A Distributionally Robust Analysis of PERT

Ernst Roos, Dick den Hertog
CentER and Department of Econometrics and Operations Research, Tilburg University
e.j.roos@tilburguniversity.edu, d.denhertog@tilburguniversity.edu

November 8, 2018

Abstract
Traditionally, stochastic project planning problems are modeled using the Program Evaluation and Review Technique (PERT). PERT is an attractive technique that is used a lot in practice as it requires specification of few characteristics of the activities’ duration. Moreover, its computational burden is extremely low. Over the years, four main disadvantages of PERT have been voiced and much research has been devoted to analyzing these disadvantages. Most of all, numerous studies investigate the effect of the beta distribution and corresponding variance PERT assumes by analyzing the results for a variety of other distributions. In this paper, we propose a more general method of analyzing the sensitivity of PERT’s results to its assumptions regarding the beta distribution that addresses three out of the four main disadvantages of PERT. In particular, we do not assume a singular distribution for the activity distribution, but instead assume this distribution to only be partially specified by its support, mean and possibly its mean absolute deviation. The exact worst- and best-case expected project duration over this set of distributions can be calculated through results from distributionally robust optimization on the corresponding worst- and best case distributions themselves. Based on these, we can compute tight lower and upper bounds for the expected project duration, which allows us to comment on the value of information, that is, the potential value of knowing the true distribution. A numerical study of project planning instances from PSPLIB shows that the effect of PERT’s assumption regarding an underlying beta distribution is limited. Moreover, we find that the added value of knowing the exact mean absolute deviation or variance is also modest. We advocate to add our method of analysis to project planning software as a means to check whether PERT’s assumptions are particularly detrimental to the project of interest.

Keywords: project planning, distributionally robust optimization, PERT
1 Introduction

Efficient planning of projects has been studied extensively for decades. Optimization of decisions regarding the planning of projects under various circumstances has been investigated in for example (Demassey et al., 2005; Zhu et al., 2006). Even when the optimization aspect of project planning is disregarded, one is left with computationally challenging problems. In particular, if uncertainty is present in the duration of activities, determining the project length’s distribution or even expectation is usually a difficult computational problem. In this light, a common assumption in PERT, the Program Evaluation and Review Technique first proposed by Malcolm et al. (1959), is that activity durations follow a beta distribution. To properly define this beta distribution, three values for each activity, a pessimistic, optimistic and most likely duration are assumed to be known. Subsequently, it is assumed that the standard deviation is one sixth of the range of the distribution and that a linear approximation for the mean is acceptable (Littlefield Jr and Randolph, 1987). Given this beta distribution, the critical set of activities is determined based on the mean activity duration that follows from this assumed beta distribution, and the expected project length is calculated by summing the mean activity duration of all critical activities.

This technique is particularly attractive because of its extremely low computational burden. Moreover, it only requires the support and mode to be known and/or estimated from historical data. Because of these advantages, PERT is widely used in practice and implemented in software packages such as MS Project. In general, four main points of criticism on PERT exist (Hajdu, 2013):

1. An additional assumption on the variance is needed to fully specify the beta distribution;
2. The beta distribution used might not appropriately model reality;
3. Activity durations are assumed to be independent;
4. The expected project duration found is usually too optimistic.

Much research has been devoted to addressing these disadvantages. The assumption that activity durations are independent has been relaxed by Klein Haneveld (1986), among others. Klein Haneveld (1986) discusses the worst-case project duration distribution given (partly specified) marginal distributions.

Moreover, many alternatives to the beta distribution have been proposed, hoping to alleviate both issue 2 and 4. Hahn (2008), for example, discusses an extension of the beta distribution that allows a user to vary the variability of different activities. Other
suggested distributions include, but are not limited to, the doubly truncated normal
distribution (Kotiah and Wallace, 1973) and the triangular distribution (Johnson, 1997).
While many of these alternatives have specific advantages, the question remains whether
these distributions do appropriately model reality.

In this paper, we analyze PERT’s assumptions regarding the beta distribution and its
variance, not by analyzing an alternative to the beta distributions, but by considering
all distributions with a specified support, mean and possibly mean absolute deviation.
We use techniques from Distributionally Robust Optimization to derive tight upper and
lower bounds for the expected project duration given this distributional information. Our
analysis thus addresses PERT’s disadvantages with respect to the beta distribution and
its variance, as it does not assume any specific distribution for the activity duration but
instead considers sets of potential distributions. Moreover, by considering both the best-
and worst-case distribution in this set, we are sure not to end up with an optimistic
expected project duration.

The ideas in (Birge and Maddox, 1995) are most similar to what we propose in the
current literature. They also bound the expected project duration given limited informa-
tion on the activity duration distribution. The bounds they propose, however, are not
tight, and therefore they cannot necessarily draw definitive conclusions with respect to
PERT’s core assumptions.

More specifically, our approach uses the results by Ben-Tal and Hochman (1972) that
show that the distributions that attain the best- and worst-case expected value of a convex
function for the above ambiguity set are a two and three point distribution, respectively.
Knowing both the best- and worst-case distribution allows us to analyze the expected
project duration without making assumptions with regards to the type of true underlying
distribution. Moreover, by comparing the expected project duration for the best- and
worst-case distributions, we can comment on the importance of actual knowing the true
distribution. Furthermore, PERT generally only considers a single scenario for the whole
project, in which all activities are at their mean value. This implies that PERT only
considers a single critical path: the path that is critical when all activities are at their
mean duration. Due to the nature of the three-point distribution that attains the worst-
case expected project duration, our method considers every possible combination of the
maximum, minimum and mean duration for each activity. We thus consider every possible
critical path, thereby avoiding one of the main causes of PERT’s optimistic result.

