Improved Decision Rule Approximations for Multi-Stage Robust Optimization via Copositive Programming

Guanglin Xu∗ Grani A. Hanasusanto†

Abstract
We study decision rule approximations for generic multi-stage robust linear optimization problems. We examine linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and examine quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but amenable to copositive programming reformulations that give rise to tight, tractable semidefinite programming solution approaches. We further enhance these approximations through new piecewise decision rule schemes. Finally, we prove that our proposed approximations are tighter than the state-of-the-art schemes and demonstrate their superiority through numerical experiments.

Keywords: Multi-stage robust optimization; decision rules; piecewise decision rules; conservative approximation; copositive programming; semidefinite programming

1 Introduction

Decision-making under uncertainty arises in a wide spectrum of applications in operations management, engineering, finance, and process control. A prominent modeling approach for decision-making under uncertainty is robust optimization (RO), whereby one seeks for a decision that hedges against the worst-case realization of uncertain parameters; see [8, 14, 15]. RO paradigm is appealing because it leads to computationally tractable solution schemes for many static decision-making problems under uncertainty. However, real-life problems are often dynamic in nature, where the uncertain parameters are revealed sequentially and the decisions must be adapted to the current realizations. The adaptive decisions are fundamentally infinite-dimensional as they constitute mappings from the space of uncertain parameters to the space of actions. This setting gives rise to the multi-stage robust optimization (MSRO) problems which in general are computationally challenging to solve. Only in a few cases and under very stringent conditions are the problems efficiently solvable; see for instance [13, 21, 45]. Consequently, the design of solution schemes for MSRO necessitates to reconcile the conflicting objectives of optimality and scalability.

Conservative approximations for MSRO can be derived in linear decision rules, where we restrict the adaptive decisions to affine functions in the uncertain parameters. Popularized by Ben-Tal et

∗Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN, 55455, USA. Email: gxu@umn.edu.
†Graduate Program in Operations Research and Industrial Engineering, The University of Texas at Austin, Austin, TX, 78712-1591, USA. Email: grani.hanasusanto@utexas.edu.
al. [11], linear decision rules have found successful applications in various areas of decision-making problems under uncertainty [5, 10, 29, 30, 31, 44, 57] as they are simple yet reasonable to implement in practice. Moreover, linear decision rules are optimal for some instances of MSRO [20, 50], linear quadratic optimal control [2], and robust vehicle routing [44] problems. The resulting optimization problems, however, are tractable only under the restrictive setting of fixed recourse, i.e., when the adaptive decisions are not multiplied with the uncertain parameters in the problem’s formulation. Many decision-making problems under uncertainty such as portfolio optimization [12, 33, 57], energy systems operation planning [41, 54], inventory planning [19], etc. do not satisfy the fixed recourse assumption. For these problem instances, the linear decision rule approximation is NP-hard already in a two-stage setting [11, 45].

The basic linear decision rules have been extended to truncated linear [58], segregated linear [31, 32, 42], and piecewise linear [9, 40] functions in the uncertain parameters. If the MSRO problem has fixed recourse then one can formally prove that the optimal adaptive decisions are piecewise linear [7], which justifies the use of these enhanced approximations. Unfortunately, optimizing for the best piecewise linear decision rule entails solving globally a non-convex optimization problem which is inherently difficult [9, 18]. If in addition some basic descriptions about the piecewise linear structure are prescribed, then one can derive tractable linear programming approximations for problem instances with fixed recourse [40].

If tighter approximation is desired or when the problem has non-fixed recourse, then one can in principle develop a hierarchy of increasingly tight semidefinite approximations using polynomial decision rules [23]. While optimizing for the best polynomial decision rule of fixed degree is difficult, tractable conservative approximations can be obtained by employing the Lasserre hierarchy [52, 55]. Such approximations are attractive because they do not require prior structural knowledge about the optimal adaptive decisions. However, the resulting semidefinite programs scale poorly with the degree of the polynomial decision rules. A decent tradeoff between suboptimality and scalability is attained in quadratic decision rules, where one merely optimizes over polynomial functions of degree 2. Their semidefinite approximations, based on the well-known approximate S-lemma [8], have been applied successfully to instances of inventory planning [23, 49] and electricity capacity expansion [6] problems. A posteriori lower bounds to the MSRO problem can be derived by applying decision rules to the problem’s dual formulation [6, 40, 51]. Alternative schemes that similarly provide aggressive bounds for MSRO are proposed in [46] and [16].

Global optimization approaches have also been designed to derive exact solutions of MSRO problems. In the two-stage robust optimization setting, these methods include Benders’ decomposition [24, 35], column and constraint generation [60], extreme point enumeration combined with decision rules [39], and Fourier-Motzkin elimination [61]. The Benders’ decomposition scheme has been extended to the multi-stage setting for MSRO problems where the uncertain parameters exhibit a stagewise rectangular structure [38]. The papers [17] and [56] develop adaptive uncertainty set partitioning schemes that generate a sequence of increasingly accurate conservative approximations for MSRO. Global optimization scheme has also been conceived through the lens of conic
reformulations. Hanasusanto and Kuhn [48] and Xu and Burer [59] propose independently equivalent copositive programming reformulations for two-stage robust optimization problems and develop conservative semidefinite approximations for the reformulations.

This paper takes a first step towards addressing a generic linear MSRO problem using copositive programming. As an exact reformulation is far-fetched, we aim for a modest goal of deriving equivalent copositive programs for the respective decision rule problems in the hope of obtaining tight and scalable approximations. Specifically, for the more challenging problem instances with non-fixed recourse, we find that the linear decision rule approximations are amenable to exact copositive programming reformulations of polynomial size. As a byproduct of our derivation, we find that exact reformulations can be derived in view of quadratic decision rules for the simpler problem instances with fixed recourse. The power of the copositive programming approach further enables us to develop enhanced approximations through piecewise decision rules. We summarize the main contributions of the paper as follows.

1. For the generic MSRO problems we derive new copositive programming reformulations in view of the popular linear decision rules. For MSRO problems with fixed recourse we derive new copositive programming reformulations in view of the more powerful quadratic decision rules. The exactness results are general: They hold for MSRO problems without relatively complete recourse, and under very minimal assumption about the compactness of the uncertainty set, without requiring it to exhibit stage-wise rectangularity.

2. The emerging copositive programs are amenable to a hierarchy of increasingly tight conservative semidefinite programming approximations. We formulate the simplest of these approximations and prove that it is tighter than the state-of-the-art scheme by Ben-Tal et al. [11], and also the polynomial decision rule scheme by Bertsimas et al. [23] when the degree of the polynomial is set to the degree of our decision rules (degree 1 for problems with non-fixed recourse and degree 2 for problems with fixed recourse). We demonstrate empirically that our proposed approximation is competitive to polynomial decision rules of higher degrees while displaying more favorable scalability.

3. We propose piecewise linear decision rules for MSRO problems with non-fixed recourse and piecewise quadratic decision rules for MSRO problems with fixed recourse. To our best knowledge, these decision rules are new for their respective problem classes. By leveraging recent techniques in copositive programming, we derive equivalent copositive programs for the piecewise decision rule approximations. For MSRO problems with fixed recourse, we show that the state-of-the-art scheme by Georgiou et al. [40] can be futile even on trivial two-stage problem instances, while our semidefinite approximation produces high-quality solutions. We formally prove that our proposed approximation is indeed tighter than that of [40], and further identify the simplest set of semidefinite constraints that retains the outperformance while maintaining scalability.

The remainder of the paper is organized as follows. We derive the copositive programming
reformulations for two-stage robust optimization problems in Section 2. In Section 3, we formulate the conservative semidefinite programming approximations. In Section 4, we provide the generalization to piecewise decision rules and derive their copositive reformulations. We extend all results to the multi-stage setting in Section 5 and present the numerical results in Section 6.

1.1 Notation and terminology

For any \(M \in \mathbb{N} \), we define \([M]\) as the set of running indices \(\{1,\ldots,M\} \). We let \([M]\{1\}\) be the set of running indices \(\{2,\ldots,M\} \). We denote by \(\mathbf{e} \) the vector of all ones and by \(e_i \) the \(i \)-th standard basis vector. For notational convenience, we use both \(v_i \) and \([v]_i \) to denote the \(i \)-th component of the vector \(v \). The \(p \)-norm of a vector \(v \in \mathbb{R}^N \) is defined as \(\|v\|_p \). We will drop the subscript for the Euclidean norm, i.e., \(\|v\| := \|v\|_2 \). For \(a \in \mathbb{R}^N \) and \(b \in \mathbb{R}^N \), the Hadamard product of \(a \) and \(b \) is denoted by \(a \odot b := (a_1 b_1, \ldots, a_N b_N)^\top \). The trace of a square matrix \(X \) is denoted as \(\text{trace}(X) \).

We use \([A]_{ij} \) to denote the entry in the \(i \)-th row and the \(j \)-th column of the matrix \(A \). We define \(\text{Diag}(X) \) as the vector comprising the diagonal entries of \(X \), and \(\text{Diag}(v) \) as the diagonal matrix with the vector \(v \) along its main diagonal. We use \(X \succeq 0 \) to denote that \(X \) is a component-wise nonnegative matrix. For any matrix \(A \in \mathbb{R}^{M \times N} \), the inclusion \(\text{Rows}(A) \in K \) indicates that the column vectors corresponding to the rows of \(A \) are members of \(K \). We denote by \(\mathcal{F}_{K+1,N} \) the space of all measurable mappings \(y(\cdot) \) from \(\mathbb{R}^{K+1} \) to \(\mathbb{R}^N \).

For any closed and convex cone \(K \), we denote its dual cone as \(K^* \). We define by \(\text{SOC} \subseteq \mathbb{R}^{K+1} \) the standard second-order cone, i.e., \(v \in \text{SOC} \iff \|(v_1,\ldots,v_K)\| \leq v_{K+1} \). We denote the space of symmetric matrices in \(\mathbb{R}^{N \times N} \) as \(S^N \). For any \(X \in S^N \), we set \(X \succeq 0 \) to denote that \(X \) is positive semidefinite. For convenience, we call the cone of positive semidefinite matrices as the semidefinite cone and the cone of symmetric nonnegative matrices as the the nonnegative cone. The copositive cone is defined as \(\text{COP}(\mathbb{R}_+^N) := \{ M \in S^N : x^\top M x \geq 0 \ \forall x \in \mathbb{R}_+^N \} \). Its dual cone, the completely positive cone, is defined as \(\text{CP}(\mathbb{R}_+^N) := \{ X \in S^N : X = \sum_i x^i (x^i)\top, \ x^i \in \mathbb{R}_+^N \} \), where the summation over \(i \) is finite but its cardinality is unspecified. For a general closed and convex cone \(K \subseteq \mathbb{R}^N \), we define the generalized copositive cone as \(\text{COP}(K) \) and the generalized completely positive cone as \(\text{CP}(K) \), respectively, in analogy with \(\text{COP}(\mathbb{R}_+^N) \) and \(\text{CP}(\mathbb{R}_+^N) \). Note that \(\text{COP}(K) \) and \(\text{CP}(K) \) are dual cones to each other. The term copositive programming refers to linear optimization over \(\text{COP}(K) \) or, via duality, linear optimization over \(\text{CP}(K) \). To distinguish from the standard case where \(K = \mathbb{R}_+^N \), they are sometimes called generalized copositive programming or set-semidefinite optimization [28, 36]. In this paper, we work with generalized copositive programming, although we use the shorter phrase for simplicity.

2 Two-stage robust optimization problems

We study adaptive linear optimization problems of the following general structure. A decision maker first takes a here-and-now decision \(x \in \mathcal{X} \), which incurs an immediate linear cost \(c^\top x \). Nature then reacts with a worst-case parameter realization \(u \in \mathcal{U} \). In response, the decision maker
takes a recourse action \(y(u) \in \mathbb{R}^N \), which incurs a second-stage linear cost \(d(u)^\top y(u) \). In this game against nature, the decision maker endeavors to optimally select a feasible solution \((x, y(\cdot)) \) that minimizes the total cost \(c^\top x + \sup_{u \in \mathcal{U}} d(u)^\top y(u) \). We note that the second-stage decision vector constitutes a mapping \(y : \mathcal{U} \to \mathbb{R}^N \) and is thus infinite dimensional.

The emerging sequential decision problem can be formulated as a two-stage robust optimization problem given by

\[
Z = \inf_{x \in X} \sup_{u \in \mathcal{U}} c^\top x + d(u)^\top y(u) \\
\text{s.t. } \mathcal{A}(u)x + \mathcal{B}(u)y(u) \geq h(u) \quad \forall u \in \mathcal{U} \\
x \in X, \ y \in \mathcal{F}_{K+1, N}.
\]

Here, the feasible set of the first-stage decision \(x \) is captured by a generic set \(X \subseteq \mathbb{R}^M \), while that of the second-stage decision \(y(u) \) is defined through a linear constraint system \(\mathcal{A}(u)x + \mathcal{B}(u)y(u) \geq h(u) \). The uncertain parameter vector \(u \) is assumed to belong to a prescribed uncertainty set \(\mathcal{U} \), which we model as the intersection of a slice of a closed and convex cone \(K \subseteq \mathbb{R}^K \times \mathbb{R}_+ \), and the level sets of \(I \) quadratic functions. Specifically, we set

\[
\mathcal{U} := \left\{ u \in K : e_{K+1}^\top u = 1 \quad \text{and} \quad u^\top \hat{C}_i u = 0 \quad \forall i \in [I] \right\},
\]

where \(\hat{C}_i \in \mathcal{S}^{K+1} \) for all \(i \in [I] \). The problem parameters \(\mathcal{A}(u) \in \mathbb{R}^{J \times M}, \mathcal{B}(u) \in \mathbb{R}^{J \times N}, d(u) \in \mathbb{R}^N \) and \(h(u) \in \mathbb{R}^J \) in (1) are assumed to be linear in \(u \), given by

\[
\mathcal{A}(u) = \sum_{k=1}^{K+1} u_k \hat{A}_k, \quad \mathcal{B}(u) = \sum_{k=1}^{K+1} u_k \hat{B}_k, \quad d(u) = \hat{D}u, \quad h(u) = \hat{H}u,
\]

where \(\hat{A}_k \in \mathbb{R}^{J \times M}, \hat{B}_k \in \mathbb{R}^{J \times N}, \hat{D} := (\hat{d}_1, \ldots, \hat{d}_N)^\top \in \mathbb{R}^{N \times (K+1)} \), and \(\hat{H} := (\hat{h}_1, \ldots, \hat{h}_J)^\top \in \mathbb{R}^{J \times (K+1)} \) are deterministic data. The nonrestrictive assumption that \(u_{K+1} = 1 \) in (2) will simplify notation as it allows us to represent affine functions in the primitive uncertain parameters \((u_1, \ldots, u_K)^\top \) in a compact way as linear functions of \(u \), e.g., the problem parameters \(\mathcal{A}(u), \mathcal{B}(u), d(u), \) and \(h(u) \), and the linear decision rule \(Yu \) (Section 2.1); and as it also allows us to represent quadratic functions in the primitive uncertain parameters in a homogenized manner, e.g., the quadratic decision rule \(u^\top Qu \) (Section 2.2).

