{bmatrix} \preceq_{\mathcal{C}(\mathcal{K})} 0 \quad \text{and} \quad
\begin{bmatrix}
F & g & A \\
g^\top & h & b^\top \\
A & b & I
\end{bmatrix} \succeq 0.
\] (3)

Before proving Theorem 1, we discuss its implications. The theorem implies that the constraint \(Z(A, b) \leq 1\) in \((\mathcal{MVE})\) can be replaced by the constraints in (3). Therefore, \(\mathcal{E}_{\text{mve}} = \mathcal{E}(A, b)\) is the minimum volume ellipsoid if and only if \((A, b, F, g, h)\) is the unique optimal solution to the following generalized copositive program:

\[
\begin{align*}
\text{minimize} & \quad -\log \det(A) \\
\text{subject to} & \quad A \in S^K, \ b \in \mathbb{R}^K, \ F \in S^K, \ g \in \mathbb{R}^K, \ h \in \mathbb{R}, \ (3) \ \text{holds}.
\end{align*}
\] (4)

Remark 1. In this article, we refer to a problem with \(-\log \det(\cdot)\) minimization objective and semidefinite (copositive) constraints as a “semidefinite (copositive) program,” albeit with a slight abuse of terminology. The reason is that minimization of \(-\log \det(\cdot)\) is equivalent to minimization of \(-(\det(\cdot))^{1/K}\); the latter can be reformulated as a problem with linear objective and additional semidefinite inequality constraints (see, e.g., [3, Section 4.2]). Some modeling frameworks, like YALMIP [30] which we use for our experiments, automatically carry out this conversion before sending the problem to the solver.
Next, we present the following technical lemmas which are crucial for the proof of Theorem 1.

Lemma 1. Let K be the cone defined in (2). If $[x; \tau] \in K$, then $\tau \geq 0$. Furthermore, $\tau = 0$ only if $x = 0$.

Proof. From the definition of K, there exist points $x_s \in \mathcal{P}$ and coefficients $\lambda_s \geq 0$, $s \in [S]$, such that $[x; \tau] = \sum_{s \in [S]} \lambda_s [x_s; 1]$. By comparing the last element, we get $\tau = \sum_{s \in [S]} \lambda_s \geq 0$, since $\lambda_s \geq 0$. In addition, $\tau = 0$ implies that $\lambda_s = 0$ for all $s \in [S]$, which further implies that $x = 0$. \hfill \square

Lemma 2. Let $A \in S^K$ be a symmetric matrix, $b \in \mathbb{R}^K$ be a vector and K be the cone defined in (2). Then there exists a real number ρ such that

$$\begin{bmatrix} -A^2 & -Ab \\ -b^\top A & \rho - b^\top b \end{bmatrix} \succeq_{C(K)} 0.$$

Proof. We have to show that there exists ρ such that $[x; \tau]^\top M [x; \tau] > 0$ for all $[x; \tau] \in K$, $[x; \tau] \neq 0$, where

$$M = \begin{bmatrix} -A^2 & -Ab \\ -b^\top A & \rho - b^\top b \end{bmatrix}.$$

Let $[x; \tau]$ be an element of K such that $[x; \tau] \neq 0$. From Lemma 1, $\tau = 0$ implies $x = 0$, which contradicts the assumption $[x; \tau] \neq 0$. Therefore $\tau > 0$, and we have that

$$[x; \tau]^\top M [x; \tau] = \rho \tau^2 - \|Ax + b\|^2 = \tau^2 \left(\rho - \|A \left(\frac{x}{\tau} \right) + b\|^2 \right).$$

Since $\tau^2 > 0$, the above expression is strictly positive if we choose ρ such that

$$\rho > \max_{[x; \tau] \in K} \|A \left(\frac{x}{\tau} \right) + b\|^2 = \max_{[x; 1] \in K} \|Ax + b\|^2 = \max_{x \in \mathcal{P}} \|Ax + b\|^2.$$

The first equality follows by setting $\hat{x} = x/\tau$ and using the fact that $[\tau \hat{x}; \tau] \in K$ if and only if $[\hat{x}; 1] \in K$, since K is a cone and $\tau \neq 0$. The second equality follows from the definition of K. The lower bound on ρ in (5) is finite since \mathcal{P} is compact and $\|Ax + b\|^2$ is finite for all $\hat{x} \in \mathcal{P}$. Hence, there exists ρ such that $M \succeq_{C(K)} 0$. \hfill \square

The following lemma is an extension of another recently proved result found in [31, Lemma 4].

Lemma 3. Let $M \in S^K$ be a symmetric matrix and $A \in \mathbb{R}^{J \times K}$ be an arbitrary matrix. Then, for any proper cone $K \subset \mathbb{R}^K$, the inequality $M \succeq_{C(K)} A^\top A$ is satisfied if and only if there exists a matrix $H \in S^K_+$ such that

$$M \succeq_{C(K)} H \quad \text{and} \quad \begin{bmatrix} H & A^\top \\ A & \mathbb{I} \end{bmatrix} \succeq 0.$$

Proof. (\Rightarrow) The statement holds immediately by setting $H = A^\top A$.

(\Leftarrow) Assume that there exists such a matrix $H \in S^K_+$. By the Schur complement, the second inequality in (6) implies that $H \succeq A^\top A$, which in turn implies that $H \succeq_{C(K)} A^\top A$ (since $S^K_+ \subset C(K)$ for any K). Combining this with the first inequality in (6) implies that $M \succeq_{C(K)} A^\top A$. \hfill \square
We now return to the proof of Theorem 1.

Proof of Theorem 1. We can write the set \mathcal{P} in terms of the cone \mathcal{K} as $\mathcal{P} = \{ x \in \mathbb{R}^K : [x;1] \in \mathcal{K} \}$. Therefore, we can write (1) as

$$
Z(A,b) = \sup_{[x;1] \in \mathcal{K}} x^T A^2 x + 2b^T Ax + b^T b.
$$

The optimization problem (7) can be written equivalently as the following completely positive program [11]:

$$
Z(A,b) = \sup \text{tr}(A^2 X) + 2b^T Ax + b^T b \\
\text{s.t.} \quad x \in \mathbb{R}^K, \quad X \in \mathbb{S}^K, \\
\begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq C^*(\mathcal{K}) 0.
$$

The dual of this completely positive program can be written as:

$$
Z_d(A,b) = \inf_{\rho \in \mathbb{R}} \rho \\
\text{s.t.} \quad \begin{bmatrix} -A^2 & -Ab \\ -b^T A & \rho - b^T b \end{bmatrix} \succeq C(\mathcal{K}) 0.
$$

Using Lemma 2, we conclude that a Slater point exists in the optimization problem (8). Hence, strong duality holds and $Z(A,b) = Z_d(A,b)$. Next, note that $Z(A,b) \leq 1$ if and only if there exists a feasible solution to problem (8) whose objective function value is at most 1. Therefore, $Z(A,b) \leq 1$ if and only if there exists $\rho \leq 1$ such that

$$
\begin{bmatrix} -A^2 & -Ab \\ -b^T A & \rho - b^T b \end{bmatrix} \succeq C(\mathcal{K}) 0,
$$

which, in turn, holds if and only if

$$
\begin{bmatrix} -A^2 & -Ab \\ -b^T A & 1 - b^T b \end{bmatrix} \succeq C(\mathcal{K}) 0,
$$

or equivalently,

$$
\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \succeq C(\mathcal{K}) \begin{bmatrix} A & b \end{bmatrix}^T \begin{bmatrix} A & b \end{bmatrix}.
$$

The conic inequality (9) has non-linearity because of the terms involving the product of the decision variables A and b. However, by Lemma 3, this constraint is satisfied if and only if there exist variables $F \in \mathbb{S}^K$, $g \in \mathbb{R}^K$ and $h \in \mathbb{R}$ such that the constraints (3) hold. Therefore, the constraint $Z(A,b) \leq 1$ is equivalent to constraints (3). Hence, the claim follows.

Theorem 1 implies that \mathcal{E}_{mve} can be found by solving the GC program (4), which is difficult in general. In the next section, we discuss tractable approximations of (4) for special cases of \mathcal{P}. However, before doing so, we generalize the GC reformulation (4) along several directions in the following remarks.
Remark 2 (Projection onto a subset of coordinates). Let \(P \subseteq \mathbb{R}^K \) be a set satisfying Assumption 1. Let \(P_x = \{ x \in \mathbb{R}^{K_1} : [x; y] \in P \text{ for some } y \in \mathbb{R}^{K-K_1} \} \) be the projection of \(P \) onto the first \(K_1 \) coordinates, where \(K_1 < K \). Following the steps of the proof of Theorem 1, we can see that if \(A \in \mathbb{S}^{K_1}_{++} \) and \(b \in \mathbb{R}^{K_1} \), then the ellipsoid \(E(A, b) \) contains \(P_x \) if and only if there exist \(F \in \mathbb{S}^K \), \(g \in \mathbb{R}^K \), \(h \in \mathbb{R} \), such that

\[
\begin{bmatrix}
F & g \\
g^\top & h - 1
\end{bmatrix} \preceq_{C(K)} 0 \quad \text{and} \quad
\begin{bmatrix}
F & g \\
g^\top & h - 1
\end{bmatrix} \preceq 0,
\]

where \(\overline{A} = \begin{bmatrix} A & 0 \end{bmatrix} \in \mathbb{R}^{K_1 \times K} \), and \(K = \text{cone} \left(\{ [x; y] : [x; y] \in P \} \right) \). We omit the details for the sake of brevity.

Remark 3 (Union of sets). Let \(P = \bigcup_{\ell \in [L]} P_\ell \), where the set \(P_\ell \) satisfies Assumption 1 for all \(\ell \in [L] \). The set \(P \) does not satisfy Assumption 1 since it may not be convex. However, it is possible to extend Theorem 1 to this case as follows. Note that an ellipsoid contains the union of sets if and only if it contains every set. We can apply Theorem 1 to every set \(P_\ell \) to arrive at the fact that ellipsoid \(E(A, b) \) contains \(P \) if and only if there exist \(F_\ell \in \mathbb{S}^K \), \(g_\ell \in \mathbb{R}^K \), \(h_\ell \in \mathbb{R} \forall \ell \in [L] \), such that

\[
\begin{bmatrix}
F_\ell & g_\ell \\
g_\ell^\top & h_\ell - 1
\end{bmatrix} \preceq_{C(K_\ell)} 0 \quad \text{and} \quad
\begin{bmatrix}
F_\ell & g_\ell & A \\
g_\ell^\top & h_\ell & b^\top \\
A & b & I
\end{bmatrix} \succeq 0 \quad \forall \ell \in [L],
\]

where \(K_\ell = \text{cone} \left(\{ [x; 1] : x \in P_\ell \} \right), \ell \in [L] \).