The results from Ben-Tal and Hochman (1972) allow us to work with discrete two-
or three-point distributions instead of (unknown) continuous distributions. Because we
consider all combinations of the three possible values for each activity, however, computing
the best- and worst-case expected project duration still requires the project duration to
be computed for an exponential amount of scenarios. We remark that although these two- and three-point distributions might not be realistic distributions for the activity duration, we do not consider them to be; they are simply used as a tool to obtain tight upper and lower bounds on the expected project duration. In this paper, we also present an algorithm that severely diminishes the (exponential) number of scenarios that have to be considered. Moreover, we present techniques to obtain bounds on the worst- and best-case project duration, one of which is particularly effective, such that we can obtain slightly weaker bounds with less computational effort. These bounds can be employed whenever the project at hand contains a prohibitively high number of activities. Employing these techniques, we can effectively bound the expected project duration for projects with up to 120 activities.

The contributions of this paper can be summarized as follows:

1. We propose a new method of analysis that yields tight upper and lower bounds for the expected project duration when PERT’s assumptions on the beta distribution and its variance are relaxed. We advocate to add the method to project planning software as a means to check whether PERT’s assumptions are particularly detrimental to the project of interest.

2. We analyze a large set of projects from PSPLIB with these methods and show that the gap between the worst-case expected project duration and PERT’s result is below 1% on average and always below 3% when activity duration can deviate up to 15%. We thus find that PERT’s assumptions on distribution and variance are not particularly detrimental.

The remainder of the paper is organized as follows. Section 2 elaborates on the mathematical background of PERT. Section 3 introduces the distributionally robust techniques we apply to this framework, as well as the algorithm we develop to compute the resulting expressions. Section 4 discusses the methods to obtain upper and lower bounds for both the best- and worst-case expected project length. In Section 5 we present the results of the numerical experiments for both the algorithm as well as the discussed bounds for instances from PSPLIB.

2 The Basics of PERT

Project planning as modeled by PERT (Malcolm et al., 1959) is represented by a directed graph $G = (V, A)$. Here, $V = \{1, \ldots, n\}$, where 1 represents the start of the project and n represents the completion. Activities for this project are represented by arcs $e \in A$, with $|A| = m$ and a duration $l_e \in \mathbb{R}_+$. Precedence constraints between activities are modeled
by the vertices $2, \ldots, n - 1$. Suppose performing activity $e_3 \in A$ requires the activities $e_1, e_2 \in A$ to be completed. It then holds that the destination of e_1, e_2 is equal to the origin of e_3. The minimum amount of time in which the project can be completed is found by finding the longest (also called critical) path in G from 1 to n.

We will denote the longest path in G by $f(l)$ and note that it can be computed by recursively computing the longest path to the nodes in the graph. We remark that any graph constructed by this logic cannot contain cycles and thus one can always order the vertices in such a way that $i > j$ implies $(i, j) \notin A$. Therefore, if l is given, $f(l)$ can be calculated in $O(|A| + |V|)$.

Typically, activity durations are assumed to include some form of uncertainty. In the traditional PERT approach, all activity durations are assumed to be independent and follow a beta distribution. More specifically, it assumes that three values are specified for each activity: the most likely activity duration, m_e, an optimistic duration, a_e, and a pessimistic duration, b_e. By additionally assuming the standard deviation to be given by $\frac{1}{6}(b_e - a_e)$, the beta distribution is fully specified. In particular, we know that its mean is given by

$$\mu_e = \frac{a_e + 4m_e + b_e}{6}.$$

Three of the main points of criticism on PERT stem from the above assumptions: PERT needs an additional assumption on the variance of the activity duration, assumes those to be independent and assumes a beta distribution. The last common critique is the fact that its analysis generally yields an optimistic value for the expected project duration. The root of this optimism is the manner in which the expected project duration is calculated. More specifically, the analysis only explicitly considers the graph for the mean activity durations μ. This disregards the fact that there might be a different critical path dependent on the realization of l. As already noted by Malcolm et al. (1959): “This simplification gives biased estimates such that the estimated expected time of events are always too small.”

The main objective of the PERT analysis is to determine an accurate estimate of the project duration’s distribution. To this end, the constructed graph G is analyzed when all activity lengths are equal to their mean duration, that is, $f(\mu)$ is calculated. Based on this analysis, a subset of activities is marked as critical, exactly those edges that are in the longest path in determining $f(\mu)$. The project duration’s variance is then calculated by

$$\sigma_P^2 = \sum_{e \in CP} \sigma_e^2,$$

where CP is the collection of critical activities. The project duration’s distribution is assumed to be normal with the above characteristics, i.e., $f(l) \sim N(f(\mu), \sigma_P^2)$.

5
3 A Distributionally Robust Analysis of PERT

In Distributionally Robust Optimization it is common to assume an uncertain parameter follows an unknown distribution of which only some characteristics are specified. In this paper, similar to PERT, we consider distributions with a known bounded support \(\text{supp}(z) \subseteq [a,b] \). Moreover, we assume a known mean \(\mathbb{E}_P[z] = \mu \), potentially a known mean absolute deviation from the mean \(\mathbb{E}_P|z-\mu| = d \) and potentially a known probability to be bigger than the mean \(\mathbb{P}(z \geq \mu) = \beta \).

