Accelerated Symmetric ADMM and Its Applications in Signal Processing

Jianchao Bai † Junli Liang* ‡ Ke Guo § Yang Jing ¶

June 14th, 2019

Abstract

The alternating direction method of multipliers (ADMM) were extensively investigated in the past decades for solving separable convex optimization problems. Fewer researchers focused on exploring its convergence properties for the nonconvex case although it performed surprisingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration techniques for a family of potentially nonsmooth nonconvex programing problems with equality constraints, where the dual variables are updated twice with different stepsizes. Under proper assumptions instead of using the so-called Kurdyka-Lojasiewicz inequality, convergence of the proposed algorithm as well as its pointwise iteration-complexity are analyzed in terms of the corresponding augmented Lagrangian function and the primal-dual residuals, respectively. Performance of our algorithm is verified by some preliminary numerical examples on applications in sparse nonconvex/convex regularized minimization signal processing problems.

Keywords: Nonconvex optimization, symmetric ADMM, acceleration technique, complexity, signal processing

Mathematics Subject Classification(2010): 47A30; 65Y20; 90C26; 90C90

1 Introduction

We consider a potentially nonsmooth and nonconvex separable optimization problem subject to linear equality constraints:

\[\min \{ f(x) + g(y) \mid s.t. \ Ax + By = b, x \in \mathbb{R}^m, y \in \mathbb{R}^n \}, \]

\[(1) \]

1This research was partially supported by the National Statistical Science Research Project of China (Grant No. 2018LZ23), the Natural Science Foundation of China (Grant No. 11801455, 11571178), Fundamental Research Funds of China West Normal University (Grant No. 17E084, 18B031).

*Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710129, China (jianchaobai@nwpu.edu.cn).

†(Corresponding author) School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China (lijunli@nwpu.edu.cn).

‡School of Mathematics and Information, China West Normal University, Nanchong, Sichuan 637002, China (keguo2014@gmail.com).

§School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China (jingyang@mail.nwpu.edu.cn).
where \(f : \mathcal{R}^m \rightarrow (-\infty, +\infty) \) is a proper lower semicontinuous function, \(g : \mathcal{R}^n \rightarrow (-\infty, +\infty) \) is a continuous differentiable function with its gradient \(\nabla g \) being \(L_g \)-Lipschitz continuous, \(A \in \mathcal{R}^{l \times m}, B \in \mathcal{R}^{l \times n}, b \in \mathcal{R}^l \) are respectively given matrices and vector. Minimization problem in the form of (1) covers many important applications in science and engineering. For example, the following \(l_1 \)-regularized least square problem arising in signal processing/statistical learning [2, 3, 25]:

\[
\min_{x \in \mathcal{R}^m} \frac{1}{2} \|Ax - c\|^2 + \mu \|x\|_1, \tag{2}
\]

where \(c \in \mathcal{R}^l \) is the vector of observations, \(A \in \mathcal{R}^{l \times m} \) is the data matrix and \(\mu > 0 \) denotes the regularization parameter and is often set as \(\mu = 0.1 \mu_{\text{max}} \) where \(\mu_{\text{max}} = \|A^T c\|_{\infty} \) (see e.g. [11, 25]). Due to the convexity of the problem (2), it can be handled by a number of standard methods, to list a few, including the alternating direction method of multipliers (ADMM, [10, 13, 14]), proximal point algorithm [3, 10], interior point method [25] and primal-dual hybrid gradient method [5, 39]. However, in many cases the \(l_1 \)-regularization has been shown to be sub-optimal. For instance, it can not recover a signal with the fewest measurements when being applied in compressed sensing techniques [6]. Therefore, an acceptable improvement is to adopt the \(l_{1/2} \)-regularization term, which results in the following form

\[
\min_{x \in \mathcal{R}^m} \frac{1}{2} \|Ax - c\|^2 + \mu \|x\|_{1/2}^{1/2}.
\]

Here, \(\|x\|_{1/2} = (\sum_{i=1}^{m} |x_i|^{1/2})^2 \) is a nonconvex function characterizing sparsity of the variable, and it has been verified [37] practically to be better than \(l_1 \)-norm. Clearly, by introducing an auxiliary variable, the problem can be converted to a special case of (1), i.e.,

\[
\min \left\{ \mu \|x\|_{1/2}^{1/2} + \frac{1}{2} \|y - c\|^2 \mid \text{s.t. } Ax - y = 0 \right\}. \tag{3}
\]

Another interesting example is the regularized empirical risk minimization arising from big data applications, such as many kinds of classification and regression models in machine learning [34, 36]. And the \(l_{1/2} \)-regularized reformulation case is of the form:

\[
\min \left\{ \mu \|x\|_{1/2}^{1/2} + \frac{1}{N} \sum_{j=1}^{N} |g_j(y)| \mid \text{s.t. } x - y = 0 \right\}, \tag{4}
\]

where \(N \) is a large number, and \(g_j(y) = \log \left(1 + \exp(-b_j a_j^T y) \right) \) denotes the logistic loss function on the feature-label pair \((a_j, b_j)\) with \(a_j \in \mathcal{R}^l \) and \(b_j \in \{-1, 1\} \).

In the literature, the most standard method for solving the equality constrained problem (1) is the augmented Lagrangian method (ALM) which firstly solves a joint minimization problem

\[
\min_{x,y} \mathcal{L}_\beta(x, y, \lambda) := f(x) + g(y) - \langle \lambda, Ax + By - b \rangle + \frac{\beta}{2} \|Ax + By - b\|^2, \tag{5}
\]

and then updates the Lagrange multiplier \(\lambda \) by using the newest iteration of other variables. The penalty factor \(\beta > 0 \), in each iterative loop, can be set as a tuned reasonable value or updated adaptively according to the ratio of the primal residual to the dual residual of the problem. However, ALM does not make full use of the separable structure of the objective function of (1) and hence, could not take advantage of the special properties of each component objective.
This would make it very expensive even infeasible for application problems involving big-data and nonconvex objectives. By contrast, a powerful first-order method, that is ADMM, aims to split the joint core problem (5) into some relatively simple and smaller-dimensional subproblems so that variables can be updated separately to make full use of special properties of each component. Another obvious feature of ADMM is that the resultant subproblems could admit explicit solution form in special applications, or in a linearized update for the differentiable objective/quadratic penalty term. We refer to, e.g., [2, 3, 12, 15, 23, 22, 35] for some reviews on ADMM.

