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Abstract We propose a new Mixed Integer Programming formulation for the
Asymmetric Traveling Salesman Problem with Pickup and Delivery, along with
valid inequalities for the Sarin-Sherali-Bhootra formulation. We study these mod-
els in their complete forms, relax complicating constraints of these models, and
compare their performance. Finally, we present computational results showing the
promise of these formulations when applied to pickup and delivery problems.
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1 Introduction

The Traveling Salesman Problem (TSP) is the search for a minimum cost Hamil-
tonian circuit connecting a set of locations. In general, the TSP is NP-complete
(Papadimitriou, 1977). The first paper of note related to TSP research solved
an instance of “49 cities, one in each of the 48 states and Washington, D.C.”
(Dantzig et al., 1954). Algorithms now exist that, given sufficient time, can solve
TSPs with tens of thousands of nodes, and its computational boundaries continue
to be pushed forward (Applegate et al., 2011).

The TSP is a well-studied problem that has inspired substantial theoretical
developments impacting much of combinatorial optimization. It also provides a
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practical application in its own right, particularly in the context of Vehicle Routing
Problems (VRP). VRPs are common in industry and involve routing a set of
vehicles to visit a set of nodes at minimum cost. At its surface, the only substantive
difference between the TSP and the VRP is the latter’s use of multiple vehicles to
service customer demand.

The Pickup and Delivery Problem (PDP) is an increasingly prevalent industrial
form of the VRP in which each of a set of requests must be picked up from one
or more locations and delivered to one or more delivery points. Pickups must
precede their associated deliveries in any feasible route, and each pair must be
serviced by the same vehicle. Pickup and delivery locations can be distinct to each
request, as in the many-to-many Dial-A-Ride Problem (DARP) of Psaraftis (1980)
and Bertsimas et al. (2018), and the Meal Delivery Routing Problem (MDRP) of
Reyes et al. (2018). Given multiple pickup and delivery requests, the PDP seeks
to route a set of vehicles to service those requests at minimum cost (Ruland and
Rodin, 1997).

Solving a PDP with a single vehicle is equivalent to solving a TSP with prece-
dence constraints on the pickup and delivery nodes. This form is referred to as
the Traveling Salesman Problem with Pickup and Delivery (TSPPD) (Dumitrescu
et al., 2010). There is a great deal of literature on the TSP and some of its vari-
ants, such as the TSP with Time Windows (TSPTW) (Applegate et al., 2011).
In contrast, there has been less attention paid to the TSPPD, despite its prac-
tical applicability (Ruland and Rodin, 1997). TSPPDs and their variants play
an increasingly important role in industrial routing applications. This importance
is witnessed by a proliferation of ride hailing and sharing companies, as well as
on-demand delivery service providers for everything from groceries, alcoholic bev-
erages, and meals, to snacks and convenience store items.

The divide between research and industrial use of the TSP becomes clearly
evident when one considers practical limitations associated with routing. For ex-
ample, delivery trucks are often limited to routes of fewer than 100 stops due to
physical considerations, such as vehicle capacity (Caseau and Laburthe, 1997).
Routes used for high volume restaurant delivery are even shorter due to the per-
ishability of goods, and typically involve fewer than 10 stops.

Even in the context of the broader PDP with many vehicles and many more
nodes (e.g. hundreds or thousands), the allowable individual routes tend to be
relatively short. Solving real-world delivery problems often requires solving, in a
very short time frame (i.e. fractions of a second to not more than minutes), a
huge numbers of problems each having a very small number of nodes. And, often,
re-solving some subset of these problems as the delivery service learns of changing
demand and/or service times.

In a prior study, we compared a variety of modeling and algorithmic approaches
to solving TSPPDs within strict time budgets (O’Neil and Hoffman, 2018). While
the majority of the models we considered support asymmetric arc costs, the most
effective model is a symmetric Mixed Integer Programming (MIP) model based on
that of Ruland and Rodin (1997) (RR) with a warm start. The asymmetric Sarin
et al. (2005) MIP model is better at finding feasible solutions without a warm
start, but is less effective at finding high quality solutions (e.g. solutions within
10% or 5% of optimal) and at proving optimality.

This is dissatisfying both intuitively and from the perspective of practical im-
plementation. The TSPPD is fundamentally an asymmetric problem: pickups must
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precede their respective deliveries. Further, it is inconvenient to be limited to sym-
metric edge costs in a problem formulation. Depending on one’s problem data, it
may be beneficial to individually penalize arcs connecting the same points in dif-
ferent directions.

To that end, we implement both symmetric and asymmetric models for the
TSPPD. We begin with two formulations from the literature, one of which is
symmetric and the other being asymmetric. We test these models using symmet-
ric problem instances generated from real-world meal delivery data, built from
actual pickup and delivery locations observed at Grubhub, along with expected
symmetric travel times connecting location pairs. We then attempt to improve
the performance of the asymmetric models to be competitive with that of the
symmetric one.

Contributions of this paper include new valid inequalities for the Sarin-Sherali-
Bhootra (SSB) model that are specific to the asymmetric TSPPD (ATSPPD). We
also propose a new O’Neil-Hoffman (OH) MIP ATSPPD model which, similar to
the SSB model, uses a secondary set of variables to handle precedence relationships
and subtour elimination. Model OH ascribes more meaning to this second set of
variables than SSB, and uses them to control how pairs of pickups and deliver-
ies interact in terms of precedence. Finally, we relax the precedence and Subtour
Elimination Constraints (SEC) for both the SSB and OH models, adding them
lazily as they are violated, to better compare them to the RR model. Our test set
and source code for all model implementations are available for continued experi-
mentation (Grubhub, 2018; O’Neil, 2018). Asymmetric models are tested against
symmetric models using symmetric data in order to compare them. Once that
comparison is accomplished, we perturb the symmetric instances into asymmetric
instances to show that the models exhibit similar behavior when using data more
representative of real-world situations.

2 Background

The Traveling Salesman Problem with Pickup and Delivery (TSPPD) is a modi-
fication of the Traveling Salesman Problem (TSP) that includes side constraints
enforcing precedence among pickup and delivery node pairs. Each of n requests
has a pickup node and a delivery node, and its pickup must occur before its de-
livery for a route to be feasible. The objective of the problem is to minimize total
distance traveled while visiting each node exactly once. The TSPPD is formally
described in Ruland and Rodin (1997) and Dumitrescu et al. (2010).

The TSPPD is defined on an ordered set of pickup nodes V+ = {+1, . . . ,+n}
and associated delivery nodes V− = {−1, . . . ,−n} such that (+i,−i) form a re-
quest and +i must precede −i in a feasible route. V is defined as the union of
V+ and V− with the addition of origin and destination nodes {+0,−0}. E± is
the set of edges connecting V+ ∪ V−. E is the union of E± with all feasible edges
connecting to the origin and destination nodes. The graph G = (V,E) includes all
nodes and edges required to describe the TSPPD.

