A smaller extended formulation for the odd cycle inequalities of the stable set polytope

Sven de Vriesa, Bernd Perscheida,*

aOperations Research, FB IV - Mathematics, Trier University, 54286 Trier, Germany

Abstract

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis [9] introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis' formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.

Keywords: Stable set, Odd cycle inequalities, Separation algorithm, Extended formulation, Linear programming

1. Introduction

Let $G = (V, E)$ be a simple, connected, and undirected graph and assume $V = \{1, \ldots, n\}$. A stable set is a subset $N \subseteq V$ with $ij \notin E$ for every pair $i, j \in N$. The incidence vector of N is denoted by $x^N \in \{0,1\}^n$, where $x^N_i = 1$ if and only if $i \in N$. The stable set polytope $\text{STAB}(G)$ is the convex hull of incidence vectors of stable sets in G.

*Corresponding author

Email addresses: devries@uni-trier.de (Sven de Vries), perscheid@uni-trier.de (Bernd Perscheid)
The maximum stable set problem can be formulated as
\[
\begin{align*}
\max & \quad \sum_{i \in V} x_i \\
\text{s.t.} & \quad x_i + x_j \leq 1 \quad \forall ij \in E \\
& \quad x_i \in \{0, 1\} \quad \forall i \in V
\end{align*}
\]
and is \(NP\)-hard. A weak linear relaxation can be given by relaxing the integrality constraints, i.e. replacing \(x_i \in \{0, 1\}\) by \(x_i \in [0, 1]\) for every \(i \in V\). We call the resulting polytope
\[
P^E(G) := \{x \in \mathbb{R}^n : x \text{ satisfies (1) and (2)}\}
\]
with
\[
\begin{align*}
0 \leq x_i & \leq 1 \quad \forall i \in V \quad \text{(trivial inequalities)} \quad (1) \\
x_i + x_j & \leq 1 \quad \forall ij \in E \quad \text{(edge inequalities)} \quad (2)
\end{align*}
\]
the \textit{edge constrained stable set polytope}, which is also known as the fractional stable set polytope and denoted by \(\text{FRAC}(G)\).

Some well-known valid inequalities for \(\text{STAB}(G)\) are the \textit{odd cycle inequalities}. They are defined as
\[
\sum_{i \in C} x_i \leq \frac{|C| - 1}{2} \quad \forall \text{ odd cycles } C \quad (3)
\]
and constitute an exponential class of stable set inequalities in general. For the special case that \(C\) is a \textit{chordless} odd cycle in \(G\), Padberg [8] shows how to lift the odd cycle inequality for \(C\) to obtain an inequality that induces a facet of \(\text{STAB}(G)\). By intersecting \textit{all} odd cycle inequalities with \(P^E(G)\), we obtain the odd cycle polytope
\[
P^{OC}(G) = \{x \in \mathbb{R}^n : x \text{ satisfies (1), (2), and (3)}\}.
\]
Graphs with \(P^{OC}(G) = \text{STAB}(G)\) are called \(t\)-perfect and were first studied by Chvátal [2]. Although not many graphs are \(t\)-perfect, the odd cycle polytope can be used to determine upper bounds for the maximum stable set problem very quickly. Notice that for any graph \(G\), we have
\(\left(\frac{1}{3}, \ldots, \frac{1}{3} \right) \in P^{OC}(G) \) which violates every clique inequality

\[
\sum_{i \in K} x_i \leq 1 \tag{4}
\]

for cliques \(K \) in \(G \) of size at least 4. This indicates that the quality of the bounds provided by \(P^{OC}(G) \) is better the sparser the graph is. In Section 4 we show how to optimize over \(P^{OC}(G) \) with extended formulations, whose best one consists of \(2n^2 \) variables and just \(4mn + 3n \) inequalities.

2. Separation of odd cycle inequalities

Given two polytopes \(P^X \) and \(P \) with \(P^X \subseteq P \), the separation problem for \(P^X \) and a given vector \(\bar{x} \in P \) is to either confirm \(\bar{x} \in P^X \) or to give a valid inequality of \(P^X \) that is violated by \(\bar{x} \).