Interestingly, under the existence assumption of a solution to the Karush-Kuhn Tucker condition of the two-block separable convex optimization problem, it was explained [13] that the original ADMM amounts to the Douglas-Rachford splitting method (DRSM, [9, 26]) when it was applied to a stationary system to the dual of the problem. Moreover, as elaborated in [13], if applying the classic Peaceman-Rachford splitting method (PRSM, [26, 32]) to the dual of the problem, we obtain the following iterative scheme

\[
\begin{align*}
 x_{k+1} &= \arg \min_x L_\beta(x, y_k, \lambda_k), \\
 \lambda_{k+\frac{1}{2}} &= \lambda_k - \beta(Ax_{k+1} + By_k - b), \\
 y_{k+1} &= \arg \min_y L_\beta(x_{k+1}, y, \lambda_{k+\frac{1}{2}}), \\
 \lambda_{k+1} &= \lambda_{k+\frac{1}{2}} - \beta(Ax_{k+1} + By_{k+1} - b).
\end{align*}
\]

Unfortunately, scheme (6) is not convergent under the standard convexity assumptions as ADMM [8]. However, it was verified [16] that scheme (6) could perform faster than the ADMM when its global convergent was ensured. In view of this, He et al. [21] proposed and studied the convergence of a strictly contractive Peaceman-Rachford splitting method (also called the symmetric version of ADMM)

\[
\begin{align*}
 x_{k+1} &= \arg \min_x L_\beta(x, y_k, \lambda_k), \\
 \lambda_{k+\frac{1}{2}} &= \lambda_k - \alpha \beta(Ax_{k+1} + By_k - b), \\
 y_{k+1} &= \arg \min_y L_\beta(x_{k+1}, y, \lambda_{k+\frac{1}{2}}), \\
 \lambda_{k+1} &= \lambda_{k+\frac{1}{2}} - \alpha \beta(Ax_{k+1} + By_{k+1} - b),
\end{align*}
\]

where $\alpha \in (0, 1)$ is the relaxation parameter. Later, He et al. [23] improved the scheme (7) to the case with larger range of relaxation parameters, which was generalized by Bai et al. [4] to the multi-block separable convex programming. Besides, Chang, et. al. [7] also shown a generalization of linearized ADMM for two-block separable convex minimization model by adding a proper proximal term to each core subproblem.

If the convexity is lose, then the convergence analysis for ADMM (or its variant) is much more challenging. However, for some special nonconvex optimization problems, one can establish convergence of ADMM by making full use of special structures of the problems, see e.g. [24] for the consensus and sharing problems. Another widely used technique to prove convergence of ADMM for nonconvex optimization problems relies on the assumption that the objective function of (1) satisfies the so-called Kurdyka-Lojasiewicz (KL) inequality [1], since many important classes of functions satisfy the KL inequality, see [17, 18, 19, 27, 35, 36, 38]. Without assuming the KL property and convexity of the objective function, recently, Goncalves et al. in [20] established convergence rate bounds of the classical ADMM with proximal terms for solving nonconvex linearly constrained optimization problem (1). In addition, by linearizing the smooth
part in the objective and quadratic penalty term, Liu, et al. [28] proposed a two-block linearized ADMM for the problem (1) with $b = 0$ and extended the method to a multi-block version, but convergence of their extended method holds with an extra hypothesis on the full column rank of the matrix B compared to (A1) (see Section 3).

Motivated by the above mentioned work [20, 28] and the empirical validity of the symmetric ADMM, we would present a Two-stage Accelerated Symmetric ADMM (abbreviated as “TAS-ADM”) for solving the problem (1), whose framework reads Algorithm 1.1. Our algorithm combines both the so-called Nesterov’s acceleration technique in (32) and the relaxation scheme in e.g., [10, 12]. By adding a proper proximal term for the first x-subproblem, this possibly nonsmooth nonconvex subproblem will turn to a proximal mapping shown in (16), which admits closed solution form if f is easy. Step 7 actually uses the idea of convex combination for fast convergence.

We should emphasize that the recent work [36] also considered a symmetric ADMM for solving the problem (1). The method in [36] actually can be treated as our proposed Algorithm 1.1 barring the acceleration techniques and proximal regularization terms, while convergence of Algorithm 1.1 is analyzed in a different way. More precisely, their analyses are based on the Kurdyka-Lojasiewicz property of the augmented Lagrangian function for problem (1) and other proper assumptions on both the penalty parameter and the objective function. Under Assumptions (A1-A3) (see Section 3), we show in the sequel section that any accumulation point of \{w_k := (x_k, y_k, \lambda_k)\} is the stationary point of \{L_\beta(w_k)\}, and we also establish the worst-case $O(1/k)$ convergence rate of the algorithm in terms of the primal-dual residuals. Although we consider problem (1) with vector variables, the subsequent convergence results of our proposed algorithm are applicable for the general case with matrix variables, because matrix can be vectorized as vector.

Algorithm 1.1 [TAS-ADM for Solving Problem (1)]

1. Initialize $(x_0, y_0, \lambda_0) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^l$ and set $(x_{-1}, y_{-1}) = (x_0, y_0)$.
2. Choose parameters $\beta > 0$, $\gamma_k \in [0, \frac{1}{2})$, $G \succeq 0$ and

 $$\tau, \alpha \in D := \{(\tau, \alpha) | 0 < \tau + \alpha < 1\}. \quad (8)$$

3. for $k = 0, 1, \ldots$, do
4. $x^md_k := x_k + \gamma_k(x_k - x_{k-1})$.
5. $x_{k+1} = \arg \min \left\{ L_\beta(x, y, \lambda_k) + \frac{1}{2}\|x - x^md_k\|_G^2 \right\}$.
6. $\lambda_{k+\frac{1}{2}} = \lambda_k - \tau \beta (Ax_{k+1} + By_k - b)$.
7. $x^d_{k+1} = \alpha Ax_{k+1} + (1 - \alpha)(b - By_k)$.
8. $y_{k+1} = \arg \min \left\{ g(y) - \langle \lambda_{k+\frac{1}{2}}, By \rangle + \frac{\beta}{2}\|x^d_{k+1} + By_{k+1} - b\|_2^2 \right\}$.
9. $\lambda_{k+1} = \lambda_{k+\frac{1}{2}} - \beta (x^d_{k+1} + By_{k+1} - b)$.
10. end
11. Output (x_{k+1}, y_{k+1}).

The remaining parts of this paper are organized as follows. In Section 2, some preliminaries are prepared to analyze convergence of Algorithm 1.1. In Section 3, we show its convergence properties and its pointwise iteration complexity based on the analysis for the augmented Lagrangian sequence \{L_\beta(w_k)\}. Section 4 tests some examples about the popular sparse signal
any symmetric matrix G standard Euclidean norm equipped with inner product $\langle \cdot, \cdot \rangle$. Let A means projection onto $\text{Im}(A)$ Im and $\text{Im}(\cdot)$ for any symmetric matrices A and B whose dimensions are the same, $A \succ B$ ($A \succeq B$) means $A - B$ is a positive definite (semidefinite) matrix. We slightly denote $\|x\|^2_G = x^T G x$ for any symmetric matrix G, and let $\|x\|_G = \sqrt{x^T G x}$ when G is positive semidefinite, where the superscript T denotes the transpose of a matrix or vector. We simply use $\| \cdot \|$ to represent the standard Euclidean norm equipped with inner product $\langle \cdot, \cdot \rangle$. The image space of a matrix $A \in \mathcal{R}^{m \times n}$ is defined as $\text{Im}(A) := \{Az : z \in \mathcal{R}^n\}$ and a function $f : S \rightarrow \mathcal{R}$ is lower semicontinuous at $\bar{x} \in S$ if and only if $\lim \inf_{x \rightarrow \bar{x}} f(x) = f(\bar{x})$. The distance from any point z to the set $S \subseteq \mathcal{R}^n$ is defined as $d(z, S) := \inf\{\|z - y\| : y \in S\}$.

Definition 2.1 [30, 33] Let $f : \mathcal{R}^m \rightarrow \mathcal{R}$ be a proper lower semicontinuous function.