V = {+0,−0} ∪ V+ ∪ V− (1)

E = {(+0,−0)} ∪ {(+0,+i) | i ∈ V+} ∪ {(−0,−i) | i ∈ V−} ∪ E± (2)
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Fig. 1 Example TSPPD graph structure.

For modeling convenience, the edge (+0,−0) must be included in any feasible
solution. The set of edges E is defined such that it includes only feasible edges.
That is, it is not possible that a TSPPD route begins with a delivery or ends with
a pickup. Figure 1 shows an example of the feasible edges for a TSPPD with two
requests. Note that it is possible to use the same formulation to solve Hamiltonian
paths with precedence rather than circuits by simply assigning a cost of zero to
the (+0,−0) edge.

2.1 Symmetric Models

In the case of the symmetric TSPPD (STSPPD), each edge (i, j) ∈ E is the
same as the edge (j, i) and has the same costs and edge variables. cij specifies a
nonnegative cost for each edge (i, j) ∈ E. By convention, c+0,−0 = 0. xij ∈ {0, 1}
is a binary decision variable for each (i, j) ∈ E with the value xij = 1 if the edge
(i, j) is in a solution and 0 otherwise. δ(S) = {(i, j) ∈ E | i ∈ S, j /∈ S} is the
cutset containing edges that connect S ⊂ V and S̄ ⊂ V . For any node i ∈ V ,
δ(i) = δ({i}). The STSPPD is defined using Formulation 1, as in Ruland and
Rodin (1997).

minimize
∑

(i,j)∈E

cijxij (3)

subject to x+0,−0 = 1 (4)

x(δ(i)) = 2 ∀ i ∈ V (5)

x(δ(S)) ≥ 2 ∀ S ⊂ V (6)

x(δ(S)) ≥ 4 ∀ S ⊂ V, {+0,−i} ⊂ S, {−0,+i} ⊂ V \ S (7)

xij ∈ {0, 1} ∀ (i, j) ∈ A (8)

Formulation 1: STSPPD as provided by Ruland and Rodin (1997)

Constraint (4) requires that the edge connecting the origin and destination
nodes be part of any feasible solution. The degree constraints (5) require that
each node is entered and exited in all feasible routes, but by itself leaves open the
possibility of disconnected subtours. Constraints (6) accomplish subtour elimina-
tion, forming a complete representation of the TSP. The final set of constraints
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(7) require that pickups occur in routes before their respective deliveries (Ruland
and Rodin, 1997).

2.2 Asymmetric Models

The asymmetric TSP (ASTP) polytope can be similarly adapted to the ATSPPD
by associating the x variables with arcs (i.e. directed edges) and replacing the
two-degree constraints with assignment constraints. Instead of an edge set E we
define an arc set A which contains only the feasible arcs for the ATSPPD.

A = {(−0,+0)}
∪ {(+0,+i) | + i ∈ V+}
∪ {(−i,−0) | − i ∈ V−}
∪ {(+i, j) | + i ∈ V+, j ∈ (V+ ∪ V−) \ {+i}}
∪ {(−i, j) | − i ∈ V+, j ∈ (V+ ∪ V−) \ {+i,−i}} (9)

Formulation 2 is more general since it supports arc costs that are not the
same bidirectionally. Further, it is intuitively satisfying to consider the TSPPD
this way, as there is a natural asymmetry built into the structure of the problem:
pickups must precede their associated deliveries. As in Formulation 1, the x−0,+0

arc connecting the start and end nodes must be part of any feasible tour, +0 must
connect to a pickup, and −0 must be preceded by a delivery. One small additional
difference is that Formulation 2 does not include x variables for arcs starting at a
delivery and ending at its associated pickup.

minimize
∑

(i,j)∈A

cijxij (10)

subject to
∑

(i,j)∈A

xij = 1 ∀ i ∈ V (11)

∑
(i,j)∈A

xij = 1 ∀ j ∈ V (12)

x(δ(S)) ≥ 1 ∀ S ⊂ V (13)

x(δ(S)) ≥ 4 ∀ S ⊂ V, {+0,−i} ⊂ S, {−0,+i} ⊂ V \ S (14)

xij ∈ {0, 1} ∀ (i, j) ∈ A (15)

Formulation 2: ATSPPD

In Formulation 2, constraints (11) and (12) require that each node directly
precede and follow exactly one other node. Constraints (13) accomplish subtour
elimination, while precedence is enforced using the same constraints as in Formu-
lation 1.

While formulations 1 and 2 give complete representations of the STSPPD and
ATSPPD polytopes, the number of subtour elimination and precedence constraints
grow quickly as a function of the number of nodes. Most exact approaches to the
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TSP and its variants solve a relaxation of the problem that omits these constraints,
and add constraints to the representation as they are violated by new solutions.

For these models we take the approach of solving a combinatorial relaxation
containing only the degree constraints (5) for the STSPPD, or constraint sets (11)
and (12) for the ATSPPD. When a candidate solution is found, we check to see
if it contains subtours or violates precedence. If so, we add SEC and precedence
constraints as “lazy” constraints within the solver. Once a tour covering all nodes
and satisfying presence constraints is found, that tour is optimal.

As integer-feasible solutions are discovered in the branch-and-bound tree, they
are scanned for subtours. T is the set containing all sets of nodes in a tour in the
current solution. If T > 1, then for each set of nodes corresponding to a subtour
S ∈ T , we add a lazy constraint of either the form (6) or (13), eliminating that
subtour from future solutions.

Constraints (6) or (13) remove a given subtour from the final solution. There-
after, not all edges in the subtour can exist in any new solution. An alternative
and equivalent formulation of the constraint is shown as (16) below. We call con-
straints (6) and (13) the “cutset” form and constraint (16) the “subtour” form,
respectively.

∑
i,j∈S

xij ≤ |S| − 1 (16)

We integrate SEC into the TSPPD by first eliminating subtours in Gurobi’s
callback. Once there is only one tour, that is, |T | = 1, the current solution is a
valid TSP solution. We then scan it for precedence violations, adding lazy cuts
using constraint (7) as precedence violations are found.

2.3 Polynomial Length Models

Not all TSP formulations require relaxation. A number of models contain con-
straints that imply the Dantzig-Fulkerson-Johnson subtour elimination constraints.
Perhaps most notably, the Miller-Tucker-Zemlin formulation use variables to indi-
cate which position each node is in a feasible tour (Miller et al., 1960).

