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Abstract—In this paper, we develop a decentralized collabo-
rative sensing algorithm where the sensors are located on-board
autonomous unmanned aerial vehicles. We develop this algorithm
in the context of a target tracking application, where the objective
is to maximize the tracking performance measured by the mean-
squared error between the target state estimate and the ground
truth. The tracking performance depends on the quality of the
target measurements made at the sensors, which depends on the
relative location of the sensors with respect to the target. Our goal
is to control the motion of the swarm of vehicles with on-board
sensors to maximize target tracking performance. Each sensor
(on-board the vehicle) generates local noisy measurements of the
target location, and the sensors maintain and update target state
estimates via Bayesian data fusion rules using local measurements
and the information received from neighboring sensors. The
quality of the data fusion depends on the network graph over
which the sensors exchange information, and this determines the
overall target tracking performance. We also assume that each
sensor is powered by a limited energy source; which we assume
is drained by how frequently sensors exchange information. The
goal is to optimize the collective motion of the vehicles/sensors
(also determines the network graph connectivity) such that the
mean-squared target tracking error and the network energy costs
are jointly minimized. This problem belongs to a class of hard
optimization problems called conflicting objective limited resource
optimization (COLRO). We develop a fast heuristic algorithm,
using dynamic programming principles, to solve this COLRO
problem in real-time.

Index Terms—Swarm systems, target tracking, competing
objectives, sensor network

I. INTRODUCTION

There is a growing interest in decentralized and distributed
autonomous sensing methods [1], [2], where the network
connecting the sensors may be time-varying. With increasing
number of sensor and surveillance systems in public places,
there is a need for decentralized methods to track moving
targets (e.g. movement of an intruder, movement of enemy
tanks in battle field) with a network of sensors. However,
the decentralized collaborative sensing in a wireless multi-
sensor network is a challenging problem, especially when there
are network energy costs involved. Since the battery-powered
sensor nodes have limited energy, there is a need for methods

This work was supported in part by Air Force Office of Scientific Research
under grant FA9550-19-1-0070.

that can trade off between the target tracking performance and
the energy costs of acquiring the measurements and sharing
them (with peers) over a network. If a distributed set of
autonomous vehicles are connected via a wireless network
(vehicle is considered a wireless node), due to the movement
of the vehicles, the links in the network graph may form and
break as the relative distances between the nodes change over
time, thus leading to a time-varying graph. There is a growing
interest in controlling the motion of the vehicles with on-board
sensors for various applications such as formation control
[3], [4], target tracking [5]. With this motivation, we develop
a stochastic decision optimization framework to control the
motion of a swarm of autonomous vehicles (e.g., unmanned
aerial systems) to track a moving object, where the swarm is
connected via a wireless network.

As swarm-based systems tend to have a large number of
vehicles, optimizing each motion control variable may lead to
computationally expensive optimization problems; instead, we
optimize the centroid location of the swarm. Once a desired
centroid and network graph are obtained, the vehicles may
choose one of infinitely many paths to achieve the desired
centroid and the network graph.

As mentioned earlier, we also optimize the network graph
of the swarm, which determines how well the sensors (on-
board the vehicles) fuse their local sensor measurements with
the measurements received from the neighboring sensors, as
depicted in Figure 1. Clearly, the objectives of maximizing the
tracking performance and minimizing the network energy costs
are competing, i.e., emphasizing one objective deteriorates
the other. We refer to these problems as competing objective
limited resource optimization (COLRO) problems. In this
paper, we focus on solving COLRO problems in real-time in
the context of networked swarm systems.