The cone \(K \) in the description of \(\mathcal{U} \) has a generic form and can model many common uncertainty sets in the literature. We highlight three pertinent examples as follows.

Example 1 (Polytope). If the uncertainty set of the primitive vector \((u_1, \ldots, u_K)^\top \) is given by a polytope \(\{ \xi \in \mathbb{R}^K : P\xi \geq q \} \), then the corresponding cone is defined as

\[
K := \{ (\xi, \tau) \in \mathbb{R}^K \times \mathbb{R}_+ : P\xi \geq q\tau \}.
\]

Example 2 (Polytope and 2-Norm Ball). If the uncertainty set of the primitive vector is given by the intersection of a polytope and a transformed 2-norm ball: \(\{ \xi \in \mathbb{R}^K : P\xi \geq q, \| R\xi - s \|_2 \leq t \} \),
then the corresponding cone is defined as

\[\mathcal{K} := \{ (\xi, \tau) \in \mathbb{R}^K \times \mathbb{R}_+: P\xi \geq q\tau, \|R\xi - s\tau\| \leq t\tau \}. \]

Example 3 (Ellipsoids). Consider the setting where the uncertainty set of the primitive vector is described by an intersection of \(L \) ellipsoids: \(\{ \xi \in \mathbb{R}^K : \xi^T F_\ell \xi + 2g_\ell^T \xi \leq h_\ell, \forall \ell \in [L] \} \). Here, \(F_\ell \in S^K, F_\ell \succeq 0, g_\ell \in \mathbb{R}^K \), and \(h_\ell \in \mathbb{R} \) for all \(\ell \in [L] \). Since \(F_\ell \) is positive semidefinite, we have \(F_\ell = P_\ell^T P_\ell \) for some matrix \(P_\ell \in \mathbb{R}^{l \times K} \) whose rank is \(I_\ell \). In [1], it is shown that

\[\xi^T F_\ell \xi + 2g_\ell^T \xi \leq h_\ell \iff \left(\begin{array}{c} \frac{1}{2}(1 + h_\ell) - g_\ell^T \xi \\ \frac{1}{2}(1 - h_\ell) + g_\ell^T \xi \\ P_\ell \xi \end{array} \right) \in \text{SOC}(I_\ell + 2), \]

where \(\text{SOC}(I_\ell + 2) \) denotes the second-order cone of dimension \(I_\ell + 2 \). In this case, the corresponding cone is given by

\[\mathcal{K} := \{ (\xi, \tau) \in \mathbb{R}^K \times \mathbb{R}_+: \left(\begin{array}{c} \frac{1}{2}(1 + h_\ell) - g_\ell^T \xi \\ \frac{1}{2}(1 - h_\ell) + g_\ell^T \xi \\ P_\ell \xi \end{array} \right) \in \text{SOC}(I_\ell + 2) \ \forall \ell \in [L] \}. \]

In the following, to simplify our exposition, we define the convex set

\[\mathcal{U}^0 := \{ u \in \mathcal{K} : e_{K+1}^T u = 1 \}, \tag{3} \]

which corresponds to the uncertainty set \(\mathcal{U} \) in the absence of the non-convex constraints \(u^T \tilde{C}_i u = 0 \), \(i \in [I] \). We further assume that the uncertainty set satisfies the following regularity conditions.

Assumption 1. The set \(\mathcal{U}^0 \) defined in (3) is nonempty and compact.

Assumption 2. The minimum value of the quadratic function \(u^T \tilde{C}_i u \) over the set \(\mathcal{U}^0 \) is 0 for all \(i \in [I] \), i.e., \(0 = \min_{u \in \mathcal{U}^0} u^T \tilde{C}_i u \), \(i \in [I] \).

The quadratic constraints in the description of \(\mathcal{U} \) are motivated by both practical and modeling requirements. Numerous applications in robust optimization, including inventory planning and project crashing problems, involve binary uncertain parameters; see [43]. In this case, we can incorporate binary variables in \(\mathcal{U} \) via quadratic constraints of the form in (2). Specifically, we have that \(u_k \in \{0,1\} \) is equivalent to \(u_k^2 = u_k \). If the relation \(0 \leq u_k \leq 1 \) is implied by \(\mathcal{U}^0 \) (note that we can explicitly introduce these constraints into \(\mathcal{U}^0 \) if necessary), then we have \(0 = \min_{u \in \mathcal{U}^0} \{ -u_k^2 + u_k \} \), which shows that the quadratic constraint \(-u_k^2 + u_k = 0 \) satisfies the condition in Assumption 2. Furthermore, these constraints will be crucial for deriving our improved decision rules as they enable us to model complementary constraints, e.g., \(u_k u_k' = 0 \); see Section 4 for detail. If \(\mathcal{U}^0 \) implies that both \(u_k \) and \(u_k' \) are nonnegative and bounded, then we have \(0 = \min_{u \in \mathcal{U}^0} \{ u_k u_k' \} \). Thus, the quadratic constraint \(u_k u_k' = 0 \) satisfies the condition in Assumption 2.
Two-stage robust optimization problems of the form (1) are generically NP-hard [11]. A popular conservative approximation scheme is obtained in linear decision rules, where we restrict the recourse action $y(\cdot)$ to be a linear function of u. If the problem has fixed recourse (i.e., $B(u)$ and $d(u)$ are constant), then the linear decision rule approximation leads to tractable linear programs. On the other hand, if the problem has non-fixed recourse (i.e., $B(u)$ or $d(u)$ depends linearly in u), then the approximation itself is intractable. In the following, we show that the linear decision rule problems are amenable to exact copositive programming reformulations. Furthermore, in the specific case where the problem has fixed recourse, we develop an improved approximation in quadratic decision rules, and show that the resulting optimization problems can also be reformulated as equivalent copositive programs.

2.1 Linear decision rules for problems with non-fixed recourse

In this section, we derive an exact copositive program by applying linear decision rules to problem (1). Instead of considering all possible choices of functions $y : \mathcal{U} \to \mathbb{R}^N$ from $\mathcal{F}_{K+1,N}$, we restrict ourselves to linear functions of the form

$$y(u) = Y u,$$

for some coefficient matrix $Y \in \mathbb{R}^{N \times (K+1)}$. This setting gives rise to the following conservative approximation of problem (1):

$$Z^L = \inf c^\top x + \sup_{u \in \mathcal{U}} d(u)\top (Y u)$$

s.t. $\mathcal{A}(u)x + \mathcal{B}(u)Y u \geq h(u) \quad \forall u \in \mathcal{U}$

$x \in \mathcal{X}, \ Y \in \mathbb{R}^{N \times (K+1)}$. \hfill (L)

Problem (L) is finite-dimensional but remains difficult to solve as there are infinitely many constraints parametrized by $u \in \mathcal{U}$. In particular, it is shown in [11] that the problem is NP-hard via a reduction from the problem of checking matrix copositivity.

We now show that an equivalent copositive programming reformulation can principally be derived for problem (L). We first introduce the following technical lemmas, which are fundamental for our derivations. The first technical lemma establishes the equivalence between a nonconvex quadratic program

$$\sup \ u^\top \hat{C}_0 u$$

s.t. $e_{K+1}^\top u = 1$

$u^\top \hat{C}_i u = 0 \quad \forall i \in [I]$

$u \in \mathcal{K}$ \hfill (4)
and its copositive relaxation

\[
\begin{align*}
\sup \quad & \hat{C}_0 \cdot U \\
\text{s.t.} \quad & e_{K+1} \hat{e}_{K+1}^\top U = 1 \\
& \hat{C}_i \cdot U = 0 \quad \forall \ i \in [I] \\
& U \in S^{K+1}, \ U \in CP(K),
\end{align*}
\]

(5)

where \(\hat{C}_0 \in S^{K+1}, K \subseteq \mathbb{R}^{K+1} \) is a closed and convex cone, and \(CP(K) \) is the cone of completely positive matrices with respect to \(K \).

Lemma 1 ([26], Corollary 8.4, Theorem 8.3). Suppose Assumption 1 holds. Then, problem (5) is equivalent to (4), i.e., i) the optimal value of (5) is equal to that of (4); ii) if \(U^* \) is an optimal solution for (5), then \(U^* e_1 \) is in the convex hull of optimal solutions for (4).

Lemma 2. Suppose Assumption 1 holds. Then, for any \((z, \tau) \in K \), we have \(\tau = 0 \) implies \(z = 0 \).

Proof. See the Appendix.

The dual of problem (5) is given by the following linear program over the cone of copositive matrices with respect to \(K \):

\[
\begin{align*}
\inf \quad & \lambda \\
\text{s.t.} \quad & \lambda e_{K+1} e_{K+1}^\top + \sum_{i=1}^I \alpha_i \hat{C}_i - \hat{C}_0 \in COP(K) \\
& \lambda \in \mathbb{R}, \ \alpha \in \mathbb{R}^I.
\end{align*}
\]

(6)

Our next technical lemma establishes strong duality for the primal and dual pair.

Lemma 3. Suppose Assumption 1 holds. Then, strong duality holds between problems (5) and (6).

Proof. See the Appendix.

In the following, we define

\[
\hat{\Theta}_j := \begin{pmatrix} e_j^\top \hat{A}_1 \\ \vdots \\ e_j^\top \hat{A}_{K+1} \end{pmatrix} \in \mathbb{R}^{(K+1) \times M}, \quad \hat{\Lambda}_j := \begin{pmatrix} e_j^\top \hat{B}_1 \\ \vdots \\ e_j^\top \hat{B}_{K+1} \end{pmatrix} \in \mathbb{R}^{(K+1) \times N}, \quad \text{and}
\]

\[
\Omega_j (x, Y) := \frac{1}{2} \left(\hat{\Theta}_j x e_{K+1}^\top + e_{K+1} x^\top \hat{\Theta}_j^\top + \hat{\Lambda}_j Y + Y^\top \hat{\Lambda}_j^\top - \hat{h}_j e_{K+1}^\top - e_{K+1} \hat{h}_j^\top \right) \quad \forall \ j \in [J],
\]

(7)

(8)

where \(e_j \) represents the \(j \)th standard basis vector in \(\mathbb{R}^J \). We are now ready to state our main result.
Theorem 1. Problem \((\mathcal{L})\) is equivalent to the copositive program

\[
Z^\mathcal{L} = \inf_c c^\top x + \lambda \\
\text{s.t. } \lambda e_{K+1} e_{K+1}^\top - \frac{1}{2} \left(\hat{D}^\top Y + Y^\top \hat{D} \right) + \sum_{i=1}^{I} \alpha_i \hat{C}_i \in \mathcal{CP}(\mathcal{K}) \\
\Omega_j (x, Y) - \pi_j e_{K+1} e_{K+1}^\top - \sum_{i=1}^{I} [\beta_j]_i \hat{C}_i \in \mathcal{CP}(\mathcal{K}) \quad \forall j \in [J] \\
x \in \mathcal{X}, \ \lambda \in \mathbb{R}, \ Y \in \mathbb{R}^{N \times (K+1)}, \ \pi \in \mathbb{R}^J, \ \alpha \in \mathbb{R}^I, \ \beta_j \in \mathbb{R}^I \quad \forall j \in [J],
\]

where the affine functions \(\Omega_j(x, Y), j \in [J]\), are defined as in (8).

Proof. Using Lemmas 1 and 3, we can reformulate the maximization problem in the objective function of \((\mathcal{L})\) as a copositive minimization problem. To this end, for any fixed decision rule coefficients \(Y \in \mathbb{R}^{N \times (K+1)}\), we consider the maximization problem given by

\[
\sup_{u \in \mathcal{U}} (\hat{D} u)^\top Y u .
\]

By Lemma 1, the problem can be reformulated as a linear program over the cone of completely positive matrices with respect to \(\mathcal{K}\), as follows:

\[
\sup 1/2 \left(\hat{D}^\top Y + Y^\top \hat{D} \right) \bullet U \\
\text{s.t. } e_{K+1} e_{K+1}^\top \bullet U = 1 \\
\hat{C}_i \bullet U = 0 \quad \forall i \in [I] \\
U \in S^{K+1}, \ U \in \mathcal{CP}(\mathcal{K})
\]

Letting \(\lambda\) and \(\alpha\) be the dual variables corresponding to the constraints \(e_{K+1} e_{K+1}^\top \bullet U = 1\) and \(\hat{C}_i \bullet U = 0, i \in [I]\), respectively, the dual problem is written as:

\[
\inf \lambda \\
\text{s.t. } \lambda e_{K+1} e_{K+1}^\top - 1/2 \left(\hat{D}^\top Y + Y^\top \hat{D} \right) + \sum_{i=1}^{I} \alpha_i \hat{C}_i \in \mathcal{CP}(\mathcal{K})
\]

In view of Lemma 3, strong duality holds for the primal and dual pair, i.e., the optimal value of problem (10) coincides with that of problem (12). Replacing the maximization problem in \((\mathcal{L})\) with the minimization problem in (12) yields the objective function and the first constraint in (9).