Adapting this to the project planning setting, we assume that each \(l_e \) is independent and its distribution resides in an ambiguity set defining certain characteristics. To this end, we define three ambiguity sets given by:

\[
P_\mu = \{ \mathbb{P} : \text{supp}(l_e) \subseteq [a_e, b_e], \; \mathbb{E}_\mathbb{P}[l_e] = \mu_e \; \forall e \in A, \; l_e \perp l_f \; \forall e \neq f \}, \tag{1}
\]

\[
P_{(\mu,d)} = \{ \mathbb{P} \in P_\mu : \mathbb{E}_\mathbb{P}[|l_e-\mu_e|] = d_e \; \forall e \in A \}, \tag{2}
\]

\[
P_{(\mu,d,\beta)} = \{ \mathbb{P} \in P_{(\mu,d)} : \mathbb{P}(l_e \geq \mu_e) = \beta_e \; \forall e \in A \}. \tag{3}
\]

In general, Ben-Tal and Hochman (1972) state that we can calculate the lowest and highest possible expectation of the project duration \(f \) over these ambiguity sets, which relate by:

\[
\inf_{\mathbb{P} \in P_\mu} \mathbb{E}[f(l)] \leq \inf_{\mathbb{P} \in P_{(\mu,d,\beta)}} \mathbb{E}[f(l)] \leq \sup_{\mathbb{P} \in P_{(\mu,d,\beta)}} \mathbb{E}[f(l)] \leq \sup_{\mathbb{P} \in P_\mu} \mathbb{E}[f(l)].
\]

When \(d_e = 2 \frac{(b_e-\mu_e)(\mu_e-a_e)}{(b_e-a_e)} \), which is the maximum value the mean absolute deviation can have given \(a, b \) and \(\mu \), the third inequality is in fact an equality. Moreover, if the critical path is equal for any combination of values in \([a_e, b_e] \), all inequalities are equalities, as the expected project duration is then simply the sum of the expected duration of the activities on this single critical path.

It is easy to show that the best-case project duration over the simple ambiguity set (1), that is, \(\inf_{\mathbb{P} \in P_\mu} \mathbb{E}[f(l)] \), is equal to the expected project duration the standard PERT approach yields. This confirms the criticism that PERT generally yields too optimistic values for the expected project duration.

Lemma 1. PERT’s expected project duration equals \(\inf_{\mathbb{P} \in P_\mu} \mathbb{E}[f(l)] \).

Proof. From Ben-Tal and Hochman (1972) and Jensen’s bound we know that

\[
\inf_{\mathbb{P} \in P_\mu} \mathbb{E}[f(l)] = f(\mu),
\]

which is exactly the expected project duration that PERT yields. \(\square \)
In order to apply the results by Ben-Tal and Hochman (1972), it is necessary for \(f(l) \) to be convex in \(l \). In order to see that this is true, it is important to note that \(f(l) \) is the (recursive) maximum of several affine functions in \(l \). The fact that \(f(l) \) is convex then follows from the fact that both the sum and maximum of convex functions is once again a convex function.

This means that the expressions for the worst-case and best-case expectation given by Ben-Tal and Hochman (1972) and Postek et al. (2018) can be used.

Lemma 2.

\[
\sup_{P \in \mathcal{P}(\mu,d,\beta)} \mathbb{E}[f(l)] = \sum_{\alpha \in \{1,2,3\}^m} \prod_{e \in A} p_{\alpha_e} f\left(\tau_{\alpha_1}^{1}, \ldots, \tau_{\alpha_m}^{m}\right),
\]

where

\[
p_{1}^{e} = \frac{d_{e}}{2(\mu_{e} - a_{e})}, \quad p_{3}^{e} = \frac{d_{e}}{2(b_{e} - \mu_{e})}, \quad p_{2}^{e} = 1 - p_{1}^{e} - p_{2}^{e},
\]

and

\[
\tau_{1}^{e} = a_{e}, \quad \tau_{2}^{e} = \mu_{e}, \quad \tau_{3}^{e} = b_{e},
\]

for all \(e \in A \).

Proof. This is a reformulation of Theorem 3 in Ben-Tal and Hochman (1972).

Essentially, this result states that the distribution that attains the worst-case expected project duration is a three point distribution on the boundaries of the support and the mean, resulting in \(3^m \) possible outcomes for \(l \) with according probabilities. It is important to remark that we consider all possible combinations of these possibilities, while the standard PERT analysis only considers a single critical path. We thus compute the worst-case expected project duration by determining \(f\left(\tau_{\alpha_1}^{1}, \ldots, \tau_{\alpha_m}^{m}\right) \) for all possible combinations of \(\tau \), here the longest paths in the deterministic graphs, and adding these after multiplication with the relevant probability. This results in a computation of total complexity \(\mathcal{O}(3^{|A|}(|A| + |V|)) \). Observe that \(\beta_e \) is not used in the definition of this distribution, which means that no information on \(P(l_e \geq \mu_e) \) is necessary to find the worst-case expected project duration. It is however, necessary for finding the best-case expected project duration.

The expression for the best-case expected project duration is given in the following Lemma.