Sarin et al. (2005) introduce a polynomial-length ATSP model based on an
assignment problem formulation. Their model uses x variables to represent directed
arcs that indicate direct precedence and y variables to indicate route precedence.
If xij = 1 then i directly precedes j, and if yij = 1 then i precedes j but need not
directly precede it. This model is given in Formulation 3.
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minimize
∑

(i,j)∈A

cijxij (17)

subject to
∑

(i,j)∈A

xij = 1 ∀ i ∈ V (18)

∑
(i,j)∈A

xij = 1 ∀ j ∈ V (19)

xij ≤ yij ∀ i, j ∈ V (20)

yij + yji = 1 ∀ i, j ∈ V, i 6= j (21)

yij + xji + yjk + yki ≤ 2 ∀ i, j, k ∈ V, i 6= j 6= k (22)

xij ∈ {0, 1} ∀ i, j ∈ V, i 6= j (23)

0 ≤ yij ≤ 1 ∀ i, j ∈ V, i 6= j (24)

Formulation 3: The ATSP Formulation of Sarin et al. (2005)

Constraints (20) establish the relationship between route and direct prece-
dences. Constraints (21) require that, for each pair of nodes, one must precede the
other. Subtour elimination is handled through route precedence using constraints
(22). The ATSP model of Sarin et al. (2005) conveniently adapts to the ATSPPD
by setting y+0,i = yi,−0 = 1 for all i ∈ V \ {+0,−0}, and all y+i,−i = 1.

3 Proposed Inequalities

The SSB ATSP model given in Formulation 3 is easily adapted to the ATSPPD
by setting lower bounds directly on the y variables. In this section, we present
additional valid inequalities for model SSB that apply to the ATSPPD. Constraint
sets (25, 26) are collectively referred to as constraint set A, while constraint sets
(27, 28, 29, 30, 31) are referred to as constraint set B. We follow the notation that
i ≺ j means i precedes j in a route, though perhaps not directly.

With respect to constraint set (25), only one of x+j,−i and x−i,+j may be
on, otherwise these arcs will form a subtour. Both x+j,−i = 1 and x−i,+j = 1
independently imply that +i ≺ +j, thus the constraints are valid. Constraint set
(26) follows from the fact that if +j ≺ +i then +j ≺ −i as well. If −i ≺ +j then
+i ≺ +j. Thus y−i,+j + y+j,+i ≤ 1. If x+j,−i = 0 then it is simply removed from
the inequality, while if x+j,−i = 1 then both y−i,+j and y+j,+i must be off.

x+j,−i + x−i,+j ≤ y+i,+j ∀ + i,+j ∈ V+, i 6= j (25)

x+j,−i + y−i,+j + y+j,+i ≤ 1 ∀ + i,+j ∈ V+, i 6= j (26)

A second set of valid inequalities are inferred directly from the route precedence
variables. For constraint set (27), if +i ≺ +j then +i ≺ −j since +j ≺ −j. If
+i ≺ −j then nothing additional is implied about the precedence relationships
of −i or +j. Constraint sets (28, 29, 30) are valid since −i ≺ +j implies that
+i ≺ +j and −i ≺ −j, and therefore also that +i ≺ −j. Finally, constraint
set (31) is valid since −i ≺ −j implies that +i ≺ −j as well. It is particularly
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interesting to note that, if −i ≺ +j, then we can make three additional inferences
on related y variables.

y+i,+j ≤ y+i,−j ∀ + i,+j ∈ V+, i 6= j (27)

y−i,+j ≤ y+i,+j ∀ + i,+j ∈ V+, i 6= j (28)

y−i,+j ≤ y−i,−j ∀ + i,+j ∈ V+, i 6= j (29)

y−i,+j ≤ y+i,−j ∀ + i,+j ∈ V+, i 6= j (30)

y−i,−j ≤ y+i,−j ∀ + i,+j ∈ V+, i 6= j (31)

4 Proposed Model

The SSB model uses two sets of variables: xij controls direct precedence from i to
j and yij manages route precedence. In this section we propose an alternative MIP
model for the ATSPPD in which there are also two sets of variables. In our model,
x has the same function. Instead of y variables that control route precedence, we
introduce a set of variables, w, that correspond to the allowable configurations
of pairwise pickup and delivery node pairs. That is, for each pair of pickups and
deliveries {(+i,−i), (+j,−j)}, there is a set of wijm binary variables. There are
six allowable precedence configurations, each of which sets a w variable to one if
it occurs in a solution.

wij1 = 1 =⇒ +i ≺ +j ≺ −i ≺ −j ∀ i, j ∈ V+, i < j (32)

wij2 = 1 =⇒ +i ≺ +j ≺ −j ≺ −i ∀ i, j ∈ V+, i < j (33)

wij3 = 1 =⇒ +i ≺ −i ≺ +j ≺ −j ∀ i, j ∈ V+, i < j (34)

wji1 = 1 =⇒ +j ≺ +i ≺ −j ≺ −i ∀ i, j ∈ V+, i < j (35)

wji2 = 1 =⇒ +j ≺ +i ≺ −i ≺ −j ∀ i, j ∈ V+, i < j (36)

wji3 = 1 =⇒ +j ≺ −j ≺ +i ≺ −i ∀ i, j ∈ V+, i < j (37)

For each set of w variables, exactly one configuration must be true in any
feasible route, as enforced by constraint set (38). Since the w variables imply
precedence relationships among the nodes, and we will use them for SEC below,
there is no need to add explicit precedence constraints.

3∑
m=1

(wijm + wjim) = 1 ∀ i, j ∈ V+, i < j (38)

The x and w variables are linked by allowing arcs to be turned on in the former
only when allowed by configurations implied by the latter. This gives us constraint
sets (39, 40, 41, 42, 43).
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x+i,−i ≤ wij3 + wji2 + wji3 ∀ + i ∈ V+ (39)

x+i,+j ≤ wij1 + wij2 ∀ + i,+j ∈ V+, i 6= j (40)

x+i,−j ≤ wji1 ∀ + i ∈ V+,−j ∈ V−, i 6= j (41)

x−i,+j ≤ wij3 ∀ − i ∈ V−,+j ∈ V+, i 6= j (42)

x−i,−j ≤ wij1 + wji2 ∀ − i ∈ V−,−j ∈ V−, i 6= j (43)

We now add SEC using the w variables in the same way the SSB model does.
Define a function s(i, j) which computes a summation of all w variables in which
i ≺ j, as shown in (44).

s(+i,+j) = wij1 + wij2 + wij3

s(+i,−j) = wij1 + wij2 + wij3 + wji1 + wji2

s(−i,+j) = wij3

s(−i,−j) = wij1 + wij3 + wji2

(44)