Remark 4 (Minkowski sum of sets). For all \(\ell \in [L] \), let the set \(P_\ell \) satisfy Assumption 1 and \(K_\ell \) be the corresponding cone defined as in (2). Let \(P = \left\{ \sum_{\ell \in [L]} x_\ell : x_\ell \in P_\ell \forall \ell \in [L] \right\} \) be the Minkowski sum of these sets. Although \(P \) satisfies Assumption 1, it might not have a polynomial sized representation. As an example, if every \(P_\ell \) is a polytope, then \(P \) is a polytope defined by constraints whose number can potentially grow exponentially with \(L \). However, we can still reformulate \((M\nabla E)\) for \(P \) as a GC program of polynomial size as follows. Observe that

\[
Z(A, b) = \sup_{x_\ell \in P_\ell \forall \ell \in [L]} \left\{ \left(\sum_{\ell \in [L]} x_\ell \right)^\top A \left(\sum_{\ell \in [L]} x_\ell \right) + 2b^\top A \left(\sum_{\ell \in [L]} x_\ell \right) + b^\top b \right\}
\]

\[
= \sup_{x = [x_1; x_2; \cdots; x_L], x_\ell \in P_\ell \forall \ell \in [L]} \left\{ x^\top \hat{A} \hat{A}^\top x + 2b^\top \hat{A}^\top x + b^\top b \right\},
\]

where \(\hat{A} = \begin{bmatrix} A & A & \cdots & A \end{bmatrix}^\top \in \mathbb{R}^{LK \times K} \). By defining the cone \(K \) as

\[
K = \{ [x_1; x_2; \cdots; x_L; \tau] \in \mathbb{R}^{LK+1} : [x_\ell; \tau] \in K_\ell \forall \ell \in [L] \}
\]
and repeating the steps in the proof of Theorem 1, we arrive at the fact that ellipsoid $E(A, b)$ contains P if and only if there exist $F \in S^{LK}$, $g \in \mathbb{R}^{LK}$, $h \in \mathbb{R}$ such that

$$\begin{bmatrix} F & g \
 g^\top & h - 1 \end{bmatrix} \preceq C(K) \ 0 \quad \text{and} \quad \begin{bmatrix} F & g \
 g^\top & h \ b^\top \
 A^\top & b \ II \end{bmatrix} \succeq 0.$$

In the previous three remarks, minimizing the function $-\log \det(A)$ subject to the corresponding constraints leads to a GC reformulation of (MVE).

3 Tractable Approximations for Polytopes

In this section, we use the reformulation (4) to present tractable semidefinite programming approximations for (MVE) in the case where the set P is a polytope defined as

$$P = \{ x \in \mathbb{R}^K : Sx \leq t \}, \quad (10)$$

where $S \in \mathbb{R}^{J \times K}$ and $t \in \mathbb{R}^J$. We start with our proposed approximation, and then present theoretical comparisons with alternative approaches to approximate E_{mve}.

Theorem 2. Let P be a polytope defined as in (10) that satisfies Assumption 1. Consider any $A \in S^K_+$ and $b \in \mathbb{R}^K$. Then, an ellipsoid $E(A, b)$ contains P if there exist $N \in \mathbb{R}^{J \times J}_+$, $F \in S^K$, $g \in \mathbb{R}^K$, $h \in \mathbb{R}$ such that

$$\begin{bmatrix} F & g \
 g^\top & h - 1 \end{bmatrix} \preceq -S^\top t^\top N [-S \ t], \quad \text{and} \quad \begin{bmatrix} F & g \
 g^\top & h \ b^\top \
 A^\top & b \ II \end{bmatrix} \succeq 0. \quad (11)$$

Proof. For the polytope P, the cone K defined in (2) can be written as $K = \{ [x; \tau] \in \mathbb{R}^{K+1} : \tau \geq 0, Sx \leq \tau t \}$. We show that the constraints (11) imply the constraints (3). Since the second constraints in (11) and (3) are the same, we show that the first constraint of (11) implies the generalized copositive constraint in (3) which proves our claim. For any $[x; \tau] \in K$, we have that

$$\begin{bmatrix} x^\top \\
 \tau \end{bmatrix} \begin{bmatrix} F & g \
 g^\top & h - 1 \end{bmatrix} \begin{bmatrix} x^\top \\
 \tau \end{bmatrix} \leq -\begin{bmatrix} x^\top \\
 \tau \end{bmatrix} \begin{bmatrix} -S^\top \\
 t^\top \end{bmatrix} N \begin{bmatrix} -S \ t \end{bmatrix} \begin{bmatrix} x^\top \\
 \tau \end{bmatrix} = -(\tau t - S x)^\top N(\tau t - S x) \leq 0,$$

where the first inequality follows from the first semidefinite inequality in (12) and the final inequality holds since $N \geq 0$ and $\tau t - S x \geq 0$. Thus,

$$\begin{bmatrix} F & g \
 g^\top & h - 1 \end{bmatrix} \preceq C(K) \ 0.$$

Hence, the claim follows. \qed
Theorem 2 provides a way to approximate \((\mathcal{MVE})\). We choose the ellipsoid with minimum volume among those that satisfy the conditions of Theorem 2. This can be achieved by solving the following tractable SDP:

\[
\begin{align*}
\text{minimize} & \quad - \log \det(A) \\
\text{subject to} & \quad A \in \mathbb{S}^K, \ b \in \mathbb{R}^K, \ N \in \mathbb{R}^{J \times J}, \ F \in \mathbb{S}^J, \ g \in \mathbb{R}^K, \ h \in \mathbb{R}, \\
& \quad \text{(11) holds.}
\end{align*}
\]

If \((A, b, N, F, g, h)\) is an optimal solution to (12), then we propose the use of the ellipsoid \(E_{\text{cop}} = E(A, b)\) as an approximation of \(E_{\text{mve}}\).

Next, we present a theoretical comparison of the quality of \(E_{\text{cop}}\) with the other methods of approximating \(E_{\text{mve}}\). We denote by \(E_{\text{smvie}}\) the ellipsoid obtained by scaling the maximum volume inscribed ellipsoid by a factor of \(K\). We discuss the SDP formulation for determining \(E_{\text{smvie}}\) in Appendix A.1. In Theorem 3, presented below, we show that the volume of \(E_{\text{mve}}\) cannot exceed the volume of \(E_{\text{smvie}}\). For the theoretical analysis, it is convenient to combine the two semidefinite inequalities of (11) using the Schur complement, and write (12) equivalently as follows:

\[
\begin{align*}
\text{minimize} & \quad - \log \det(A) \\
\text{subject to} & \quad A \in \mathbb{S}^K, \ b \in \mathbb{R}^K, \ N \in \mathbb{R}^{J \times J}, \\
& \quad \begin{bmatrix} A & b \end{bmatrix} \begin{bmatrix} A & b \\ b^T \\ 0 & 0 \end{bmatrix} \preceq \begin{bmatrix} -S^T & \Lambda^T \\ \Lambda & 0 \end{bmatrix} \begin{bmatrix} N & -S \\ t^T \\ 0 \\ 1 \end{bmatrix}.
\end{align*}
\]

We begin with the following lemma which we use for comparing the volumes of \(E_{\text{cop}}\) and \(E_{\text{smvie}}\).

Lemma 4 ([23, Theorem 7.8.7]). If \(M \in \mathbb{R}^{K \times K}\) is a square matrix with real entries such that \(M + M^\top \succ 0\), then

\[
\det \left(\frac{1}{2} (M + M^\top) \right) \leq \det(M).
\]

Theorem 3. If \(\mathcal{P}\) is a polytope defined as in (10), then \(\text{Vol}(E_{\text{cop}}) \leq \text{Vol}(E_{\text{smvie}})\).

Proof. The logarithm of the volume of \(E_{\text{smvie}}\) is equal to the optimal value of the following optimization problem (see Appendix A.1):

\[
\begin{align*}
\text{minimize} & \quad K\rho^\top t - K - \log \det \left(-\frac{1}{2} (S^\top \Lambda + \Lambda^\top S) \right) \\
\text{subject to} & \quad \Lambda \in \mathbb{R}^{J \times K}, \ \rho \in \mathbb{R}^J, \\
& \quad S^\top \rho = 0, \\
& \quad \|\Lambda_j\| \leq \rho_j \ \forall j \in [J].
\end{align*}
\]

We can compare the volumes of \(E_{\text{cop}}\) and \(E_{\text{smvie}}\) by comparing the optimal values of the minimization problems (13) and (14). To prove the theorem, we show that any feasible solution in (14) can be used to construct a feasible solution to (13) with the same or lower objective function value. To this end, consider a solution
(Λ, ρ) which satisfies the constraints of (14). Define κ = \exp(1 - ρ^T t). Also, let Λ^T S = UΣV^T be the singular value decomposition of Λ^T S, where U, V ∈ \mathbb{R}^{K × K} are orthonormal matrices, and Σ ∈ \mathbb{S}^K is a diagonal matrix. We note for later use that det(Λ^T S) = det(U) det(Σ) det(V^T) = det(Σ). Consider the following solution to (13):

\[
A = κVΣV^T, \quad b = κVU^TΛ^T t, \quad N = κ^2 (ρρ^T - ΛΛ^T).
\] (15)

We demonstrate that this solution satisfies the constraints of (13). Note that

\[
A^2 = κ^2 VΣV^T VΣV^T = κ^2 VΣU^T UΣV^T = κ^2 S^T ΛΛ^T S,
\]

since \(V^TV = U^TU = I\). Similarly \(Ab = κ^2 S^T ΛΛ^T t\), and \(b^T b = κ^2 t^T ΛΛ^T t\). Therefore,

\[
\begin{bmatrix}
-S^T \\
 t^T
\end{bmatrix} N \begin{bmatrix}
-S \\
t
\end{bmatrix} = \begin{bmatrix}
S^T S & -S^T Nt \\
-Nt^T S & t^T Nt
\end{bmatrix} = κ^2 \begin{bmatrix}
S^T (ρρ^T - ΛΛ^T) S & -S^T (ρρ^T - ΛΛ^T) t \\
-t^T (ρρ^T - ΛΛ^T) S & t^T (ρρ^T - ΛΛ^T) t
\end{bmatrix}
\]

\[
= κ^2 \begin{bmatrix}
-S^T ΛΛ^T S & S^T ΛΛ^T t \\
t^T ΛΛ^T S & (t^T ΛΛ^T t)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 0 \\
0 & (κt^T t)^2
\end{bmatrix} - \begin{bmatrix}
A^2 & Ab \\
b^T A & b^T b
\end{bmatrix}
\]

where the third equality follows from the constraint \(S^T ρ = 0\). We claim that \((κρ^T t)^2 ≤ 1\). To see this, first note that since the polytope \(P\) is non-empty, by Farkas’ Lemma, any vector \(ρ\) satisfying \(S^T ρ = 0\) and \(ρ ≥ 0\) also satisfies \(ρ^T t ≥ 0\). Secondly, using the inequality \(\exp(ν) ≥ 1 + ν\) with \(ν = ρ^T t - 1\), we get that \(κ^{-1} = \exp(ρ^T t - 1) ≥ ρ^T t\), which implies that \(κρ^T t ≤ 1\). Combining these two inequalities, we get that \(0 ≤ κρ^T t ≤ 1\), which implies that \((κρ^T t)^2 ≤ 1\). Therefore, we have that

\[
\begin{bmatrix}
A \\
b^T
\end{bmatrix} \begin{bmatrix}
A & b \\
b & t
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & (κρ^T t)^2
\end{bmatrix} - \begin{bmatrix}
-S \\
t
\end{bmatrix} N \begin{bmatrix}
-S \\
t
\end{bmatrix} ≥ \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} - \begin{bmatrix}
-S \\
t
\end{bmatrix} N \begin{bmatrix}
-S \\
t
\end{bmatrix}.
\]

Next, since \(N = κ^2 (ρρ^T - ΛΛ^T)\), we have that \(N_{ij} = κ^2 (ρ_iρ_j - Λ_i^T Λ_j) ≥ κ^2 (ρ_iρ_j - \|Λ_i\| \|Λ_j\|) ≥ 0\), where the two inequalities follow from Cauchy-Schwarz and the constraint \(\|Λ_j\| ≤ ρ_j\) respectively. Therefore, \(N ≥ 0\). Next, we compare the objective values. Note that

\[
- \log \det(A) = - \log \det(κVΣV^T) = - \log(κ^K \det(VΣV^T)) = - K \log(κ) - \log(\det(V)) \det(Σ) \det(V^T) = K(ρ^T t - 1) - \log \det(Λ^T S) ≤ K(ρ^T t - 1) - \log \det \left(\frac{1}{2}(Λ^T S + S^T Λ) \right),
\]

where the final inequality follows from Lemma 4. Hence, the feasible solution (15) gives a lower objective function value. Thus, the claim follows. □
Corollary 1. If the polytope P is a simplex, then $E_{mve} = E_{cop} = E_{smvie}$.