Many separation problems can be solved by means of auxiliary graphs. For this purpose, we define the so-called categorical graph product. Applying it to \(G \) and a specific graph \(H \), it can be used to solve the separation problem for the odd cycle inequalities of the stable set polytope.

Definition 2.1 (Hammack [7]). The categorical product \(G \times H \) of a graph \(G = (V_G, E_G) \) and a graph \(H = (V_H, E_H) \) is given by the vertex set \(V_{G \times H} = V_G \times V_H \) and the edge set \(E_{G \times H} = \{ \{(u, i), (v, j)\} : uv \in E_G \text{ and } ij \in E_H \} \).

For the separation of odd cycle inequalities assume \(\bar{x} \in [0,1]^n \) fulfills the edge inequalities (2), that is \(\bar{x} \in P^E(G) \). We define weights \(\bar{w}_{ij} := 1 - \bar{x}_i - \bar{x}_j \) for every edge \(ij \) in \(G = (V, E) \), cf. Grötschel et al. [5, proof of Lemma 9.1.11], which are obviously nonnegative since \(\bar{x} \in P^E(G) \) and hence \(\bar{x}_i + \bar{x}_j \leq 1 \).

Let \(C \) be an odd cycle in \(G \). The corresponding odd cycle inequality

\[
\sum_{i \in C} \bar{x}_i \leq \frac{|C| - 1}{2}
\]

of \(P^{OC}(G) \) is equivalent to

\[
1 \leq |C| - 2 \sum_{i \in C} \bar{x}_i = \sum_{ij \in E_C} (1 - \bar{x}_i - \bar{x}_j) = \sum_{ij \in E_C} \bar{w}_{ij} =: \bar{w}(E_C).
\]

This leads to the following statement.

Corollary 2.2. Let \(\bar{x} \in P^E(G) \). All odd cycle inequalities are fulfilled by \(\bar{x} \) if and only if every odd cycle \(C \) in \(G \) has weight \(\bar{w}(E_C) \) at least 1.
Accordingly, computing a shortest odd cycle in G with respect to edge weights \bar{w} suffices to solve the separation problem for the odd cycle inequalities. We describe how to find such a shortest odd cycle in G as presented by Grötschel et al. [5, Chapter 8.3]. Besides that, we interpret their construction through the concept of product graphs.

Consider the categorical product of $G = (V_G, E_G)$ and $H = (V_H, E_H)$ with $V_H = \{0, 1\}$ and $E_H = \{(0, 1)\}$. An example of is given in Figure 1, where G is a 3-cycle.

For every edge ij in G, we assign the weight \bar{w}_{ij} to the edges $\{(i, 0), (j, 1)\}$ and $\{(i, 1), (j, 0)\}$ in $G \times H$. Since all edge weights \bar{w} are nonnegative, shortest paths in $G \times H$ can be computed efficiently, for instance with Dijkstra’s algorithm [4]. Then the weight of a shortest odd cycle in G can be found in the following way: compute a shortest path between vertices $(i, 0)$ and $(i, 1)$ in H for every $i \in V_G$, then choose (one of) the shortest among these paths. The weight of this path is equal to the weight of a shortest odd cycle in G. Checking whether this weight is at least 1 solves the separation problem for the odd cycle inequalities.

Notice, a shortest path between a pair $(i, 0)$ and $(i, 1)$ of vertices in $G \times H$ corresponds to an odd closed walk in G, which can be an odd cycle, e.g. the 3-cycle (i, j, k, i) in G arises from the $(i, 0)$-$(i, 1)$-path in Figure 2(a). In general, this odd closed walk in G needs not necessarily be an odd cycle in G, even if we consider a shortest $(i, 0)$-$(i, 1)$-paths for $i \in V_G$. For example, the $(i, 0)$-$(i, 1)$-path in Figure 2(b) yields the odd closed walk (i, j, k, l, j, i) in G, which is not a cycle. In this case, there exists some subpath between $(u, 0)$ and $(u, 1)$ in $G \times H$, whose weight is equal to the weight of a shortest $(i, 0)$-$(i, 1)$-path and which gives an odd cycle in G. It cannot have less weight, since this would contradict the minimality of the weight of
the \((i, 0), (i, 1)\)-path. Moreover, the nonnegative edge weights ensure that its weight cannot exceed the weight of the \((i, 0)-(i, 1)\)-path. In our example, this is a \((j, 0)-(j, 1)\)-path, which corresponds to the odd cycle \((j, k, l, j)\) in \(G\).