Constraint set (45) employs s(i, j) to add SEC to the model.

s(p, q) + s(q, r) + s(r, p) ≤ 2 ∀ i, j, k ∈ V+, i < j < k,
p ∈ {+i,−i}, q ∈ {+j,−j}, r ∈ {+k,−k} (45)

These decision variables and constraints combine into Formulation 4.

minimize
∑

(i,j)∈A

cijxij (46)

subject to
∑

(i,j)∈A

xij = 1 ∀ i ∈ V (47)

∑
(i,j)∈A

xij = 1 ∀ j ∈ V (48)

x+i,−i ≤ wij3 + wji2 + wji3 ∀ + i ∈ V+ (49)

x+i,+j ≤ wij1 + wij2 ∀ + i,+j ∈ V+, i 6= j (50)

x+i,−j ≤ wji1 ∀ + i ∈ V+,−j ∈ V−, i 6= j (51)

x−i,+j ≤ wij3 ∀ − i ∈ V−,+j ∈ V+, i 6= j (52)

x−i,−j ≤ wij1 + wji2 ∀ − i ∈ V−,−j ∈ V−, i 6= j (53)

3∑
m=1

(wijm + wjim) = 1 ∀ i, j ∈ V+, i < j (54)

s(p, q) + s(q, r) + s(r, p) ≤ 2 ∀ i, j, k ∈ V+, i < j < k, (55)

p ∈ {+i,−i},
q ∈ {+j,−j},
r ∈ {+k,−k}

xij ∈ {0, 1} ∀ i, j ∈ V, i 6= j (56)

0 ≤ wijm ≤ 1 ∀ i, j ∈ V, i 6= j,m ∈ {1, 2, 3} (57)

Formulation 4: Proposed ATSPPD MIP Model
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5 Relaxed Models

The ATSPPD forms of the SSB model (Formulation 3) and the OH model (For-
mulation 4) both represent the ATSPPD completely and do not require additional
constraints to eliminate subtours or enforce precedence relationships. However,
as we shall see in section 6, these polynomial length models can be less effective
at optimization than relaxed equivalents. We are looking for ATSPPD MIP for-
mulations that are as effective in solving symmetric problems as the RR model
(Formulation 1), and which have the additional benefit of handling asymmetric
arc costs.

To that end, we also consider relaxed versions of the SSB and OH models
in which the SEC on the y or w variables, respectively, are removed from the
formulation. SEC and precedence constraints are then added lazily as they are
violated within the branch-and-bound tree.

Both the SSB and OH models have the same set of x variables as the ATSPPD
Formulation 2. One option for removing subtours and enforcing precedence is to
use the same constraints on the x variables. This means adding constraints of the
“subtour” (16) or “cutset” (13) form for SEC, and constraints of the form (14) for
enforcing precedence. For the SSB model, precedence can also be enforced using
the y variables by adding constraints of the form (22). All of these options are
considered in section 6.

6 Results

We test various forms of TSPPD and ATSPPD models using instances constructed
from pickup and delivery locations observed at Grubhub, along with expected
travel times connecting location pairs. The test set has 10 instances per problem
size. This allows us to gauge the performance of the models on realistic prob-
lems from meal delivery, in which pickup locations are likely to be clustered close
together, and there may be many near optimal solutions that would have to be
considered to prove optimality.

In order to easily compare asymmetric to symmetric models, we first use the
symmetric Grubhub instances. One we determine the best configurations, we then
perturb these test instances so they are asymmetric, showing that similar perfor-
mance may be expected from our models in the presence of asymmetric arc costs.
We accomplish this by multiplying the upper triangular portion of the cost matrix
by a uniform random variable between 0.7 and 1.3. For each symmetric instance
of the problem set, we generate a single asymmetric instance for testing.

Table 1 describes the various models and configurations.
We evaluate the models according to multiple criteria: the time taken to find

a first feasible TSPPD route, the time to find a route within 10% of the true
optimum, the time to find a route within 5% of the true optimum, the time to find
an optimal route, and the time to prove optimality. The first four measures are
important to real-time logistics, where high quality routes must be found quickly
and there may not be enough time to optimize fully. The final measure quantifies
the capacity of model formulations and algorithms to optimize. We use time to
prove optimality as a proxy for general algorithmic performance while selecting
configurations.
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Constraint Sets

Lazy Constraints

Type Model Formulation SEC Relaxed SEC Precedence

Sym. RR Form. 1 Cutset (6), (7) (6) (7)

Subtour (6), (7) (16) (7)

Asym. AP Form. 2 Cutset (13), (14) (13) (14)

Subtour (13), (14) (16) (14)

OH Form. 4 - - - -

OH/X Cutset (45) (13) (14)

Subtour (45) (16) (14)

SSB Form. 3 - - - -

SSB+A Form. 3 + (25-26) - - -

SSB+A/X Cutset (22) (13) (14)

Subtour (22) (16) (14)

SSB+A/Y Cutset (22) (13) (22)

Subtour (22) (16) (22)

SSB+B Form. 3 + (27-31) - - - -

SSB+B/X Cutset (22) (13) (14)

Subtour (22) (16) (14)

SSB+B/Y Cutset (22) (13) (22)

Subtour (22) (16) (22)

SSB+All Form. 3 + (25-31) - - - -

SSB+All/X Cutset (22) (13) (14)

Subtour (22) (16) (14)

SSB+All/Y Cutset (22) (13) (22)

Subtour (22) (16) (22)

Table 1 Model formulations and constraint sets tested.

Charts report the median and maximum of execution times for each problem
size and model configuration with the vertical axis scaled to log time. These mea-
sures are useful in choosing models for production systems because they give us
a sense of typical performance, poor performance, and the spread of performance
in terms of execution time. Given a target problem size and time budget, we can
use the results of these tests to determine the best approach for a given TSPPD
problem size. Execution times are limited to 1000 seconds. Any model configura-
tion that is not able to achieve a particular goal (e.g. finding a feasible solution, or
finding a solution with 10% of optimal) for all instances of a given size is removed
from consideration for that problem size.

We generate results using Gurobi 8.0.0 as the MIP solver. Model code is written
using C++14. The test machine is a Lenovo X1 Carbon with a 4-core Intel Core
i5 CPU and 16 GB of RAM. We test using a single thread, since such executions
of are deterministic and thus easier to interpret and compare.

Section 6.1 compares the complete SSB and OH formulations to the relaxed
RR and AP formulations, where AP is the asymmetric equivalent of the RR model
given in Formulation 2. Section 6.2 adds valid inequalities to the complete SSB.
Section 6.3 relaxes SEC associated with the y variables in the SSB model and
examines the impact of adding different lazy SEC on x and y variables and adding
precedence constraints, as well as the proposed valid inequalities. Section 6.4 re-
laxes SEC in the OH model. Finally, sections 6.5 and 6.6 provide comprehensive
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Fig. 2 Time to prove optimality for TSPPD MIP models.

results comparing the best of the previous model configurations against symmetric
and asymmetric problem instances, respectively.