Next, using standard techniques from robust optimization, we reformulate the semi-infinite constraints in \((\mathcal{L})\) into a finite constraint system. By substituting the definition of problem parameters \(\mathcal{A}(u), \mathcal{B}(u), \text{ and } \mathcal{h}(u)\), and using the definitions in (7), we can simplify the semi-infinite constraints in \((\mathcal{L})\) to the constraints

\[
u^\top \hat{\Theta}_j x + u^\top \hat{\Lambda}_j Y u \geq \hat{h}_j^\top u \quad \forall u \in \mathcal{U} \quad \forall j \in [J],
\]
where $\hat{\Theta}_j$ and $\hat{\Lambda}_j$ are defined as in (7). For any fixed $(x, Y) \in \mathbb{R}^M \times \mathbb{R}^{N \times (K+1)}$, we consider the j-th constraint separately, which can equivalently be stated as
\[
\inf_{u \in U} \left(u^\top \hat{\Theta}_j x + u^\top \hat{\Lambda}_j Y u - \hat{h}_j^\top u \right) \geq 0.
\] (13)

By Lemma 1, the minimization problem on the left-hand side of (13) can be reformulated as the following linear program over the cone of completely positive matrices:
\[
\inf \Omega_j(x, Y) \bullet U_j \\
\text{s.t.} \quad e_{K+1} e_{K+1}^\top \bullet U_j = 1 \\
\quad \hat{C}_i \bullet U_j = 0 \quad \forall i \in [I] \\
\quad U_j \in S^{K+1}, \ U_j \in CP(K).
\] (14)

Letting $\pi_j \in \mathbb{R}$ and $\beta_j \in \mathbb{R}^I$ be the dual variables corresponding to the constraints $e_{K+1} e_{K+1}^\top \bullet U_j = 1$ and $\hat{C}_i \bullet U_j = 0$, $i \in [I]$, respectively, the dual problem is given by
\[
\sup \pi_j \\
\text{s.t.} \quad \Omega_j(x, Y) - \pi_j e_{K+1} e_{K+1}^\top - \sum_{i=1}^I [\beta_j]_i \hat{C}_i \in COP(K) \\
\quad \pi_j \in \mathbb{R}, \ \beta_j \in \mathbb{R}^I.
\] (15)

If the conditions in Assumption 1 hold, then by Lemmas 1 and 3, the optimal value of the left-hand side problem in (13) coincides with that of problem (15). The emerging constraint is satisfied if and only if there exists $\pi_j \geq 0$ and $\beta_j \in \mathbb{R}^I$ such that
\[
\Omega_j(x, Y) - \pi_j e_{K+1} e_{K+1}^\top - \sum_{i=1}^I [\beta_j]_i \hat{C}_i \in COP(K).
\]
Combining the result for all J constraints yields the finite constraint system
\[
\Omega_j(x, Y) - \pi_j e_{K+1} e_{K+1}^\top - \sum_{i=1}^I [\beta_j]_i \hat{C}_i \in COP(K), \ \pi_j \geq 0 \quad \forall j \in [J],
\]
which completes the proof.

2.2 Quadratic decision rules for problems with fixed recourse

We now study two-stage robust optimization problems with fixed recourse. In this simpler setting, the second-stage cost coefficients and the recourse matrix are deterministic, i.e.,
\[
d(u) = \tilde{d} \in \mathbb{R}^N \quad \text{and} \quad B(u) = \tilde{B} \in \mathbb{R}^{J \times N} \quad \forall u \in \mathbb{R}^{K+1}.
\]

Using techniques developed in the previous section, we will derive a copositive programming reformulation by applying decision rules to the recourse action $y : U \to \mathbb{R}^N$. Since $d(u)$ and $B(u)$ are
constant, we may utilize the more powerful quadratic decision rules defined as

\[y(u)_n = u^\top Q_n u \quad \forall n \in [N], \]

for some coefficient matrices \(Q_n \in \mathcal{S}^{K+1}, \ n \in [N] \). This yields the following conservative approximation of problem (1):

\[
Z^Q = \inf \ c^\top x + \sup_{u \in U} \sum_{n=1}^{N} \tilde{d}_n u^\top Q_n u \\
\text{s.t. } u^\top \tilde{\Theta}_j x + \sum_{n=1}^{N} \tilde{b}_{jn} u^\top Q_n u \geq \tilde{h}_j^\top u \quad \forall u \in U \ \forall j \in [J] \\
x \in \mathcal{X}, \ Q_n \in \mathcal{S}^{K+1} \quad \forall n \in [N].
\]

In view of the restriction \(u_{K+1} = 1 \) in the description of \(U \), the decision rule \([y(u)]_n = u^\top Q_n u \) constitutes a homogenized version of a non-homogenized quadratic function in the primitive vector \((u_1, \ldots, u_K)^\top \). We remark that optimizing for the best quadratic decision rule is generically NP-hard \([8, \text{Section 14.3.2}]\). This strongly justifies our proposed copositive programming reformulation, which we derive in the following theorem. To that end, we define the affine functions

\[
\Gamma_j (x, Q_1, \ldots, Q_N) := \frac{1}{2} \left(\tilde{\Theta}_j x e_{K+1}^\top + e_{K+1} x^\top \tilde{\Theta}_j^\top - e_{K+1} \tilde{h}_j^\top - \tilde{h}_j e_{K+1}^\top \right) + \sum_{n=1}^{N} \tilde{b}_{jn} Q_n \quad \forall j \in [J].
\]

Theorem 2. Problem \((Q)\) is equivalent to the copositive program

\[
Z^Q = \min \ c^\top x + \lambda \\
\text{s.t. } \lambda e_{K+1} = \sum_{n=1}^{N} \tilde{d}_n Q_n + \sum_{i=1}^{I} \alpha_i \tilde{C}_i \in \mathcal{COP}(K) \\
\Gamma_j (x, Q_1, \ldots, Q_N) - \pi_j e_{K+1} e_{K+1}^\top - \sum_{i=1}^{I} [\beta_j]_i \tilde{C}_i \in \mathcal{COP}(K) \quad \forall j \in [J] \\
x \in \mathcal{X}, \ \lambda \in \mathbb{R}, \ \alpha \in \mathbb{R}^I, \ \pi \in \mathbb{R}_+^I, \ Q_n \in \mathcal{S}^{K+1} \quad \forall n \in [N], \ \beta_j \in \mathbb{R}_+^I \quad \forall j \in [J],
\]

where the affine functions \(\Gamma_j (x, Q_1, \ldots, Q_N), j \in [J], \) are defined as in (16).

Proof. The proof parallels that of Theorem 1. Using Lemma 1, we reformulate the maximization problem \(\sup_{u \in U} \sum_{n=1}^{N} \tilde{d}_n u^\top Q_n u \) in the objective function of \((Q)\) into a copositive minimization problem given by

\[
\inf \ \lambda \\
\text{s.t. } \lambda e_{K+1} = \sum_{n=1}^{N} \tilde{d}_n Q_n - \sum_{i=1}^{I} \alpha_i \tilde{C}_i \in \mathcal{COP}(K) \\
\lambda \in \mathbb{R}, \ \alpha \in \mathbb{R}^I.
\]

Then, replacing the maximization problem in \((Q)\) with the above minimization problem yields the objective function and the first constraint in (17).
Next, we can reformulate the constraint
\[u^\top \hat{\Theta}_j x + \sum_{n=1}^N \hat{h}_{jn} u^\top Q_n u \geq \hat{h}_j^\top u \quad \forall u \in U \]
corresponding to the \(j \)-th semi-infinite constraint in \((Q)\) into the equivalent constraints
\[\Gamma_j (x, Q_1, \ldots, Q_N) - \pi_j e_{K+1} - \sum_{i=1}^I [\beta_j]_i \bar{C}_i \in CO\mathcal{P}(K), \ \pi_j \geq 0. \]
Combining this result for all \(J \) semi-infinite constraints yields the second constraint system in (17).
This completes the proof.

3 Semidefinite programming solution schemes

Our equivalence results indicate that the decision rule problems are amenable to semidefinite programming solution schemes. Specifically, there exists a hierarchy of increasingly tight semidefinite-representable inner approximations that converge to \(CO\mathcal{P}(K) \) [25, 34, 52, 55]. Replacing the cone \(CO\mathcal{P}(K) \) with these inner approximations gives rise to conservative semidefinite programs that can be solved using standard off-the-shelf solvers. In this section, we develop new tractable approximations and exact semidefinite reformulations for the copositive programs derived in Section 2. To this end, we primarily consider polyhedral- and second-order cone-representable uncertainty sets defined via closed and convex cones of the following generic form:
\[K := \left\{ u \in \mathbb{R}^{K_1} \times \mathbb{R}^+ : \hat{P} u \geq 0, \ \hat{R} u \in \text{SOC}(K_r) \right\}, \]
with \(\hat{P} \in \mathbb{R}^{K_p \times (K+1)} \) and \(\hat{R} \in \mathbb{R}^{K_r \times (K+1)} \). As illustrated in the examples of Section 2, the above generic structure for the cone \(K \) can encompass many commonly used uncertainty sets in practice.

3.1 Conservative approximations

We consider a semidefinite-representable approximation to the cone \(CO\mathcal{P}(K) \) given by
\[\mathcal{I}^A(K) := \left\{ \begin{array}{l} W \in S^{K+1}, \ W \succeq 0, \ \Sigma \in S^{K_1} \\
\Psi \in S^{K+1}, \ \Phi \in \mathbb{R}^{K_p \times K_r}, \ \tau \in \mathbb{R} \\
V = W + \tau \hat{S} + \hat{P}^\top \Sigma \hat{P} + \Psi, \ \Sigma \succeq 0, \ \tau \geq 0 \\
\Psi = \frac{1}{2} (\hat{P}^\top \Phi \hat{R} + \hat{R}^\top \Phi^\top \hat{P}), \ \text{Rows}(\Phi) \in \text{SOC}(K_r) \end{array} \right\}, \]
where the matrix \(\hat{S} \) is defined as
\[\hat{S} := \hat{R}^\top e_{K_1} e_{K_1}^\top - \sum_{\ell=1}^{K_r-1} \hat{R}^\top e_{\ell} e_{\ell}^\top \hat{R}. \]
We now establish that $\mathcal{I}A(\mathcal{K})$ is a subset of $\mathcal{COP}(\mathcal{K})$.\footnote{Hence, we use the abbreviation “$\mathcal{I}A$” which stands for “Inner Approximation.”} To this end, we make the following observation.

Lemma 4. We have $\mathbf{u}^\top \hat{S} \mathbf{u} \geq 0$ for all $\mathbf{u} \in \mathcal{K}$.

Proof. See the Appendix.

Using Lemma 4, we are now ready to prove the containment result.

Proposition 1. We have $\mathcal{I}A(\hat{\mathcal{U}}) \subseteq \mathcal{COP}(\hat{\mathcal{U}})$.

Proof. See the Appendix.

Replacing the cone $\mathcal{COP}(\mathcal{K})$ in (9) and (17) with the inner approximation $\mathcal{I}A(\mathcal{K})$ gives rise to conservative semidefinite programs. We denote their optimal values as $Z_{\mathcal{I}A}^C$ and $Z_{\mathcal{I}A}^Q$, respectively.

The following proposition summarizes our current findings.

Proposition 2. We have $Z^C \leq Z_{\mathcal{I}A}^C$ and $Z^Q \leq Z_{\mathcal{I}A}^Q$.

An alternative conservative approximation scheme is proposed by Ben-Tal et al. in view of the approximate S-lemma [8, Theorem B.3.1]. In this case, the corresponding inner approximation for the cone $\mathcal{COP}(\mathcal{K})$ is given by

$$\mathcal{A}S(\mathcal{K}) := \left\{ V \in \mathcal{S}^{K+1} : \begin{array}{l} \tau \geq 0, \ \theta \in \mathbb{R}^{K_\tau}, \ W \in \mathcal{S}^{K+1}, \ W \succeq 0 \\ V = W + \tau \hat{S} + \frac{1}{2} \left(\hat{P} \theta e_{K+1} \theta^\top + e_{K+1} \theta^\top \hat{P} \right) \end{array} \right\},$$

(21)

where \hat{S} is defined as in (20). Replacing the cone $\mathcal{COP}(\mathcal{K})$ in (9) and (17) with $\mathcal{A}S(\mathcal{K})$ yields conservative semidefinite programs whose optimal values are denoted as $Z_{\mathcal{A}S}^C$ and $Z_{\mathcal{A}S}^Q$, respectively. We now show that $\mathcal{A}S(\mathcal{K})$ is inferior to $\mathcal{I}A(\mathcal{K})$ for approximating $\mathcal{COP}(\mathcal{K})$.

Proposition 3. We have $\mathcal{A}S(\mathcal{K}) \not\subseteq \mathcal{I}A(\mathcal{K})$.

Proof. The inclusion follows by simply setting $\Sigma = \frac{1}{2} (\theta e_{K+1} \theta^\top + e_{K+1} \theta^\top)$ and $\Psi = \mathbf{0}$ in $\mathcal{I}A(\mathcal{K})$.

Lastly, another conservative approximation scheme naturally arises in polynomial decision rules [22]. Here, one first imposes the restriction that the recourse function $y(\cdot)$ in (1) is a polynomial of fixed degree d. Since optimizing for the best polynomial decision rule is generically NP-hard, one resorts to another layer of approximation in semidefinite programming. To this end, consider a degree d polynomial decision rule. For problems with non-fixed recourse we find that each semi-infinite constraint in (1) reduces to the problem of checking the non-negativity of a polynomial of degree $\hat{d} = d + 1$ over the set \mathcal{U}, while for problems with fixed recourse it reduces to the problem of checking the non-negativity a polynomial of degree $\hat{d} = d$ over the set \mathcal{U}. A sufficient condition would be if the polynomial admits a sum-of-squares (SOS) decomposition relative to \mathcal{U}, which is equivalent to checking the feasibility of a semidefinite-representable constraint system whose size...
grows exponentially in \(d \). We refer the reader to [22] for a more detailed discussion about the SOS decomposition and its parametrization. When the corresponding polynomial in the semi-infinite constraint is of degree \(\hat{d} = 2 \), then one can show the resulting constraint system coincides with that from the approximate S-lemma. To this end, let \(Z^P_{\text{SOS}} \) be the optimal value of the approximation when polynomial decision rules of degree \(d \) are employed. Then, we have \(Z^P_{\text{SOS}} = Z^C_{\text{IA}} \) and \(Z^P_{\text{SOS}} = Z^Q_{\text{IA}} \). Increasing the degree of the polynomial decision rules helps improve approximation quality at the expense of significant computational burden and numerical instability, even if we merely raise the degree by 1 (that is, when we employ quadratic decision rules for problems with non-fixed recourse or cubic decision rules for problems with fixed recourse).