Proof. It is known that $E_{mve} = E_{smvie}$, if the set P is a simplex. Therefore, $\text{Vol}(E_{smvie}) = \text{Vol}(E_{mve})$, which implies that $\text{Vol}(E_{cop}) = \text{Vol}(E_{mve})$. Because of the uniqueness of the minimum volume ellipsoid, we get that $E_{cop} = E_{mve}$.

In the next example, we demonstrate that the difference between the volumes of the ellipsoids E_{cop} and E_{smvie} can be arbitrarily large.

Example 1 (Chipped Hypercube). Consider the polytope: $P = \{x \in \mathbb{R}^K : 0 \leq x \leq e, e^T x \leq \sqrt{K}\}$ formed by adding one constraint to the unit hypercube. This polytope forms a special case of (10) with $S = [I; -I; e^T]$, and $t = [e; 0; \sqrt{K}]$. Let R_{mve}, R_{smvie} and R_{cop} be the radii (defined in Section 1.1) of the ellipsoids E_{mve}, E_{smvie} and E_{cop}, respectively. In Appendix B.1, we prove that $R_{cop} = O(K^{1/4})$ and $R_{smvie} = \Theta(K^{1/2})$. Therefore, R_{smvie} grows at a strictly faster rate with the dimension K than R_{cop}. This example demonstrates that the ratio R_{smvie}/R_{cop} can be arbitrarily high, if a large enough K is chosen. We compute the three radii for $K = 2$ to $K = 50$, and plot the values in Figure 1(b). We observe that R_{mve} is very close to R_{cop}, and the two appear to be growing at the same rate with K. Figure 1(a) shows the ellipsoids generated by the three methods for $K = 2$.

Next, we present the comparison of $\text{Vol}(E_{cop})$ with the volume of the ellipsoid provided by the S-procedure described in Appendix A.2. The S-procedure requires the presence of at least one quadratic constraint in the definition of the set [5]. This can be achieved by using any ellipsoid $E(Q, q) = \{x \in \mathbb{R}^K : ||Qx + q||^2 \leq 1\}$.
that contains the polytope \(\mathcal{P} \), and adding \(\|Qx + q\|^2 \leq 1 \) as a redundant constraint in the definition of \(\mathcal{P} \). The ellipsoid \(\mathcal{E}(Q, q) \) already serves as an approximation of \(\mathcal{E}_{\text{smv}} \). We can then apply the \(\mathcal{S} \)-procedure in the hope of finding an ellipsoid with lower volume; we use \(\mathcal{E}_{\text{sproc}} \) to denote this ellipsoid. However, in Proposition 1, presented below, we show that if the center of \(\mathcal{E}(Q, q) \) lies inside \(\mathcal{P} \), then applying the \(\mathcal{S} \)-procedure provides no improvement and, in fact, returns the ellipsoid \(\mathcal{E}_{\text{sproc}} = \mathcal{E}(Q, q) \) as its unique optimal solution. This result is counter-intuitive since the \(\mathcal{S} \)-procedure has been successfully applied in cases where \(\mathcal{P} \) is defined as either the intersection or Minkowski sum of ellipsoids. Furthermore, if \(\mathcal{E}(Q, q) = \mathcal{E}_{\text{smv}} \) is used in the redundant quadratic constraint, then Proposition 1 implies that the \(\mathcal{S} \)-procedure does not improve upon \(\mathcal{E}_{\text{smv}} \), since the center of \(\mathcal{E}_{\text{smv}} \) lies inside \(\mathcal{P} \). In that case, \(\text{Vol}(\mathcal{E}_{\text{cop}}) \leq \text{Vol}(\mathcal{E}_{\text{smv}}) = \text{Vol}(\mathcal{E}_{\text{sproc}}) \).

Proposition 1. Let \(\mathcal{P} \) be a polytope defined as in (10) that satisfies Assumption 1, and let \(\mathcal{E} = \{x \in \mathbb{R}^K : \|Qx + q\|^2 \leq 1\} \) be an ellipsoid containing \(\mathcal{P} \) such that the center of \(\mathcal{E} \) lies inside \(\mathcal{P} \). Then, for the set \(\{x \in \mathbb{R}^K : Sx \leq t, \|Qx + q\|^2 \leq 1\} \), we have that \(\mathcal{E}_{\text{sproc}} = \mathcal{E}(Q, q) \).

Proof. For the set \(\{x \in \mathbb{R}^K : Sx \leq t, \|Qx + q\|^2 \leq 1\} \), then \(\mathcal{E}_{\text{sproc}} = \mathcal{E}(A, b) \), where \(A \) and \(b \) are optimal in the following optimization problem (see Appendix A.2):

\[
\begin{align*}
\text{minimize} & \quad -\log \det(A) \\
\text{subject to} & \quad A \in \mathbb{S}^K, b \in \mathbb{R}^K, \lambda \in \mathbb{R}_+, \mu \in \mathbb{R}_+^J, \\
& \begin{bmatrix} 0 & \frac{1}{2}S^T \mu & A \\
\frac{1}{2} \mu^T S & 1 - \mu^T t & b^T \\
A & b & 1 \end{bmatrix} + \lambda \begin{bmatrix} Q^2 & Qq & 0 \\
q^T Q & q^T q - 1 & 0 \\
0 & 0 & 0 \end{bmatrix} \succeq 0.
\end{align*}
\]

The dual of (16) can be written as

\[
\begin{align*}
\text{maximize} & \quad K + \log \det(-2F) - \kappa - \text{tr}(\Gamma) \\
\text{subject to} & \quad \Omega \in \mathbb{S}^K, \xi \in \mathbb{R}^K, F \in \mathbb{S}^K, \Gamma \in \mathbb{S}^K, \kappa \in \mathbb{R}, \\
& \begin{bmatrix} S\xi & \kappa \xi \end{bmatrix} \begin{bmatrix} Q^2 & Qq \\
q^T Q & q^T q - 1 \end{bmatrix} \succeq 0, \\
& \begin{bmatrix} \Omega & \xi & F \\
\xi^T & \kappa & 0 \\
F^T & 0 & \Gamma \end{bmatrix} \succeq 0.
\end{align*}
\]

To prove the theorem, we construct a pair of primal and dual feasible solutions which generate the same objective function values to their respective problems. To this end, consider the following solution to the primal problem (16):

\[
A = Q, \quad b = q, \quad \mu = 0, \quad \lambda = 1.
\]
This solution is feasible since \(\mu \geq 0, \lambda \geq 0 \) and
\[
\begin{bmatrix}
0 & \frac{1}{2} \mu^\top S & \frac{1}{2} \mu^\top A & t \\
\frac{1}{2} \mu S & 1 - \mu^\top b & b^\top & \\ \\
A & b & \mathbb{I} & \\ \\
\end{bmatrix} + \lambda \begin{bmatrix}
Q^2 & Qq & 0 \\
q^\top Q & q^\top q - 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} = \begin{bmatrix}
Q^2 & Qq & Q \\
q^\top Q & q^\top q & q^\top q^\top \\
Q & q & \mathbb{I} \\
\end{bmatrix} = \begin{bmatrix} Q \end{bmatrix} \begin{bmatrix} Q \end{bmatrix}^\top \geq 0.
\]

Next, consider the following solution to the dual problem (17):
\[
F = -\frac{1}{2} Q^{-1}, \quad \Gamma = \frac{\mathbb{I}}{2}, \quad \xi = \kappa x_c, \quad \Omega = \kappa x_c x_c^\top + 2F^2,
\]
where \(x_c = -Q^{-1} q \) is the center of the ellipsoid \(\mathcal{E} \). We claim that this solution is feasible to (17). Under the assumption that the center of the ellipsoid lies inside the polytope, we get that \(S x_c \leq t \), which implies that \(S \xi \leq \kappa t \). Next, we have that
\[
\begin{bmatrix}
\Omega & \xi & F \\
\xi^\top & \kappa & 0 \\
F & 0 & \Gamma \\
\end{bmatrix} = \begin{bmatrix}
\kappa x_c x_c^\top + 2F^2 & \kappa x_c & F \\
\kappa x_c^\top & \kappa & 0 \\
F & 0 & \frac{1}{2} \mathbb{I} \\
\end{bmatrix} = \kappa \begin{bmatrix}
x_c \\
1 \\
0 \\
\end{bmatrix} + \frac{1}{2} \begin{bmatrix} 2F \\
0 \\
0 \\
\end{bmatrix} \succeq 0,
\]
where the last inequality uses the fact that \(\kappa = K/2 \geq 0 \). Also,
\[
\text{tr} \left(\begin{bmatrix}
\Omega & \xi \\
\xi^\top & \kappa \\
\end{bmatrix} \begin{bmatrix}
Q^2 & Qq \\
q^\top Q & q^\top q - 1 \\
\end{bmatrix} \right) = \text{tr}(\Omega Q^2) + 2\xi^\top Qq + \kappa(q^\top q - 1)
\]
\[
= \text{tr}((\kappa x_c x_c^\top + 2F^2)Q^2) + 2\kappa x_c^\top Qq + \kappa(q^\top q - 1)
\]
\[
= \kappa x_c^\top Q^2 x_c + \frac{1}{2} \text{tr}(\mathbb{I}) + 2\kappa x_c^\top Qq + \kappa(q^\top q - 1)
\]
\[
= \frac{1}{2} \text{tr}(\mathbb{I}) - \kappa = \frac{K}{2} - \frac{K}{2} = 0.
\]

Therefore, all constraints in the dual problem are satisfied. Finally, both of these solutions give an objective function value of \(-\log \det(Q) \). Thus, \(A = Q \) and \(b = q \) is an optimal solution to the primal problem, which implies that \(\mathcal{E}_{\text{proc}} = \mathcal{E}(A,b) = \mathcal{E}(Q,q) \). Furthermore, the solution is unique because the feasible region is convex and the objective function \(-\log \det(A) \) is strictly convex in the space of positive definite matrices.