6.1 Polynomial Length Models

Figure 2 shows the performance of the complete SSB and OH models compared
with the relaxed RR and AP models. For symmetric problems, the relaxed mod-
els outperform the complete ones as optimizers, often by an order of magnitude,
though the AP formulation does not perform as well as the RR model on the larger
instances. The subtour SEC form tends to be faster than the cutset form, and is
able to fully optimize more instances in the AP model. A notable exception to this
is the RR model, in which the cutset form can fully optimize all test instances with
14 pairs, while the subtour form cannot. For asymmetric problems, as discussed
further in section 6.6, we observe similar order of magnitude speedups in median
time to prove optimality due to model relaxation.

6.2 Valid Inequalities for the Sarin-Sherali-Bhootra Model

Figure 3 adds the valid inequality sets A and B to the complete SSB model. Since
this is the complete model, it does not use SEC or precedence forms. The original
SSB model without additional inequalities is denoted None while All incorporates
the inequalities of both A and B. We observe that the addition of these inequalities
does not significantly impact time to prove optimality for the complete SSB model.

6.3 Relaxed Sarin-Sherali-Bhootra Model

Figure 4 shows the same sets of inequalities applied to the relaxed SSB model. SEC
are added to the relaxed form using the subtour and cutset forms, while precedence
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Fig. 3 Time to prove optimality for SSB model with valid inequalities.

is enforced using constraints on the x and y variables. The complete model does
not use either of these, indicated by NA, and does not include additional valid
inequalities. Points that are missing on the graph indicate model configurations
which were unable to prove optimality for all test instances of that problem size
within 1000 seconds.

In particular, constraint set A improves the ability of the relaxed SSB model
to optimize ATSPPD instances. We observe that the relaxed SSB with constraint
set A, the subtour SEC form, and precedence constraints on the x variables is the
only configuration able to fully optimize all test instances through 14 pickup and
delivery pairs in under 1000 seconds.

6.4 Relaxed O’Neil-Hoffman Model

Figure 5 compares the complete and relaxed versions of the OH model. SEC are
added to the relaxed form using the subtour and cutset forms, while precedence
is enforced using constraints on x variables. The complete model is denoted by NA

for these options.
We observe a similar impact of relaxation among the SSB and OH models.

Both experience speedups of an order of magnitude or more optimizing the larger
instances of the test set, and both are able to optimize larger instances fully within
the time limit. The subtour SEC form is frequently the most effective configuration.

6.5 Comparison of Models on Symmetric Instances

Figure 6 compares the dominant techniques from the previous sections on sym-
metric test instances. RR and AP are the original relaxed STSPPD and ATSPPD
forms. SSB+A/X is the relaxed SSB model with valid inequality set A and prece-
dence constraints lazily added to the x variables. OH/X is the relaxed OH model
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Fig. 4 Time to prove optimality for relaxed SSB models with valid inequalities, SEC forms,
and precedence forms.



Integer Models for the Asymmetric TSPPD 15

●●
●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●●

●●
●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

Median Maximum

2 4 6 8 10 12 14 2 4 6 8 10 12 14

10ms

100ms

1s

10s

100s

1000s

Pickup and Delivery Pairs

T
im

e 
to

 P
ro

ve
 O

pt
im

al
ity

SEC Cutset Subtour NA Precedence ● X NA

Fig. 5 Time to prove optimality for relaxed OH models with SEC and precedence forms.

with precedence constraints lazily added to the x variables. The rows in the chart
correspond to the cutset and subtour SEC forms.

Tables 2, 3, 4, 5, and 6 provide median times to find feasible solutions, find
solutions within 10% of the true optimum, find solutions within 5% of the true
optimum, find optimal solutions, and prove optimality of solutions for the sym-
metric instances in the test set. If a configuration is unable to achieve one of these
benchmarks for all instances of a given size, it is removed from consideration for
that size. Charts for all computational experiments are provided in the appendix.

We observe that, of the models tested, the complete SSB formulation is the
fastest to produce feasible solutions. This is consistent with results from previous
studies comparing it to the relaxed RR model. Interestingly, in spite of not re-
quiring relaxation, the complete OH model is particularly ill equipped to produce
feasible solutions, frequently faring worse than its relaxed forms. This argues the
utility of warm starting these models with high quality solutions.

The AP model with subtour SEC form tends to perform best at finding solu-
tions within 10% and 5% of optimal up through 8 pickup and delivery pairs. After
that point, the RR model is the best option. When it comes to finding optimal
solutions and proving optimality, the RR model loses its edge and is often outper-
formed by either the OH/X or the SSB+A/X models. The OH/X model performs
best at both of these tasks for problems with 14 pickup and delivery pairs, while
the SSB+A/X performs best for problems with 12 and 13 pickup and delivery
pairs.

6.6 Comparison of Models on Asymmetric Instances

Figure 7 compares the dominant techniques from the previous sections on asym-
metric test instances. AP is the original relaxed ATSPPD form. SSB and OH are
the complete ATSPPD formulation. SSB+A/X is the relaxed SSB model with
valid inequality set A and precedence constraints lazily added to the x variables.
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Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 1.9 3.1 5.1 7.9 15.1 15.3 2.9

AP Subtour 1.8 3.0 3.7 5.0 11.3 8.5 2.9

OH - 1.9 2.7 4.0 11.9 27.2 46.7 128.0

OH/X Cutset 1.9 2.1 2.3 5.9 9.8 16.1 19.3

OH/X Subtour 1.9 2.4 2.4 6.0 8.4 11.9 50.4

RR Cutset 2.1 4.2 5.0 6.9 9.3 14.8 35.5

RR Subtour 2.1 3.6 4.4 6.2 8.4 13.0 55.6

SSB - 2.0 2.6 3.6 5.2 8.0 12.4 17.3

SSB+A/X Cutset 1.9 2.4 5.1 7.1 11.0 15.5 30.0

SSB+A/X Subtour 2.0 2.3 5.0 6.2 9.3 12.1 32.6

9 10 11 12 13 14 15

AP Cutset 64.8 260.0 1473.0 1639.0 5170.0 - 10,035

AP Subtour 68.9 84.5 377.0 408.0 2192.0 5855.0 16,842

OH - 197.0 749.0 1340.0 1757.0 2782.0 4874.0 7307

OH/X Cutset 120.0 99.4 1365.0 605.0 2828.0 4484.0 6748

OH/X Subtour 51.0 63.0 271.0 482.0 2804.0 1623.0 10,118

RR Cutset 83.3 130.0 245.0 246.0 475.0 1236.0 6128

RR Subtour 49.5 81.2 256.0 176.0 393.0 756.0 9460

SSB - 22.8 31.4 40.2 54.2 69.1 86.8 106

SSB+A/X Cutset 83.1 232.0 1348.0 314.0 2343.0 4869.0 11,911

SSB+A/X Subtour 58.6 165.0 590.0 315.0 990.0 1827.0 1199

Table 2 Median time to find a feasible solution in milliseconds on symmetric instances.

Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.3 3.2 5.8 12.1 22.9 26.0 73.8

AP Subtour 2.3 3.0 3.7 5.5 20.2 8.5 31.5

OH - 2.0 4.6 8.3 15.9 32.5 64.0 247.0

OH/X Cutset 2.0 3.2 4.7 7.6 11.2 17.1 106.0

OH/X Subtour 2.1 4.0 4.7 8.0 9.6 13.7 50.4

RR Cutset 2.5 4.3 5.0 7.4 9.3 14.8 60.1

RR Subtour 2.6 3.6 4.6 6.2 8.9 13.0 60.8

SSB - 2.5 5.3 9.3 16.3 35.5 54.0 276.0

SSB+A/X Cutset 2.8 3.7 5.4 10.3 15.0 19.0 54.1

SSB+A/X Subtour 2.9 3.7 5.4 7.1 11.3 13.8 66.4

9 10 11 12 13 14 15

AP Cutset 96.4 601.0 - 1889 - - 109,564

AP Subtour 68.9 190.0 - 2409 6503 7036 -

OH - 349.0 998.0 2398 2048 5835 10,870 18,859

OH/X Cutset 147.0 191.0 3539 766 3357 6373 28,909

OH/X Subtour 65.9 147.0 810 599 2804 6141 21,146

RR Cutset 83.3 130.0 503 381 525 4116 25,022

RR Subtour 64.4 81.2 386 194 699 1085 9505

SSB - 144.0 714.0 1454 2130 3206 7642 45,379

SSB+A/X Cutset 93.1 245.0 3670 490 2962 5328 41,664

SSB+A/X Subtour 84.9 187.0 699 348 1559 5955 22,013

Table 3 Median time to find a solution within 10% of optimal in milliseconds on symmetric
instances.
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Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.5 3.6 5.8 13.4 29.7 27.2 97.4

AP Subtour 2.4 3.0 3.7 7.0 27.7 8.5 34.4

OH - 2.3 5.1 8.5 17.1 32.5 72.4 338.0

OH/X Cutset 2.6 3.3 5.1 7.6 13.4 21.4 152.0

OH/X Subtour 2.4 4.0 5.0 8.0 9.6 13.7 58.0

RR Cutset 2.5 4.3 5.2 7.4 9.3 14.8 62.0

RR Subtour 2.6 3.6 5.0 6.2 8.9 26.2 60.8

SSB - 2.5 5.4 10.3 16.3 35.5 58.2 387.0

SSB+A/X Cutset 2.8 3.7 5.6 10.3 16.8 19.5 65.0

SSB+A/X Subtour 2.9 3.8 5.7 7.1 12.8 24.1 72.7

9 10 11 12 13 14 15

AP Cutset 96.4 693.0 - 2747 - - -

AP Subtour 79.2 190.0 - 2573 8938 - -

OH - 532.0 1113.9 4033 2648 18,480 34,112 -

OH/X Cutset 173.0 227.0 3539 766 5010 7182 29,545

OH/X Subtour 65.9 147.0 2789 920 4994 6196 35,481

RR Cutset 92.9 134.0 676 381 565 6778 40,732

RR Subtour 72.1 94.9 2413 209 2656 4301 9505

SSB - 380.0 714.0 2931 2836 8158 20,253 143,594

SSB+A/X Cutset 125.0 294.0 3964 711 3570 5328 64,569

SSB+A/X Subtour 88.1 209.0 2293 348 2668 7402 -

Table 4 Median time to find a solution within 5% of optimal in milliseconds on symmetric
instances.

Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.5 4.3 5.8 13.4 38.5 35.9 129.0

AP Subtour 2.4 3.0 4.3 9.1 33.3 21.6 79.5

OH - 2.6 5.1 9.9 26.7 47.1 82.5 340.0

OH/X Cutset 2.6 3.3 6.5 9.6 29.0 30.2 166.0

OH/X Subtour 2.6 4.4 5.5 10.0 12.0 22.7 65.5

RR Cutset 2.5 4.4 5.2 7.4 15.7 17.0 62.0

RR Subtour 2.6 3.8 5.1 6.2 15.4 26.2 63.3

SSB - 2.5 5.6 10.6 26.0 50.1 139.0 555.0

SSB+A/X Cutset 2.8 3.8 6.4 11.6 25.5 47.7 81.0

SSB+A/X Subtour 2.9 3.8 6.3 9.9 13.0 37.1 75.2

9 10 11 12 13 14 15

AP Cutset 171.0 1107 - 4446 - - -

AP Subtour 82.2 197 - 4479 12,663 - -

OH - 695.0 2227 35,248 14,114 34,552 - -

OH/X Cutset 197.0 415 6392 2023 6000 8083 -

OH/X Subtour 79.6 194 5667 1104 8039 6196 -

RR Cutset 109.0 161 2481 1728 6654 8830 -

RR Subtour 72.1 109 6861 520 4412 8762 -

SSB - 676.0 1438 31,749 20,570 37,519 - -

SSB+A/X Cutset 128.0 343 5681 1746 8306 7402 -

SSB+A/X Subtour 97.6 288 5698 431 3137 12,584 -

Table 5 Median time to find an optimal solution in milliseconds on symmetric instances.
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Fig. 6 Time to prove optimality for the best models.

OH/X is the relaxed OH model with precedence constraints lazily added to the x
variables. The rows in the chart correspond to the cutset and subtour SEC forms.

Tables 7, 8, 9, 10, and 11 provide median times to find feasible solutions,
find solutions within 10% of the true optimum, find solutions within 5% of the
true optimum, find optimal solutions, and prove optimality of solutions for the
asymmetric instances in the test set. Once again, if a configuration is unable to
achieve one of these benchmarks for all instances of a given size, it is removed from
consideration for that size.

Much of the general behavior of the models observed in section 6.5 applies
to asymmetric instances, and performance of the asymmetric models is similar.
Again, the complete SSB formulation is fastest to produce feasible solutions and
the OH model suffers in this capacity.