The findings of this section culminate in the following theorem.

Theorem 3. The following chains of inequalities hold:

\[
Z^C \leq Z^C_{\text{IA}} \leq Z^C_{\text{AS}} = Z^P_{\text{SOS}} \quad \text{and} \quad Z^Q \leq Z^Q_{\text{IA}} \leq Z^Q_{\text{AS}} = Z^P_{\text{SOS}}.
\]

3.2 Exact reformulations

We identify two cases where the semidefinite-based approximations are equivalent to the respective copositive programs. Firstly, in view the exact S-lemma, one can show that the inner approximation \(\mathcal{L}A(K) \) coincides with \(\mathcal{COP}(K) \) whenever the cone \(K \) in (18) is described by only a second-order cone constraint \(\hat{R}u \in \mathcal{SOC}(K_p) \).

Proposition 4 (S-Lemma). If \(K = \{u \in \mathbb{R}^{K+1} : \hat{R}u \in \mathcal{SOC}(K_p) \} \) then

\[
\mathcal{COP}(K) = \mathcal{L}A(K) = \mathcal{AS}(K) := \{V \in \mathbb{S}^{K+1} : V \succeq \tau \hat{S}, \tau \geq 0\},
\]

where \(\hat{S} \in \mathbb{S}^{K+1} \) is defined as in (20).

Another exactness result arises when linear constraints are present in \(K \) and they satisfy the following condition:

Assumption 3. If \(u \in \mathbb{R}^{K+1} \) satisfies \(\hat{R}u \in \mathcal{SOC}(K_p) \) and \(\hat{p}_\ell^\top u = 0 \) for some \(\ell \in [K_p] \), then \(u \in K \).

The condition stipulates that the cone \(\{u \in \mathbb{R}^{K+1} : \hat{R}u \in \mathcal{SOC}(K_p) \} \) must not contain points in the hyperplane \(\hat{p}_\ell^\top u = 0 \) that do not not belong to \(K \). Applying the restriction \(u_{K+1} = 1 \), we find that the implied uncertainty set for the primitive vector \((u_1, \ldots, u_K)^\top\) is given by an intersection of a ball and a polytope whose facets do not intersect within the ball.

Example 4. Consider the set

\[
U := \left\{ u \in \mathbb{R}^2 \times \{1\} : u_1^2 + u_2^2 \leq 1, \ u_1 \geq -\frac{1}{2}, \ u_1 \leq \frac{1}{2} \right\}.
\]

The two lines \(u_1 = -\frac{1}{2} \) and \(u_1 = \frac{1}{2} \) do not intersect as they are parallel. Thus, Assumption 3 holds for this uncertainty set.
We state the second exactness result in the following proposition.

Proposition 5 (Theorem 5 in [27]). If Assumption 3 holds then $\text{COP}(K) = \mathcal{I}A(K)$.

We remark that this positive result holds only for the proposed inner approximation $\mathcal{I}A(K)$, and not for the cone $\mathcal{AS}(K)$ which is obtained from applying the approximate S-lemma. Thus, in general we may still have $\mathcal{AS}(K) \subseteq \text{COP}(K)$.

We conclude the section with the following theorem regarding the exactness of the semidefinite programs.

Theorem 4. If the cone K is given by $\{u \in \mathbb{R}^{K+1} : \tilde{R}u \in \text{SOC}(K_p)\}$ or if it satisfies Assumption 3 then $Z_{IA}^L = Z^L$ and $Z_{IA}^Q = Z^Q$.

4 Enhanced decision rule approximations

In this section, we tighten the decision rule approximations by employing piecewise linear and piecewise quadratic decision rules. While piecewise quadratic decision rules are new concept, piecewise linear decision rules have been studied extensively in the literature [32, 40]. Their utilization is supported by a strong theoretical justification: For problems with fixed recourse, the optimal recourse action $y(\cdot)$ can be described by a piecewise linear continuous function [7]. However, optimizing for the best piecewise linear decision rule is NP-hard even if the folding directions and their respective breakpoints are prescribed a priori [40, Theorem 4.2]. As such, one has to rely on another layer of tractable conservative approximation. Unfortunately, the state-of-the-art schemes are futile even in the simplest robust optimization settings (see Example 6 below). Here, we endeavor to derive tighter approximations in view of copositive programming.

To this end, for a prescribed number of pieces L, we define the mappings

$$F_\ell(u) = \max\{0, f_\ell^T u\} \quad \forall u \in \mathbb{R}^{K+1} \forall \ell \in [L].$$

(22)

Here, $f_\ell := (g_\ell, -h_\ell) \in \mathbb{R}^{K+1}$, where $g_\ell \in \mathbb{R}^K$ denotes the folding direction of the ℓ-th mapping, while h_ℓ defines its breakpoint. These mappings constitute the building blocks of our improved decision rules. Specifically, by applying the basic linear and quadratic decision rules on the lifted uncertain parameter vector $v := (F_1(u), \ldots, F_L(u), u) \in \mathbb{R}^{L+K+1}$, we arrive at the desired piecewise linear and piecewise quadratic decision rules, respectively.

Example 5 (Integer Programming Feasibility Problem). Consider a norm maximization problem given by $\max_{u \in U} ||u||_1$, where $U = \{u \in \mathbb{R}^K : Pu \leq q\} \subseteq [-1, 1]^K$ is a prescribed polytope. An elementary analysis shows that the optimal value of this problem is equal to K if and only if there exists a binary vector $u \in \{-1, 1\}^K$ within the polytope U. Thus, it solves the NP-hard Integer Programming (IP) feasibility problem [37]. We can reformulate the norm maximization problem as
A two-stage robust optimization problem, without a first-stage decision x, given by

$$\inf \sup_{u \in U} e^\top y(u)$$

subject to

$$y(u) \geq u, \ y(u) \geq -u \ \forall u \in U$$

$$y \in \mathcal{F}_K, K.$$

Indeed, at optimality we have $[y(u)]_k = |u_k|$, which implies that $e^\top y(u) = \|u\|_1$. Consider now the mappings

$$F_\ell(u) = \max\{0, u_\ell\} \ \forall u \in \mathbb{R}^K \ \forall \ell \in [K].$$

Our previous argument shows that the piecewise linear decision rule given by

$$[y(u)]_\ell = -u_\ell + 2F_\ell(u) = -u_\ell + \max\{0, 2u_\ell\} = |u_\ell| \ \forall \ell \in [K]$$

is optimal. This decision rule is linear in the lifted parameter vector $(F_1(u), \ldots, F_K(u), u)$.

To formalize the idea into our setting, we define the lifted set

$$U' := \{v := (w, u) \in \mathbb{R}^L \times U : w_\ell = F_\ell(u) \ \forall \ell \in [L]\},$$

and the lifted parameters

$$\mathcal{A}'(v) = \mathcal{A}(u), \ \mathcal{B}'(v) = \mathcal{B}(u), \ \mathcal{d}'(v) = \mathcal{d}(u), \ \mathcal{h}'(v) = \mathcal{h}(u),$$

$$\hat{\Theta}'_j = \begin{pmatrix} 0^\top, \hat{\Theta}'_j^\top \end{pmatrix}^\top \in \mathbb{R}^{(L+K+1) \times M} \ \forall j \in [J].$$

Then, by replacing the set U with U' and employing the above lifted parameters in (L) and (Q), we obtain the corresponding piecewise decision rule problems. These are given by

$$Z^{PL} = \inf \ \mathcal{A}'(v) x + sup_{v \in U'} \mathcal{d}'(v)\mathcal{Y}v$$

subject to

$$\mathcal{A}'(v) x + \mathcal{B}'(v) \mathcal{Y}v \geq \mathcal{h}'(v) \ \forall v \in U'$$

$$x \in \mathcal{X}, \ \mathcal{Y} \in \mathbb{R}^{N \times (L+K+1)}$$

and

$$Z^{PQ} = \inf \ \mathcal{A}'(v) x + sup_{u \in U'} \sum_{n=1}^N \hat{d}_n v^\top Q_n v$$

subject to

$$v^\top \hat{\Theta}'_j x + \sum_{n=1}^N \hat{b}_{jn} v^\top Q_n v \geq [\mathcal{h}'(v)]_n \ \forall v \in U' \ \forall j \in [J]$$

$$x \in \mathcal{X}, \ Q_n \in S^{L+K+1} \ \forall n \in [N],$$

respectively.
4.1 Copositive programming reformulations

In this section, we establish that the piecewise decision rule problems can be equivalently reformulated as polynomial size copositive programs. The reformulations leverage our capability to incorporate complementary constraints in the uncertainty set U. We remark that the problems (PL) and (PQ) share the same structure as their plain vanilla counterparts (L) and (Q). To establish that equivalent copositive programs can also be derived for these problems, we need to show that the set U' can be brought into the standard form (2). First, we prove that the non-convex set U' is equivalent to a concise set involving $O(L)$ linear and complementary constraints.

Theorem 5. The lifted uncertainty set in (23) can be represented as the set

$$U' = \left\{ (w, u) \in \mathbb{R}^L \times U' : \begin{array}{l} 0 \leq w \leq \bar{w} \\
 w_\ell \geq f_\ell^T u \quad \forall \ell \in [L] \\
 w_\ell (w_\ell - f_\ell^T u) = 0 \quad \forall \ell \in [L] \end{array} \right\},$$

where $\bar{w} \in \mathbb{R}^L$ is a vector whose components are upper bounds on the auxiliary parameters w_1, \ldots, w_L. These upper bounds can be computed efficiently by solving L linear optimization problems given by

$$\bar{w}_\ell := \max_{u \in U^0} f_\ell^T u \quad \forall \ell \in [L],$$

where U^0 is defined as in (3).

Proof. For any fixed $u \in U$ and $\ell \in [L]$, the complementary constraint $w_\ell (w_\ell - f_\ell^T u) = 0$ implies that either $w_\ell = 0$ or $w_\ell = f_\ell^T u$. Thus, the constraints $w_\ell \geq 0$ and $w_\ell \geq f_\ell^T u$ yield $w_\ell = \max\{0, f_\ell^T u\}$. This completes the proof. \square

Next, in view of the equivalent set in (24), we define the lifted cone

$$K' := \left\{ (w, u) \in \mathbb{R}^L \times U : \begin{array}{l} 0 \leq w \leq \bar{w} u_{K+1} \\
 w_\ell \geq f_\ell^T u \quad \forall \ell \in [L] \end{array} \right\}.$$

Letting the matrices \hat{C}_ℓ, $\ell \in [L]$, be defined as

$$\hat{C}_\ell = (e_\ell^T, 0^T)^T (e_\ell^T, 0^T) - \frac{1}{2} (e_\ell^T, 0^T)^T (0^T, f_\ell^T) - \frac{1}{2} (0^T, f_\ell^T)^T (e_\ell^T, 0^T) \quad \forall \ell \in [L],$$

we can capture the complementarity constraints in U' via the quadratic equalities $v^T \hat{C}_\ell v = 0$, $\ell \in [L]$. Thus, the lifted set coincides with the set

$$U' := \left\{ v := (w, u) \in K' : u_{K+1} = 1, \quad v^T \hat{C}_\ell v = 0 \quad \forall \ell \in [L] \right\},$$

which indeed assumes the standard form in (2). In summary, we have established that equivalent copositive programs can be derived for the proposed piecewise linear and piecewise quadratic decision rule problems. As described in Section 3, tractable semidefinite programming approximations
can then be obtained by replacing the cone $\mathcal{COP}(\mathcal{K}')$ in the respective copositive programs with the inner approximation $\mathcal{IA}(\mathcal{K}')$.

4.2 Quality of semidefinite programming approximations

We now restrict our study to the case of two-stage robust optimization problems with fixed recourse and with piecewise linear decision rules. In this setting, linear programming approximations have been proposed for the decision rule problems [32, 40]. If in addition the uncertainty set \mathcal{U} is given by a hyperrectangle and each folding direction g_ℓ is aligned with a coordinate axis, then these linear programs become exact [40]. Unfortunately, for generic uncertainty sets the resulting approximation can sometimes be of poor quality.

Example 6 (Partition Problem). Consider the following instance of IP feasibility problem (Example 5), which corresponds to the NP-hard partition problem. Given an input vector $c \in \mathbb{N}^K$, the problem asks if one can partition the components of c into two sets so that both sets have an equal sum. We can reduce this problem to the instance of IP Feasibility problem that seeks for a binary vector $u \in \{-1, 1\}^K$ within the polytope $\mathcal{U} = \{u \in [-1, 1]^K : c^T u = 0\}$. If a partition exists then the components of u will denote the indicator function of the two sets. For example, if $c = (1, 2, 3)^T$ then the possible solutions are $u = (1, 1, -1)^T$ or $u = (-1, -1, 1)^T$. On the other hand, if $c = (2, 2, 3)^T$, then no such solution exists and necessarily the optimal value of the corresponding norm maximization problem is strictly less than $K = 3$. In particular, one can show that the optimal value is 2.5, which is attained by the solution $u = (0.5, 1, 1)^T$.

For the input $c = (2, 2, 3)^T$, the best piecewise linear decision rule approximation in the literature yields a conservative upper bound of 3, which fails to certify the non-existence of binary solutions. On the other hand, the semidefinite programming approximation of the equivalent copositive program yields a tighter upper bound of 2.54, and thus provides a correct certificate. As the corresponding two-stage problem has fixed recourse, our scheme allows to utilize quadratic decision rules. In this case, the resulting semidefinite program yields the best optimal value of 2.5.

The above example highlights the surprising fact that, even for seemingly trivial low-dimensional problem instances, one necessarily has to go through the copositive programming route in order to obtain a satisfactory approximation for the piecewise decision rule problem.