II. PROBLEM SPECIFICATION AND APPROACH

Let k represent the time index. A target moves on a 2-
D plane according to the constant velocity model [6]. Let χk

represent the target state at time k, which includes its location,
velocity, and acceleration. According to the constant velocity
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Fig. 1. Autonomous vehicle swarm tracking a target while jointly minimizing
the tracking error and the energy consumption.

model, the target state evolves according to the following
equation:

χk+1 = Fχk + vk, vk ∼ N (0, Q)

where F is the state-transition matrix, vk is the process noise,
which is drawn from a zero-mean normal distribution with the
co-variance matrix Q. Let n represent the number of vehicles
in the swarm. We assume that the each vehicle in the swarm
has an on-board sensor that generates noisy measurements of
the target’s location. The vehicles in the network are connected
by a time-varying graph, represented by Gk, where

Gk =


0 a12 . . . a1n
a21 0 . . . a2n
. . . . . . . . . . . . . . . . . . . .
an1 an2 . . . 0


aij,i 6=j = 1 represents the ability of the sensors i and j
to exchange measurements for data fusion at time k, and
aij,i 6=j = 0 otherwise. Let Ck represent the centroid of the
swarm at time k. We assume that the presence of a link
between two sensors at time k lets the sensors exchange
local measurements (generated at time k) for data fusion
purpose. The sensors on-board the vehicles generate noisy
measurements of the target positions in each time step. We
use the standard Kalman filter to track the target state. Since
the swarm is a decentralized system, each vehicle runs a local
target tracking algorithm (Kalman filter), which is updated
using the measurements generated locally and received from
the neighboring nodes, where the measurement at ith sensor
is given by:

zik = Hposχk + wk, wk ∼ N (0, Rk(s
i
k, χk)), (1)

where Hpos is a matrix that captures just the position informa-
tion in the target state vector χk, wk is the measurement noise,
and sik is the position of the ith vehicle. We assume that the
angular uncertainty is better than the range uncertainty; which
is captured in the definition of the covariance matrix Rk, also
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Fig. 2. Measurement error model.

captured in Figure 2. The state of the tracking algorithm is
given by (ξik, P

i
k), where ξik and P i

k represent the mean vector
and the error covariance matrix corresponding to target state
estimation at the ith sensor.

Let ftrack(Gk, Ck) and fenergy(Gk, Ck) be functions repre-
senting target tracking error and the energy consumed respec-
tively from sensor i’s perspective, as defined below:

ftrack(Gk, Ck) =
∥∥χk − ξik

∥∥2
2

fenergy(Gk, Ck) =
∑
i

∑
j

Gk(i, j) linkcost(i, j) (2)

where linkcost(i, j) represents the cost of using the link
between sensors i and j for data fusion purpose. For simplicity,
we assume the link cost is a constant and does not depend on
i and j. As this is a decentralized system, each sensor in the
system evaluates these functions using their own local target
state estimates.

The goal of this study is to optimize the variables Gk and
Ck such that the objectives ftrack and fenergy are jointly
minimized over a long time horizon H . In other words, the
goal boils down to solving a COLRO problem as described
below:

min
Gk,Ck,k=0,..,H−1

H−1∑
k=0

E[pftrack(Gk, Ck)+

(1− p)fenergy(Gk, Ck)]

(3)

where E[·] is the expectation, and p is a weighting parameter.
The above optimization problem resembles a long-horizon op-
timal control problem. These problems are notorious for high
computational complexities, especially due to the presence of
E[·], which is hard to evaluate explicitly. To overcome these
computational issues, a class of approximation techniques
called approximate dynamic programming (ADP) approaches
are used. With this motivation, we adopt an ADP approach



called nominal belief-state optimization (NBO) [6], which
allows us to approximate the expectation making its evaluation
tractable. According to the NBO approach, the expectation is
approximated by assuming the “future” noise variables take
nominal or mean values from the probability distributions
they are drawn from. Since we model the noise variables as
zero-mean Gaussian, the nominal values are zeros. After the
approximation, the COLRO problem reduces to

min
Gk,Ck,k=0,..,H−1

H−1∑
k=0

[pf̃track(Gk, Ck)+

(1− p)f̃energy(Gk, Ck)]

(4)

where f̃track and f̃energy are deterministic approximations
to ftrack and fenergy obtained from the NBO method. The
reduced COLRO problem in Eq. 4 is highly nonlinear and non-
convex, and also a mixed integer program since Gk contains
discrete variables. We use a numerical optimization solver
called Knitro, which allows solving mixed integer programs
such as the above reduced COLRO problem.