(a) For a given $x \in \text{dom}(f)$, the Fréchet subdifferential of f at x, written by $\partial f(x)$, is the set of all vectors $s \in \mathcal{R}^m$ which satisfy

$$\lim_{y \neq x, y \rightarrow x} \inf_{y \neq x} \frac{f(y) - f(x) - \langle s, y - x \rangle}{\|y - x\|} \geq 0,$$

and we let $\partial f(x) = \emptyset$ when $x \notin \text{dom}(f)$.

(b) The limiting subdifferential, or the subdifferential of f at $x \in \mathcal{R}^m$, written by $\partial f(x)$, is defined by $\partial f(x) = \left\{ s \in \mathcal{R}^m \mid \exists x_k \rightarrow x, f(x_k) \rightarrow f(x), \partial f(x_k) \ni s_k \rightarrow s \text{ as } k \rightarrow \infty \right\}$.

(c) A point x_* is called critical point or stationary point of $f(x)$ if it satisfies $0 \in \partial f(x_*)$.

Definition 2.2 A triple $w_* := (x_*, y_*, \lambda_*) \in \mathcal{R}^m \times \mathcal{R}^n \times \mathcal{R}^l$ is a stationary point of (1) if

$$A^T \lambda_* \in \partial f(x_*), \quad B^T \lambda_* = \nabla g(y_*) \quad \text{and} \quad Ax_* + By_* - b = 0.$$

The following lemmas are provided to simplify convergence analysis in the sequel sections.

Lemma 2.1 [20, Lemma A.2] Let $A \in \mathcal{R}^{m \times n}$ be a nonzero matrix and \mathcal{P}_A be the Euclidean projection onto $\text{Im}(A)$. Then, for any $u \in \mathcal{R}^n$ we have

$$\|\mathcal{P}_A(u)\| \leq \frac{1}{\sqrt{\sigma_A}} \|A^T u\|. \quad (9)$$

Lemma 2.2 For any vectors $a, b, c \in \mathcal{R}^n$ and symmetric matrix $0 \preceq M \in \mathcal{R}^{n \times n}$, it holds

$$\langle a - b, M(a - c) \rangle = \frac{1}{2} \left\{ \|c - a\|_M^2 - \|c - b\|_M^2 + \|a - b\|_M^2 \right\}. \quad (10)$$
3 Theoretical Results

In this section, by making use of the following primal-dual residuals

\[\Delta x_k = x_k - x_{k-1}, \quad \Delta y_k = y_k - y_{k-1} \quad \text{and} \quad \Delta \lambda_k = \lambda_k - \lambda_{k-1}, \]

(11)

the proposed algorithm will be demonstrated to be convergent according to a quasi-monotonically nonincreasing property of the sequence \(\{L_\beta(w_k)\} \), and its pointwise iteration-complexity will be established in detail. Next, we make some assumptions.

- (A1) \(B \neq 0 \), \(\text{Im}(B) \supset b \cup \text{Im}(A) \);
- (A2) The penalty parameter \(\beta \) satisfies

\[\beta > \frac{L_g}{\sqrt{1 - \tau - \alpha \sigma_B}}, \quad (\tau, \alpha) \in \mathcal{D} \text{ with } \mathcal{D} \text{ given in (8)}; \]

- (A3) \(L = \inf_{(x,y)} \left\{ f(x) + g(y) - \frac{1}{2\tau_0} \|\nabla g(y)\|^2 \right\} > -\infty. \)

Indeed, we can check that the aforementioned Assumptions (A1)-(A3) hold for the two examples mentioned in the introduction. Here and hereafter, we denote \(w_k = (x_k, y_k, \lambda_k) \) and \(w = (x, y, \lambda) \).

Lemma 3.1 Let \(\{w_k\} \) be generated by Algorithm 1.1. Then, under (A2) we have

\[\|B^T \Delta \lambda_{k+1}\| \leq L_g \|\Delta y_{k+1}\|. \]

(12)

Proof According to the optimality condition of \(y \)-subproblem, it holds

\[\nabla g(y_{k+1}) - B^T \lambda_{k+\frac{1}{2}} + \beta B^T \left(x_{k+1}^{ad} + B y_{k+1} - b \right) = 0. \]

(13)

So, we have by the update of \(\lambda_{k+1} \) that

\[B^T \lambda_{k+1} = B^T \left[\lambda_{k+\frac{1}{2}} - \beta \left(x_{k+1}^{ad} + B y_{k+1} - b \right) \right] = \nabla g(y_{k+1}), \]

(14)

which further gives

\[B^T \lambda_k = \nabla g(y_k). \]

(15)

Subtracting (15) from (14) and taking norm on both sides, we can obtain by (A2) that

\[\|B^T \Delta \lambda_{k+1}\| \leq L_g \|\Delta y_{k+1}\|. \]

(15)

Note that optimality condition of the following problem is the same as (13):

\[\min \left\{ g(y) + \frac{\beta}{2} \|By - c_y\|^2 \right\}, \]

where \(c_y = b + \frac{\lambda_{k+\frac{1}{2}}}{\beta} - x_{k+1}^{ad} \). So, this problem is equivalent to the \(y \)-subproblem in Algorithm 1.1. Under the case that \(g \) is linearized or \(B \) has full column rank, the above problem could have
closed solution form. In addition, by choosing $G = \sigma I - \beta A^T A$ with $\sigma \geq \beta \|A^T A\|$, the quadratic term $\|A\|_2^2$ will be cancelled in the iteration. As a result, the x-subproblem in Algorithm 1.1 is converted to a proximal mapping as the following

$$\text{Prox}_{f, \sigma}(c_x) := \text{Arg min} \left\{ f(x) + \frac{\sigma}{2} \| x - c_x \|^2 \right\},$$

where $c_x = x^{md}_k - \frac{\beta A^T (x^{md}_{k+1} + By_k - b) - A^T \lambda_k}{\sigma}$. Since f is a proper lower semicontinuous function and bounded from below (in view of Assumptions (A3)), by the proximal behavior in [33] the set $\text{Prox}_{f, \sigma}(c_x)$ is nonempty and compact.

Now, adding the update of $\lambda_{k+\frac{1}{2}}$ to the update of λ_{k+1}, we have

$$\frac{1}{\beta} \Delta \lambda_{k+1} = -\tau (A x_{k+1} + B y_k - b) - [\alpha A x_{k+1} + (1 - \alpha) (b - B y_k) + B y_{k+1} - b]$$

$$= - (\tau + \alpha) (A x_{k+1} + B y_k - b) - B \Delta y_{k+1},$$

which by $\tau + \alpha > 0$ gives the following lemma immediately.

Lemma 3.2 Assume $\tau + \alpha > 0$, then the sequence $\{w_k\}$ generated by Algorithm 1.1 satisfies

$$A x_{k+1} + B y_k - b = -\frac{1}{\tau + \alpha} \left(\frac{1}{\beta} \Delta \lambda_{k+1} + B \Delta y_{k+1} \right).$$

Next, we present a fundamental lemma that plays a key role in analyzing convergence and convergence rate bound of Algorithm 1.1.

Lemma 3.3 Under Assumptions (A1) and (A2), there exist three constants $\zeta_0 \geq 0$ and $\zeta_1, \zeta_2 > 0$ such that

$$\tilde{L}_\beta(w_k) - \tilde{L}_\beta(w_{k+1}) \geq \zeta_1 \| \Delta x_{k+1} \|^2_G + \zeta_2 \| \Delta y_{k+1} \|^2_G,$$

where $\tilde{L}_\beta(w_k) := L_\beta(w_k) + \zeta_0 \| \Delta x_k \|^2_G$.