Lemma 3.

\[
\inf_{P \in \mathcal{P}(\mu,d,\beta)} \mathbb{E}[f(l)] = \sum_{\alpha \in \{1,2\}^m} \prod_{e=1}^{m} q_{\alpha_e} f\left(\nu_{\alpha_1}^{1}, \ldots, \nu_{\alpha_m}^{m}\right),
\]

where

\[
q_{1}^{e} = 1 - \beta_{e}, \quad q_{2}^{e} = \beta_{e}
\]
and

$$\nu_1^e = \mu_e - \frac{d_e}{2(1 - \beta_e)}, \quad \nu_2^e = \mu_e + \frac{d_e}{2\beta_e},$$

for all $e \in A$.

Proof. This is a reformulation of Theorem 1 in Ben-Tal and Hochman (1972).

This result states that the distribution that attains the best-case expected project duration is a two-point distribution. This results in a computation of total complexity $O(2^{|A| + |V|})$ for the best-case expected project length.

Because of the exponential nature of both the best- and worst-case expected project duration, the above expressions seem impossible to compute within a reasonable time for any realistic projects. In practice, this means we can only compute the best- and worst-case project duration for projects with up to 14 activities. We therefore develop an algorithm that severely diminishes the number of scenarios for which the critical path needs to be computed. While the algorithm we develop still has a worst-case computational complexity of $O(3^{|A| + |V|})$, it allows us to compute the best- and worst-case expected project duration for projects with up to 40 activities.

The algorithm used in this paper is based on the following observation. Let $\alpha \in \{1, 2, 3\}^m$ and let C be the set of activities that form the longest path in the graph with activity durations $\tau_{\alpha_1}^1, \ldots, \tau_{\alpha_m}^m$. Then for any $\tilde{\alpha} \in \{1, 2, 3\}^m$ such that

$$\begin{cases}
\tilde{\alpha}_c = \alpha_c & \forall c \in C \\
\tilde{\alpha}_c \leq \alpha_c & \forall c \notin C,
\end{cases}$$

we know that $f(\tau_{\tilde{\alpha}_1}^1, \ldots, \tau_{\tilde{\alpha}_m}^m) = f(\tau_{\alpha_1}^1, \ldots, \tau_{\alpha_m}^m)$, as $\tau_1^e \leq \tau_2^e \leq \tau_3^e$ for any $e \in A$ and thus the critical path for both scenarios is the same. This observation means that for many scenarios, the critical path will not have to be computed as it has been determined while evaluating a different scenario. For more details on the implementation of the algorithm we refer the interested reader to Appendix A.

4 Faster Approximation of the Worst- and Best-Case Bounds

Since the approach we discuss in this paper is fairly expensive computationally, less demanding variants are desirable. In this section we propose adaptations to the project or our approach that will decrease the quality of the obtained bound on the expected project duration while increasing the computational tractability. For ease of exposition we will focus on upper bounds for the worst-case expected project duration in this section. The
two latter proposals in this section can easily be adapted to yield lower bounds as well. Bounds for the best-case expected project duration can be found in the exact same way as well.

First of all, we remark that by fixing the order of the scenarios for which the longest path is computed, any partial completion of the algorithm can lead to an upper bound on the worst-case project duration. That is, given that the scenarios are processed such that the sequence of project durations is decreasing, an upper bound for the worst-case expected project duration is obtained by assuming all unprocessed scenarios’ project duration is equal to the last project duration calculated. A disadvantage of this approach is the fact that the quality of the resulting bound is particularly bad for low amounts of computational time. An advantage, on the other hand, is that it is very easy to implement and yields a bound for any specified maximum computation time.

Two other possible upper bounds can be defined by altering the project such that the worst-case expected project duration increases. In particular, we consider two operations that decrease the number of activities with uncertainty and thus lessen the computational burden. The easiest way to attain this goal is completely removing uncertainty from an activity, that is, set \(l_e = b_e \) for some \(e \in A \). The amount by which the quality of the bound decreases is highly dependent on the activities chosen to perform this operation on. In general, it seems attractive to select those activities that had low impact on the expected project duration to start with. In other words, we select the activities with the lowest mean absolute deviation.

The second alteration to the project we consider is the merging of two activities. More specifically, we consider replacing two activities by a single activity given that they are each others unique successor and predecessor, respectively. Mathematically, this means we replace activities \((i, j), (j, k) \in E \) by a single activity \((i, k) \) such that

\[
\text{supp}((i, k)) = [a_{(i,j)} + a_{(j,k)}, b_{(i,j)} + b_{(j,k)}], \quad \mathbb{E}[l_{(i,k)}] = \mu_{(i,j)} + \mu_{(j,k)}.
\]

Unfortunately, the worst-case expected project duration is not equal to that of the original project, for we cannot directly compute the mean absolute deviation of the newly introduced activity. We do know, however, that the worst-case expected project duration is increasing in the mean absolute deviation of all activities (Postek et al., 2018). Therefore, any upper bound on \(\mathbb{E}[l_{(i,k)} - \mu_{(i,j)} - \mu_{(j,k)}] \) will yield an upper bound on the original worst-case project duration.

Postek et al. (2018) suggests a number of different techniques to obtain such an upper bound. Here, we use Proposition 5 from their work, that exploits the observation that the absolute value is a convex function and the mean absolute deviation can thus be bounded by the same theory used for the expected project duration. This means we
consider $3^2 = 9$ different scenarios for $(l_{(i,j)}, l_{(j,k)})$ to find a fairly tight upper bound on $E[|l_{(i,k)} - \mu_{(i,j)} - \mu_{(j,k)}|]$. Once again, we choose to merge those activities that have the lowest mean absolute deviation to stay as close to the true worst-case expected project duration as possible.