3. Shortest path LPs

Let us recapitulate techniques presented by Ahuja et al. [1] to solve shortest path problems in digraphs without negative weight cycles via linear programs. Furthermore, we deduce a feasibility problem from one of these optimization problems. The arising polyhedron will be useful to derive the extended formulation \(Q^OC\) in Section 4.

As we start with an undirected graph \(G = (V, E)\), we initially transform it into a digraph \(D = (V, A)\) by replacing every edge \(ij \in E\) by two antiparallel arcs \((i, j)\) and \((j, i)\). All these arcs constitute \(A\). Notice that there are no negative weight cycles in \(D\) since all edge weights in \(G\) are nonnegative.

Let \(s\) and \(t\) be fixed vertices in \(V\). We are able to find a shortest \(s-t\)-path by solving the minimum cost flow problem

\[
\begin{align*}
\min \quad & \sum_{(i,j) \in A} w_{ij} x_{ij} \\
\text{s.t.} \quad & \sum_{j: (i,j) \in A} x_{ij} - \sum_{j: (j,i) \in A} x_{ji} = \begin{cases} 1, & i = s \\ -1, & i = t \\ 0, & i \in V \setminus \{s,t\} \end{cases} \\
x_{ij} \geq 0 \quad \forall (i,j) \in A.
\end{align*}
\]

This linear program can be interpreted as sending one unit of flow from \(s\) to \(t\) through the network. The variables \(x_{ij}\) represent the traffic on arc \((i, j)\) and obviously have to be nonnegative. The other constraints ensure that
one unit leaves the source s, one unit arrives at the sink t and that the flow conservation property is fulfilled. A solution of this minimum cost flow problem then gives the weight of a shortest s-t-path.

Using a dual relation as proposed by Ahuja et. al. [1], the optimal value of the linear program

\[
\begin{align*}
\text{max} & \quad y_{st} \\
\text{s.t.} & \quad y_{ss} = 0 \\
& \quad y_{sj} \leq y_{si} + w_{ij} \quad \forall (i,j) \in A
\end{align*}
\]

also gives the weight of a shortest s-t-path. Notice that strictly speaking the objective is to maximize $y_{st} - y_{ss}$ where $y_{ss} = 0$ due to the first constraint. In the case that no s-t-path exists, y_{st} is unbounded.

The following system of (in)equalities arises from (DMCF-SP) and has feasible points if and only if the weight of all s-t-paths is at least c:

\[
\begin{align*}
y_{ss} &= 0 \\
y_{sj} &\leq y_{si} + w_{ij} \quad \forall (i,j) \in A \\
y_{st} &\geq c
\end{align*}
\]

4. Extended formulations for odd cycles

In this section, we present three different extended formulations that can be used to optimize over $P^{OC}(G)$ in polynomial time. The first one arises naturally from the separation procedure in Section 2 in combination with the ideas of the previous section. The second one is the well-known extended formulation of Yannakakis [9]. The third formulation is more efficient as it combines the strengths of the definition of the other two formulations.

4.1. A direct approach

A natural approach to obtain an extended formulation for the odd cycle polytope $P^{OC}(G)$ is to use the idea at the end of Section 3 and adapt it to every pair $(i,0)$ and $(i,1)$ with $i \in V$ in the product graph $G \times H$ from Section 2. Since shortest $(i,0)$-$(i,1)$-paths in $G \times H$ have the same weight as shortest odd cycles through i, they should have weight at least 1, see Corollary 2.2. Thus, with $c = 1$:

\[
Q_0^{OC}(G) := \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^{4n^2} : (x,y) \text{ satisfies (1), (2), and (5)-(7)}\}
\]
with
\[
\begin{align*}
y_{irir} &= 0 & \forall i \in V, \ r \in \{0,1\} \\
y_{irjs} &\leq y_{irkt} + w_{ktjs} & \forall ((k,t), (j,s)) \in A, \ i \in V, \ r \in \{0,1\} \\
y_{0i1} &\geq 1 & \forall i \in V
\end{align*}
\]
(5)
(6)
(7)
is an extended formulation of \(\mathcal{P}^{OC}(G)\).