Proof The inequality (18) can be proved by the following four steps.

(Step 1) By the update of x-subproblem together with the way of generating x^{md}_k, we have

$$L_\beta(x_k, y_k, \lambda_k) - L_\beta(x_{k+1}, y_k, \lambda_k) \geq \frac{1}{2} \left[\| x_{k+1} - x^{md}_k \|^2_G - \| x_k - x^{md}_k \|^2_G \right]$$

$$= \frac{1}{2} \left[\| \Delta x_{k+1} \|^2_G + 2 \left(x_{k+1} - x_k, G(x_k - x^{md}_k) \right) \right]$$

$$= \frac{1}{2} \left[\| \Delta x_{k+1} \|^2_G - 2 \gamma_k \left(\| \Delta x_{k+1} \|^2_G + \| \Delta x_k \|^2_G \right) \right]$$

$$\geq \frac{1}{2} \left[\| \Delta x_{k+1} \|^2_G - \gamma_k \left(\| \Delta x_{k+1} \|^2_G + \| \Delta x_k \|^2_G \right) \right]$$

$$= \zeta_0 \left[\| \Delta x_{k+1} \|^2_G - \| \Delta x_k \|^2_G \right] + \zeta_1 \| \Delta x_{k+1} \|^2_G,$$

where

$$\zeta_0 = \frac{\gamma_k}{2} \geq 0, \quad \text{and} \quad \zeta_1 = \frac{1 - 2 \gamma_k}{2} > 0.$$
(Step 2) By the update of y-subproblem we obtain
\[
g(y_k) - \langle \lambda_{k+\frac{1}{2}}, B y_k \rangle + \frac{\beta}{2} \| x_{k+1}^d + B y_k - b \|^2 \geq g(y_{k+1}) - \langle \lambda_{k+\frac{1}{2}}, B y_{k+1} \rangle + \frac{\beta}{2} \| x_{k+1}^d + B y_{k+1} - b \|^2,
\]
which, by Lemma 2.2, is equivalently expressed as
\[
g(y_k) - g(y_{k+1}) + \langle \lambda_{k+\frac{1}{2}}, B \Delta y_{k+1} \rangle + \frac{\beta}{2} \| B \Delta y_{k+1} \|^2 \geq \beta \langle B \Delta y_{k+1}, x_{k+1}^d + B y_{k+1} - b \rangle. \quad (21)
\]
Therefore, it can be deduced that
\[
\mathcal{L}_\beta(x_{k+1}, y_k, \lambda_{k+\frac{1}{2}}) - \mathcal{L}_\beta(x_{k+1}, y_{k+1}, \lambda_{k+\frac{1}{2}})
\]
\[
eq g(y_k) - g(y_{k+1}) + \left(\lambda_{k+\frac{1}{2}} - \lambda_{k+1} \right) \left(A x_{k+1} + B y_k - b \right) - \left(\lambda_{k+\frac{1}{2}} - \lambda_{k+1} \right) \left(A x_{k+1} + B y_{k+1} - b \right)
\]
\[
eq \left(\lambda_{k+\frac{1}{2}} - \lambda_{k+1} \right) \left(A x_{k+1} + B y_k - b \right) - \left(\lambda_{k+\frac{1}{2}} - \lambda_{k+1} \right) \left(A x_{k+1} + B y_{k+1} - b \right)
\]
\[
= \tau \beta \left(A x_{k+1} + B y_k - b, A y_{k+1} \right) + \left(\Delta y_{k+1} \right) \left(A x_{k+1} + B y_{k+1} + B y_k - B y_k - b \right)
\]
\[
= \langle A x_{k+1} + B y_k - b, \Delta y_{k+1} + \tau \beta B \Delta y_{k+1} \rangle + \langle \Delta y_{k+1}, B \Delta y_{k+1} \rangle
\]
\[
\geq -\frac{\tau \beta}{\tau + \alpha} \||B \Delta y_{k+1}||^2 - \|\Delta y_{k+1}\|^2 \| - \frac{1}{\tau + \alpha} \langle \Delta y_{k+1}, B \Delta y_{k+1} \rangle. \quad (23)
\]
(Step 4) Summing the above inequalities (19), (22) and the equality (23), we get
\[
\mathcal{L}_\beta(x_k, y_k, \lambda_k) - \mathcal{L}_\beta(x_{k+1}, y_{k+1}, \lambda_{k+1})
\]
\[
\geq \frac{\gamma_k}{2} \|\Delta x_{k+1}\|^2_G - \|\Delta x_k\|^2_G + \frac{1}{2} \|\Delta x_{k+1}\|^2_G + R_\Delta.
\]
where
\[
R_\Delta = \left(\frac{1}{\tau + \alpha} - 1 \right) \beta \| B \Delta y_{k+1} \|^2 - \frac{1}{(\tau + \alpha)\beta} \| \Delta \lambda_{k+1} \|^2
\]
\[
\geq \left(\frac{1}{\tau + \alpha} - 1 \right) \beta \| B \Delta y_{k+1} \|^2 - \frac{1}{(\tau + \alpha)\beta \sigma_B} \| B^T \Delta \lambda_{k+1} \|^2
\]
\[
\geq \left(\frac{1}{\tau + \alpha} - 1 \right) \beta \| B \Delta y_{k+1} \|^2 - \frac{L_g^2}{(\tau + \alpha)\beta \sigma_B} \| \Delta y_{k+1} \|^2
\]
\[
\geq \left(\frac{1}{\tau + \alpha} - 1 \right) \beta \sigma_B \| \Delta y_{k+1} \|^2 - \frac{L_g^2}{(\tau + \alpha)\beta \sigma_B} \| \Delta y_{k+1} \|^2
\]
\[
= \zeta_2 \| \Delta y_{k+1} \|^2
\]
with
\[
\zeta_2 = \frac{(1 - \tau - \alpha)\beta^2 \sigma_B^2 - L_g^2}{(\tau + \alpha) \beta \sigma_B} > 0. \text{ [due to (A2)]}
\]
Actually, in the first inequality of \(R_\Delta \), we use the fact that \(\Delta \lambda_{k+1} \in \text{Im}(B) \) because of Assumption (A1). So, the whole proof is completed by the notation \(L_\beta(w_k) \). ■

Theorem 3.1 Let \(\{w_k\} \) be generated by Algorithm 1.1. Then, under (A1)-(A3) we have

- The sequence \(\{L_\beta(w_k)\} \) is convergent;
- The residuals \(\| \Delta x_{k+1} \|_G, \| \Delta y_{k+1} \| \) and \(\| \Delta \lambda_{k+1} \| \) converge to zero as \(k \) goes to infinity.