3.1 Sets with Quadratic Constraints

Next, we provide a semidefinite programming approximation to \((\mathcal{M}\mathcal{V}\mathcal{E})\) when the set \(\mathcal{P} \) is defined by affine, as well as quadratic inequalities. This generalizes the approximation (12) developed for the case of a polytope. Specifically, we consider the following set:
\[
\mathcal{P} = \left\{ x \in \mathbb{R}^K : S x \leq t, \|Q_i x + q_i\|^2 \leq 1 \ \forall i \in [J] \right\}, \tag{18}
\]
where \(S \in \mathbb{R}^{J \times K}, \ t \in \mathbb{R}^J, \ Q_i \in \mathbb{S}^K \) and \(q_i \in \mathbb{R}^K \). In the next theorem, we derive sufficient conditions that an ellipsoid \(\mathcal{E}(A,b) \) contains the set \(\mathcal{P} \) defined as in (18).
Theorem 4. Let the set \mathcal{P} be defined as in (18). Consider any $A \in S^K_{++}$ and $b \in \mathbb{R}^K$. Then, an ellipsoid $E(A, b)$ contains \mathcal{P} if there exist $N \in \mathbb{R}^{J \times J}$, $F \in S^K$, $g \in \mathbb{R}^K$, $h \in \mathbb{R}$, $\lambda_i \geq 0 \forall i \in [I]$, $\alpha_{ij} \in \mathbb{R}^K$, $\kappa_{ij} \in \mathbb{R}$ $\forall i \in [I]$ $\forall j \in [J]$ such that

$$\|\alpha_{ij}\| \leq \kappa_{ij} \forall i \in [I] \forall j \in [J],$$

$$\begin{bmatrix} F & g \\ g^T & h - 1 \end{bmatrix} \preceq -S^T NS + \sum_{i \in [I]} \lambda_i J_i - \sum_{i \in [I], j \in [J]} M_{ij}(\alpha_{ij}, \kappa_{ij}),$$

(19)

where

$$S = [-S \ t] \in \mathbb{R}^{J \times (K+1)}$$

$$J_i = \begin{bmatrix} Q_i^2 & Q_i^T q_i \\ q_i^T Q_i & \left(q_i^T q_i - 1 \right) \end{bmatrix} \in S^{K+1} \forall i \in [I],$$

and

$$M_{ij}(\alpha, \kappa) = \begin{bmatrix} -\frac{1}{2} \left(S_j \alpha^T Q_i + Q_i^T \alpha S_j^T \right) & \frac{1}{2} \left(t_j Q_i \alpha - (\alpha^T q_i + \kappa) S_j \right) \\ \frac{1}{2} \left(t_j Q_i \alpha - (\alpha^T q_i + \kappa) S_j \right)^T & (\alpha^T q_i + \kappa) t_j \end{bmatrix} \forall i \in [I] \forall j \in [J].$$

Proof. For the set \mathcal{P}, the cone \mathcal{K} as defined as in (2) can be written as

$$\mathcal{K} = \{ [x; \tau] \in \mathbb{R}^{K+1} : \tau \geq 0, Sx \leq \tau t, \|Q_i x + \tau q_i\|^2 \leq \tau^2 \forall i \in [I] \}.$$

We show that the conditions (19) imply the conditions (3), which proves the claim. Let

$$P = \begin{bmatrix} F & g \\ g^T & h - 1 \end{bmatrix}.$$

Also, consider $[x; \tau] \in \mathcal{K}$. From the first semidefinite inequality, we have that

$$\begin{bmatrix} x \\ \tau \end{bmatrix}^T P \begin{bmatrix} x \\ \tau \end{bmatrix} \leq \begin{bmatrix} x \\ \tau \end{bmatrix}^T \left(-S^T NS + \sum_{i \in [I]} \lambda_i J_i - \sum_{i \in [I], j \in [J]} M_{ij}(\alpha_{ij}) \right) \begin{bmatrix} x \\ \tau \end{bmatrix}.$$

We show that all three terms in the expression on the right hand side are non-positive. The first term is non-positive as shown in the proof of Theorem 2. Next, observe that for all $i \in [I]$, we have that

$$[x; \tau]^T J_i [x; \tau] = \tau^2 - \|Q_i x + \tau q_i\|^2 \leq 0,$$

since $[x, \tau] \in \mathcal{K}$. Also,

$$[x; \tau]^T M_{ij}(\alpha_{ij})[x; \tau] = (\tau t_j - S_j^T x)(\tau \kappa_{ij} + \alpha_{ij}^T (Q_i x + \tau q_i)) \geq 0.$$

The previous inequality follows because both terms in the product are non-negative since $Sx \leq \tau t$ and $\tau \kappa_{ij} + \alpha_{ij}^T (Q_i x + \tau q_i) \geq \tau \kappa_{ij} - \|\alpha_{ij}\| \|Q_i x + \tau q_i\| \geq \tau \kappa_{ij} - \tau \kappa_{ij} = 0$. Hence, $[x; \tau]^T P \begin{bmatrix} x \\ \tau \end{bmatrix} \leq 0 \forall [x; \tau] \in \mathcal{K}$, which implies that $P \preceq_{C(\mathcal{K})} 0$. Hence the claim follows. \square
Theorem 4 implies that the following SDP serves as a restriction to \((MVE)\):

\[
\begin{align*}
\text{minimize} & \quad - \log \det(A) \\
\text{subject to} & \quad A \in \mathbb{S}^K, \quad b \in \mathbb{R}^K, \quad F \in \mathbb{S}^K, \quad g \in \mathbb{R}^K, \quad h \in \mathbb{R}, \\
& \quad N \in \mathbb{R}^{J \times J}, \quad \lambda_i \geq 0 \quad \forall i \in [I], \quad \alpha_{ij} \in \mathbb{R}^K, \\
& \quad (19) \text{ holds}.
\end{align*}
\]

Remark 5. The approximation discussed above is motivated by the Relaxation Linearization Technique (RLT) discussed in [2, 38], and SOC-RLT constraints discussed in [12].

4 Application to Distributionally Robust Optimization

In this section, we demonstrate how our approximation to the MVEP can be used to obtain good solutions to the two-stage DRO model with random recourse given by

\[
\inf_{x \in \mathcal{X}} \left\{ c^\top x + \sup_{\mathcal{Q} \in \mathcal{Q}} \mathbb{E}_Q[\mathcal{R}(x(x))] \right\},
\]

where

\[
\mathcal{R}(x, \xi) = \inf_y \quad (D\xi + d)^\top y \\
\text{s.t.} \quad T_\ell(x)^\top \xi + h_\ell(x) \leq (W_\ell\xi + w_\ell)^\top y \quad \forall \ell \in [L].
\]

Here, \(x \in \mathbb{R}^{N_1}\) and \(y \in \mathbb{R}^{N_2}\) represent the first- and the second-stage decision variables respectively, \(\mathcal{X}\) is a set defined by tractable convex constraints on \(x\), and \(\xi \in \mathbb{R}^K\) is the vector of uncertain parameters. Also, \(c \in \mathbb{R}^{N_1}, D \in \mathbb{R}^{N_2 \times K}, W_\ell \in \mathbb{R}^{N_2 \times K}, d \in \mathbb{R}^{N_2}, \) and \(w_\ell \in \mathbb{R}^{N_2}\) are problem parameters. The functions \(T_\ell : \mathcal{X} \to \mathbb{R}^K\) and \(h_\ell : \mathcal{X} \to \mathbb{R}\) are affine in the input parameter. We consider the following moment-based ambiguity set: \(\mathcal{Q} = \{Q \in \mathcal{Q}_0(\Xi) : \mathbb{E}_Q[\tilde{\xi}] = \mu, \mathbb{E}_Q[\tilde{\xi}\tilde{\xi}^\top] \preceq \Sigma\}\), where \(\Xi = \{\xi \in \mathbb{R}^K : S\xi \leq t\}\) is the bounded support set, and \(\mathcal{Q}_0(\Xi)\) is the set of all probability measures supported on \(\Xi\). The objective function minimizes the sum of the first-stage and the expected recourse cost, where the expectation is taken with respect to the worst case distribution among those in the ambiguity set \(\mathcal{Q}\). The results presented here can be extended to other types of ambiguity sets, including the simpler case where \(\mathcal{Q} = \mathcal{Q}_0(\Xi)\) (i.e., robust optimization) [7, 43], and the more sophisticated data-driven Wasserstein ambiguity set [19].

The problem (21) can be written equivalently as:

\[
\begin{align*}
\inf_{x, y(\cdot)} & \quad c^\top x + \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q[(D\xi + d)^\top y(\xi)], \\
\text{s.t.} & \quad x \in \mathcal{X}, \\
& \quad T_\ell(x)^\top \xi + h_\ell(x) \leq (W_\ell\xi + w_\ell)^\top y(\xi) \quad \forall \xi \in \Xi, \forall \ell \in [L],
\end{align*}
\]

where the second-stage decision variable \(y\) is a function of the uncertain parameters \(\xi\). The problem (23) is difficult to solve. To generate a tractable approximation to (23), we explore the use of piecewise-linear...
decision (PLD) rules. Specifically, we partition Ξ into regions Ξ_1, \ldots, Ξ_J, and restrict $y(\cdot)$ to be of the form $y(\xi) = Y_j \xi + y_j$ if $\xi \in \Xi_j$, where $Y_j \in \mathbb{R}^{N_2 \times K}$ and $y_j \in \mathbb{R}^{N_2}$. For constructing the partitions, we start with a set of constructor points $\{\xi_j\}_{j \in [J]}$ in Ξ. Then, we define the partition Ξ_j to be the set of all points in Ξ which are closer to ξ_j than any other constructor point. In other words,

$$
\Xi_j = \{\xi \in \mathbb{R}^{K} : S\xi \leq t, \|\xi - \xi_j\| \leq \|\xi - \xi_i\| \forall i \in [J], i \neq j \}
$$

where the matrix $S_j \in \mathbb{R}^{L_j \times K}$ and the vector $t_j \in \mathbb{R}^{L_j}$ are formed by combining the linear constraints in the definition of Ξ_j. These partitions are known as Voronoi regions. Let $E(A_j, b_j)$ be an ellipsoid that lies outside Ξ_j. For later use, we add a redundant quadratic constraint and write Ξ_j equivalently as

$$
\Xi_j = \{\xi \in \mathbb{R}^{K} : S\xi \leq t, 2(\xi_i - \xi_j)^\top \xi \leq \xi_i^\top \xi_i - \xi_j^\top \xi_j \forall i \in [J], i \neq j \}
$$