With the NBO approach, f̃track(Gk, Ck) is given by the
trace of the error covariance matrix corresponding to the
target state, which is obtained by running the Kalman filter
by assuming: 1) the future process and measurement noise
variables as zero; 2) the data fusion rules are applied according
to the network graph state Gk.

A. Evaluation of Optimal UAV Kinematic Controls

The decision variables Gk and Ck depend on the positions
of the UAVs over time. Of course, once the optimal values
for Gk and Ck are evaluated in Eq. 4, we still need to achieve
the desired graph state and the desired swarm centroid by
appropriately controlling the motion of the UAVs. Since the
UAV kinematic control decisions depend on the optimal values
of Gk and Ck, we introduce a hierarchical model with two
levels, where Gk and Ck are optimized in the upper level (by
solving Eq. 4) and the UAV kinematic controls are optimized
in the lower level according to the following artificial potential
field approach.

Let G∗k and C∗k be the optimized network graph and the cen-
troid location. At time k, on each UAV we apply an attractive
potential field with the center at C∗k , another attractive potential
field between UAVs i and j (j 6= i) if G∗k(i, j) = 1 and the
repulsive field otherwise. These two potential fields allow the
UAVs to approach the desired centroid while forming/breaking
network links to achieve G∗k . In addition, we also apply short-
range repulsive potential fields between each pair of UAVs to
avoid collisions.

III. RESULTS AND DISCUSSION

We implement the above-discussed methods in MATLAB
for a scenario with three UAVs tracking a single target. We
set the time horizon H = 6 and apply the receding horizon
control [6] approach for planning and implementing the opti-
mized decisions. For bench-marking, we also implement the
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Fig. 3. Three UAVs tracking a target.

centralized UAV motion planning approach discussed in [6];
we call this centralized fusion approach.

Figure 3 shows the trajectories of three UAVs tracking a
target. The target and the UAVs begin their motion in the
bottom-left region, and move toward the top-right region.
Figures 4 and 5 show the network link status (three links
for three UAVs) as a function of time for the weighting
parameter in Eq. 4 set to p = 0.2 and p = 0.01 respectively.
Clearly, in Figure 5, the UAVs exchange information less often
compared to the scenario in Figure 4. These figures clearly
demonstrate our ability to smoothly trade off between the two
competing performance indices. We evaluate the normed error
between the actual target location (ground truth) and the target
location estimate at each sensor over time for the scenario
in Figure 3. In Figure 6, we compare the performance of
the above-discussed approach against the centralized fusion
approach, which clearly shows that the tracking performance
of the centralized approach is just marginally better than
our COLRO-based methods discussed here. Of course, in
the centralized approach, the performance with respect to the
network energy costs is ignored. In other words, our approach,
while slightly trading off the tracking performance, gains
significantly in the performance with respect to the network
energy consumption.

IV. CONCLUSIONS

In this paper, we presented a real-time heuristic approach
to solve a competing objective limited resource optimization
(COLRO) problem in the context of a networked UAV/sensors
system. The objective is to optimize the motion of a swarm of
UAVs (equipped with sensors) to track a moving target, while
jointly minimizing the tracking error and the network energy
cost. This optimization problem lead to long horizon opti-
mal control problem, which is known to be computationally
hard. So, we extended our previously developed approximate
dynamic programming approach called nominal belief state
optimization to solve the above COLRO problem. We tested
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Fig. 4. Status of UAV network links over time with p = 0.2 (1 means active
and 0 otherwise)
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Fig. 5. Status of UAV network links over time with p = 0.01 (1 means
active and 0 otherwise)
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Fig. 6. Normed target location error: COLRO-based approach vs. centralized
approach.

the performance of the approach in a simulated environment
(implemented in MATLAB), and compared the performance of
our approach with a centralized fusion approach (benchmark).
We found our method to lose on the tracking performance only

minimally compared to the centralized fusion approach, while
significantly saving the network energy costs.
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