We note that for the best-case expected project duration we require a lower bound on $E[|l_{(i,k)} - \mu_{(i,j)} - \mu_{(j,k)}|]$. For this, we can similarly use the idea that the mean-absolute deviation is a convex function to bound it from below by considering $2^2 = 4$ different scenarios for $(l_{(i,j)}, l_{(j,k)})$.

5 Numerical Experiments

5.1 Illustrative Examples

For illustrative purposes, we first consider two examples commonly considered in the literature. More specifically, we consider the two projects analyzed by Birge and Maddox (1995). Figure 1 and 2 graphically depict the projects, Table 1 and 3 contain information on all activities and Table 2 and 4 summarizes the results from Birge and Maddox (1995) as well as our approach. Since the data for these examples only include information on the first two moments of the distribution of all activity durations, we consider two different values for the mean-absolute deviation: the minimum and maximum possible value given the variance, given by $\frac{2\sigma_b^2}{b-a}$ and σ, respectively (Postek et al., 2018).

These two examples perfectly illustrate the quality of the bound on the expected project duration we obtain. In example 1, where previous known bounds determine the expected project duration exactly, irrespective of the true distribution, we find the exact same value. We note that in this example there is only a single critical path for all scenarios, which is why the best- and worst-case project duration coincide.

In example 2, on the other hand, there are multiple potential critical paths. The lower and upper bounds found by Birge and Maddox (1995) therefore still had a significant gap. Here, we can narrow the gap by a factor three if we know (or have an accurate estimate of) the mean absolute deviation. Moreover, if only the variance is known, we can tighten the bounds to $[3.07, 3.68]$, which is still a little over half the original gap. This empirically shows that the bounds by Birge and Maddox (1995) are not tight. We note that for illustrative purposes, the potential deviation in these examples is unrealistically large (up to 100% of the mean). The relative size of the gap with respect to the value of the expected project duration is therefore disproportionally large.
Figure 1: Project network for Example 1, labels indicate the activity’s index.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1/3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1/3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4/3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2\frac{1}{2}</td>
<td>1/12</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>4/3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1/3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>4\frac{1}{2}</td>
<td>1/12</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1\frac{1}{2}</td>
<td>1/12</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Table 1: Activity Duration Data for Example 1.

<table>
<thead>
<tr>
<th></th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>d_c</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>d_e</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2: Bounds for Example 1. BM lists the bounds found by Birge and Maddox (1995). The other two columns list the results of our method for two values of the mean absolute deviation.
Figure 2: Project network for Example 2, labels indicate the activity’s index.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>\frac{2}{3}</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>\frac{2}{3}</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>\frac{2}{3}</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>\frac{2}{3}</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>\frac{2}{3}</td>
</tr>
</tbody>
</table>

Table 3: Activity Duration Data for Example 2.

BM \quad e_b = \frac{2\sigma_e^2}{b_e-a_e} \quad e_x = \sigma_e

<table>
<thead>
<tr>
<th></th>
<th>BM</th>
<th>\sigma_e^2</th>
<th>\sigma_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>4</td>
<td>3.36</td>
<td>3.68</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>3</td>
<td>3.07</td>
<td>3.31</td>
</tr>
</tbody>
</table>

Table 4: Bounds for Example 2. BM lists the bounds found by Birge and Maddox (1995). The other two columns list the results of our method for two values of the mean absolute deviation.
5.2 PSPLIB Instances

To test our approach on a larger scale, we use the RCPSP problems from the PSPLIB project scheduling library (Kolisch and Sprecher, 1997). This library contains a wealth of problems with \(m = 30, 60, 90 \) and 120 activities. We need to adapt these instances to make them fully suitable for our approach. First and foremost, the problems are modeled as an activity on nodes (AoN) network. To transform the projects into the desirable activity on arc (AoA) format, we employ the algorithm by (Sterboul and Wertheimer, 1981) as explained by (Mouhoub et al., 2011).

Moreover, the instances from PSPLIB only provide a nominal value for the activity duration. We assume this nominal value is the mean (\(\mu \)) and that the support is given by either (I) 95% and 115% or (II) 85% and 145% of this value. An instance from the PSPLIB library is visualized in Figure 3. Here, solid arcs correspond to activities, while dashed arcs are auxiliary arcs that model additional precedence relations that result from the reformulation to the AoA format. The critical path found by PERT is shown in green. Additional arcs that are potentially on a critical path are shown in yellow (I) and red (II). We remark that any arc that is on a critical path for a narrow support is also on a critical path for a wider support.

As we are comparing our technique to PERT, we choose to assume the mean absolute deviation (\(d \)) and probability that the duration is larger than the mean (\(\beta \)) are exactly the values PERT assumes them to be, that is, values from the beta distribution PERT assumes.

As we will present many results later in this section that involve the bounds discussed in Section 4, we first present some numerical results regarding the quality of these bounds. In particular, the average results on removing uncertainty from activities and merging activities over all 480 instances with 30 activities are shown in Figure 4. These figures both show two sets of boxplots. On the x-axis of all these figures, the number of activities that were made certain/merged is shown. On the y-axis of the left figures, the average quality of the resulting bound with respect to the exact value is shown. In the right figures the average computation time is shown.