We now formally establish that the semidefinite programming approximation obtained from applying piecewise linear decision rules is never inferior to the state-of-the-art scheme by Georghiou et al. [40]. In the following, we briefly discuss their setting and formulate the corresponding lifted uncertainty set \mathcal{U}'. For a cleaner exposition, we primarily consider the setting of piecewise linear decision rules with axial segmentation where each folding direction is aligned with a coordinate axis. We remark that all results extend to the case with general segmentation, albeit at the expense of more cumbersome notation (see Section 4.2 of [40]). To this end, let the interval $[u_k, \bar{u}_k]$ be the marginal support of the k-th uncertain parameter. For each coordinate axis u_k, we generate L piecewise linear mappings in view of prescribed breakpoints $h_{k,1} = u_k < h_{k,2} < \ldots < h_{k,L} < \bar{u}_k$, as
follows:
\[\tilde{F}_{k,l}(u) = \max\{0, u_k - h_{k,l}\} - \max\{0, u_k - h_{k,l+1}\} \quad \forall \ell \in [L]. \] (25)

To simplify the notation, we assume that there are exactly \(L \) mappings for each coordinate axis. Such a construction gives rise to the lifted uncertainty set
\[\mathcal{U}' := \left\{ (w, u) \in \mathbb{R}^{KL} \times \mathcal{U} : w_{k,l} = \tilde{F}_{k,l}(u) \quad \forall \ k \in [K] \ \ell \in [L] \right\}. \] (26)

Note that each mapping in (25) can be defined through the difference \(\tilde{F}_{k,l}(u) = F_{k,l}(u) - F_{k,l+1}(u) \), where the functions \(F_{k,l}(u) = \max\{0, f^\top_{k,l} u\} \), \(\ell \in [L] \), assume the standard form described in (22), with \(f_{k,l} = (e_k, -h_{k,l}) \), \(\ell \in [L] \). By our construction of \(\mathcal{U} \), we can further impose that \(F_{k,1}(u) = u_k - u_k \) and \(F_{k,L+1}(u) = 0 \).

Using Proposition 5, the lifted set in (26) can be reformulated as
\[\mathcal{U}' = \left\{ (w, u) \in \mathbb{R}^{KL} \times \mathcal{U} : \begin{array}{l}
z \in \mathbb{R}^{K(L+1)}_+ \\
w_{k,l} = z_{k,l} - z_{k,l+1} \quad \forall k \in [K] \ \ell \in [L] \\
z_{k,1} = u_k - u_k, z_{k,L+1} = 0 \quad \forall k \in [K] \\
z_{k,l} \geq u_k - h_{k,l}, \ \overline{u}_k \geq z_{k,l} \quad \forall k \in [K] \ \ell \in [L+1] \\
z_{k,l}(z_{k,l} - u_k + h_{k,l}) = 0 \quad \forall k \in [K] \ \ell \in [L+1] \end{array} \right\}. \] (27)

In view of our discussion in Section 4.1, an equivalent copositive program can thus be derived for the piecewise linear decision rule problem \((PL)\). We denote by \(Z_{PL}^{IA} \) the optimal value of the corresponding semidefinite programming approximation. Alternatively, in [40], a tractable outer approximation of \(\mathcal{U}' \) is derived as follows:
\[\mathcal{U}^{**} = \left\{ (w, u) \in \mathbb{R}^{KL} \times \mathcal{U} : \begin{array}{l}u_k - u_k = \sum_{\ell \in [L]} w_{k,\ell} \quad \forall k \in [K] \\
h_{k,2} - u_k \geq w_{k,1} \quad \forall k \in [K] \\
(h_{k,\ell+1} - h_{k,\ell})w_{k,\ell-1} \geq (h_{k,\ell} - h_{k,\ell-1})w_{k,\ell} \quad \forall k \in [K] \ \ell \in [L] \setminus \{1\} \end{array} \right\}. \] (28)

By replacing the set \(\mathcal{U} \) with \(\mathcal{U}^{**} \) in \((PL)\), we may obtain a tractable linear programming reformulation if the two-stage problem has fixed recourse. Let \(Z_{GWK}^{PL} \) be its optimal value.

Theorem 6. We have \(Z_{PL}^{IA} \leq Z_{GWK}^{PL} \).

The proof of Theorem 6 imparts the favorable insight that a tighter approximation can already be obtained by considering a concise set involving \(O(KL) \) semidefinite constraints of size \(3 \times 3 \), as
Here, we have appended the constant scalar 1 at the end of the vector so that affine functions in (29) to can be formulated compactly in a homogenized manner. We set the vector of all uncertain parameters in (29) to collects the history of observations up to time \(t \). Following:

\[
U^* = \{ (w, u) \in \mathbb{R}^{KL} \times \mathcal{U} : z \in \mathbb{R}_{+}^{K(L+1)} \}
\]

Corollary 1. We have \(\mathcal{U} \subseteq \mathcal{U}^* \subseteq \mathcal{U}^{**} \).

To summarize, by replacing the set \(\mathcal{U} \) with \(\mathcal{U}^* \) in (\(\mathcal{P}\mathcal{L} \)) and applying the standard conic duality to all semi-infinite constraints, we will arrive at a scalable semidefinite program that generates a tighter conservative approximation to the piecewise decision rule problem.

5 Multi-stage robust optimization problems

We now extend the proposed copositive programming approach to multi-stage robust optimization problems of the following generic form:

\[
\begin{align*}
\inf & \quad c^T x + \sup_{u \in \mathcal{U}} \sum_{t=1}^{T} d_t(u^t)^T y_t(u^t) \\
\text{s.t.} & \quad \mathcal{A}(u^t)x + \sum_{t=1}^{T} \mathcal{B}_t(u^t)y_t(u^t) \geq h(u) \quad \forall u \in \mathcal{U} \\
& \quad x \in \mathcal{X}, \; y_t \in \mathcal{F}_{K^t+1, N}, \forall t \in [T].
\end{align*}
\]

The vector \(u^t \) in (29) collects the history of observations up to time \(t \), and is defined as

\[
u^t = (u_1, \ldots, u_t, 1) \in \mathbb{R}^{K+1},
\]

where \(u_t \in \mathbb{R}^{K_t} \) contains uncertain parameters observed at time \(t \in [T] \), and \(K_t := \sum_{s=1}^{t} K_s \). Here, we have appended the constant scalar 1 at the end of the vector so that affine functions in \((u_1, \ldots, u_t) \) can be represented as linear functions in \(u^t \), while quadratic functions in \((u_1, \ldots, u_t) \) can be formulated compactly in a homogenized manner. We set the vector of all uncertain parameters in (29) to \(u := u^T \in \mathbb{R}^{K+1} \), with \(K = K_T \). As in the two-stage setting, the problem parameters \(\mathcal{A}(u^t), \mathcal{B}_t(u^t), d_t(u^t) \) and \(h(u) \) are described by linear functions in their respective
arguments, as follows,
\[
\mathcal{A}(u^t) := \sum_{k=1}^{K^t+1} [u^t]_k \hat{A}_k, \quad \mathcal{B}_t(u^t) := \sum_{k=1}^{K^t+1} [u^t]_k \hat{B}_{k,t}, \quad d_t(u^t) := \hat{D}_t u^t, \quad h(u) := \hat{H} u,
\]
where \(\hat{A}_k \in \mathbb{R}^{J \times M}, \hat{B}_{k,t} \in \mathbb{R}^{J \times N_t}, \hat{D}_t := (\hat{d}_{1,t}, \ldots, \hat{d}_{N_t,t})^\top \in \mathbb{R}^{N_t \times (K^t+1)}, \) and \(\hat{H} := (\hat{h}_1, \ldots, \hat{h}_J)^\top \in \mathbb{R}^{J \times (K+1)}\) are deterministic data.

The decision vector \(y_t(u^t) \in \mathbb{R}^{N_t}\) in (29) is chosen after the realization of uncertain parameters up to time \(t\) but before the revelation of future outcomes \(\{u_s\}_{s \in [t+1,T]}\). The objective of problem (29) is to find a here-and-now decision \(x \in \mathcal{X}\) and a sequence of nonanticipative decision rules \(\{y_t(\cdot)\}_{t \in [T]}\) that are feasible to the semi-infinite constraint in (29) and minimize the total cost \(c^\top x + \sup_{u \in \mathcal{U}} \sum_{t=1}^{T} d_t(u^t)^\top y_t(u^t)\). Problem (29) constitutes an extension of the two-stage problem (1) to the multi-stage setting, and as such is computationally challenging to solve. To this end, we endeavor to derive copositive programming reformulations in view of linear and quadratic decision rules. Tractable semidefinite programming approximations can then be derived using the techniques discussed in Section 3. One can further enhance these approximations by utilizing piecewise linear and piecewise quadratic decision rules discussed in Section 4.

As in the two-stage setting, we assume that the uncertainty set \(\mathcal{U}\) is defined as in (2) and satisfies both Assumptions 1 and 2. In the following, we use the linear truncation operator \(\Pi_t : \mathbb{R}^{K+1} \mapsto \mathbb{R}^{K^t+1}\) that satisfies
\[
\Pi_t u = u^t \quad \forall u \in \mathbb{R}^{K+1}.
\]
We first examine the case when the multi-stage robust optimization problem has non-fixed recourse. Here, we apply the linear decision rules
\[
y_t(u^t) = Y_t u^t = Y_t \Pi_t u,
\]
for some coefficient matrix \(Y_t \in \mathbb{R}^{N_t \times (K^t+1)}\). This gives rise to the following conservative approximation of problem (29):
\[
Z_{ML} = \inf \quad c^\top x + \sup_{u \in \mathcal{U}} \sum_{t=1}^{T} d_t(u^t)^\top Y_t \Pi_t u \\
\text{s.t.} \quad \mathcal{A}(u^t)x + \sum_{t=1}^{T} \mathcal{B}_t(u^t)Y_t \Pi_t u \geq h(u) \quad \forall u \in \mathcal{U} \\
\quad \quad \quad \quad \quad \quad \quad x \in \mathcal{X}, \quad Y_t \in \mathbb{R}^{N_t \times (K^t+1)} \forall t \in [T]. \quad (ML)
\]
Problem \((ML)\) shares the same structure as its two stage counterpart \((L)\). Hence, by employing the same reformulation techniques described in Section 2.1, we can derive a polynomial size copositive
program for the problem. For notational convenience, in the following we define the matrices

\[\tilde{\Theta}_j := \begin{pmatrix} e_j^\top \hat{A}_1 \\ \vdots \\ e_j^\top \hat{A}_{K^t+1} \end{pmatrix} \in \mathbb{R}^{(K^t+1) \times M}, \quad \tilde{A}_{j,t} := \begin{pmatrix} e_j^\top \hat{B}_{1,t} \\ \vdots \\ e_j^\top \hat{B}_{K^t+1,t} \end{pmatrix} \in \mathbb{R}^{(K^t+1) \times N_t} \quad \forall t \in [T] \forall j \in [J], \]

and the affine functions

\[\Omega_j (x, Y_1, \ldots, Y_T) := \frac{1}{2} \Pi_1^\top (\hat{\Theta}_j x e_{K^t+1}^\top + e_{K^t+1} x^\top \hat{\Theta}_j^\top) \Pi_1 \\ + \frac{1}{2} \sum_{t=1}^T \Pi_t^\top (\hat{A}_{j,t}^\top Y_t + Y_t^\top \hat{A}_{j,t}) \Pi_t - \frac{1}{2} (\hat{h}_j e_{K^t+1} + e_{K^t+1} \hat{h}_j^\top) \quad \forall j \in [J]. \]

The equivalent reformulation is provided in the following theorem. We omit the proof as it closely follows that of Theorem 1.

Theorem 7. Problem \((\mathcal{ML})\) is equivalent to the following copositive program:

\[
\begin{align*}
Z^{\mathcal{ML}} = & \quad \inf \quad c^\top x + \lambda \\
s.t. \quad & \lambda e_{K^t+1} e_{K^t+1}^\top - \frac{1}{2} \sum_{t=1}^T \Pi_t^\top \left(\hat{D}_t^\top Y_t + Y_t^\top \hat{D}_t \right) \Pi_t + \sum_{i=1}^I \alpha_i \hat{C}_i \in \text{COP}(K) \\
& \Omega_j (x, Y_1, \ldots, Y_T) - \pi_j e_{K^t+1} e_{K^t+1}^\top - \sum_{i=1}^I e_i^\top \beta_j \hat{C}_i \in \text{COP}(K) \quad \forall j \in [J] \\
& \lambda \in \mathbb{R}, \ x \in \mathcal{X}, \ \alpha \in \mathbb{R}^I, \ \pi \in \mathbb{R}^J, \ \beta_j \in \mathbb{R}^J \forall j \in [J], \ Y_t \in \mathbb{R}^{N_t \times (K^t+1)} \forall t \in [T]. \tag{30}
\end{align*}
\]

Next, we consider the case when the multi-stage problem has fixed recourse, i.e.,

\[
d_t(u^t) = \hat{d}_t \quad \text{and} \quad B_t(u^t) = \hat{B}_t \quad \forall u^t \in \mathbb{R}^{K^t+1} \forall t \in [T],
\]

where \(\hat{d}_t \in \mathbb{R}^{N_t}\) and \(\hat{B} \in \mathbb{R}^{J \times N_t}\) are deterministic vector and matrix, respectively. Here, we can apply the quadratic decision rules

\[
[y(u^t)]_{n_t} = (u^t)^\top Q_{n_t,t} u^t = (\Pi_t^\top u)^\top Q_{n_t,t} \Pi_t^\top u \quad \forall n_t \in [N_t],
\]

for some coefficient matrices \(Q_{n_t,t} \in \mathcal{S}^{K^t+1, n_t \in [N_t], t \in [T]}\). This yields the following conservative approximation of problem (29):

\[
\begin{align*}
Z^{\mathcal{MQ}} = & \quad \inf \quad c^\top x + \sup_{u \in \mathcal{U}} \sum_{t=1}^T \sum_{n_t=1}^{N_t} \hat{d}_{n_t,t} (\Pi_t^\top u)^\top Q_{n_t,t} \Pi_t^\top u \\
s.t. \quad & (\Pi_1^\top \hat{\Theta}_j x + \sum_{t=1}^T \sum_{n_t=1}^{N_t} \left(b_{j,n_t} (\Pi_t^\top u)^\top Q_{n_t,t} \Pi_t^\top u \right) \geq h(u) \quad \forall u \in \mathcal{U} \quad (\mathcal{MQ}) \\
& x \in \mathcal{X}, \ Q_{n_t,t} \in \mathcal{S}^{K^t+1} \forall t \in [T] \forall n_t \in [N_t].
\end{align*}
\]

Problem \((\mathcal{MQ})\) shares the same structure as its two-stage counterpart \((\mathcal{Q})\), which indicates that it is also amenable to an equivalent copositive programming reformulation. To this end, we define
the affine functions

\[
\Gamma_j(x, Q_{1,1}, \ldots, Q_{N,T}) := \frac{1}{2} \Pi_1^T (\hat{\Theta}_j x e_{K^j+1}^T + e_{K^j+1} x^T \hat{\Theta}_j) \Pi_1 \\
- \frac{1}{2} (e_{K^j} \hat{h}_j - \hat{h}_j e_{K^j+1}) + \sum_{t=1}^{T} \sum_{n_t=1}^{N_t} \hat{b}_{j,n_t} \Pi_t^T Q_{n_t,t} \Pi_t \quad \forall j \in [J].
\]

The equivalent reformulation is provided in the following theorem whose proof is omitted as it closely follows that of Theorem 2.