One difference we note in solving asymmetric instances is the apparent power
of the OH/X model at finding high quality solutions and at finding and proving
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Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.7 4.6 6.7 21.1 46.5 50.9 143.0

AP Subtour 2.6 3.2 4.7 10.0 34.1 22.4 109.0

OH - 2.7 5.8 10.6 53.0 52.4 137.0 426.0

OH/X Cutset 2.7 3.6 7.3 12.1 29.6 40.2 168.0

OH/X Subtour 2.7 4.5 6.1 10.3 12.7 25.5 68.3

RR Cutset 2.8 4.6 5.7 11.4 18.3 27.2 71.3

RR Subtour 2.8 3.9 5.9 10.5 18.2 26.7 70.7

SSB - 2.8 6.1 11.7 40.8 50.4 234.0 696.0

SSB+A/X Cutset 2.9 4.0 9.5 12.4 25.9 50.4 118.0

SSB+A/X Subtour 3.0 4.6 8.6 10.1 16.1 37.2 88.5

9 10 11 12 13 14 15

AP Cutset 191.0 1135 - 4792 - - -

AP Subtour 93.6 229 - 4556 17,834 - -

OH - 735.0 2885 38,386 23,916 - - -

OH/X Cutset 202.0 461 10,016 2307 6940 8157 -

OH/X Subtour 89.6 214 5899 1228 9392 6299 -

RR Cutset 116.0 175 3689 1748 7314 8911 -

RR Subtour 73.6 125 7899 534 6817 - -

SSB - 750.0 2188 37,921 29,847 79,362 - -

SSB+A/X Cutset 165.0 347 - 1786 10,912 11,886 -

SSB+A/X Subtour 103.0 291 6386 445 5979 13,440 -

Table 6 Median time to prove optimality in milliseconds on symmetric instances.

Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 1.8 3.5 5.3 5.3 9.2 46.3 2.8

AP Subtour 1.8 3.1 4.2 4.9 8.5 30.4 2.3

OH - 1.9 2.4 4.0 12.2 25.4 45.1 198.0

OH/X Cutset 2.0 2.1 2.5 5.8 7.7 11.3 33.5

OH/X Subtour 1.9 2.1 2.5 5.7 7.5 9.4 30.6

SSB - 2.0 2.8 3.6 5.3 8.3 10.8 16.9

SSB+A/X Cutset 2.2 2.3 5.3 6.1 8.8 10.8 33.7

SSB+A/X Subtour 2.3 2.2 5.0 6.0 8.5 12.5 40.5

9 10 11 12 13 14 15

AP Cutset 187.0 101.0 1470.0 1535.0 2745.0 - 86,987

AP Subtour 55.9 120.0 217.0 504 0 3598.0 1162.0 -

OH - 183.0 726.0 1211.0 509 0 2662.0 3803.0 6453

OH/X Cutset 63.9 205.0 1944.0 1540.0 3084.0 4899.0 4357

OH/X Subtour 560.0 214.0 438.0 259.0 782.0 1322.0 10,430

SSB - 24.1 30.6 40.1 50.3 64.1 80.7 100

SSB+A/X Cutset 133.0 625.0 390.0 2183.0 2868.0 5740.0 6232

SSB+A/X Subtour 56.8 90.5 497.0 427.0 662.0 5185.0 11,591

Table 7 Median time to find a feasible solution in milliseconds on asymmetric instances.

optimality for instances with 9 or more pickup and delivery pairs. In particular,
OH/X with the subtour form of SEC is most frequently the fastest of the asym-
metric models at these tasks.
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Fig. 7 Time to prove optimality for the best models on asymmetric instances.

7 Conclusions and Future Work

In the paper we examine the performance of different MIP models for solving
TSPPDs, measuring their utility in solving real-time logistics problems, in which
routes must be optimized within strict time budgets. Our goal is to build ATSPPD
models that have similar performance characteristics to the STSPPD MIP version
of the Ruland and Rodin (1997) model.

We implement relaxed models of symmetric and asymmetric forms based on
two-matching and assignment problem relaxations. To these we compare the com-
plete formulation of Sarin et al. (2005) with and without new valid inequalities for
the ATSPPD, and a new MIP ATSPPD model that includes a secondary variable
set specifying precedence configurations among multiple pickup and delivery pairs.
Both complete ATSPPD forms are then relaxed. SEC are added to the x variables
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Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.4 3.5 5.6 7.1 10.8 74.4 74.4

AP Subtour 1.9 3.4 4.9 10.7 12.5 32.9 112.0

OH - 2.3 4.3 9.3 15.8 29.6 52.5 261.0

OH/X Cutset 2.0 3.3 6.6 6.7 7.7 12.7 78.2

OH/X Subtour 2.0 3.6 5.3 7.3 9.8 11.7 106.0

SSB - 2.7 5.4 9.9 16.1 32.5 51.3 226.0

SSB+A/X Cutset 3.0 3.6 7.4 8.1 10.4 23.8 86.3

SSB+A/X Subtour 3.0 3.4 6.4 9.1 9.8 25.9 77.9

9 10 11 12 13 14 15

AP Cutset 292.0 295 4461 2288 3603 - 196,670

AP Subtour 55.9 181 4531 3385 5824 11,351 -

OH - 226.0 843 1812 2382 3826 6744 17,869

OH/X Cutset 150.0 342 3443 2261 3696 13,388 35,242

OH/X Subtour 56.0 290 877 350 936 5651 30,334

SSB - 368.0 798 1284 2256 6026 6437 27,090

SSB+A/X Cutset 195.0 921 3457 2711 4779 8031 25,420

SSB+A/X Subtour 86.9 181 4345 667 2219 12,009 -

Table 8 Median time to find a solution within 10% of optimal in milliseconds on asymmetric
instances.

Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.4 3.5 6.4 7.1 14.0 76.5 86.4

AP Subtour 2.1 3.4 5.0 10.7 12.5 35.0 141.0

OH - 2.4 4.3 9.8 15.8 29.7 66.0 330.0

OH/X Cutset 2.5 3.3 7.5 8.2 11.6 28.4 124.0

OH/X Subtour 2.3 3.6 5.7 10.0 11.1 13.7 124.0

SSB - 2.7 5.4 10.1 18.7 32.5 68.5 286.0

SSB+A/X Cutset 3.0 3.7 8.7 11.2 12.0 25.0 114.0

SSB+A/X Subtour 3.0 3.6 6.7 10.5 10.6 30.3 100.0

9 10 11 12 13 14 15

AP Cutset 302.0 518 6594 2542 4194 - 221,132

AP Subtour 133.0 195 5002 4645 8635 13,845 -

OH - 299.0 1002 4547 3045 9187 12,096 77,133

OH/X Cutset 163.0 342 3738 2626 3696 14,704 47,378

OH/X Subtour 63.7 301 878 364 936 5706 50,053

SSB - 479.0 798 5738 2731 9929 10,806 62,624

SSB+A/X Cutset 195.0 1077 3734 2960 5799 8115 -

SSB+A/X Subtour 86.9 182 6156 1002 3365 13,091 -

Table 9 Median time to find a solution within 5% of optimal in milliseconds on asymmetric
instances.

using lazy constraints of multiple forms, and precedence constraints are added on
the x and y variables, where applicable.