Proof To demonstrate convergence of \(\{L_\beta(w_k)\} \), we need to make ensure that the sequence \(\{w_k\} \) is bounded at first. By Assumption (A2), it holds
\[
L_g < \sqrt{1 - \tau - \alpha} \beta \sigma_B < \beta \sigma_B.
\]
Combining the above inequality and Lemma 3.3, we achieve
\[
L_\beta(x_0, y_0, \lambda_0) = L_\beta(x_0, y_0, \lambda_0) + \zeta_1 \| \Delta x_0 \|_G^2
\]
\[
\geq L_\beta(x_{k+1}, y_{k+1}, \lambda_{k+1}) + \zeta_1 \| \Delta x_{k+1} \|_G^2 \geq L_\beta(x_{k+1}, y_{k+1}, \lambda_{k+1})
\]
\[
= f(x_{k+1}) + g(y_{k+1}) - \frac{1}{2\beta} \| \lambda_{k+1} \|^2 + \frac{\beta}{2} \left\| A x_{k+1} + B y_{k+1} - b - \frac{\lambda_{k+1}}{\beta} \right\|^2
\]
\[
\geq f(x_{k+1}) + g(y_{k+1}) - \frac{1}{2\beta \sigma_B} \| B^T \lambda_{k+1} \|^2 + \frac{\beta}{2} \left\| A x_{k+1} + B y_{k+1} - b - \frac{\lambda_{k+1}}{\beta} \right\|^2
\]
\[
= \left(f(x_{k+1}) + g(y_{k+1}) - \frac{1}{2L_g} \| \nabla g(y_{k+1}) \|^2 \right) + \left(\frac{1}{2L_g} - \frac{1}{2\beta \sigma_B} \right) \| B^T \lambda_{k+1} \|^2
\]
\[
+ \frac{\beta}{2} \left\| A x_{k+1} + B y_{k+1} - b - \frac{\lambda_{k+1}}{\beta} \right\|^2
\]
\[
\geq L + \left(\frac{1}{2L_g} - \frac{1}{2\beta \sigma_B} \right) \| B^T \lambda_{k+1} \|^2 + \frac{\beta}{2} \left\| A x_{k+1} + B y_{k+1} - b - \frac{\lambda_{k+1}}{\beta} \right\|^2,
\]
which implies that the sequences \(\{\lambda_k\}, \{\frac{\beta}{2} \| A x_{k+1} + B y_{k+1} - b - \frac{\lambda_{k+1}}{\beta} \|^2 \} \) are bounded, and furthermore both \(\{x_k\} \) and \(\{y_k\} \) are bounded. So, the sequence \(\{w_k\} \) is bounded.
Since \(\{w_k\} \) is bounded, \(\{\tilde{L}_\beta(w_k)\} \) is also bounded from below and there exists at least one limit point. Without loss of generality, let \(w_* \) be the limit point of \(\{w_k\} \) whose subsequence is \(\{w_{k_j}\} \). Then, the lower semicontinuity of \(\{\tilde{L}_\beta(w)\} \) indicates

\[
\tilde{L}_\beta(w_*) \leq \liminf_{j \to +\infty} \tilde{L}_\beta(w_{k_j}).
\]

That is, \(\{\tilde{L}_\beta(w_{k_j})\} \) is bounded from below, which further implies convergence of \(\{\tilde{L}_\beta(w_k)\} \) based on Lemma 3.3.

Now, summing the inequality (18) over \(k = 0, 1, \cdots, \infty \), we have by the convergence of \(\{\tilde{L}_\beta(w_k)\} \) that

\[
\sum_{k=0}^{\infty} \|\Delta x_{k+1}\|_G^2 + \sum_{k=0}^{\infty} \|\Delta y_{k+1}\|^2 \leq L_\beta(w_0) - \tilde{L}_\beta(w_{k+1}) < \infty,
\]

which suggests \(\|\Delta x_{k+1}\|_G \to 0 \) and \(\|\Delta y_{k+1}\| \to 0 \). So, using Lemma 2.1 and Lemma 3.1 the following holds clearly

\[
\|\Delta \lambda_{k+1}\| \leq \frac{1}{\sqrt{\sigma B}} \|B^T \Delta \lambda_{k+1}\| \leq \frac{L_\beta}{\sqrt{\sigma B}} \|\Delta y_{k+1}\| \to 0.
\]

(25)

This completes the proof.

Theorem 3.1 illustrates that the augmented Lagrange function of the problem (1) is convergent, and the primal and dual residuals converge to zero. In what follows, we would present a key theorem about pointwise iteration-complexity of the proposed algorithm w.r.t. the primal-dual residuals. Actually, the following first assertion implies that any accumulation point of \(\{w_k\} \) is a stationary point of \(\{L_\beta(w_k)\} \) compared to Definition 2.2.

Theorem 3.2 Let \(\{w_k\} \) be generated by Algorithm 1.1. Then, under Assumptions (A1)-(A3)

- It holds

\[
\lim_{k \to \infty} d(0, \partial L_\beta(w^{k+1})) = 0.
\]

(26)

- The sequence \(\{f(x_{k+1}) + g(y_{k+1})\} \) is convergent.

- Let \(C_0 := L_\beta(w_0) - L \). Then, for any integer \(k \geq 1 \), there exists \(j \leq k \) and \(\zeta_i > 0 \) \((i = 1, 2, 3) \) such that

\[
\|\Delta x_j\|^2 \leq \frac{C_0}{\zeta_1(k+1)}, \quad \|\Delta y_j\|^2 \leq \frac{C_0}{\zeta_2(k+1)}, \quad \|\Delta \lambda_j\|^2 \leq \frac{C_0}{\zeta_3(k+1)}.
\]

(27)

Proof Using (17) again, we have

\[
Ax_{k+1} + By_{k+1} - b = \frac{1}{\tau + \alpha} \left(\frac{1}{\beta} \Delta \lambda_{k+1} + B \Delta y_{k+1} \right) + B \Delta y_{k+1},
\]

which by the third result of Theorem 3.1 suggests

\[
\lim_{k \to \infty} Ax_{k+1} + By_{k+1} - b = 0.
\]

(28)
Therefore,
\[
\lim_{k \to \infty} \nabla \lambda L_\beta(w_{k+1}) = \lim_{k \to \infty} - (Ax_{k+1} + By_{k+1} - b) = 0. \tag{29}
\]
By the first-order optimality condition of y-subproblem, it holds
\[
0 = \nabla g(y_{k+1}) - B^T \lambda_{k+1} + \beta B^T \left(x_{k+1}^d + By_{k+1} - b \right)
\]
\[
= \nabla g(y_{k+1}) - B^T \lambda_{k+1} + \beta B^T (Ax_{k+1} + By_{k+1} - b)
+ B^T (\lambda_{k+1} - \lambda_{k+\frac{1}{2}}) + \beta B^T (x_{k+1}^d - Ax_{k+1})
\]
\[
= \nabla g(y_{k+1}) - B^T \lambda_{k+1} + \beta B^T (Ax_{k+1} + By_{k+1} - b)
- \beta B^T (Ax_{k+1} + By_{k+1} - b),
\]
which gives
\[
\lim_{k \to \infty} \nabla y L_\beta(w_{k+1}) = \lim_{k \to \infty} \beta B^T (Ax_{k+1} + By_{k+1} - b) = 0. \tag{30}
\]
Analogously, by the update of x-subproblem, there exists \(d_{k+1} \in \partial f(x_{k+1})\) such that
\[
0 = d_{k+1} - A^T \lambda_{k+1} + \beta A^T (Ax_{k+1} + By_{k+1} - b) + G(x_{k+1} - x_{k+1}^m)
\]
\[
= d_{k+1} - A^T \lambda_{k+1} + \beta A^T (Ax_{k+1} + By_{k+1} - b)
+ \beta A^T B(y_k - y_{k+1}) + G(x_{k+1} - x_k - \gamma_k \Delta x_k)
\]
\[
= d_{k+1} - A^T \lambda_{k+1} + \beta A^T (Ax_{k+1} + By_{k+1} - b)
- \beta A^T B \Delta y_{k+1} - G(\gamma_k \Delta x_k - \Delta x_{k+1}).
\]
By defining \(\overline{d}_{k+1} := d_{k+1} - A^T \lambda_{k+1} + \beta A^T (Ax_{k+1} + By_{k+1} - b)\),
we have \(\overline{d}_{k+1} \in \partial_x L_\beta(w_{k+1})\) and furthermore
\[
\lim_{k \to \infty} \overline{d}_{k+1} = \lim_{k \to \infty} \left[\beta A^T B \Delta y_{k+1} + G(\gamma_k \Delta x_k - \Delta x_{k+1}) \right] = 0. \tag{31}
\]
Thus, it follows from (29), (30) and (31) that (26) holds.