Because of random recourse (i.e., uncertainty in the coefficients of $y(\cdot)$), finding the optimal PLD rule is NP-hard, even if there is only one piece. However, we can approximate the problem of finding the optimal PLD rule using the S-procedure. In the next proposition, we use S-procedure to derive a tractable SDP that generates a feasible PLD rule. Furthermore, the optimal value of the resulting SDP approximation provides an upper bound to the optimal value of (23). We also demonstrate, via two examples, that the size of the bounding ellipsoids $E(A_j, b_j)$ can drastically impact the upper bound provided by the SDP approximation; in particular, the tighter the ellipsoids, the better the upper bound.
Proposition 2. Consider the following SDP:

\[
\inf \ c^T x + \alpha + \beta^T \mu + \text{tr}(\Gamma \Sigma) \\
\text{s.t. } x \in \mathcal{X}, \ \Gamma \in \mathbb{S}^K_+, \ \beta \in \mathbb{R}^K, \ \alpha \in \mathbb{R}, \\
Y_j \in \mathbb{R}^{N_j \times K}, \ y_j \in \mathbb{R}^{N_j}, \ \gamma_j \in \mathbb{R}^{L_j}, \ \delta_j \in \mathbb{R}_+ \ \forall j \in [J], \\
\lambda_{j\ell} \in \mathbb{R}_+, \ \rho_{j\ell} \in \mathbb{R}^{L_j} \ \forall j \in [J] \ \forall \ell \in [L], \\
\begin{bmatrix}
\mathbf{T} & \frac{1}{2} \beta \\
\frac{1}{2} \beta^T & \alpha
\end{bmatrix} - \begin{bmatrix}
\frac{1}{2}(D^T Y_j + Y_j^T D) & \frac{1}{2}(D^T y_j + Y_j^T d) \\
\frac{1}{2}(D^T y_j + Y_j^T d)^T & d^T y_j
\end{bmatrix} + P_j(\gamma_j) + \delta_j J_j \succeq 0 \ \forall j \in [J], \\
\begin{bmatrix}
\frac{1}{2}(W^T Y_j + Y_j^T W_k) & \frac{1}{2}(W^T y_j + Y_j^T w_k) \\
W^T y_j & w^T y_j
\end{bmatrix} - M(x) + P(\rho_{j\ell}) + \lambda_{j\ell} J_j \succeq 0 \ \forall j \in [J] \ \forall \ell \in [L],
\end{bmatrix}
\]

where

\[
M(x) = \begin{bmatrix}
0 & \frac{1}{2} T(x) \\
\frac{1}{2} T(x)^T & h(x)
\end{bmatrix}, \quad P(\rho) = \begin{bmatrix}
0 & \frac{1}{2} S^T \rho \\
\frac{1}{2} \rho^T S_j & -t^T \rho
\end{bmatrix}, \quad \text{and } J_j = \begin{bmatrix}
A_j^2 & A_j^T b_j \\
b_j^T A_j & b_j^T b_j - 1
\end{bmatrix}.
\]

Let \(y(\xi) = Y_j \xi + y_j \) if \(\xi \in \Xi_j \). Then, \((x, y(\cdot))\) provides a feasible solution to (23). Furthermore, the optimal value of (24) provides an upper bound to the optimal value of (23).

Proof. See Appendix B.2.

\[\square\]

Example 2. Let \(\Xi = \{\xi \in \mathbb{R}^K : S \xi \leq t\} \) be a set contained in the unit ball, i.e., \(\Xi \subseteq \{\xi \in \mathbb{R}^K : \|\xi\| \leq 1\} \).

Furthermore assume that \(\Xi \) contains the origin. Consider the following special case of (23):

\[
\begin{align*}
\inf_{\tau \leq y(\cdot)} & \tau \\
\text{s.t.} & \xi^T y(\xi) \leq \tau, \quad y(\xi) = \xi \\
& \forall \xi \in \Xi.
\end{align*}
\]

(25)

For \(J = 1 \) partition and \(r \geq 1 \), let \(z(r) \) be the optimal value of the resulting SDP approximation when the ellipsoid \(E(r) = \{\xi \in \mathbb{R}^K : \|\xi\| \leq r\} \) is used as the bounding ellipsoid. In Appendix B.3, we present the SDP approximation and show that \(z(r) = r \). Therefore, the lower the radius of the ellipsoid, the better the upper bound \(z(r) \). In fact, the upper bound is \(\infty \) if we ignore the bounding ellipsoid.

Example 3. Consider the following special case of (23):

\[
\begin{align*}
z = \inf_{\tau \leq y(\cdot)} & \tau \\
\text{s.t.} & 1 \leq (\xi + e)^T y(\xi) \leq \tau \\
& \forall \xi \in \Xi,
\end{align*}
\]

(26)

where \(\Xi = \{\xi \in \mathbb{R}^K : 0 \leq \xi \leq e\} \) is the unit hypercube, and \(J = 1 \). The actual optimal value is \(z = 1 \), which is obtained by the function \(y(\xi) = (\xi + e)/\|\xi + e\|^2 \). In this case, \(E_{\text{mve}} = \{\xi \in \mathbb{R}^K : \|\xi - e/2\|^2 \leq N/4\} \).
For $s \geq 0$, let $z(s)$ be the upper bound generated by the SDP approximation when we use $\mathcal{E}(s) = \{\xi \in \mathbb{R}^K : \|\xi - \mathbf{e}/2\|^2 \leq N(1 + s)/4\}$ as the bounding ellipsoid. In Appendix B.4, we show that

$$z(s) = \begin{cases}
9/(8 - s) & \text{if } 0 \leq s \leq 2, \\
1 + s/4 & \text{if } 2 \leq s \leq 4, \\
2 & \text{if } 4 \leq s,
\end{cases}$$

which is an increasing function of s. Therefore, the linear decision rule with the smallest ellipsoid generates an upper bound of $z(0) = 1.125$. However, if a large ellipsoid (with $s \geq 4$) is chosen, the upper bound is 2, which actually corresponds to the optimal static decision rule approximation. Therefore, the suboptimality of the decision rules approximation can increase from 12.5% to 100%, if the ellipsoid is not chosen carefully.

The examples above demonstrate the importance of generating good outer ellipsoids. We further elaborate on this point in Section 5.2, where we perform experiments on randomly generated instances of an inventory management model. We note that the task of finding the outer ellipsoids $\mathcal{E}(\mathbf{A}_j, \mathbf{b}_j)$ can be parallelized, which leads to a substantial reduction in the computation time.

5 Numerical Experiments

In this section, we present a series of numerical experiments to demonstrate the performance and applications of our approximation scheme. First, we compare the solution quality and the computational time of our proposed method with the other existing methods on randomly generated polytopes. Next, we demonstrate the performance of our approximation method in the context of a risk-averse inventory model. This problem serves as an instance of a two-stage DRO model with random recourse as described in Section 4. Finally, we demonstrate how our approach can be used to compute ellipsoidal approximations for the set of reachable states in linear dynamical systems. All optimization problems are solved using the YALMIP interface [30] on a 16-core 3.4 GHz computer with 32 GB RAM. We use MOSEK 8.1 to solve SDPs, and CPLEX 12.8 to solve non-convex quadratic programs to optimality.

5.1 Random Polytopes

Here, we compare the solution quality and the computational time of our proposed method with that of (i) the constraint generation approach [18], (ii) the SMVIE approach, and (iii) the method using sufficient conditions proposed by Kellner, Theobald, and Trabandt [25]. We refer to the last method as the KTT approach, and denote the corresponding ellipsoid by \mathcal{E}_{ktt}. The sufficient conditions used in the KTT approach incorporate redundant variables, when the sets of interest are polytopes and ellipsoids (which is the case in our experiment). Therefore, to provide a fair comparison of the solution times, we remove these redundant
variables from the KTT formulation. We explain how to remove the redundant variables and present the reduced formulation in Appendix A.3.

For our experiments, we generate polytopes randomly as follows. We start with the hyper-rectangle \(\{ x \in \mathbb{R}^K : 0 \leq x \leq e \} \) with center \(c = e/2 \). Then we add \(M \) linear inequalities in the following way. For \(j \in [M] \), we generate a vector \(s_j \in \mathbb{R}^K \) uniformly distributed on the surface of the unit hypersphere. We generate a distance \(r_j \) uniformly at random from the interval \([-\|s_j\|_1/2, \|s_j\|_1/2]\), and add the constraint \(s_j^T(x - c) \leq r_j \) if \(r_j > 0 \) and \(s_j^T(x - c) \geq r_j \) if \(r_j \leq 0 \). Choosing \(r_j \) from the specified interval leads to a constraint that cuts the hyper-rectangle (i.e., the constraint is not redundant). Also, the construction of the constraint ensures that \(c \) remains feasible, thereby avoiding the case of an infeasible polytope.

For several values of \(K \), we solve the problem exactly and apply each approximation method on 50 randomly generated instances for \(M = K, 2K, 3K \). We report the suboptimality results of the three approximation methods in Table 1. For higher values of \(K \), for which we were not able to solve the problem exactly within 30 minutes, we report the suboptimality of the radius of \(E_{smvie} \) and \(E_{ktt} \) with respect to \(E_{cop} \) in Table 2. Finally, the solution times of different methods are reported in Table 3. We do not report the solution time of the SMVIE approach. Even for the largest problem size that we solved, the SMVIE approach produces solutions in less than 2 seconds, dominating every other approach.

It can be observed that the radius (and therefore, volume) of \(E_{cop} \) is significantly lower than that of \(E_{smvie} \). Furthermore, the suboptimality of the radius of \(E_{smvie} \) relative to that of \(E_{cop} \) increases with the dimension \(K \) (from 246% for \(K = 15 \) to 481% for \(K = 40 \)). This is perhaps because the scale factor of \(K \) becomes very conservative for higher values of \(K \). This increase in solution quality of \(E_{cop} \) comes at the cost of higher solution times compared to that of finding \(E_{smvie} \).

We also observe that the radius of \(E_{cop} \) is slightly better than that of \(E_{ktt} \); the solution time, however, is significantly lower (1-2 orders of magnitude). As an example, for \(K = M = 30 \), the KTT approach does not provide solutions within 30 minutes, whereas our method generates an average solution time of 13.7 seconds.

Finally, we observe that for small problem instances, our method finds a solution much faster than solving the problem to optimality. For higher dimensional problems (\(K > 15 \)), where solving the problem exactly becomes intractable, our approximation continues to provide ellipsoids of lower volume than the other approximation methods.

5.2 Risk-Averse Inventory Management

Next, we consider an inventory management problem, where we decide the purchase amount of \(N \) products before observing their demands. We incur a holding cost if we purchase more than the demand, and a stockout cost if we purchase less than the demand. We assume that the demands and the stockout costs are random. The objective is to minimize the worst-case conditional value at risk (CVaR) [36] of the total cost.
Table 1. Random Polytopes: Mean suboptimality of the radii of \mathcal{E}_{cop} ('Copos'), \mathcal{E}_{ktt} ('KTT'), and $\mathcal{E}_{\text{smvie}}$ ('SMVIE') for different problem sizes. We use 'N/A' when the problem cannot be solved to optimality within 30 minutes.

<table>
<thead>
<tr>
<th>K</th>
<th>Copos</th>
<th>KTT</th>
<th>SMVIE</th>
<th>Copos</th>
<th>KTT</th>
<th>SMVIE</th>
<th>Copos</th>
<th>KTT</th>
<th>SMVIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.41%</td>
<td>4.68%</td>
<td>34.3%</td>
<td>5.20%</td>
<td>6.48%</td>
<td>32.8%</td>
<td>5.33%</td>
<td>6.63%</td>
<td>31.9%</td>
</tr>
<tr>
<td>5</td>
<td>4.88%</td>
<td>7.02%</td>
<td>105%</td>
<td>9.92%</td>
<td>13.16%</td>
<td>91.9%</td>
<td>13.2%</td>
<td>16.4%</td>
<td>93.7%</td>
</tr>
<tr>
<td>10</td>
<td>2.53%</td>
<td>3.72%</td>
<td>188%</td>
<td>7.48%</td>
<td>9.51%</td>
<td>176%</td>
<td>13.6%</td>
<td>16.9%</td>
<td>164%</td>
</tr>
<tr>
<td>15</td>
<td>1.29%</td>
<td>1.84%</td>
<td>250%</td>
<td>5.57%</td>
<td>7.16%</td>
<td>230%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 2. Random Polytopes: Mean suboptimality of the radii of \mathcal{E}_{ktt} ('KTT') and $\mathcal{E}_{\text{smvie}}$ ('SMVIE') relative to \mathcal{E}_{cop} for the cases which could not be solved to optimality within 30 minutes. We use '-' for the cases when the KTT approach does not provide a solution within 30 minutes.