The results for the two different bounds are quite different. Removing uncertainty can clearly completely remove the computational burden if all activities are assumed to be certain. It does, however, suffer in quality. When only 2 or 3 activities are assumed to be certain the bound can already be up to 5% above the actual worst-case expected project duration. It is important here to note that the activities of which the uncertainty was removed were selected to maximize the quality of the resulting bound.

Merging activities, on the other hand, yields bounds that are very close to the actual value. Clearly, the gain in computation time is much smaller for this bound, but it
Figure 3: A visualization of j301_2.sm. Solid arcs correspond to activities, dashed arcs are auxiliary arcs. Green, yellow and red arcs correspond to activities on the critical path for PERT, support I and support II, respectively.
Figure 4: An overview of the quality of the bounds presented in Section 4 and the decrease in computation time.
is generally sufficient to tackle all problems with 30 activities and most with 60. We therefore will limit ourselves to only consider this bound moving forward.

The best- and worst-case expected project duration for all 480 instances with 30 activities are shown for both values of the support (I and II) in Figures 5 and 6. For all instances, the values of interest were divided by the expected project duration found by PERT. The resulting fractions were grouped by and averaged over the instances that have the same number of different critical paths. The images show the following four values:

- Best-case expected project duration without MAD known (equal to PERT) in blue;
- Best-case expected project duration with MAD known in green;
- Worst-case expected project duration with MAD known in yellow;
- Worst-case expected project duration without MAD known in red.

Figure 5 shows that on average, even in the most extreme projects, the difference between the worst- and best-case expected project duration does not exceed 2%. Moreover, when the mean-absolute deviation is known, the difference is significantly smaller. Note that this is the difference between the green and yellow dots. In fact, the biggest difference between the worst- and best-case expected project duration when the mean-absolute deviation is known is slightly less than 3%. As we allow the activity duration to be up to 15% higher than on average, and the support width is 20% of the mean value, we feel this 3% is rather small. We therefore tentatively conclude that knowing the actual distribution (and mean absolute deviation) has little influence on the expected project duration.

To investigate whether knowledge of the support does significantly change the expected project duration, Figure 6 shows the results when the activity duration is between 85% and 145% of its mean. As mentioned before, assuming a wider support implies that more activities are potentially on the critical path. The number of relevant activities thus increases and with it the computation time does as well. Hence, for a fair number of instances the exact worst- and best-case expected project duration could not be calculated within 5 minutes. Therefore, we included a bound on those values based on merging activities for those instances. While the difference to PERT is clearly bigger for a larger support, the change seems mostly proportional to the change in the width of the support. This strengthens our belief that knowledge of the support and mean is much more important than knowledge of the actual distribution or the mean absolute deviation.

Appendix C contains similar figures to Figure 5 for projects with 60, 90 and 120 activities and a support from 95% to 115% of the mean: Figures 7, 8 and 9. For these sizes, we randomly selected 50 instances from PSPLIB in order to prevent the total computation time from becoming entirely unreasonable. While for both 90 and 120 activities there
Figure 5: Average ratio to PERT grouped by number of different critical paths for instances with 30 activities with a support from 95% to 115% of the nominal value. Depicted are: PERT in blue, best-case with MAD in green, worst-case with MAD in yellow and worst-case without MAD in red. Yellow arrows indicate the lowest and highest found value per group of instances for the worst-case with MAD. The number of instances in each group is included in parentheses.
Figure 6: Average ratio to PERT grouped by number of different critical paths for instances with 30 activities with a support from 85% to 145% of the nominal value. Depicted are: PERT in blue, best-case with MAD in green, worst-case with MAD in orange and worst-case without MAD in red. Orange arrows indicate the lowest and highest found value per group of instances for the worst-case with MAD. The number of instances in each group is included in parentheses.
clearly exist some instances for which the difference between worst- and best-case expected project duration is bigger, on average the difference is still fairly small. Moreover, we remark that due to the size of these instances all results presented here have the maximum number of activities merged that was possible. The true difference, therefore, is likely to be at least somewhat smaller than the figures suggest.

Acknowledgments

The research of the first author was funded by the Netherlands Organisation for Scientific Research (NWO) Research Talent [Grant 406.17.511].

References

A Algorithm Description

A basic implementation of the idea in Section 3 would be to store the longest path for every scenario and iterate over all scenarios for which longest path remains to be unknown. This approach, however, quickly runs into severe memory limitations, as for any graph with 21 or more arcs, the number of stored scenarios would exceed the number of bytes available in a computer with 4GB RAM.

Instead, Algorithm 1 stores the scenarios for which the longest path is already known in a more intelligent way, enabling the algorithm to deal with even larger problems. In this algorithm, remaining is a subroutine that computes the total probability of the scenarios induced by the current scenario and critical path couple \((\alpha, C)\), of which the critical path was not yet known. Here, induced scenarios refers to all scenarios \(\tilde{\alpha}\) such that

\[
\begin{align*}
\tilde{\alpha}_c &= \alpha_c & \forall c \in C \\
\tilde{\alpha}_c &\leq \alpha_c & \forall c \notin C.
\end{align*}
\]

For ease of exposure, the algorithmic details given in Algorithm 2 and 3 concern two possible values for each activity, as would be the case when calculating the best-case project duration. With some minor modifications the algorithm can also be applied when an activity can take more than three or more values.