We compare the number of variables and inequalities of all extended formulations that are presented in this section. If we fix variables as constants, such as the \(y_{irir}\) in equations (5), we do not count them as variables and the respective equations are not counted as inequalities.

Remark 4.1. The extended formulation \(Q^0_{OC}(G)\) requires \(n + 4n^2 - 2n = 4n^2 - n\) variables and has \(2n + m + 8mn + n = 8mn + m + 3n\) inequalities.

4.2. Yannakakis’ formulation

The following polyhedron is a well-known extended formulation of \(\mathcal{P}^{OC}(G)\), due to Yannakakis [9], which uses less variables and inequalities than \(Q^0_{OC}(G)\). For easier counting of inequalities, we define \(A := \{(i,j) : ij \in E\}\) and use it for inequalities (8)–(10) in contrast to the original formulation of Yannakakis (if, for example, variable \(f_{ij}\) is involved for edge \(ij \in E\), then \(ij\) simultaneously produces an inequality for variable \(f_{ji}\)). Then \(|A| = 2m\), since for every edge \(ij\) we have \((i,j) \in A\) and \((j,i) \in A\).

\(Q^1_{OC}(G) := \{(x,f,g) \in \mathbb{R}^n \times \mathbb{R}^{n^2} \times \mathbb{R}^{n^2} : (x,f,g) \text{ satisfies (1), (8)-(11)}\}\)

with
\[
\begin{align*}
0 &\leq f_{ij} \leq 1 - x_i - x_j & \forall (i,j) \in A \\
f_{ij} &\leq f_{ik} + g_{kj} & \forall (i,k) \in A, \ j \in V \\
g_{ij} &\leq f_{ik} + f_{kj} & \forall (i,k) \in A, \ j \in V \\
f_{ii} &\geq 1 & \forall i \in V
\end{align*}
\]
(8)
(9)
(10)
(11)
The edge inequalities (2) are implied by inequalities (8) in \(Q^1_{OC}(G)\), because \(0 \leq 1 - x_i - x_j\) is equivalent to \(x_i + x_j \leq 1\) for all edges \(ij \in E\). Inequalities (8), (9), and (10) imply that \(f_{ij}\) is bounded from above by the weight of a shortest odd walk between two vertices \(i\) and \(j\), whereas \(g_{ij}\) is bounded from above by the weight of a shortest even walk using at least two edges between \(i\) and \(j\). Finally, inequalities (11) ensure that all odd cycle inequalities hold.

Remark 4.2. Yannakakis’ formulation \(Q^1_{OC}(G)\) from above requires \(2n^2 + n\)
variables. Furthermore, $Q_{1}^{OC}(G)$ has $2n + 4m + 2mn + 2mn + n = 4mn + 4m + 3n$ inequalities.

4.3. A smaller extended formulation

Analogously to $Q_{1}^{OC}(G)$, we add variables $f, g \in \mathbb{R}^{n^{2}}$ to the original variables $x \in \mathbb{R}^{n}$ for our new extended formulation $Q_{2}^{OC}(G)$ and define $A := \{(i, j) : ij \in E\}$. The set of (in)equalities of $Q_{2}^{OC}(G)$ combines the benefits of $Q_{0}^{OC}(G)$ and $Q_{1}^{OC}(G)$ with the idea that the variables that represent the weight of shortest even closed walks can be fixed to 0.

$Q_{2}^{OC}(G) := \{(x, f, g) \in \mathbb{R}^{n} \times \mathbb{R}^{n^{2}} \times \mathbb{R}^{n^{2}} : (x, f, g) \text{ satisfies (1), (12)} – \text{(15)}\}$

with

\[
g_{ii} = 0 \quad \forall i \in V \quad (12)
\]
\[
f_{ij} \leq g_{ik} + 1 - x_{k} - x_{j} \quad \forall (k, j) \in A, i \in V \quad (13)
\]
\[
g_{ij} \leq f_{ik} + 1 - x_{k} - x_{j} \quad \forall (k, j) \in A, i \in V \quad (14)
\]
\[
f_{ii} \geq 1 \quad \forall i \in V \quad (15)
\]

Notice that the edge inequalities are automatically fulfilled in the formulation above. However, this is less obvious than in the formulation $Q_{1}^{OC}(G)$.