For the second assertion, it holds by (28) that
\[
f(x_{k+1}) + g(y_{k+1}) = L_\beta(w_{k+1}) + \langle \lambda, Ax_{k+1} + By_{k+1} - b \rangle + \frac{\beta}{2} \|Ax_{k+1} + By_{k+1} - b\|^2 \rightarrow L_\beta(w_{k+1}).
\]
So, the sequence \(\{f(x_{k+1}) + g(y_{k+1})\}\) is convergent by the first conclusion of Theorem 3.1.

We finally prove the pointwise iteration complexity in (27). Using (24) again, we have
\[
-L_\beta(w_{k+1}) \leq -L - \left(\frac{1}{2L_g} - \frac{1}{2\beta \sigma_B} \right) \|B^T \lambda_{k+1}\|^2 - \frac{\beta}{2} \left\| Ax_{k+1} + By_{k+1} - b - \frac{\lambda_{k+1}}{\beta} \right\|^2 \leq -L.
\]
So, for any \(k \geq 0\), it follows from Lemma 3.3 that
\[
\sum_{j=0}^{k} (\zeta_1 \|\Delta x_j\|^2_G + \zeta_2 \|\Delta y_j\|^2) \leq L_\beta(w_0) + \zeta_0 \|\Delta x_0\|^2_G - L = C_0,
\]
which shows
\[\| \Delta x_j \|_F^2 \leq \frac{C_0}{\zeta_1(k+1)} \quad \text{and} \quad \| \Delta y_j \|_F^2 \leq \frac{C_0}{\zeta_2(k+1)}. \]

The final convergence rate bound in (27) can be also verified by (25) with \(\zeta_3 = L_g^2/\zeta_2. \)

In order to reduce error bounds of the primal-dual residuals, the following remark provides an adaptive way to update the parameter \(\gamma_k \) related to \(\zeta_1 \) by making use of the so-called Nesterov’s acceleration (proposed originally in [31]), and it also suggests how to choose reasonable values of the parameters \(\tau \) and \(\alpha \).

Remark 3.1 By the above convergence analysis, if \(G > 0 \), then convergence of Algorithm 1.1 can be guaranteed by \(\gamma_k \in [0, 1/2) \). In such case we can update \(\gamma_k \) adaptively by the following
\[
\gamma_k = \frac{\theta_{k-1} - 1}{2\theta_k}, \quad \text{where} \quad \theta_k = \frac{1 + \sqrt{1 + 4\theta_{k-1}^2}}{2} \quad \text{with} \quad \theta_{-1} := 1. \tag{32}
\]

Note that \(\zeta_2 = -\beta\sigma_B + \frac{1}{\tau + \alpha}[\beta\sigma_B - \frac{L_g^2}{\beta\sigma_B}] \) is inversely proportional to \((\tau + \alpha) \) since \(L_g < \beta\sigma_B \). This together with the connection \(\zeta_3 = L_g^2/\zeta_2 \) imply that we could choose \((\tau + \alpha) \to 1 \) to get smaller error bound of \(\| \Delta \lambda_j \|_F^2 \) in (27). In the next section, related numerical experiments will show how to determine reasonable values of \(\tau \) and \(\alpha \) in detail.

4 Numerical Experiments

In this section, we apply the proposed algorithm to solve a class of practical examples from signal processing to investigate its numerical performance. All experiments are performed by using Windows 10 system and MATLAB R2018a (64-bit) with an Intel Core i7-8700K CPU (3.70 GHz) and 16GB memory.

Applying Algorithm 1.1 to solve (3), we have by (16) that
\[
x_{k+1} = \text{Prox}_{\| |x| |_{1/2}, \sigma/\mu} \left(x_k^{md} - \frac{\beta A^T (A x_k^{md} - y_k - b) - A^T \lambda_k}{\sigma} \right),
\]
which is the half shrinkage operator [37] defined as \(\text{Prox}_{\| |x| |_{1/2}, \mu} (x) = (l_{\nu}(x_1), l_{\nu}(x_2), \cdots, l_{\nu}(x_m))^T \)
where
\[
l_{\nu}(x_i) = \left\{
\begin{array}{ll}
2x_i \frac{1}{\nu} \left[1 + \cos \frac{2}{3} (\pi - \phi(x_i)) \right], & \text{if } |x_i| > \frac{3^{2/3}}{\nu^2/2}, \\
0, & \text{otherwise},
\end{array}\right.
\]
and \(\phi(x_i) = \arccos \left(\frac{\nu}{2} \left(\frac{|x_i|}{\nu} \right)^{3/2} \right). \) Besides, it is easy to obtain \(y_{k+1} = (c + \beta x_{k+1}^{pol} - \lambda_{k+1})/(1 + \beta). \)

With the purpose of fast convergence and making performance of Algorithm 1.1 less independent on an initial guess of the penalty parameter \(\beta \), as suggested by He et al.[22] we would adopt the following technique to update it adaptively:
\[
\beta_{k+1} = \begin{cases}
\eta \text{incr} \beta_k & \text{if } \| r_k \|_2 > \nu \| s_k \|_2, \\
\beta_k / \eta \text{decr} & \text{if } \| s_k \|_2 > \nu \| r_k \|_2, \\
\beta_k & \text{otherwise},
\end{cases} \tag{33}
\]
where \(\nu, \eta^{\text{incr}}\) and \(\eta^{\text{decr}}\) are three positive parameters with suggested values larger than 1, for instance, \(\nu = 10, \eta^{\text{incr}} = \eta^{\text{decr}} = 2\). For Algorithm 1.1 to solve (1) we have

\[
\|r_k\| = \|Ax_{k+1} + By_{k+1} - b\| \quad (34)
\]

and

\[
\|s_k\| = \left\|A^T \lambda_{k+1} + \beta A^T (Ax_{k+1} + By_{k+1} - b) + G(\Delta x_{k+1} - \gamma_k \Delta x_k)\right\|,
\]

which represent the equality constrained error and the optimality error, respectively. Here, it is easy to check that \(0 \in \partial f(x_{k+1}) - A^T \lambda_{k+1} + s_k\). In order to satisfy Assumption (A2), we need to update \(\beta = \min\{\beta_{k+1}, \frac{1.01L_g}{\sqrt{1+\sigma_B^2}}\}\) at each iteration. As for the problem (3), we have \(L_g = 1\) and \(\sigma_B = 1\). If not specified, the initial penalty parameter \(\beta_0\) is chosen as 0.04, the starting points \((x_0, y_0)\) and \(\lambda_0\) are respectively set as zero and ones vector with proper dimensions, and the matrix \(G = \sigma I - \beta A^T A\) with \(\sigma = 1.01\|A^T A\|\). The parameter \(\gamma_k\) is updated adaptively according to (32). Throughout we use the following stopping criterion as mentioned in [27] to terminate Algorithm 1.1:

\[
\text{IRE}(k) := \max\{\|x_k - x_{k-1}\|, \|y_k - y_{k-1}\|, \|\lambda_k - \lambda_{k-1}\|\} < \epsilon,
\]

where \(\epsilon\) is a given tolerance error. Note that this stopping criterion corresponds to the pointwise iteration complexity shown in (27), so such stopping criterion is well defined.