We find that relaxation of SEC in the complete models is highly effective in
improving their performance, and that the impact of valid inequalities added to
the Sarin et al. (2005) model increases in the presence of relaxation. We also find
that, on asymmetric problem instances, our new MIP ATSPPD model tends to
be more effective than the other models tested at finding high quality solutions,
and proving optimality, though it is poor at finding feasible solutions quickly on
its own.
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Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.4 3.8 7.5 16.1 21.3 80.2 169

AP Subtour 2.5 3.8 6.5 12.2 12.9 38.8 155

OH - 2.4 4.3 16.6 21.8 41.8 101.0 618

OH/X Cutset 2.8 3.4 9.9 18.9 28.8 36.6 188

OH/X Subtour 2.7 3.7 6.5 17.9 14.8 16.3 153

SSB - 2.7 5.9 11.0 21.9 39.8 113.0 617

SSB+A/X Cutset 3.0 3.7 10.3 14.3 20.4 41.5 173

SSB+A/X Subtour 3.0 3.6 6.7 10.6 25.5 38.4 112

9 10 11 12 13 14 15

AP Cutset 544 1002 - 7054 - –

AP Subtour 139 266 - 7462 16,387 56,184 -

OH - 515 1916 18,970 29,282 30,047 - -

OH/X Cutset 182 342 - 4609 5597 16,064 -

OH/X Subtour 111 336 2736 883 2930 8258 -

SSB - 718 1439 20,862 20,190 37,461 112,366 -

SSB+A/X Cutset 202 1588 - 4387 6947 12,180 -

SSB+A/X Subtour 116 241 - 3621 4178 14,491 -

Table 10 Median time to find an optimal solution in milliseconds on asymmetric instances.

Pickup and Delivery Pairs

Model SEC 2 3 4 5 6 7 8

AP Cutset 2.5 4.1 8.7 18.4 44.2 82.4 207

AP Subtour 2.6 3.9 7.1 12.9 17.4 41.4 159

OH - 2.8 4.6 17.2 22.0 51.4 114.0 728

OH/X Cutset 2.9 3.5 12.1 19.2 29.0 43.6 230

OH/X Subtour 2.8 4.0 8.2 18.6 21.1 25.1 160

SSB - 2.8 6.0 11.1 22.2 40.8 159.0 738

SSB+A/X Cutset 3.3 3.9 12.0 15.9 33.4 61.4 188

SSB+A/X Subtour 3.5 3.7 8.9 11.1 27.0 42.1 140

9 10 11 12 13 14 15

AP Cutset 763 1013 - - - - -

AP Subtour 143 308 - - 16,542 63,458 -

OH - 532 3340 30,957 30,032 43,887 - -

OH/X Cutset 185 376 - 4799 5752 16,741 -

OH/X Subtour 115 339 - 1014 3143 9085 -

SSB - 724 2182 30,065 34,142 48,025 216,286 -

SSB+A/X Cutset 204 1621 - 4440 6981 15,604 -

SSB+A/X Subtour 121 246 - 3693 4214 14,923 -

Table 11 Median time to prove optimality in milliseconds on asymmetric instances.

We believe these results are interesting and useful in that they propose asym-
metric models that are competitive with their symmetric counterparts. We expect
that our newly proposed MIP ATSPPD model may adapt particularly well to
pickup and delivery problems involving multiple vehicles, and that there are addi-
tional inequalities that may improve its performance. Both of these are avenues for
future research. Finally, we intend to see if alternative warm starts will improve
overall computation time.
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Fig. 8 Time to find a feasible solution for TSPPD MIP models.
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Fig. 9 Time to find a solution within 10% of optimal for TSPPD MIP models.
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Fig. 10 Time to find a solution within 5% of optimal for TSPPD MIP models.
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Fig. 11 Time to find an optimal solution for TSPPD MIP models.
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Fig. 12 Time to prove optimality for TSPPD MIP models.
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Fig. 13 Time to find a feasible solution for SSB model with valid inequalities.
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Fig. 14 Time to find a solution within 10% of optimal for SSB model with valid inequalities.
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Fig. 15 Time to find a solution within 5% of optimal for SSB model with valid inequalities.
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Fig. 16 Time to find an optimal solution for SSB model with valid inequalities.
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Fig. 18 Time to find a feasible solution for relaxed SSB models with valid inequalities, SEC
forms, and precedence forms.
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Fig. 19 Time to find a solution within 10% of optimal for relaxed SSB models with valid
inequalities, SEC forms, and precedence forms.
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Fig. 20 Time to find a solution within 5% of optimal for relaxed SSB models with valid
inequalities, SEC forms, and precedence forms.
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Fig. 21 Time to find an optimal solution for relaxed SSB models with valid inequalities, SEC
forms, and precedence forms.
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Fig. 22 Time to prove optimality for relaxed SSB models with valid inequalities, SEC forms,
and precedence forms.
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Fig. 23 Time to find a feasible solution for relaxed OH models with SEC and precedence
forms.
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Fig. 24 Time to find a solution within 10% of optimal for relaxed OH models with SEC and
precedence forms.
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Fig. 25 Time to find a solution within 5% of optimal for relaxed OH models with SEC and
precedence forms.
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Fig. 26 Time to find an optimal solution for relaxed OH models with SEC and precedence
forms.
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Fig. 27 Time to prove optimality for relaxed OH models with SEC and precedence forms.
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Fig. 28 Time to find a feasible solution for the best models on symmetric instances.
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Fig. 29 Time to find a solution within 10% of optimal for the best models on symmetric
instances.
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Fig. 30 Time to find a solution within 5% of optimal for the best models on symmetric
instances.
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Fig. 31 Time to find an optimal solution for the best models on symmetric instances.
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Fig. 32 Time to prove optimality for the best models on symmetric instances.
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Fig. 33 Time to find a feasible solution for the best models on asymmetric instances.
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Fig. 34 Time to find a solution within 10% of optimal for the best models on asymmetric
instances.
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Fig. 35 Time to find a solution within 5% of optimal for the best models on asymmetric
instances.
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Fig. 36 Time to find an optimal solution for the best models on asymmetric instances.
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Fig. 37 Time to prove optimality for the best models on asymmetric instances.
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