Lemma 4.3. The edge inequalities (2) are implied by the set of inequalities of $Q_{2}^{OC}(G)$.

Proof. Let $uv \in E$ be some edge for which we want to show that $x_{u} + x_{v} \leq 1$ holds. Consider inequalities (13) with $i = k = u$ and $j = v$. Then we have

\[
f_{uv} \leq g_{uu} + 1 - x_{u} - x_{v}.
\]

For inequalities (14), let $i = j = u$ and $k = v$. Thus,

\[
g_{uu} \leq f_{uv} + 1 - x_{v} - x_{u}.
\]

With $g_{uu} = 0$ by equations (12), adding both inequalities from above yields

\[
f_{uv} \leq f_{uv} + 2(1 - x_{u} - x_{v}),
\]

which reduces to

\[
x_{u} + x_{v} \leq 1.
\]

Theorem 4.4. $Q_{2}^{OC}(G)$ is an extended formulation of $P^{OC}(G)$.

Proof. Let $\bar{x} \in P^{OC}(G)$. We show that there exist \bar{f} and \bar{g} so that $(\bar{x}, \bar{f}, \bar{g}) \in Q_2^{OC}(G)$ holds. All inequalities (1) occur in both polytopes and they are not violated by \bar{x}. Assign the nonnegative weight $\bar{w}_{ij} = 1 - \bar{x}_i - \bar{x}_j$ to every edge $ij \in E$ and hence to every arc $(i,j) \in A$. Furthermore, define \bar{f}_{ij} for all $i,j \in V$ and \bar{g}_{ij} for all $i,j \in V$ as the weights of shortest odd and even walks, respectively, between vertices i and j in G (assign a large value to the corresponding variable if no such walk exists). This implies symmetry for the variables f and g, i.e. $\bar{f}_{ij} = \bar{f}_{ji}$ and $\bar{g}_{ij} = \bar{g}_{ji}$ for all $i,j \in V$. Notice that, because there are no cycles with negative weight, a shortest even walk for every $i \in V$ to itself can simply use zero edges and therefore has weight 0. This ensures that equations (12) hold. It is easy to see that inequalities (13) and (14) are not violated due to the construction of \bar{f} and \bar{g}. These inequalities can be interpreted as follows: The weight of shortest odd or even walks from vertex i to j can not exceed the weight of a shortest walk of the opposite parity from i to k plus the weight of the arc (k,j).

Inequalities (3) are satisfied by \bar{x}. This is, as mentioned above, equivalent to every odd cycle C having weight $\bar{w}(E_C)$ at least 1. Observe that \bar{f}_{ii} is the weight of a shortest odd closed walk starting in $i \in V$. If this walk is not a cycle, there always exists an odd cycle with weight less or equal to the weight of a shortest odd closed walk. However, this cycle does not necessarily include vertex i, but its weight has to be as well greater or equal to 1. Therefore $\bar{f}_{ii} \geq 1$ holds for every $i \in V$.

For the converse, let $(\bar{x}, \bar{f}, \bar{g}) \in Q_2^{OC}(G)$. No edge inequality is violated by \bar{x}, see Lemma 4.3. Inequalities (12), (13), and (14) ensure that \bar{f}_{ij} and \bar{g}_{ij} are bounded from above by the weights of shortest odd and even walks, respectively, between vertices i and j. Thus, the value \bar{f}_{ii} is lower or equal than the weight of a shortest odd cycle through vertex i. Since $\bar{f}_{ii} \geq 1$ for every $i \in V$ by inequalities (15), no odd cycle inequality is violated and hence $\bar{x} \in P^{OC}(G)$.

Remark 4.5. In contrast to $Q_1^{OC}(G)$, our formulation $Q_2^{OC}(G)$ requires just $n + 2n^2 - n = 2n^2$ variables and $2n + 2mn + 2mn + n = 4mn + 3n$ inequalities.