As the first experiment, we consider the reformulated sparse signal recovery problem (3) with an original signal \(x \in \mathbb{R}^{3072}\) containing 160 spikes with amplitude \(\pm 1\). The measurement matrix \(A \in \mathbb{R}^{1024 \times 3072}\) is drawn firstly from the standard norm distribution \(N(0, 1)\) and then each of its column is normalized. Specifically, we use the following MATLAB codes to generate the original signal \(x_{\text{orig}}\), the data \(A, c\) and \(\mu\):

```matlab
randn('state', 0); rand('state',0);
l = 1024; m = 3072;
T = 160; % number of spikes
x_orig = zeros(m,1); q = randperm(m);
x_orig(q(1:T)) = sign(randn(T,1)); % original signal
A = randn(1,m);
A = A*spdiags(1./sqrt(sum(A.^2))',0,m,m); % normalize columns
sig = 0.01; % noise standard deviation
c = A*x_orig + sig*randn(l,1); % noisy observations
mu_max = norm( A'*c,'inf');
mu = 0.1*mu_max; % regularization parameter
```

Under tolerance \(\epsilon = 10^{-15}\), we test the effect of parameters \((\tau, \alpha)\) restricted in (8) on the numerical performance of Algorithm 1.1 (In fact, we choose parameter values around \((\tau, \alpha) = (0.3, 0.32)\), because we find it performs slightly better than some pairs after running a lot of values restricted in (8) by the aid of two level for loops in MATLAB). We also randomly choose four pairs of \((\tau, \alpha)\) to carry out related experiments.

Table 1 reports some computational results of several quality measurements, including “IT”, “CPU”, “IRE”, “EQU” which denote respectively the iteration number, the CPU time in seconds, the final relative iterative error \(\text{IRE}(k)\) defined in (35) and the final feasibility error \(\|r_k\|\).
defined in (34). We use l_2-error (defined as $\|x_k-x_{orig}\|/\|x_{orig}\|$) to represent the relative error to measure recovery quality of a signal. As shown in Table 1, setting $(\tau, \alpha) = (0.65, 0.32)$ would be a reasonable choice for Algorithm 1.1 to solve the problem (3), because in such a choice the iteration number and the CPU time are relatively smaller while reported results in each of the last three columns are nearly the same when the stopping criterion is satisfied. Hence, in the following experiments, we use Algorithm 1.1 with default parameters $(\tau, \alpha) = (0.65, 0.32)$.

<table>
<thead>
<tr>
<th>(τ, α)</th>
<th>IT</th>
<th>CPU</th>
<th>IRE</th>
<th>EQU</th>
<th>l_2-error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0.3, 0.10)$</td>
<td>472</td>
<td>22.67</td>
<td>9.47e-16</td>
<td>6.10e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.15)$</td>
<td>443</td>
<td>21.12</td>
<td>9.23e-16</td>
<td>5.18e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.20)$</td>
<td>500</td>
<td>24.11</td>
<td>9.77e-16</td>
<td>4.82e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.25)$</td>
<td>379</td>
<td>18.23</td>
<td>9.79e-16</td>
<td>6.33e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.30)$</td>
<td>350</td>
<td>16.79</td>
<td>9.78e-16</td>
<td>5.88e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.32)$</td>
<td>344</td>
<td>16.66</td>
<td>9.45e-16</td>
<td>6.33e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.35)$</td>
<td>544</td>
<td>26.17</td>
<td>9.79e-16</td>
<td>3.28e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.40)$</td>
<td>510</td>
<td>24.30</td>
<td>8.87e-16</td>
<td>5.11e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.45)$</td>
<td>485</td>
<td>23.28</td>
<td>9.93e-16</td>
<td>3.34e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.50)$</td>
<td>458</td>
<td>21.95</td>
<td>9.34e-16</td>
<td>3.24e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.55)$</td>
<td>433</td>
<td>20.86</td>
<td>9.49e-16</td>
<td>2.97e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.60)$</td>
<td>413</td>
<td>19.79</td>
<td>9.33e-16</td>
<td>3.29e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.65)$</td>
<td>396</td>
<td>19.24</td>
<td>9.26e-16</td>
<td>3.28e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.68)$</td>
<td>387</td>
<td>18.66</td>
<td>8.91e-16</td>
<td>3.37e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(-0.3, 0.32)$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$(-0.2, 0.32)$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$(0, 0.32)$</td>
<td>695</td>
<td>33.51</td>
<td>9.95e-16</td>
<td>5.41e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.1, 0.32)$</td>
<td>498</td>
<td>23.77</td>
<td>9.88e-16</td>
<td>8.38e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.2, 0.32)$</td>
<td>697</td>
<td>33.49</td>
<td>9.33e-16</td>
<td>5.68e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.3, 0.32)$</td>
<td>391</td>
<td>18.93</td>
<td>9.54e-16</td>
<td>7.85e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.4, 0.32)$</td>
<td>344</td>
<td>16.62</td>
<td>9.45e-16</td>
<td>6.33e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.5, 0.32)$</td>
<td>502</td>
<td>24.16</td>
<td>8.55e-16</td>
<td>4.01e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.6, 0.32)$</td>
<td>451</td>
<td>21.61</td>
<td>9.49e-16</td>
<td>2.97e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.62, 0.32)$</td>
<td>404</td>
<td>19.52</td>
<td>9.64e-16</td>
<td>3.74e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.65, 0.32)$</td>
<td>279</td>
<td>13.52</td>
<td>9.98e-16</td>
<td>3.19e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.67, 0.32)$</td>
<td>318</td>
<td>15.59</td>
<td>8.43e-16</td>
<td>3.11e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.90, 0.05)$</td>
<td>396</td>
<td>19.06</td>
<td>9.26e-16</td>
<td>3.27e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.80, 0.15)$</td>
<td>396</td>
<td>19.02</td>
<td>9.33e-16</td>
<td>3.28e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.01, 0.90)$</td>
<td>411</td>
<td>19.78</td>
<td>9.63e-16</td>
<td>3.10e-14</td>
<td>6.79e-2</td>
</tr>
<tr>
<td>$(0.05, 0.70)$</td>
<td>485</td>
<td>24.62</td>
<td>9.62e-16</td>
<td>3.10e-14</td>
<td>6.79e-2</td>
</tr>
</tbody>
</table>

Table 1: Results1 of Algorithm 1.1 with different (τ, α) for solving problem (3).