The main algorithm iterates over a list of scenarios \(L\), to which scenarios are added in many iterations, until \(L\) is empty. For each scenario \(\alpha\), the longest path \(C\) in the corresponding graph

\begin{algorithm}
1: Set \(V = \emptyset\)
2: Set \(L = \{(2, \ldots, 2)\}\)
3: Set \(i = 1\)
4: while \(L \neq \emptyset\) do
5: Choose \(\alpha \in L\) and remove it from \(L\)
6: Compute \(\lambda_i = f(\nu^1_{\alpha_1}, \ldots, \nu^m_{\alpha_m})\) and let \(C \subseteq A\) be the longest path of length \(l\)
7: Compute the total probability \(\gamma_i = \prod_{c \in C} P_{\alpha_c} \cdot \text{remaining}(\alpha, C, V)\)
8: Add \((\alpha, C)\) to \(V\)
9: for all \(a \in C\) such that \(\alpha_a > 1\) do
10: Define \(\tilde{\alpha}\) by \(\tilde{\alpha}_a = \alpha_a - 1\) and \(\tilde{\alpha}_c = \alpha_c\) for all \(c \neq a\)
11: if \(\tilde{\alpha} \notin L\) & \(\beta C\) such that \((\alpha, C) \in V\) then
12: Add \(\tilde{\alpha}\) to \(L\)
13: end if
14: end for
15: Increase \(i\) by 1
16: end while
17: The worst-case expected project length is given by \(\gamma^\top \lambda\).
\end{algorithm}
Algorithm 2 REMAINING subroutine

1: function REMAINING ((α, C), V)
2: Define $V_{(α, C)} = \{ \hat{α} : \exists (\tilde{α}, \hat{C}) \in V \text{ for which } \hat{C} = C, \ \tilde{α}_c = α_c \ \forall c \in C \}$
3: if $V_{(α, C)} = \emptyset$ then
4: Set $\omega = \prod_{c \notin C} \sum_{i=1}^{α_c} p_i^c$
5: else
6: Set $\omega = 0$
7: for all $c \notin C$ such that $α_c > \tilde{α}_c \ \forall \tilde{α} \in V_{(α, C)}$ do
8: Update $\omega = \omega + \left(\sum_{i=\text{max}_{\tilde{α} \in V_{(α, C)}} \{\tilde{α}_c\}+1}^{α_c} p_i^c \right) \cdot \prod_{\chi \notin C \cup \{c\}} \sum_{i=1}^{α_\chi} p_i^\chi$
9: Update $α_c = \max_{\hat{α}} \hat{α}_c$
10: end for
11: Update $\omega = \omega + \text{RECURSIVE}((α, C), V_{(α, C)}, \emptyset)$
12: end if
13: end function

is computed. Based on this longest path and the observation above, the induced set of scenarios arises for which we now know the project length. Using the REMAINING subroutine, the total probability of all scenarios of which we did not know the project length before is calculated. Subsequently, a new scenario $\tilde{α}$ is created for each arc on the longest path that is not set to its lowest possible value, by lowering the value on said arc. Given that the scenarios that this yields have not yet been considered, they are added to L.

The REMAINING subroutine first reduces all previously considered scenarios to the relevant ones, that is, it selects the scenarios with the same critical path and the same activity durations on this critical path. If such scenarios do not exist, all scenarios induced by $α$ are new and calculation of the total probability is easy. If such scenarios do exist, on the other hand, the calculation is split into two parts. First of all, we check if any arc c not on the critical path has a higher value than what has been considered before. For all such activity c, we can be sure that any scenarios induced by $α$ for which the value on c is equal are new scenarios and can thus be included in the total probability. For the second part of the calculation, all arc lengths are reduced to the maximum value that was considered before this iteration and the recursive subroutine RECURSIVE is called.

First and foremost, RECURSIVE checks whether the scenario under consideration is dominated by any scenario processed before. In this case, $α$ does not induce any scenario we have not encountered before and thus the remaining probability is 0. Otherwise, we find all activities i such that we have considered scenarios before that had higher values on every activity but i and add those to a set F. The value of these activities must remain fixed, as lowering them would result in duplicate scenarios. After this, we can reduce the set of relevant previous scenarios to all scenarios such that their value exceeds the value of $α$ on all activities in F, as those are fixed on their current value. This reduced set is denoted by \tilde{V}. If only 1 or none of such scenarios
Algorithm 3 RECURSIVE subroutine