4.4. Comparison

Both formulations $Q_1^{OC}(G)$ and $Q_2^{OC}(G)$ use the same variables f and g and they are extended formulations of $P^{OC}(G)$. One wonders about their relation: is one polyhedron is a subset of the other one? Before we show that this is not the case, we point out one special property of the variables g_{il} in $Q_1^{OC}(G)$.
Lemma 4.6 (cf. de Vries et al. [3]). Let \((\bar{x}, \bar{f}, \bar{g}) \in Q_1^{OC}(G)\) and \(\bar{g}_{ij} := \bar{g}_{ij} \text{ for all } i, j \in V \text{ with } i \neq j\). Then for all \(\bar{g}_l\) in the interval \([0, 2 \min\{f_{lk} : (l, k) \in A\}]\) with \(l \in V\) we have \((\bar{x}, \bar{f}, \bar{g}) \in Q_1^{OC}(G)\).

Proof. For each \(l \in V\) the variable \(g_l\) occurs in inequalities (9), i.e., \(f_{il} \leq f_{id} + g_l\) if \(j = k = l\). Therefore it is bounded from below by zero and there is no tighter lower bound given by the set of inequalities. On the other hand the variable \(g_{ll}\) is bounded from above by inequalities (10) when \(i = j = l\). In this case we obtain \(g_{ll} \leq f_{lk} + g_{kl}\) for every \((l, k) \in A\). We have \(2 \min\{f_{lk}, f_{kl}\} \leq f_{lk} + f_{kl}\) for all \((l, k) \in A\) and there is no upper bound that is smaller than \(f_{lk} + f_{kl}\). Therefore \((\bar{x}, \bar{f}, \bar{g}) \in Q_1^{OC}(G)\).

Theorem 4.7. In general, \(Q_1^{OC}(G) \nsubseteq Q_2^{OC}(G)\).

Proof. Let w.l.o.g. \(\bar{x} = 0\) and \(\bar{f} = 1\). Then \(\bar{g}_l = 2\) is feasible for all \(l \in V\), since \(\bar{g}_l = 2 \in [0, 2 \min\{f_{lk} : (l, k) \in A\}] = [0, 2]\), cf. Lemma 4.6. All the other variables \(\bar{g}_{ij}\) with \(i \neq j\) can attain every value from the interval \([0, 2]\). It follows that \((\bar{x}, \bar{f}, \bar{g}) \in Q_1^{OC}(G)\). Moreover, \(\bar{g}_l = 2\) for all \(l \in V\) violates inequalities (12) and thus \((\bar{x}, \bar{f}, \bar{g}) \notin Q_2^{OC}(G)\).

Theorem 4.8. In general, \(Q_2^{OC}(G) \nsubseteq Q_1^{OC}(G)\).

Proof. Consider \((\bar{x}, \bar{f}, \bar{g})\) with \(\bar{x} = 0, \bar{g} = 0, \bar{f}_l = 1\) for all \(l \in V\), and \(\bar{f}_{ij} = -1\) for all \(i, j \in V\) with \(i \neq j\). Then \((\bar{x}, \bar{f}, \bar{g}) \in Q_2^{OC}(G)\), but \((\bar{x}, \bar{f}, \bar{g}) \notin Q_1^{OC}(G)\), since inequalities (8) restrict variables \(f_{ij}\) to be nonnegative if \((i, j) \in A\).

5. Numerical Results

In the previous section, three different extended formulations for the odd cycle polytope \(P^{OC}(G)\) are presented. The polyhedron \(Q_0^{OC}(G)\) has about twice as many variables as \(Q_1^{OC}(G)\) and \(Q_2^{OC}(G)\), respectively. Furthermore, its coefficient of the dominating term \(mn\) for the number of inequalities is twice that of the two other polyhedra. Therefore, we restrict our computational study to the running times of solving \(Q_1^{OC}(G)\) and \(Q_2^{OC}(G)\). We use CPLEX v. 12.8.0.0 as an LP solver for an extensive set of test instances. These instances are generated randomly with the graph generator \texttt{fast_gnp_random_graph} from the Python package NetworkX [6]. The input data are the number of vertices \(n\) and a probability \(p\) for each pair of vertices \(i\) and \(j\) in \(V\) to share an edge in \(G\). We classify the graphs with respect to \(n\) and \(p\) (that equals the expected density \(d\)). For various pairs of parameters \(n\) and \(d\) we have generated ten different test instances. The average CPLEX running time for optimizing over \(Q_1^{OC}(G)\) and \(Q_2^{OC}(G)\) is listed in Table 1. As mentioned in Section 1, the chance that \(x_i = \frac{1}{3}\) for all \(i \in V\) is a feasible
solution for STAB(G) is higher in sparse than in dense graphs. Therefore, the odd cycle polytope might be a better approximation of STAB(G) in sparse graphs. For illustration, we compute the optimality gap