Theorem 8. Problem (MQ) is equivalent to the following copositive program:

\[
Z^{MQ} = \min \ c^T x + \lambda \\
\text{s.t.} \quad \lambda e_{K+1} e_{K+1}^T - \sum_{t=1}^{T} \sum_{n_t=1}^{N_t} [\tilde{d}_{n_t,t} \Pi_t^T Q_{n_t,t} \Pi_t] + \sum_{i=1}^{I} \alpha_i \tilde{C}_i \in \mathcal{COP}(K) \\
\Gamma_j(x, Q_{1,1}, \ldots, Q_{N,T}) - \pi_j e_{K^j+1} e_{K^j+1}^T - \sum_{i=1}^{I} [e_i^T \beta_j \tilde{C}_i \in \mathcal{COP}(K) \quad \forall j \in [J] \\
\lambda \in \mathbb{R}, \ x \in \mathcal{X}, \ \alpha \in \mathbb{R}^I, \ \pi \in \mathbb{R}_+^J, \ \beta_j \in \mathbb{R}^I \quad \forall j \in [J] \\
Q_{n_t,t} \in \mathcal{S}^{K^t+1} \quad \forall t \in [T] \forall n_t \in [N_t]
\]

Remark 1. In some multi-stage robust optimization problems, we may observe that some of the recourse decision variables are multiplied with uncertain parameters, while the remaining recourse decisions are multiplied with deterministic terms. In such situations, we can apply quadratic decision rules to the latter, which gives rise to stronger decision rule approximations. With minimum modification we can reformulate the decision rule problem into an equivalent copositive program similar to (31). We omit the detailed reformulation here.

6 Numerical experiments

In this section, we assess the effectiveness of our copositive programming approach over three applications in operations management. The first example is a multi-item newsvendor problem, which can be reformulated as a two-stage robust optimization problem with fixed recourse. The following two examples are from inventory control and index tracking settings, which correspond to multi-stage robust optimization problems with non-fixed recourse. All optimization problems are solved using MOSEK 8.1.0.56 [3] via the YALMIP interface [53] on a 16-core 3.4 GHz Linux PC with 32 GB RAM.

6.1 Multi-item newsvendor

We consider the following robust multi-item newsvendor problem studied in [4]:

\[
\max_{x \geq 0} \min_{\xi \in \Xi} \sum_{n=1}^{N} \left(r_n \min(x_n, \xi_n) - c_n x_n - s_n \max(\xi_n - x_n, 0) \right).
\]

(32)
Here, N represents the number of products; x is the vector of order quantities; ξ is the vector of uncertain demands; r, c, and s are the vector of sales prices, order costs, and shortage costs, respectively. Problem (32) can be reformulated as the two-stage robust optimization problem given by

$$\begin{align*}
\max_{x, y} & \quad \min_{\xi \in \Xi} \sum_{n=1}^{N} y_n(\xi) \\
\text{s.t.} & \quad y_n(\xi) \leq (r_n - c_n)x_n - r_n(x_n - \xi_n) \quad \forall n \in [N] \\
& \quad y_n(\xi) \leq (r_n - c_n)x_n - s_n(\xi_n - x_n) \quad \forall n \in [N] \\
& \quad x \geq 0.
\end{align*}$$

In this problem, the uncertainty set is specified through a factor model defined as

$$\Xi := \left\{ \xi \in \mathbb{R}^N : \begin{array}{l}
\xi = \tilde{\xi} + \text{Diag}(\hat{\xi})F\zeta, \\
\zeta \in \mathbb{R}^N, \|\zeta\|_{\infty} \leq 1, \|\zeta\|_1 \leq \rho
\end{array} \right\},$$

where ζ is a vector comprising all factors, $F \in \mathbb{R}^{N \times N}$ is the factor loading matrix, and $\rho < N$ is a scalar that controls the level of conservativeness.

As the problem has fixed recourse, we can apply the quadratic decision rule scheme (QDR) proposed in Section 2.2 and solve the semidefinite approximation which results from replacing the copositive cone $\text{COP}(K)$ with the inner approximation $\text{IA}(K)$ defined in (19). We compare our QDR scheme with the one proposed by Ben-Tal et al. (BGGN) where we replace the cone $\text{COP}(K)$ with the inner approximation $\text{AS}(K)$ defined in (21), with polynomial decision rule scheme of degree 3 (PDR3), and with a state-of-the-art scheme (COP) for two-stage robust optimization; see [59]. Another state-of-the-art scheme proposed in [4] generates the same results as COP, thereby we do not report them.

All experimental results are averaged over 100 random instances. For each instance, we consider $N = 5$ items, and set $r = 80e$ and $p = 60e$. We further sample the vector c uniformly at random from the hypercube $[40, 60]^5$. For the uncertainty set, we set $\rho = 4$ and $\tilde{\xi} = 60e$, while the vector $\hat{\xi}$ is generated uniformly at random from $[50, 60]^5$. We sample each entry of the matrix F uniformly from $[-1, 1]$, and normalize each row so that its sum is equal to 1. Table 1 reports several statistics of relative gaps between the optimal value of QDR and those of the other alternative methods. We find that QDR provides a substantial average improvement of 52% over BGGN. Rather surprisingly, we also find that QDR outperforms the state-of-the-art COP scheme by 6%. Table 1 indicates that QDR generates the same performance as the less tractable PDR3. Table 2 reports the average computation times of the four methods. We observe that QDR can be solved as fast as BGGN and COP, while it takes 40 times as long to solve PDR3. In summary, we may thus conclude that QDR provides high-quality solutions in a very efficient manner.

Remark 2. Since COP corresponds to a semidefinite programming approximation of the exact copositive reformulation of the newsvendor problem, it is indeed very surprising that QDR can outperform COP. For the temporal network example described in [59] where the uncertainty set is given by a 1-norm ball, one can formally prove that QDR performs better than COP. In general,
We next consider a multi-stage robust inventory control problem with multiple products and backlogging. A stochastic programming version of the problem is described in [40]. In this problem, we must determine sales and order policies that maximize the worst-case profit over a planning horizon of \(T \) time stages. At the beginning of each time stage \(t \), we observe a vector of risk factors \(\xi_t \) that explains the uncertainty in the current demand \(D_{t,p}(\xi_t) \) and the unit sales price \(R_{t,p}(\xi_t) \) of each product \(p \in [P] \). After \(\xi_t \) is revealed at time stage \(t \), we must determine the quantity \(s_{t,p} \) of product \(p \) to sell at the current price, the amount \(o_{t,p} \) of product \(p \) to replenish the inventory, and the amount \(b_{t,p} \) of product \(p \) to backlog to the next time stage at the unit cost \(C_b \). The sales \(s_{t,p} \) of product \(p \) at time stage \(t \) can only be provided by orders placed at time stage \(t-1 \) or earlier. We denote the inventory level at the beginning of each time stage \(t \) by \(I_t \). For simplicity, we assume that one unit of each product occupies the same amount of space and incurs periodically the same inventory holding costs \(C_h \). The inventory level is required to remain nonnegative and is not allowed to exceed the capacity limit \(\bar{I} \) throughout the planning time horizon. The inventory control problem can be stated as the MSRO problem

\[
\begin{align*}
\max_{\xi \in \Xi} & \quad \sum_{t=1}^{T} \sum_{p=1}^{P} \left[R_{t,p}(\xi_t)s_{t,p}(\xi^t) - C_b b_{t,p}(\xi^t) - C_h I_{t,p}(\xi^t) \right] \\
\text{s.t.} & \quad I_{1,p}(\xi^1) = I_{0,p} - s_{1,p}(\xi^1), \quad b_{1,p}(\xi^1) = D_{1,p}(\xi_1) - s_{1,p}(\xi^1) \quad \forall \xi \in \Xi, \quad \forall p \in [P] \\
& \quad I_{t,p}(\xi^t) = I_{t-1,p}(\xi^{t-1}) + o_{t,p}(\xi^{t-1}) - s_{t,p}(\xi^t) \quad \forall \xi \in \Xi, \quad \forall p \in [P], \quad \forall t \in [T] \setminus \{1\} \\
& \quad b_{t,p}(\xi^t) = b_{t-1,p}(\xi^{t-1}) + D_{t,p}(\xi_t) - s_{t,p}(\xi^t) \quad \forall \xi \in \Xi, \quad \forall p \in [P], \quad \forall t \in [T] \setminus \{1\} \\
& \quad o_{t,p}(\xi^t), s_{t,p}(\xi^t), b_{t,p}(\xi^t), I_{t,p}(\xi^t) \geq 0, \quad I_{t,p}(\xi^t) \leq \bar{I} \quad \forall \xi \in \Xi, \quad \forall p \in [P], \quad \forall t \in [T],
\end{align*}
\]

(34)

where \(I_{0,p} \) are fixed to pre-specified quantities for all \(p \in [P] \). The product prices are defined as

\[R_{t,p}(\xi_t) = 4 + \alpha_{1,p}\xi_{t,1} + \alpha_{2,p}\xi_{t,2} + \alpha_{3,p}\xi_{t,3} + \alpha_{4,p}\xi_{t,4} \]
with factor loadings $\alpha_{1,p}, \alpha_{2,p}, \alpha_{3,p}, \alpha_{4,p} \in [-1,1]$. Similarly, we set the demands to

$$D_{t,p}(\xi_t) = 2 + \sin\left(\frac{2\pi(t-1)}{12}\right) + \frac{1}{2}[\beta_{1,p}\xi_{t,1} + \beta_{2,p}\xi_{t,2} + \beta_{3,p}\xi_{t,3} + \beta_{4,p}\xi_{t,4}]$$

for $p = 1, \ldots, P/2$ and

$$D_{t,p}(\xi_t) = 2 + \cos\left(\frac{2\pi(t-1)}{12}\right) + \frac{1}{2}[\beta_{1,p}\xi_{t,1} + \beta_{2,p}\xi_{t,2} + \beta_{3,p}\xi_{t,3} + \beta_{4,p}\xi_{t,4}]$$

for $p = 1/P + 1, \ldots, P$ with factor loadings $\beta_{1,p}, \beta_{2,p}, \beta_{3,p}, \beta_{4,p} \in [-1,1]$. The sine (cosine) terms in the above expression correspond to the stylized fact that the expected demands of the first (last) $P/2$ products are high in spring (winter) and low in fall (summer). We assume that the vectors of risk factors $\xi_t \in \mathbb{R}^4$ for all $t = 1, \ldots, T$, are serially independent and uniformly distributed on $[-1,1]^4$. Formally, the uncertainty set is defined as

$$\Xi := \{ (\xi := \xi_1, \ldots, \xi_t) : \|\xi_t\|_{\infty} \leq 1 \forall t \in [T] \}.$$

In all numerical experiments, we generate 25 random instances of the inventory control problem with $P = 4$ products. We set backlogging and inventory holding costs identically to $C_b = C_h = 0.2$. We further set the initial inventory level to $I_{0,p} = 0$ and the inventory capacity to $\bar I = 24$. We sample the factor loadings $\alpha_{1,p}, \alpha_{2,p}, \alpha_{3,p}, \alpha_{4,p}$ and $\beta_{1,p}, \beta_{2,p}, \beta_{3,p}, \beta_{4,p}$ uniformly from the interval $[-1,1]$. As problem (34) has non-fixed recourse, we employ linear decision rules, and further enhance them by applying the piecewise scheme discussed in Section 4, where the folding directions are described by the standard basis vectors $e_\ell, \ell \in [4]$. This gives rise to a semidefinite approximation which results from replacing the copositive cone $\text{COP}(K)$ in the equivalent copositive program with the inner approximation $I\Lambda(K)$ defined in (19). We compare our scheme (PLDR) with the one proposed by Ben-Tal et al. (BGGN) where we replace the cone $\text{COP}(K)$ with the inner approximation $\text{AS}(K)$ defined in (21), and with polynomial decision rule scheme of degree 3 (PDR3).