<table>
<thead>
<tr>
<th>K</th>
<th>KTT</th>
<th>SMVIE</th>
<th>KTT</th>
<th>SMVIE</th>
<th>KTT</th>
<th>SMVIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.54%</td>
<td>246%</td>
<td>1.50%</td>
<td>212%</td>
<td>2.07%</td>
<td>191%</td>
</tr>
<tr>
<td>20</td>
<td>0.30%</td>
<td>310%</td>
<td>1.01%</td>
<td>268%</td>
<td>1.65%</td>
<td>245%</td>
</tr>
<tr>
<td>25</td>
<td>0.28%</td>
<td>357%</td>
<td>0.66%</td>
<td>318%</td>
<td>N/A</td>
<td>292%</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>401%</td>
<td>-</td>
<td>364%</td>
<td>-</td>
<td>329%</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>440%</td>
<td>-</td>
<td>405%</td>
<td>-</td>
<td>372%</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>481%</td>
<td>-</td>
<td>447%</td>
<td>-</td>
<td>414%</td>
</tr>
</tbody>
</table>
We can write the model as follows:

\[
\begin{align*}
\text{minimize} & \quad \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q [\tau(\xi, s)] \\
\text{subject to} & \quad \kappa \in \mathbb{R}, \ x \in \mathbb{R}^N, \ x \geq 0, \ e^\top x \leq B, \\
& \quad \tau(\xi, s) \geq 0, \ y_1(\xi, s) \geq 0, \ y_2(\xi, s) \geq 0, \\
& \quad \tau(\xi, s) \geq g^\top y_1(\xi, s) + s^\top y_2(\xi, s) - \kappa, \\
& \quad y_1(\xi, s) \geq x - \xi, \ y_2(\xi, s) \geq \xi - x.
\end{align*}
\]

Here, the variables \(x, y_1\) and \(y_2\) represent the vector of purchase decisions, excess amounts and shortfall amounts, respectively. The vector \(g \in \mathbb{R}^N\) represents the known holding costs, and \(B\) denotes budget on the total purchase amount. Also, \(\xi \in \mathbb{R}^N\) and \(s \in \mathbb{R}^N\) are random parameters which represent the vectors of demand and stock-out costs respectively. The ambiguity set \(\mathcal{Q}\) is as described in Section 4. By employing the definition of CVaR, it can be shown that the above problem is equivalent to

\[
\begin{align*}
\text{minimize} & \quad \kappa + \frac{1}{\epsilon} \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q [\tau(\xi, s)] \\
\text{subject to} & \quad \kappa \in \mathbb{R}, \ x \in \mathbb{R}^N, \ x \geq 0, \ e^\top x \leq B, \\
& \quad \tau(\xi, s) \geq 0, \ y_1(\xi, s) \geq 0, \ y_2(\xi, s) \geq 0, \\
& \quad \tau(\xi, s) \geq g^\top y_1(\xi, s) + s^\top y_2(\xi, s) - \kappa, \\
& \quad y_1(\xi, s) \geq x - \xi, \ y_2(\xi, s) \geq \xi - x.
\end{align*}
\]
which is of the form (23) [20, 37].

We generate the parameters as follows. We use $N = 7$ products, which leads to $2N = 14$ random parameters. We choose $\Xi = \{[\xi; s] : \xi_l \leq \xi \leq \xi_u, s_l \leq s \leq s_u\}$, and $\epsilon = 5\%$. We partition Ξ into $J = 4$ regions, and select the constructor points $\{([\xi_j; s_j])_{j \in [J]}\}$ by sampling uniformly at random from Ξ. We choose $B = 30$, $\xi_l = 0$, $\xi_u = 10\epsilon$, $s_l = 8\epsilon$, $s_u = 12\epsilon$. For constructing the ambiguity set, we use $\mu = [\mu_\xi; \mu_s] \in \mathbb{R}^{2N}$, where $\mu_s = 10\epsilon$ and every element of μ_ξ is generated uniformly from the interval $[0, 2]$. We select a random correlation matrix $C \in \mathbb{S}_+^{2N}$ with the MATLAB command “gallery(‘randcorr’,2*N)”, and set $\Sigma = \text{Diag}(\sigma)C\text{Diag}(\sigma) + \mu\mu^\top$, where $\sigma = [\sigma_\xi; \sigma_s] \in \mathbb{R}^{2N}$, $\sigma_s = \epsilon/2$ and $\sigma_\xi = \mu_\xi/4$.

We approximate (27) using our proposed SDP (24), where the ellipsoids $E(A_j, b_j)$ are generated using the SDP (12) developed in Section 3. We refer to this approach here as ‘PWL’. We compare the solution time and quality of the PWL approach with those of the following schemes:

- Piecewise static decision rules (‘PWS’): This approach leads to a tractable approximation. The comparison with PWS demonstrates the benefit of including a linear term in the decision rules.
- Linear decision rules (‘LDR’): This is similar to PWL except we do not partition the support set (i.e., $J = 1$). We compare against LDR to demonstrate the advantage of partitioning the support set.
- Model with ellipsoids of double radius (‘PWL-2’): To demonstrate the importance of the size of the ellipsoid, we present comparisons against the scheme similar to PWL, except we double the radii of the ellipsoids $E(A_j, b_j)$ used in PWL.

We perform the experiment on 100 randomly generated instances, and present the relative objective gaps in Table 4. We also report the average solution times in Table 5. We assume that we can parallelize the task of generating the ellipsoids for each partition on 4 machines. Since we consider $J = 4$, for the solution time of the PWL approach, we choose the maximum among the solution times to find the 4 ellipsoids, and add that to the solution time of solving the SDP (24).

The results indicate that we outperform the other methods in terms of the quality of the approximation. We observe that neglecting the linear term in the decision rules (i.e., using static decision rules) can lead to 75% increase in the objective value. Furthermore, not partitioning the support set can lead to 24% higher objective values. Finally, doubling the radii of the bounding ellipsoids can increase the objective by 47%. For two-stage DRO models with random recourse, these results exhibit the importance of (i) using piecewise linear instead of piecewise static decision rules, (ii) partitioning the support set, and (iii) having good ellipsoidal approximations to the partitions of the support set.
<table>
<thead>
<tr>
<th>Statistic</th>
<th>PWS</th>
<th>LDR</th>
<th>PWL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>75.1%</td>
<td>24.5%</td>
<td>47.4%</td>
</tr>
<tr>
<td>10th Percentile</td>
<td>33.3%</td>
<td>1.23%</td>
<td>25.6%</td>
</tr>
<tr>
<td>90th Percentile</td>
<td>130%</td>
<td>49.4%</td>
<td>71.4%</td>
</tr>
</tbody>
</table>

Table 4. Inventory Management: Objective gaps of other models relative to PWL model.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>PWL</th>
<th>PWS</th>
<th>LDR</th>
<th>PWL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Time (ms)</td>
<td>622</td>
<td>91.8</td>
<td>219</td>
<td>617</td>
</tr>
</tbody>
</table>

Table 5. Inventory Management: Average solution times of the models (in milliseconds).

5.3 Reachability in Linear Dynamical Systems

In this section, we consider a discrete-time linear dynamical system

\[x(t+1) = W_1 x(t) + W_2 u(t), \quad x(0) = 0, \]

where \(x(t) \in \mathbb{R}^K \) is the vector of states, \(u(t) \in \mathbb{R}^J \) is a vector of controls, and the matrices \(W_1 \in \mathbb{R}^{K \times K} \) and \(W_2 \in \mathbb{R}^{K \times J} \) determine the dynamics of the system. We assume that at any time \(t \), the control \(u(t) \) can be chosen from a control set \(\mathcal{U} \), i.e., \(u(t) \in \mathcal{U} \) for all \(t \). We define the reachable set \(\mathcal{W}_T \), i.e., the set of all states reachable at time \(T \) as follows:

\[\mathcal{W}_T = \{ x(T) : x(t+1) = W_1 x(t) + W_2 u(t) \forall t \in [T-1], x(0) = 0 \}. \]

Checking whether a state is reachable requires solving a linear feasibility problem, which becomes cumbersome when the feasibility of many points has to be checked. Furthermore, both the number of variables and the number of constraints of the feasibility problem that we have to solve to determine the reachability of a state grow linearly with the time \(T \), so the overall computational complexity of solving the feasibility problem is at least quadratic in \(T \). Several authors have studied the problem of providing ellipsoidal approximations for the reachable sets [14, 28]. However, they focus on the case when the control set \(\mathcal{U} \) is ellipsoidal. In contrast, we consider the case where \(\mathcal{U} \) is a polytope.

The ellipsoidal approximation of \(\mathcal{W}_T \) is performed as follows. We define \(\mathcal{E}_t \) as an ellipsoid covering \(\mathcal{W}_t \) at time \(t \in [T] \). Note that \(\mathcal{W}_t = W_2 \mathcal{U} = \{ W_2 u : u \in \mathcal{U} \} \); therefore we determine \(\mathcal{E}_1 \) by solving (12) with the polytope \(\mathcal{U} \). Then, for \(t \in \{2, \ldots, T\} \), we find \(\mathcal{E}_t \) as the ellipsoid covering the set \(W_1 \mathcal{E}_{t-1} + W_2 \mathcal{U} \equiv \{ W_1 x + W_2 u : x \in \mathcal{E}_{t-1}, u \in \mathcal{U} \} \). This set represents the Minkowski sum of the affine mappings of the control set \(\mathcal{U} \) and the ellipsoid \(\mathcal{E}_t \), which can be handled by our method in light of Remark 4. Finding the ellipsoids iteratively in this way separates the problem over time intervals. This implies that we solve \(T \)
problems but the problem size does not grow with T. Therefore, the computational complexity of finding the bounding ellipsoid is linear in T, and the complexity of actually checking the reachability via the ellipsoid does not depend on T.

We adopt the example in [3, Page 275] with a few trivial changes. In our experiment, we assume two states and two controls (i.e., $J = K = 2$). We assume

$$W_1 = \begin{bmatrix} 0.9202 & -0.0396 \\ 0.0777 & 0.9800 \end{bmatrix}, \quad \text{and} \quad W_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

and the control set $\mathcal{U} = \{u \in \mathbb{R}^2 : -e \leq u \leq e, \|u\|_1 \leq 1.4\}$. We present the results in Figure 3. We observe that as T increases, the ellipsoidal approximation provides good approximation of the reachability set. Using the ellipsoidal approximation instead of the actual reachable set introduces a few false positives, i.e., a few states which lie inside the ellipsoid, but are actually not reachable. However, it is compensated by the reduction in computational effort required to determine whether a state is reachable or not.

6 Conclusions

In this article, we propose a GC reformulation for the minimum volume ellipsoid problem. We use that reformulation to generate tractable approximations when the set is defined by affine and quadratic inequalities. We prove the volume of the ellipsoids that our approach provides never exceeds the volume of E_{smvie}. Furthermore, we demonstrate empirically that our method performs better than the other competing schemes for providing approximate solutions to the MVEP, in terms of solution time and quality. Finally, we use our
method to efficiently generate high-quality approximations in the context of distributional robust optimization and linear dynamical systems.