1: function RECURSIVE \((\alpha, C), V, F_0\)
2: if \(\exists \bar{\alpha} \in V\) such that \(\bar{\alpha}_c \geq \alpha_c \quad \forall c \notin C\) then
3: return 0
4: else
5: Set \(F = \{i \notin C : \exists \bar{\alpha} \in V\) such that \(\bar{\alpha}_i < \alpha_i, \quad \bar{\alpha}_c \geq \alpha_c \quad \forall c \notin C \cup F_0 \cup \{i\}\) \} \cup F_0\)
6: if \(|F| > 0\) then
7: Set \(\hat{V} = \{\bar{\alpha} \in V : \bar{\alpha}_c \geq \alpha_c \quad \forall c \in F\}\)
8: else
9: Set \(\hat{V} = V\)
10: end if
11: if \(|\hat{V}| \leq 1\) then
12: if \(|\hat{V}| = 0\) then
13: return \(\prod_{c \in F} \hat{p}_c^\hat{\alpha}_c \cdot \prod_{c \notin C \cup F} \sum_{i=1}^{\alpha_c} \hat{p}_i^c\)
14: else
15: Denote the only element of \(F\) by \(\chi\)
16: Set \(B = \{c \notin C : \chi_c < \alpha_c\}\)
17: return \(\prod_{c \in F} \hat{p}_c^\hat{\alpha}_c \cdot \left[\prod_{c \in B} \sum_{i=1}^{\alpha_c} \hat{p}_i^c - \prod_{c \notin B} \sum_{i=1}^{\chi_c} \hat{p}_i^c\right] \cdot \prod_{c \notin C \cup F \cup B} \sum_{i=1}^{\alpha_c} \hat{p}_i^c\)
18: end if
19: else
20: Find an arc \(j\) such that \(j \notin F\) and \(\alpha_j > 0\)
21: Define \(F_1 = F \cup \{j\}\) and \(V_1 = \{\bar{\alpha} \in V : \bar{\alpha}_c \geq \alpha_c \quad \forall c \in F_1\}\)
22: Define \(\hat{\alpha}\) by \(\hat{\alpha}_j = \alpha_j - 1\) and \(\hat{\alpha}_c = \alpha_c\) for all \(c \neq j\)
23: return RECURSIVE\((\alpha, C), V_1, F_1\) + RECURSIVE\((\hat{\alpha}, C), \hat{V}, F\)
24: end if
25: end if
26: end function

exist, calculating the total probability of all new induced scenarios is fairly straightforward. If, on the other hand, more than 1 scenario reside in \(\hat{V}\), we consider two cases for which we compute the total probability of induced scenarios recursively. More specifically, we choose an activity that is not fixed and not at its lowest value and consider the case where this activity is in fact fixed and the case where its value is lower.
B Project Preprocessing

Besides intelligently calculating the project duration for relevant scenarios, another observation is key in efficiently evaluating the worst-case expected project duration. If there exists a node \(k \in \{1, \ldots, n\} \) such that for each scenario \(\alpha \) the longest path in the corresponding graph contains \(k \), the expected project duration is equal to the sum of the expected longest path from 1 to \(k \) and the expected longest path from \(k \) to \(n \). In other words, if there exists a node that is on any longest path, irrespective of the activity duration, it suffices to find the worst-case longest path from 1 to \(k \) and the worst-case longest path from \(k \) to \(n \). This observation is valid because we assume all activity lengths to be independent. We will refer to nodes \(k \) with the above property as separating nodes.

Unfortunately, these separating nodes are not necessarily easy to identify. When any path from 1 to \(n \) passes through \(k \), that is, removing \(k \) from the graph would disconnect it completely, it is clear that \(k \) is a separating node. The easiest way to identify all other separating nodes is removing all edges from the graph that are never contained in a longest path from 1 to \(n \). A computationally expensive, but intuitive to find these edges is to compute \(\sup_{P \in P_n} \mathbb{E}[f(l)] \). Since the worst-case distribution for this ambiguity set is only a two-point distribution on the boundaries of the support, any edge that is not on the longest path for any of the considered scenarios in this evaluation, will not be on any longest path. Calculating \(\sup_{P \in P_n} \mathbb{E}[f(l)] \) first can thus yield a significant decrease in computation time of \(\sup_{P \in P_{n, d}} \mathbb{E}[f(l)] \) and \(\inf_{P \in P_{n, d, \beta}} \mathbb{E}[f(l)] \).

A more computationally tractable approach to identify separating nodes is to apply the following sufficient but not necessary condition. First we note that the shortest possible longest path has length \(f(a) \). Now, for any edge \((i, j) \in A\) we find the longest possible path from 1 to \(n \) containing this edge. Then we know that \((i, j)\) is never in a longest path if this length is strictly smaller than \(f(a) \). We once again stress that although this is a sufficient condition, it is not necessary.

By first checking the sufficient condition outlined above and subsequently computing the values of interest in the order indicated, that is computing \(\sup_{P \in P_n} \mathbb{E}[f(l)] \) first, we can limit the graph to only the relevant edges fairly efficiently, thereby identifying all separating nodes.

More efficient and elaborate techniques for reducing the project of interest exist. As our implementation only serves an illustrative purpose, we chose not to implement those even though we suspect using such techniques could improve the applicability of our techniques even further. We refer the interested reader to e.g. (Bard and Bennett, 1991; Reich and Lopes, 2011).
C Additional Figures

Figure 7: Average deviation from PERT grouped by number of different critical paths for instances with 60 activities. Depicted are: PERT in blue, best-case with MAD in green, worst-case with MAD in yellow and worst-case without MAD in red. Yellow arrows indicate the minimum and maximum value for the worst-case with MAD. The support is from 95% to 115% of the mean.

Figure 8: Average deviation from PERT grouped by number of different critical paths for instances with 90 activities. Depicted are: PERT in blue, best-case with MAD in green, worst-case with MAD in yellow and worst-case without MAD in red. Yellow arrows indicate the minimum and maximum value for the worst-case with MAD. The support is from 95% to 115% of the mean.
Figure 9: Average deviation from PERT grouped by number of different critical paths for instances with 120 activities. Depicted are: PERT in blue, best-case with MAD in green, worst-case with MAD in yellow and worst-case without MAD in red. Yellow arrows indicate the minimum and maximum value for the worst-case with MAD. The support is from 95% to 115% of the mean.