We test the different schemes on problem instances with planning horizons $T = 1, 3, 6, 9, 12, 15, 18, 21, \text{and } 24$. Table 3 reports the relative gaps between the optimal values of PLDR and those of the other two schemes, while Table 4 shows the average computation times for the three approximation schemes. Note that PDR3 can only solve instances up to $T = 3$ before it starts experiencing numerical issues. As illustrated in Table 3, the relative gap between PLDR and BGGN increases dramatically with the planning horizon, where the largest average improvement of 191.2% is observed for $T = 24$. Meanwhile, PLDR can generate the same results as PDR3 in the case of $T = 1$, and remain very close to PDR3 for $T = 3$. As illustrated in these tables, our proposed copositive scheme can return solutions that are of very high quality without sacrificing much computational effort.
<p>|
|---|---|---|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGGN</td>
<td>10th prct.</td>
<td>3.5</td>
<td>9.8</td>
<td>1.7</td>
<td>18.8</td>
<td>8.5</td>
<td>4.6</td>
<td>24.8</td>
</tr>
<tr>
<td>Mean</td>
<td>17.3</td>
<td>21.0</td>
<td>20.8</td>
<td>42.7</td>
<td>47.9</td>
<td>43.7</td>
<td>99.2</td>
<td>129.3</td>
</tr>
<tr>
<td>90th prct.</td>
<td>39.2</td>
<td>38.3</td>
<td>36.8</td>
<td>70.6</td>
<td>100.5</td>
<td>94.6</td>
<td>154.9</td>
<td>225.4</td>
</tr>
</tbody>
</table>

Table 3: Relative gaps (in percent) between the alternative approximation schemes and PLDR

<table>
<thead>
<tr>
<th>Method</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLDR</td>
<td>0.02</td>
<td>0.29</td>
<td>2.31</td>
<td>9.66</td>
<td>34.60</td>
<td>99.29</td>
<td>248.40</td>
<td>541.75</td>
<td>1050.91</td>
</tr>
<tr>
<td>BGGN</td>
<td>0.01</td>
<td>0.04</td>
<td>0.33</td>
<td>1.23</td>
<td>4.76</td>
<td>14.48</td>
<td>36.85</td>
<td>94.49</td>
<td>191.30</td>
</tr>
<tr>
<td>PDR3</td>
<td>0.13</td>
<td>28.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: The average computation times (in seconds) of the different approximation schemes

6.3 Index tracking

For the last example, we study a dynamic index tracking problem, which aims at matching the performance of a stock index as closely as possible with a portfolio of other financial instruments over a finite discrete planning horizon T. A stochastic programming version of the problem is described in [47]. To this end, we consider five stock indices, where the first four constitute the tracking instruments while the last one corresponds to the target index. Let $\xi \in \mathbb{R}_+^5$ be the vector of total returns (price relatives) of these indices from time stage $t-1$ to time stage t. Here, $\xi_{t,1}$, $\xi_{t,2}$, $\xi_{t,3}$, and $\xi_{t,4}$ are returns of the four tracking instruments, while $\xi_{t,5}$ is return of the target index at time stage t. The robust dynamic index tracking problem is stated as follows:

$$
\min \max_{\xi \in \Xi} \sum_{t=1}^{T} |\xi_{t,5} - s_t(\xi^t)|
$$

s.t. $x_0 \geq 0$, $e^T x_0 \leq 1$, $s_1(\xi^1) = \xi_1^T x_0$

$$
\begin{align*}
\xi_t^T x_{t-1}(\xi^{t-1}) & \forall t \in [T] \setminus \{1\} \\
e^T x_t(\xi^t) & \leq s_t(\xi^t), \quad x_t(\xi^t) \geq 0 \quad \forall t \in [T].
\end{align*}
$$

(35)

The decision variable $s_t(\xi^t) \in \mathbb{R}_+$ determines the value of the tracking portfolio at time stage t. Here, we aim to rebalance the portfolio allocation vector $x(\xi^t) \in \mathbb{R}^4$ of the four tracking instruments such that $s_t(\xi^t)$ is as close to $\xi_{t,5}$ as possible throughout the planning time horizon. The uncertainty set Ξ in (35) is specified through a factor model as follows:

$$
\Xi := \left\{ \xi := (\xi_1, \ldots, \xi_T) : \quad \xi_t = f + F \xi_t, \quad \xi_t \in \mathbb{R}^3 \quad \forall t \in [T] \right\}
$$

$$
\left\| \xi_t \right\|_\infty \leq 1, \quad \left\| \xi_t \right\|_1 \leq \rho \quad \forall t \in [T]
$$

27
Table 5: Relative gaps (in percent) between the alternative approximation schemes and LQDR

<table>
<thead>
<tr>
<th>Method</th>
<th>Statistic</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGGN</td>
<td>10th prct.</td>
<td>0.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.2</td>
<td>4.7</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.0</td>
<td>7.1</td>
<td>12.5</td>
<td>11.8</td>
<td>14.2</td>
<td>17.0</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>90th prct.</td>
<td>0.0</td>
<td>21.7</td>
<td>29.4</td>
<td>29.0</td>
<td>33.8</td>
<td>30.1</td>
<td>34.2</td>
</tr>
<tr>
<td>PDR3</td>
<td>10th prct.</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.0</td>
<td>-0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>90th prct.</td>
<td>0.0</td>
<td>-0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Since the objective function of (35) is not linear, we introduce auxiliary variables $w_t(\cdot)$ to linearize each absolute term. This yields the multi-stage robust linear optimization problem

$$
\min \max_{\xi \in \Xi} \sum_{t=1}^{T} w_t(\xi^t)
$$

s.t. \quad

1. $x_0 \geq 0$, $e^\top x_0 \leq 1$, $s_1(\xi^1) = \xi^1_1 x_0$

2. $s_t(\xi^t) = \xi^t_1 x_{t-1}(\xi^{t-1})$ \quad \forall t \in [T]\{1\}$

3. $e^\top x_t(\xi^t) \leq s_t(\xi^t)$, $x_t(\xi^t) \geq 0$ \quad \forall t \in [T]$

4. $w_t(\xi^t) \geq \xi_{t,5} - s_t(\xi^t)$, $w_t(\xi^t) \geq s_t(\xi^t) - \xi_{t,5}$ \quad \forall t \in [T]$

As problem (36) has non-fixed recourse, we apply linear decision rules to the decision variables $x_t(\cdot)$, $t \in [T]$, which are multiplied with some uncertain parameters. On the other hand, we may utilize quadratic decision rules on $s_t(\cdot)$ and $w_t(\cdot)$, $t \in [T]$, as they are not multiplied with any uncertain parameters. With minimum modification, the copositive approach introduced in Section 5 can be applied and, accordingly, we can solve the semidefinite approximation which results from replacing the copositive cone $\text{COP}(\mathcal{K})$ with the inner approximation $\text{IA}(\mathcal{K})$ defined in (19). We denote our approach by LQDR. We compare LQDR with the scheme proposed by Ben-Tal et al. (BGGN) where we replace the cone $\text{COP}(\mathcal{K})$ with the inner approximation $\text{AS}(\mathcal{K})$ defined in (21), and with polynomial decision rule scheme of degree 3 (PDR3).

All experimental results are averaged over 25 randomly generated instances. For each instance, f is set to the vector of all ones, while each entry of F is sampled uniformly from the interval $[-1, 1]$. We further normalize each row of F such that the sum of the absolute values in each row equals to 1.

We test the different schemes on problem instances with planning horizons $T = 1, 3, 6, 9, 12, 15, 18$. Note that PDR3 can only solve instances up to $T = 3$. Table 5 reports the statistics of relative gaps between the optimal values obtained from LQDR and those from the two alternative approximation schemes, while Table 6 shows the average computation times for all three approximation schemes. As indicated in Table 5, the relative gap between LQDR and BGGN increases with the planning horizon, where the largest average improvement of 18.2% is observed for $T = 18$. On the other hand, LQDR generates similar performance to PLDR3 but with significantly less computational effort.
<table>
<thead>
<tr>
<th>Method</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQDR</td>
<td>0.03</td>
<td>0.40</td>
<td>5.01</td>
<td>32.95</td>
<td>127.34</td>
<td>601.57</td>
<td>1703.32</td>
</tr>
<tr>
<td>BGGN</td>
<td>0.02</td>
<td>0.08</td>
<td>0.69</td>
<td>5.47</td>
<td>24.70</td>
<td>75.48</td>
<td>226.18</td>
</tr>
<tr>
<td>PDR3</td>
<td>0.09</td>
<td>8.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 6: The average computation times (in seconds) of the different approximation schemes.

7 Concluding remarks

Generic MSRO problems (with non-fixed recourse) have so far resisted strong decision rule approximations. In this paper, we leveraged modern conic programming techniques to derive an exact convex copositive program for the linear decision rule approximation of these difficult optimization problems. We further derived an equivalent copositive program for the more powerful quadratic decision rule approximation of instances with fixed recourse. These reformulations enabled us to obtain a new semidefinite approximation that is provably tighter than an existing scheme of similar complexity by Ben-Tal et al. The copositive approach further inspired us to develop a new piecewise decision rule scheme for the generic problems. For MSRO problems with non-fixed recourse, we proved that the resulting approximation is tighter than the state-of-the-art scheme by Georghiou et al. Extensive numerical results demonstrate that our scheme can substantially outperform existing schemes in terms of optimality, while maintaining scalability when solving large problem instances. We conclude that, for all practical purposes, our proposed copositive approach provides the best balance of both worlds.

We mention two promising directions for further research. First, it would be interesting to derive a copositive programming reformulation for the piecewise decision rule scheme where we simultaneously optimize for the best folding directions and breakpoints. Second, it is imperative to design a global solution approach for MSRO problems with non-fixed recourse that leverages the proposed decision rule schemes.

Acknowledgements. Grani A. Hanasusanto is supported by the National Science Foundation grant no. 1752125. The work presented in this paper was carried out while Guanglin Xu was a postdoctoral fellow at the Institute for Mathematics and its Applications during the IMA’s annual program on Modeling, Stochastic Control, Optimization, and Related Applications.

Appendix

Proof of Lemma 2

Proof. Fix \((z, \tau) \in K\). For the sake of contradiction, suppose that \(\tau = 0\) but \(z \neq 0\). By Assumption 1, the set \(U^0\) is nonempty. Choose any \(u \in U^0\), so that \(u \in K\) and \(u_{K+1} = 1\). Then, for any non-negative scalar \(\rho \geq 0\), we have \(w(\rho) := u + \rho(z^\top, 0)^\top \in K\). Furthermore, \(w(\rho) \in U^0\) as
\([w(\rho)]_{K+1} = 1\). Since \(\rho\) can be arbitrarily large while \(z \neq 0\), we conclude that \(U^0\) is unbounded, contradicting the compactness condition of Assumption 1. Thus, the claim follows. \(\square\)

Proof of Lemma 3

Proof. We prove the statement by showing that the dual problem (6) admits a Slater point. To this end, we set \(\alpha_i = 0\), \(i \in [I]\). We then seek for a scalar \(\lambda\) that ensures

\[
(z^T, \tau) (\lambda e_{K+1} - \hat{C}_0) (z^T, \tau)^T = \lambda \tau^2 - (z^T, \tau) \hat{C}_0 (z^T, \tau)^T > 0
\]

for all non-zero vector \((z, \tau)\) in \(K\). By Lemma 2, it suffices to consider the case where \(\tau > 0\), in which case we may divide the expression by \(\tau^2\). We thus require that \(\lambda - (z/\tau, 1) \hat{C}_0 (z/\tau, 1)^T \) is strictly positive for all \((z/\tau, 1)\) \(\in U^0\), in this case, the boundedness of \(U^0\) implies that there exists a constant \(\lambda^*\) such that \(\lambda^* > (z/\tau, 1) \hat{C}_0 (z/\tau, 1)^T \) for all \((z/\tau, 1)\) \(\in U^0\). The claim thus follows since the point \((\lambda, \alpha) = (\lambda^*, 0)\) constitutes a Slater point for the problem (6). \(\square\)

Proof of Lemma 4

Proof. For any \(u \in K\), the second-order cone constraint \(Ru \in SOC(K_r)\) in the description of \(K\) stipulates that

\[
e^{T}_{K_r} Ru \geq \sqrt{(e^T_1 Ru)^2 + \cdots + (e^T_{K_r-1} Ru)^2}.
\]

(37)

Squaring both sides of the inequality yields

\[
u^T \hat{R} u \geq \sqrt{(e^T_1 \hat{R} u)^2 + \cdots + (e^T_{K_r-1} \hat{R} u)^2}.
\]

Thus, the claim follows. \(\square\)

Proof of Proposition 1

Proof. For any \(V \in \mathcal{LH}(K)\), we need to show that \(u^T V u \geq 0\) for all \(u \in K\). To this end, fix any \(V \in \mathcal{LH}(K)\) and \(u \in K\). By construction, we have

\[
u^T \left(W + \tau \hat{S} + \hat{P}^T \Sigma \hat{P} + \Psi\right) u
\]

\[
= u^T W u + \tau u^T \hat{S} u + u^T \hat{P} \Sigma \hat{P} u + u^T \left(\frac{1}{2} \hat{P}^T \Phi \hat{R} + \frac{1}{2} \hat{R}^T \Phi^T \hat{P}\right) u
\]

\[
= u^T W u + \tau u^T \hat{S} u + u^T \hat{P} \Sigma \hat{P} u + u^T \hat{P} \Phi Ru.
\]
We next analyze each of the four summands separately:

1. Since $W \succeq 0$, we have $u^\top W u \geq 0$.

2. Since $\tau \geq 0$ and by Lemma 4, we have $\tau u^\top \hat{S} u \geq 0$.

3. Since $\hat{P} u \geq 0$ and $\Sigma \succeq 0$, we have $(\hat{P} u)^\top \Sigma (\hat{P} u) \geq 0$.

4. Since $\hat{R} u$ and the vectors $\text{Rows}(\Phi)$ belong to $\text{SOC}(K_r)$, we have $\Phi \hat{R} u \geq 0$ (as a second-order cone is self-dual). This further implies that $u^\top \hat{P}^\top \Phi \hat{R} u = (\hat{P} u)^\top (\Phi \hat{R} u) \geq 0$ as $\hat{P} u \geq 0$.

This completes the proof.

Proof of Theorem 6

Proof. It suffices to prove the result for the case when the piecewise linear lifting is only applied to the first coordinate axis u_1, where the breakpoints are given by $h_1 = u_1 < h_2 < \ldots < h_L < u_1$. In this case the lifted set in (4.2) simplifies to

$$
\mathcal{U}' = \left\{ (w, u) \in \mathbb{R}^L \times \mathcal{U} : \begin{array}{ll}
 z \in \mathbb{R}^{L+1}_+ \\
 w_\ell = z_\ell - z_{\ell+1} & \ell \in [L] \\
 z_1 = u_1 - u_1, z_{L+1} = 0 \\
 z_\ell \geq u_1 - h_\ell, \overline{u}_1 \geq z_\ell & \ell \in [L+1] \\
 z_\ell(z_\ell - u_1 + h_\ell) = 0 & \ell \in [L+1]
 \end{array} \right\}.
$$

We apply linear decision rules on the lifted uncertain parameters, which gives rise to the following semi-infinite linear program:

$$
\begin{align*}
\inf & \quad c^\top x + \sup_{(w, u) \in \mathcal{U}'} d^\top Y(w^\top, u^\top) \\
\text{s.t.} & \quad \mathcal{A}'(v)x + \hat{B} Y(w^\top, u^\top)^\top \geq h'(v) \quad \forall v := (w, u) \in \mathcal{U}' \\
& \quad x \in \mathcal{A}', Y \in \mathbb{R}^{N \times (L+K+1)}.
\end{align*}
$$

Consider the worst-case maximization problem in the objective function of (39). For a fixed decision rule coefficient matrix Y, let us denote its optimal value by $v(Y)$. That is,

$$
v(Y) = \sup_{(w, u) \in \mathcal{U}'} d^\top Y(w^\top, u^\top)^\top.
$$

Replacing the set \mathcal{U}' with the outer approximation given by

$$
\mathcal{U}^{**} = \left\{ (w, u) \in \mathbb{R}^L \times \mathcal{U} : \begin{array}{l}
 u_1 - u_1 = \sum_{\ell \in [L]} w_\ell \\
 h_2 - u_1 \geq w_1 \\
 (h_{\ell+1} - h_\ell)w_{\ell-1} \geq (h_\ell - h_{\ell-1})w_\ell & \forall \ell \in [L] \setminus \{1\}
 \end{array} \right\}.
$$
yields the upper bound \(v^{**}(Y) \geq v(Y) \). A tractable finite reformulation can then be derived by virtue of standard dualization technique in robust optimization.