The work presented in this paper leaves room for further investigation. First, it would be interesting to study the suboptimality bounds of the radii of the ellipsoids generated by our method. In particular, for E_{smve}, it is known that \(\text{Radius}(E_{smve}) \leq K \cdot \text{Radius}(E_{mve}) \). It would be interesting to see if a better upper bound can be proved for the radius of E_{cop}. A second possible direction is to utilize the GC reformulation to generate approximation for other types of sets. Studying such approximations would add to the entire copositive programming literature, and not only to the minimum volume ellipsoid problem.

Acknowledgments

This research was supported by the National Science Foundation grant no. 1752125.

References

A Alternative Approaches to Solve the MVEP

A.1 Scaled MVIE

Consider the polytope \(\mathcal{P} = \{ x \in \mathbb{R}^K : Sx \leq t \} \). It is known that the ellipsoid \(\{ Bu + d : u \in \mathbb{R}^K, \|u\| \leq 1 \} \) with maximum volume that lies inside \(\mathcal{P} \) can be found by solving the optimization problem (see, e.g., [10]):

\[
\begin{aligned}
\sup_{B \in \mathbb{S}^K, d \in \mathbb{R}^K} & \log \det(B) \\
\text{s.t.} & \|BS_j\| + S_j^T d \leq t_j \quad \forall j \in [J].
\end{aligned}
\] (28)

Also, if \((B, d)\) is optimal to (28), then \(\mathcal{E}_{\text{smvie}} = \{ Ku + d : \|u\| \leq 1 \} \) contains \(\mathcal{P} \). Therefore, \(\mathcal{E}_{\text{smvie}} = \{ Bu + d : \|u\| \leq 1 \} \) if \(B \) and \(d \) are optimal in the following problem:

\[
\begin{aligned}
\sup_{B \in \mathbb{S}^K, d \in \mathbb{R}^K} & \log \det(B) \\
\text{s.t.} & \|BS_j\| + KS_j^T d \leq Kt_j \quad \forall j \in [J].
\end{aligned}
\] (29)

The objective function provides the logarithm of \(\text{Vol}(\mathcal{E}_{\text{smvie}}) \). The Lagrange dual of (29) is given by

\[
\begin{aligned}
\inf_{\Lambda \in \mathbb{R}^{J \times K}, \rho \in \mathbb{R}^J} & K \rho^T t - K - \log \det \left(-\frac{1}{2} (S^T \Lambda + \Lambda^T S) \right) \\
\text{s.t.} & S^T \rho = 0, \\
& \|\Lambda_j\| \leq \rho_j \quad \forall j \in [J].
\end{aligned}
\] (30)

To show that strong duality holds, a Slater point can be constructed in the primal problem as follows. Consider a feasible solution to (29) where \(B = \kappa I \) and \(d \) is any point in the interior of \(\mathcal{P} \). By choosing a sufficiently small \(\kappa \), the inequalities in (29) can be made strict. Therefore, the objective function of (30) is the logarithm of \(\text{Vol}(\mathcal{E}_{\text{smvie}}) \).

A.2 S-procedure

In this section, we first state the S-procedure [3, 9] and then explain how it provides an alternative method of approximating \((M\mathcal{VIE}) \).

Lemma 5 (S-procedure). Let \(Q_i \in \mathbb{S}^K, q_i \in \mathbb{R}^K, r_i \in \mathbb{R}, i \in \{0\} \cup [I] \). Then the optimal value of the non-convex quadratic optimization problem

\[
\begin{aligned}
\text{minimize} & \quad x^T Q_0 x + 2q_0^T x + r_0 \\
\text{subject to} & \quad x \in \mathbb{R}^K, \\
& \quad x^T Q_i x + 2q_i^T x + r_i \leq 0 \quad \forall i \in [I]
\end{aligned}
\]

is \(\geq 0 \) if there exist \(\lambda_i \geq 0 \ \forall i \in [I] \) such that

\[
\begin{bmatrix}
Q_0 & q_0 \\
q_0^T & r_0
\end{bmatrix} + \sum_{i \in [I]} \lambda_i \begin{bmatrix}
Q_i & q_i \\
q_i^T & r_i
\end{bmatrix} \succeq 0.
\]
Next, we use the \(S \)-procedure to derive an approximation to \((\mathcal{M}\mathcal{V}\mathcal{E}) \). The constraint \(Z(A,b) \leq 1 \) can be written as
\[
\inf_{x \in \mathcal{P}} \left\{ -x^\top A^2 x - 2b^\top A x + 1 - b^\top b \right\} \geq 0.
\]
Using Lemma 5 and the definition of \(\mathcal{P} \) from (18), the above inequality is satisfied if there exist variables \(\mu \in \mathbb{R}^J_+ \) and \(\lambda_i \geq 0 \) for all \(i \in [I] \) such that
\[
- \begin{bmatrix} A^2 & Ab \\ b^\top A & b^\top b - 1 \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{2} S^\top \mu \\ \frac{1}{2} \mu^\top S & -\mu^\top t \end{bmatrix} + \sum_{i=1}^I \lambda_i \begin{bmatrix} Q_i^2 & Q_i q_i \\ q_i^\top Q_i & q_i^\top q_i - 1 \end{bmatrix} \succeq 0,
\]
which—using the Schur complement—is satisfied if and only if
\[
\begin{bmatrix} 0 & \frac{1}{2} S^\top \mu & A \\ \frac{1}{2} \mu^\top S & 1 - \mu^\top t & b^\top \\ A & b & \mathbb{I} \end{bmatrix} + \sum_{i=1}^I \lambda_i \begin{bmatrix} Q_i^2 & Q_i q_i \\ q_i^\top Q_i & q_i^\top q_i - 1 \end{bmatrix} \succeq 0. \tag{31}
\]
Hence, by replacing the constraint \(Z(A,b) \leq 1 \) in \((\mathcal{M}\mathcal{V}\mathcal{E}) \) with a stronger constraint (31), we get the following conservative approximation of \((\mathcal{M}\mathcal{V}\mathcal{E}) \):
\[
\begin{align*}
\text{minimize} \quad & - \log \det(A) \\
\text{subject to} \quad & A \in \mathbb{S}^K, \ b \in \mathbb{R}^K, \ \mu \in \mathbb{R}^I_+, \ \lambda_i \in \mathbb{R}_+ \ \forall \ i \in [I], \\
& (31) \text{ holds.}
\end{align*}
\]

A.3 The containment approach of \([25]\)

In [25], the authors provide the following sufficient conditions such that a set representable as a linear matrix inequality contains another such set.

Theorem 5 ([25, Theorem 4.3]). Let the set \(S_Y = \{ x \in \mathbb{R}^K : Y_0 + \sum_{k \in [K]} x_k Y_k \succeq 0 \} \), and the set \(S_Z = \{ x \in \mathbb{R}^K : Z_0 + \sum_{k \in [K]} x_k Z_k \succeq 0 \} \), where \(Y_k = (Y^k_{ij}) \in \mathbb{S}^J \) and \(Z_k \in \mathbb{S}^J \) for all \(k \in \{0\} \cup [K] \). Then \(S_Y \subseteq S_Z \) if there exist matrices \(C_{ij} \in \mathbb{R}^{L \times L}, i, j \in [J], \) such that the following constraints hold:
\[
C = (C_{ij})_{i,j=1}^J \succeq 0, \quad Z_0 \succeq \sum_{i,j=1}^J Y^0_{ij} C_{ij}, \quad Z_k = \sum_{i,j=1}^J Y^k_{ij} C_{ij} \ \forall k \in [K]. \tag{32}
\]

We summarize how we use this result to generate an approximation to \(\mathcal{E}_{mve} \). We are interested in finding conditions under which a polytope \(\mathcal{P} := \{ x \in \mathbb{R}^K : S x \leq t \} \) is contained in an ellipsoid \(\mathcal{E}(A,b) = \{ x \in \mathbb{R}^K : \| A x + b \|^2 \leq 1 \} = \{ x \in \mathbb{R}^K : F(x) \succeq 0 \} \), where
\[
F(x) = \begin{bmatrix} \mathbb{I} \\ (A x + b)^\top \end{bmatrix} = \begin{bmatrix} \mathbb{I} & b \\ b^\top & 1 \end{bmatrix} + \sum_{k=1}^K x_k \begin{bmatrix} 0 & A_k \\ A_k^\top & 0 \end{bmatrix}.
\]
Now, we can use Theorem 5 with \(S_Y = \mathcal{P} \) and \(S_Z = \mathcal{E}(A,b) \) to generate constraints that ensure that \(\mathcal{E}(A,b) \) contains \(\mathcal{P} \). Since the matrices \(Y_0 = \text{Diag}(t) \) and \(Y_i = -\text{Diag}(S_i) \) are diagonal, the variables \(C_{jk}, j \neq k \) do
not appear in the second and third constraints of (32). Therefore, we can eliminate these variables from the first constraint as well, by forcing $C_{jj} \geq 0$. In light of this observation and by redefining C_{jj} as C_j, we can rewrite the constraints (32) as

$$C_j \in S^{K+1}_+ \forall j \in [J], \quad \left[\begin{array}{cc} \mathbb{I} & b \\ b^\top & 1 \end{array} \right] \geq \sum_{j \in [J]} t_j C_j, \quad \left[\begin{array}{cc} 0 & A_k^\top \\ A_k & 0 \end{array} \right] = \sum_{j \in [J]} -S_{jk} C_j \forall k \in [K]. \quad (33)$$

Minimizing $-\log \det(A)$ subject to the constraints in (33) provides a conservative SDP approximation to (\mathcal{MVE}). The elimination of these redundant variables leads to a tremendous increase in the solution speed.

B Proofs

B.1 Claims in Example 1

In this section, we prove that in Example 1, $R_{\text{cop}} = O(K^{1/4})$, and $R_{\text{smvie}} = \Theta(\sqrt{K})$. Consider the solution

$$A = k_1 \mathbb{I} + k_2 \ee \ee^\top, \quad b = k_3 \ee, \quad N = \begin{bmatrix} 0 & k_4 \mathbb{I} & 0 \\ k_4 \mathbb{I} & 0 & k_5 \ee \\ 0 & k_5 \ee^\top & 0 \end{bmatrix},$$

where, $k_1 = \sqrt{\frac{K^2 - 1}{(\sqrt{K} - 1)K^2}}$, $k_2 = \frac{1}{K} \left(1 + \frac{1}{K} - k_1 \right)$, $k_3 = -\frac{1}{\sqrt{K}}$, $k_4 = \frac{k_2}{2}$, $k_5 = k_2 \left(k_1 + \frac{K}{2} k_2 \right)$.