Next, we use the aforementioned codes to investigate the effect of regularization parameter μ on Algorithm 1.1 for solving the problem (3) with a large data $A \in \mathbb{R}^{2048 \times 5000}$ and the same spikes, but the tolerance is set as $\epsilon = 10^{-12}$. Fig. 1 depicts convergence behaviors of the equality constraint error $\|r_k\|$, the iterative error IRE(k) and the recovery signal quality $e_k := \log_{10} \|x_k-x_{orig}\|/\|x_{orig}\|$ along the iteration process after applying Algorithm 1.1 with $\mu = 0.1\mu_{max}, 0.05\mu_{max}, 0.01\mu_{max}$, respectively. Fig. 2 also presents the results to visualize

1“-” means that the stopping criterion is not satisfied after 800 iterations, and the bold number in that row indicate the best results obtained by changing (τ, α) belong to $(0, 1)$.
the recovery quality of the signal versus the original signal, where the upper-left plot shows the
minimum energy reconstruction signal $A^\dagger c$ (which is the point satisfying $A^\dagger Ax = A^\dagger c$)
versus the original signal. An outstanding observation from Fig. 1 is that the smaller the value of μ is,
the smaller the iteration number is (and the better the recovery quality of the signal is). After
identifying the nonzero positions in the reconstructed signal, it always has the correct number
of spikes for the case with $\mu = 0.01\mu_{\text{max}}$ and is closer to the original noiseless signal.

![Fig. 1: Convergence tendency of the equality constraint error $\|r_k\|$ (left), the iterative error $\text{IRE}(k)$ (middle) and
the recovery signal quality e_k (right) by Algorithm 1.1 for solving the problem (3) with $(l, m) = (2048, 5000)$ but
with different regularization factors.](image)

Table 2: Results of Algorithm 1.1 for (3) with different regularization terms and dimensions.

<table>
<thead>
<tr>
<th>(l, m)</th>
<th>$l_{1/2}$ regularizer</th>
<th>l_2 error</th>
<th>l_1 regularizer</th>
<th>l_2 error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1024, 3000)$</td>
<td>358 16.37 4.60e-14 1.20e-2</td>
<td>501 22.60 1.93e-14 3.70e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(1024, 4000)$</td>
<td>367 25.93 4.18e-14 1.28e-2</td>
<td>507 35.61 4.78e-14 4.26e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(2048, 5000)$</td>
<td>215 30.65 2.84e-14 1.08e-2</td>
<td>250 36.01 3.27e-14 2.66e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(2048, 6000)$</td>
<td>222 41.37 3.98e-14 1.20e-2</td>
<td>266 49.59 3.47e-14 3.97e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(3000, 7000)$</td>
<td>201 58.08 2.71e-14 1.17e-2</td>
<td>231 66.91 2.93e-14 2.60e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(3000, 8000)$</td>
<td>205 71.36 3.77e-14 1.10e-2</td>
<td>230 79.55 3.62e-14 2.58e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(4000, 9000)$</td>
<td>199 97.52 3.29e-14 1.11e-2</td>
<td>231 112.94 2.87e-14 2.69e-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(4000, 10000)$</td>
<td>202 118.62 2.37e-14 1.03e-2</td>
<td>231 135.72 2.91e-14 2.51e-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the following, we use the proposed algorithm to solve two different cases of the sparse
signal recovery problem to investigate which regularization term performs better: **Case (i)** the
convex problem (2) with l_1 regularization term; **Case (ii)** the nonconvex problem (3) with
$l_{1/2}$ regularization term. Table 2 reports some numerical results, where the problem dimension
comes from 3000 to 10000 w.r.t the dimension of the signal, the regularization parameter is
fixed as $\mu = 0.01\mu_{\text{max}}$ and Algorithm 1.1 is terminated under tolerance $\epsilon = 10^{-15}$
with maximal iteration numbers 1000. Fig. 3 depicts comparison results between the original signal and
the reconstructed signal for the signal dimension $m = 10000$. First of all, it can be seen from

\[^2\text{Note that this is also a special case of (1) with } f(x) = \mu\|x\|_1, g(y) = \frac{1}{2}\|y - c\|^2, B = -I \text{ and } b = 0.\]
results in Table 2 that the proposed algorithm is feasible for solving both the nonconvex and convex sparse signal recovery problem, especially for the large-scale problem. Besides, an obvious observation from Table 2 is that using $l_{1/2}$ regularizer is significantly better than l_1 regularizer to recover a signal, which could be checked from reported results of the iteration number, the CPU time and the recovery quality (i.e., l_2 error).

Finally, we would apply the proposed algorithm to solve the direction-of-arrival (DOA) estimation problem \[29\] with a single snapshot. Here we consider a uniformly linear array of $M = 100$ sensors with half-wavelength elements spacing. Let $\theta = [\theta_1, \cdots, \theta_L]^T$ denote the L angles of interest in $[-\pi/2, \pi/2]$. Denote $\mathbf{x} = [x_1, \cdots, x_L]^T$ as the amplitudes of the potential signals from the L incoming angles. Thus, the received signal at the sensor array is given by: $\mathbf{y} = A\mathbf{x} + \mathbf{n}$, where $\mathbf{y} = [y_1, \cdots, y_M]^T$, $\mathbf{n} = [n_1, \cdots, n_M]^T$, the steering matrix $A = [\mathbf{a}(\theta_1), \cdots, \mathbf{a}(\theta_L)]$ and $\mathbf{a}(\theta_l) = [1, \exp(-(\pi \sin(\theta_l))), \cdots, \exp(-(\pi(M - 1) \sin(\theta_l)))]^T$.

We consider the narrowband scenario with $K = 2$ uncorrelated far-field source signals with normalized DOA parameters $-\pi/6$ and $\pi/6$. To run the proposed method, we divide the potential angle region $[-\pi/2, \pi/2]$ into $L = 180$ uniformly discrete grid points, i.e., $\theta = \frac{\pi}{180} [-90, -89, \cdots, 89, 90]^T$. When the signal-to-noise-ratio (SNR) varies from -5dB to 20dB, i.e., $\{-5, 0, 5, 10, 15, 20\}$dB, we implement the proposed method and the well-known CVX\[^3\] toolbox for 100 Monte Carlo runs, and compute their root mean square errors and running time, as plotted in Fig. 4. For visible comparison, we plot the result from one Monte Carlo in the case of 5dB, as shown in Fig. 5. From Figs. 4-5, we can see that:

- The accuracy of the two methods increases with the increase of SNR;

\[^3\]Available at: http://cvxr.com/cvx/.
Fig. 3: Original signal and reconstructed signal by Algorithm 1.1 for solving the sparse signal recovery problem with \((l, m) = (4000, 10000)\) but with different regularization terms.

Fig. 4: The left and right are the errors and average run time versus different SNRs, respectively.
• The implementation of the proposed method is faster than that of the CVX method.
• In terms of DOA resolution and the estimation accuracy of the incoming signal power, the proposed method is better than that of CVX.

5 Conclusion remarks

In this paper, we construct a symmetric alternating direction method of multipliers for solving a family of possibly nonconvex non-smooth optimization problems. Two different acceleration techniques are designed for fast convergence. Under proper assumptions, convergence of the proposed algorithm as well as its pointwise iteration complexity are analyzed in detail. By testing the so-called sparse signal recovery problem in signal processing with nonconvex/convex regularization terms and by using adaptively updating strategy for the penalty parameter, a number of numerical results demonstrate the feasibility and efficiency of the new algorithm and further show that the $l_{1/2}$ regularization term is better than the l_1 regularization term in terms of CPU time, iteration number and recovery error. Our future work will focus on solving stochastic nonconvex optimization problems by using a similar first-order algorithm to ADMM.

References