Alternatively, by applying Proposition 5 to the lifted set \(\mathcal{U}' \) in (38) and using Lemma 1, we arrive at the equivalent completely positive program

\[
v(Y) = \sup \mathbf{d}^T Y (\mathbf{w}^T, \mathbf{u}^T)^T \\
\text{s.t.} \quad e_{K+1}e_{K+1}^T \bullet \mathbf{U}' = 1 \\
e_{\ell}e_{\ell}^T \bullet \mathbf{Z}' - e_{\ell}e_{\ell}^T \bullet \mathbf{P}' + h_{\ell}e_{\ell}e_{K+1}^T \bullet \mathbf{P}' = 0 \quad \forall \ell \in [L+1] \\
\begin{bmatrix} \mathbf{W}' & \mathbf{Q}' & \mathbf{R}' \\ (\mathbf{Q}')^T & \mathbf{Z}' & \mathbf{P}' \\ (\mathbf{R}')^T & (\mathbf{P}')^T & \mathbf{U}' \end{bmatrix} \in \mathcal{CP}(K'), \quad \mathbf{u} = \mathbf{U}'e_{K+1}, \quad \mathbf{w} = \mathbf{R}'e_{K+1} \\
\mathbf{U}' \in \mathcal{S}^{K+1}, \quad \mathbf{Z}' \in \mathcal{S}^{L+1}, \quad \mathbf{W}' \in \mathcal{S}^L \\
\mathbf{P}' \in \mathbb{R}^{(L+1) \times (K+1)}, \quad \mathbf{R}' \in \mathbb{R}^{L \times (K+1)}, \quad \mathbf{Q}' \in \mathbb{R}^{L \times L+1}, \tag{41}
\]

where the cone \(K' \) is defined as

\[
K' := \left\{ (\mathbf{w}, \mathbf{z}, \mathbf{u}) \in \mathbb{R}^L \times \mathbb{R}^{L+1}_+ \times \mathcal{K} : \begin{array}{l}
w_\ell = z_\ell - z_{\ell+1} \\
z_1 = u_1 - u_1, \quad z_{L+1} = 0 \\
z_\ell \geq u_1 - h_\ell u_{K+1}, \quad u_1 u_{K+1} \geq z_\ell \quad \ell \in [L+1]
\end{array} \right\}.
\]

An upper bound to \(v(Y) \) is then obtained by replacing the completely positive cone \(\mathcal{CP}(K') \) in (41) with a valid semidefinite-representable outer approximation. To this end, we further loosen the relaxation by considering only those constraints that are independent across dimensions. We then obtain the following outer approximation to the feasible set of decision variables \(\mathbf{u} \) and \(\mathbf{w} \) in (41):

\[
\mathcal{U}' := \left\{ (\mathbf{w}, \mathbf{u}) \in \mathbb{R}^L \times \mathcal{U} : \begin{array}{l}
z \in \mathbb{R}^{L+1}_+, \quad \mathbf{p} \in \mathbb{R}^{L+1}_+, \quad \mathbf{r} \in \mathbb{R}^L_+, \quad \mathbf{U} \in \mathbb{R}_+ \\
\mathbf{Z} \in \mathcal{S}^{L+1}, \quad \mathbf{W} \in \mathcal{S}^L, \quad \mathbf{Q} \in \mathbb{R}^{L \times (L+1)} \\
Bz = \mathbf{w}, \quad z_1 = u_1 - u_1, \quad z_{L+1} = 0 \\
z \geq u_1 \mathbf{e} - \mathbf{h}, \quad \mathbf{u}_1 \mathbf{e} \geq z \\
\end{array} \right\},
\]

\[
H \begin{bmatrix} \mathbf{W} & \mathbf{Q} & \mathbf{r} & \mathbf{w} \\ \mathbf{Q}^T & \mathbf{Z} & \mathbf{p} & \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{r}^T & \mathbf{p}^T & \mathbf{U} & \mathbf{u}_1 \\ \mathbf{w}^T & \mathbf{z}^T & \mathbf{u}_1 & 1 \end{bmatrix} \mathbf{H}^T \geq \mathbf{0}, \quad \begin{bmatrix} \mathbf{W} & \mathbf{Q} & \mathbf{r} & \mathbf{w} \\ \mathbf{Q}^T & \mathbf{Z} & \mathbf{p} & \mathbf{z} \end{bmatrix} \geq \mathbf{0}.
\]

32
where the matrices $B \in \mathbb{R}^{L \times (L+1)}$ and $H \in \mathbb{R}^{(4L+2) \times (2L+3)}$ are defined as

$$
B = \begin{pmatrix}
1 & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & 1 & -1 & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & 1 & -1
\end{pmatrix}
$$

and

$$
H = \begin{pmatrix}
0 & \mathbb{I} & 0 & 0 \\
0 & \mathbb{I} & -e & h \\
-\mathbb{I} & B & 0 & 0 \\
\mathbb{I} & -B & 0 & 0
\end{pmatrix},
$$

respectively. Using \mathcal{U}^* to replace \mathcal{U} in (40), we arrive at another upper bound $v^*(Y) \geq v(Y)$. As the resulting maximization problem admits a Slater point, a tractable finite reformulation can then be obtained by applying standard conic duality.

We now establish that $v^*(Y) \leq v^{**}(Y)$, which holds if $\mathcal{U}^* \subseteq \mathcal{U}^{**}$. First, the constraints $Bz = w$, $z_1 = u_1 - u_1$, and $z_{L+1} = 0$ in \mathcal{U}^* imply that

$$
\sum_{\ell \in \{1\}} w_\ell = z_1 - z_2 + \sum_{\ell \in \{2, \ldots, L\}} z_\ell - z_{\ell+1} = u_1 - u_1.
$$

Next, since $z_2 \geq u_1 - h_2$, we have that $w_1 = z_1 - z_2 \leq u_1 - u_1 - u_1 + h_2 = h_2 - u_1$. Thus, the first two constraints in \mathcal{U}^{**} are implied by \mathcal{U}^*. It remains to show that the final system of inequalities in \mathcal{U}^{**} are also implied by the constraints in \mathcal{U}^*. By expanding the matrix product in the penultimate constraint of \mathcal{U}^*, we find that $Q = BZ$, and the following constraints hold:

$$
-r + w \circ h = -Bp + (Bz) \circ h, \quad -pe^T + Z + zh^T \geq 0, \quad -re^T + BZ + wh^T \geq 0.
$$

Next, we perform the substitutions $p = \text{diag}(Z) + h \circ z$, $w = Bz$ and $Q = BZ$ to all occurrences of p, w, and Q, respectively, in the above constraint system. We then get $r = B(\text{diag}(Z) + h \circ z)$, and by further substituting this value, we arrive at the equivalent constraint system

$$
-(\text{diag}(Z) + h \circ z)e^T + Z + zh^T \geq 0, \quad -B(\text{diag}(Z) + h \circ z)e^T + BZ + Bzh^T \geq 0.
$$

For $\ell \in \{2, \ldots, L\}$, one can show that these constraints further imply the following system of linear inequalities:

$$
e_{\ell-1}e_{\ell+1}^T \bullet Z - e_{\ell+1}e_{\ell+1}^T \bullet Z + z_{\ell+1}(h_{\ell-1} - h_{\ell+1}) \geq 0
$$

$$
e_{\ell-1}e_{\ell+1}^T \bullet Z - e_{\ell+1}e_{\ell+1}^T \bullet Z + z_{\ell+1}(h_\ell - h_{\ell+1}) \geq 0
$$

$$
e_{\ell-1}e_{\ell+1}^T \bullet Z + e_{\ell}e_{\ell}^T \bullet Z - e_{\ell-1}e_{\ell}^T \bullet Z - e_{\ell}e_{\ell}^T \bullet Z + z_{\ell-1}(h_{\ell+1} - h_{\ell-1}) + z_\ell(h_\ell - h_{\ell+1}) \geq 0
$$

$$
e_{\ell-1}e_{\ell}^T \bullet Z + e_{\ell+1}e_{\ell+1}^T \bullet Z - e_{\ell}e_{\ell+1}^T \bullet Z - e_{\ell-1}e_{\ell+1}^T \bullet Z + z_{\ell+1}(h_{\ell+1} - h_{\ell-1}) + z_\ell(h_{\ell-1} - h_\ell) \geq 0
$$

$$
e_{\ell}e_{\ell+1}^T \bullet Z - e_{\ell}e_{\ell}^T \bullet Z + z_\ell(h_{\ell+1} - h_\ell) \geq 0.
$$

(42)

We further relax the large semidefinite constraint in \mathcal{U}^* into $O(L)$ semidefinite constraints involving
3 × 3 matrices, as follows:

\[
M_\ell := \begin{pmatrix}
\mathbf{e}_{\ell-1}\mathbf{e}_{\ell-1}^\top \cdot \mathbf{Z} & \mathbf{e}_{\ell-1}\mathbf{e}_{\ell}^\top \cdot \mathbf{Z} & \mathbf{e}_{\ell-1}\mathbf{e}_{\ell+1}^\top \cdot \mathbf{Z} \\
\mathbf{e}_{\ell-1}\mathbf{e}_{\ell}^\top \cdot \mathbf{Z} & \mathbf{e}_{\ell}\mathbf{e}_{\ell}^\top \cdot \mathbf{Z} & \mathbf{e}_{\ell}\mathbf{e}_{\ell+1}^\top \cdot \mathbf{Z} \\
\mathbf{e}_{\ell-1}\mathbf{e}_{\ell+1}^\top \cdot \mathbf{Z} & \mathbf{e}_{\ell}\mathbf{e}_{\ell+1}^\top \cdot \mathbf{Z} & \mathbf{e}_{\ell+1}\mathbf{e}_{\ell+1}^\top \cdot \mathbf{Z}
\end{pmatrix} \succeq 0 \quad \forall \ell \in [L+1]. \tag{43}
\]

We now show that the relaxations (42) and (43) are sufficient to imply that

\[
(h_{\ell+1} - h_\ell)w_{\ell-1} \geq (h_\ell - h_{\ell-1})w_\ell \iff (h_{\ell+1} - h_\ell)z_{\ell-1} + (h_\ell - h_{\ell-1})z_{\ell+1} \geq (h_{\ell+1} - h_{\ell-1})w_\ell,
\tag{44}
\]

where the equivalence follows from the substitutions \(w_{\ell-1} = z_{\ell-1} - z_\ell\) and \(w_\ell = z_\ell - z_{\ell+1}\). In order to arrive the desired implication, we require that the optimal value of the following optimization problem is greater than or equal to 0:

\[
\begin{align*}
\inf & \quad (h_{\ell+1} - h_\ell)z_{\ell-1} + (h_\ell - h_{\ell-1})z_{\ell+1} - (h_{\ell+1} - h_{\ell-1})w_\ell \\
\text{s.t.} & \quad M_\ell, z_{\ell-1}, z_\ell, \text{ and } z_{\ell+1} \text{ satisfy (42) and (43)}.
\end{align*}
\tag{45}
\]

By weak duality, the optimal value of this problem is lower bounded by the maximization problem

\[
\begin{align*}
\sup & \quad 0 \\
\text{s.t.} & \quad (h_{\ell+1} - h_\ell)c = (h_{\ell+1} - h_\ell) \\
& \quad (h_\ell - h_{\ell-1})d + (h_{\ell+1} - h_\ell)c = (h_{\ell+1} - h_{\ell-1}) + (h_{\ell+1} - h_\ell)e \\
& \quad (h_\ell - h_{\ell-1}) + (h_{\ell+1} - h_{\ell-1})a + (h_{\ell+1} - h_\ell)b = (h_{\ell+1} - h_{\ell-1})d \\
& \quad \begin{pmatrix}
\frac{c}{2} & -\frac{d}{2} & \frac{d-a-c}{2} \\
-\frac{d}{2} & -c + d + e & \frac{-b+c-e}{2} \\
\frac{d-a-c}{2} & \frac{-b+c-e}{2} & a + b - d
\end{pmatrix} \succeq 0 \\
& \quad (a, b, c, d, e) \in \mathbb{R}_+^5.
\end{align*}
\]

One can verify that the solution \((a, b, c, d, e) \in \mathbb{R}_+^5\) satisfying \(a = c = \frac{h_{\ell+1} - h_\ell}{h_{\ell+1} - h_{\ell-1}}, b = \frac{h_{\ell+1} - h_{\ell-1}}{h_{\ell+1} - h_\ell}, d = 2,\) and \(e = \frac{(h_\ell - h_{\ell-1})^2}{(h_{\ell+1} - h_{\ell-1})(h_{\ell+1} - h_\ell)}\) is feasible to the dual problem. Thus, the optimal value of the primal problem (45) is bounded below by 0, which verifies that the constraints (42) and (43) imply (44). In summary, we have shown that the containment \(\mathcal{U}^* \subseteq \mathcal{U}^{**}\) holds, and \(a\text{-fortiori}, v^*(\mathbf{Y}) \leq v^{**}(\mathbf{Y})\).

By repeating the same argument for all semi-infinite constraints in (39), we may conclude that the proposed semidefinite program indeed leads to a tighter approximation. Thus, the claim follows. \(\Box\)
References

[38] A. Georghiou, A. Tsoukalas, and W. Wiesemann. Robust dual dynamic programming.

[41] A. Georghiou, W. Wiesemann, and D. Kuhn. Wind of change: Meeting the uks renewable energy targets. 2015.