It can be checked that this solution is feasible to (13). Therefore, $R_{\text{cop}} \leq (1/ \det(A))^{1/K}$. The eigenvalues of A are $k_1 + K k_2$, and k_1 with a multiplicity of $K - 1$. Therefore,

$$R_{\text{cop}} \leq (1/ \det(A))^{1/K} = \left((k_1 + K k_2) k_1^{K-1} \right)^{-\frac{1}{K}} = \left(\left(1 + \frac{1}{K} \right) k_1^{K-1} \right)^{-\frac{1}{K}} = O \left(\frac{1}{k_1} \right) = O \left(K^{\frac{1}{2}} \right).$$

Next, for $\mathcal{E}_{\text{smvie}}$, consider the following solution to the primal problem (29): $B = m_1 \mathbb{I} + m_2 \ee \ee^\top, \quad d = m_3 \ee$, and the following solution to the dual problem (30): $\rho = 1/\sqrt{K} \left[0; \ee; 1 \right], \quad A = \left[0; m_4 \mathbb{I} + m_5 \ee \ee^\top; m_6 \ee^\top \right], \quad$ where

$$m_1 = \frac{K}{\sqrt{K} + 1}, \quad m_2 = \frac{1}{K + 1} - \frac{1}{\sqrt{K} + 1}, \quad m_3 = \frac{\sqrt{K}}{K + 1}, \quad m_4 = \frac{\sqrt{K + 1}}{K}, \quad m_5 = \frac{1 - \sqrt{K + 1}}{K^2}, \quad m_6 = -\frac{1}{K}.$$

It can be verified that these solutions have the same objective function value, and are feasible—and therefore optimal—to their respective problems. The eigenvalues of B are $m_1 + K m_2$, and m_1 with a multiplicity of $K - 1$. Therefore

$$\det(B) = (m_1 + K m_2) m_1^{K-1} = \frac{K}{K + 1} \left(\frac{K}{\sqrt{K + 1}} \right)^{K-1} = \frac{K^K}{(\sqrt{K + 1})^{K+1}},$$

which implies that

$$\lim_{K \to \infty} \frac{R_{\text{smvie}}}{\sqrt{K}} = \lim_{K \to \infty} \frac{\det(B)^{1/K}}{\sqrt{K}} = 1.$$

Therefore, $R_{\text{smvie}} = \Theta(\sqrt{K})$. 33
B.2 Proposition 2

The PLD restriction of (23) can be written as follows:

$$\inf_{x,y(\cdot)} c^T x + \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q [(D\hat{\xi} + d)^T y(\hat{\xi})],$$

s.t. $x \in \mathcal{X},$

$$T_\ell(x)^T \xi + h_\ell(x) \leq (W_\ell \xi + w_\ell)^T (Y_j \xi + y_j) \quad \forall \xi \in \Xi_j \forall j \in [J] \forall \ell \in [L].$$

First, for the objective function, observe that

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q [(D\tilde{\xi} + d)^T y(\tilde{\xi})] = \sup_{\nu(\cdot) \geq 0} \sum_{j \in [J]} \int_{\xi \in \Xi_j} (D\tilde{\xi} + d)^T (Y_j \xi + y_j) \nu(d\xi),$$

s.t. $\sum_{j \in [J]} \int_{\xi \in \Xi_j} \nu(d\xi) = 1,$

$$\sum_{j \in [J]} \int_{\xi \in \Xi_j} \xi \nu(d\xi) = \mu,$$

$$\sum_{j \in [J]} \int_{\xi \in \Xi_j} \xi \xi^T \nu(d\xi) \preceq \Sigma.$$

By weak duality, we get that

$$\sup_{Q \in \mathcal{Q}} \mathbb{E}_Q [(D\tilde{\xi} + d)^T y(\tilde{\xi})] \leq \inf_{\alpha, \beta \in \mathbb{R}} \alpha + \beta^T \mu + \text{tr}(\Gamma \Sigma)$$

s.t. $\alpha \in \mathbb{R}, \beta \in \mathbb{R}^K, \Gamma \in S^K_+,$

$$\alpha + \beta^T \xi + \xi^T \Gamma \xi \geq (D\tilde{\xi} + d)^T (Y_j \xi + y_j) \quad \forall \xi \in \Xi_j \forall j \in [J].$$

The constraint of the optimization problem above holds if and only if, for all $j \in [J],$ the optimal value of the problem

$$\inf_{\xi \in \mathbb{R}^K} \alpha + \beta^T \xi + \xi^T \Gamma \xi - (D\tilde{\xi} + d)^T (Y_j \xi + y_j)$$

s.t. $S_j \xi \leq t_j, \quad ||A_j \xi + b_j||^2 \leq 1,$

is $\geq 0.$ Next, using the S-procedure (Lemma 5), we get that this constraint holds if the first semidefinite constraint of (24) holds. Therefore, replacing the former by the latter, we get an upper bound on the optimal decision rules problem. Similarly, the final constraint of (24) is equivalent to the constraint that, for all $j \in [J]$ and $\ell \in [L],$ the optimal value of the optimization problem

$$\inf_{\xi \in \mathbb{R}^K} (W_\ell \xi + w_\ell)^T (Y_j \xi + y_j) - T_\ell(x)^T \xi + h_\ell(x)$$

s.t. $S_j \xi \leq t_j, \quad ||A_j \xi + b_j||^2 \leq 1,$

is $\geq 0.$ Using the S-procedure, we get that the above constraint holds if the second semidefinite constraint of (24) holds. Therefore, the SDP (24) provides a feasible decision rule approximation, and the optimal value of (24) provides an upper bound to the optimal value of the DRO model (23).
B.3 Claims in Example 2

From the constraints of (25), the only feasible decision rule is $y(\xi) = \xi$. Therefore, the problem reduces to

$$\inf_{\tau} \quad \tau \quad \text{s.t.} \quad \xi^\top \xi \leq \tau \quad \forall \xi \in \Xi,$$

If $E(r)$ is used as the outer ellipsoid, then the SDP approximation obtained using the S-procedure is given by

$$z(r) = \inf_{\tau} \quad \tau \quad \text{s.t.} \quad \tau \in \mathbb{R}, \; \rho \geq 0, \; \lambda \in \mathbb{R}^+, \quad \begin{bmatrix} (\lambda - 1)I & \frac{1}{2}(S^\top \rho) \\ \frac{1}{2}(S^\top \rho)^\top & \tau - t^\top \rho - \lambda r \end{bmatrix} \succeq 0. \quad (35)$$

The dual of the SDP (35) is given by

$$\sup \quad \text{tr}(F) \quad \text{s.t.} \quad F \in \mathbb{S}^K, \; g \in \mathbb{R}^K, \quad \text{tr}(F) \leq r, \; Sg \leq t, \quad \begin{bmatrix} F & g \\ g^\top & 1 \end{bmatrix} \succeq 0.$$

Consider the following solution to the primal problem: $\tau = r, \; \rho = 0, \; \lambda = 1$, and the following solution to the dual problem: $F = (r/K)I, \; g = 0$. Using the fact that $0 \in \Xi$, both solutions are feasible and provide an objective value of r to their respective problems. Hence, the optimal objective value is r.

B.4 Claims in Example 3

The SDP approximation to (26) when $E(s)$ is used as the outer ellipsoid can be written as:

$$\inf \quad \tau \quad \text{s.t.} \quad \tau \in \mathbb{R}, \; Y \in \mathbb{R}^{K \times K}, \; y \in \mathbb{R}^K, \; \rho_1 \geq 0, \; \rho_2 \geq 0, \; \lambda_1 \geq 0, \; \lambda_2 \geq 0,$$

$$\begin{bmatrix} \frac{1}{2}(Y + Y^\top) & \frac{1}{2}(S^\top \rho_1 + Y^\top e + y) \\ \frac{1}{2}(S^\top \rho_1 + Y^\top e + y)^\top & -1 + e^\top y - t^\top \rho_1 \end{bmatrix} + \lambda_1 J(s) \succeq 0, \quad \begin{bmatrix} -\frac{1}{2}(Y + Y^\top) & \frac{1}{2}(S^\top \rho_2 + Y^\top e - y) \\ \frac{1}{2}(S^\top \rho_2 - Y^\top e - y)^\top & \tau - e^\top y - t^\top \rho_2 \end{bmatrix} + \lambda_2 J(s) \succeq 0. \quad (36)$$

where

$$J(s) = \frac{1}{K} \begin{bmatrix} 4I & -2e \\ -2e^\top & -Ks \end{bmatrix}.$$
The dual of the SDP (36) is given by

\[
\sup h_1 \\
\text{s.t. } F_1, F_2 \in \mathbb{S}^K, \quad g_1, g_2 \in \mathbb{R}^K, \quad h_1, h_2 \in \mathbb{R} \\
\begin{bmatrix} F_1 & g_1 \\ g_1^T & h_1 \end{bmatrix} \succeq 0, \quad \begin{bmatrix} F_2 & g_2 \\ g_2^T & h_2 \end{bmatrix} \succeq 0, \\
\text{tr} \left(J(s) \begin{bmatrix} F_1 & g_1 \\ g_1^T & h_1 \end{bmatrix} \right) \leq 0, \quad \text{tr} \left(J(s) \begin{bmatrix} F_2 & g_2 \\ g_2^T & h_2 \end{bmatrix} \right) \leq 0, \tag{37}
\]

\[
g_1 - g_2 = (h_2 - h_1)e, \\
F_1 - F_2 = e(g_2 - g_1)^T, \\
Sg_1 \leq h_1t, \quad Sg_2 \leq h_2t, \\
h_2 = 1.
\]

Consider the following cases:

- **Case 1:** \(0 \leq s \leq 2\). Consider the following solution to the dual problem:

 \[
 F_2 = \frac{1}{4}ee^\top, \quad g_2 = \frac{1}{4}e, \quad h_2 = 1, \quad h_1 = \frac{9}{8 - s}, \quad F_1 = F_2 + \frac{1 + s}{8 - s}ee^\top, \quad g_1 = g_2 - \frac{1 + s}{8 - s}e,
 \]

 and the following solution to the primal problem:

 \[
 \lambda_2 = 0, \quad \lambda_1 = \frac{1}{8 - s}, \quad \rho_1 = 0, \quad \rho_2 = 0, \quad y = \frac{8}{K(8 - s)}e, \quad Y = -\frac{2}{K(8 - s)} \left(I + \frac{1}{K}ee^\top \right)
 \]

- **Case 2:** \(2 \leq s \leq 4\). Consider the following solution to the dual problem:

 \[
 F_2 = \left(\frac{s}{4} \right)^2 ee^\top, \quad g_2 = \frac{s}{4}e, \quad h_2 = 1, \quad h_1 = 1 + \frac{s}{4}, \quad F_1 = F_2 + \frac{s}{4}ee^\top, \quad g_1 = g_2 - \frac{s}{4}e = 0,
 \]

 and the following solution to the primal problem:

 \[
 \lambda_2 = 0, \quad \lambda_1 = \frac{1}{4 + s}, \quad \rho_1 = \frac{2(s - 2)}{K(4 + s)} \begin{bmatrix} 0 \\ e \end{bmatrix}, \quad \rho_2 = 0, \quad y = \frac{4 + 2s}{K(4 + s)}e, \quad Y = -\frac{2}{K(4 + s)} \left(I + \frac{1}{K}ee^\top \right)
 \]

- **Case 3:** \(s \geq 4\). Consider the following solution to the dual problem:

 \[
 F_2 = ee^\top, \quad g_2 = e, \quad h_2 = 1, \quad h_1 = 2, \quad F_1 = 2ee^\top, \quad g_1 = 0,
 \]

 and the following solution to the primal problem:

 \[
 \lambda_2 = 0, \quad \lambda_1 = 0, \quad \rho_1 = \frac{1}{K} \begin{bmatrix} 0 \\ e \end{bmatrix}, \quad \rho_2 = \frac{1}{K}e, \quad y = \frac{1}{K}e, \quad Y = 0.
 \]

In all the three cases, the primal and the dual solutions are feasible to their respective problems, and provide the same objective value which corresponds to the one presented in Example 3.