$$\text{gap}(z) := \left| \frac{z^* - z}{z} \right| \times 100,$$

where z^* is the objective value of an optimal solution of the maximum stable set problem and z is the objective value of an optimal solution of some relaxation. The average gap of $z^E(G)$ and $z^{OC}(G)$, the objective values arising from optimizing over $P^E(G)$ and $P^{OC}(G)$, respectively, for every set of ten test instances is given in Table 1.

For $n \leq 100$ we solved all the problems with the dual simplex method, which is the default method in CPLEX, and with the barrier method, which is by far the best method available for solving our linear programs.

Let $rt(P^X(G))$ be the running time in seconds consumed by optimizing over the stable set relaxation $P^X(G)$. We define

$$\rho(G) := \frac{rt(Q^{OC}_1(G)) - rt(Q^{OC}_2(G))}{rt(Q^{OC}_1(G))} \times 100,$$

Table 1: Comparison of running time between $Q^{OC}_1(G)$ and $Q^{OC}_2(G)$; each number is computed as the average over 10 instances.

<table>
<thead>
<tr>
<th>n</th>
<th>d (%)</th>
<th>Average gap $z^E(G)$</th>
<th>$z^{OC}(G)$</th>
<th>Dual Simplex Average CPU (s)</th>
<th>Barrier Average CPU (s)</th>
<th>(\rho(G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5</td>
<td>1.2 0.0</td>
<td>1.6 1.3</td>
<td>19 %</td>
<td>1.2 1.3</td>
<td>-8 %</td>
</tr>
<tr>
<td>10</td>
<td>15.6</td>
<td>0.7 2.4 2.1</td>
<td>2.5 24 %</td>
<td>2.8 2.2</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30.4</td>
<td>5.8 3.3</td>
<td>4.4 3.3 23 %</td>
<td>3.7 3.2</td>
<td>14 %</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>39.6</td>
<td>11.0 4.4</td>
<td>6.5 36 %</td>
<td>3.6 3.4</td>
<td>6 %</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>5</td>
<td>4.4 0.0</td>
<td>14.9 6.5 56 %</td>
<td>3.6 3.4</td>
<td>6 %</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>27.7</td>
<td>4.9 27.7</td>
<td>180.9 180.9</td>
<td>7.3 6.1</td>
<td>16 %</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>43.2</td>
<td>16.5 1.439.9</td>
<td>13.5 99 %</td>
<td>11.0 8.5</td>
<td>23 %</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>52.3</td>
<td>28.4 608.3</td>
<td>15.2 98 %</td>
<td>13.6 10.6</td>
<td>22 %</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>14.5 0.7</td>
<td>358.6 40.1 89 %</td>
<td>11.3 9.6</td>
<td>15 %</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>39.6</td>
<td>14.2 4.977.6</td>
<td>26.2 99 %</td>
<td>20.3 15.0</td>
<td>26 %</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>51.4</td>
<td>27.1 68.6</td>
<td>31.9 53 %</td>
<td>28.8 21.3</td>
<td>26 %</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>5</td>
<td>21.3 3.0</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>47.0</td>
<td>21.8 - -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>57.9</td>
<td>36.9 - -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>5</td>
<td>28.4 7.5</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>51.1</td>
<td>26.8 88.9</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>61.9</td>
<td>42.8 129.9</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>175</td>
<td>5</td>
<td>32.6 10.7</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>55.7</td>
<td>33.7 73.8</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>65.7</td>
<td>34.8 152.6</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>37.7 14.9</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>58.9</td>
<td>38.4 - -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>61.9</td>
<td>42.8 73.8</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
that displays how much time is proportionately saved by the relaxation $Q_2^{OC}(G)$ in contrast to the relaxation $Q_1^{OC}(G)$.

Table 1 shows that the dual simplex method gets really slow on larger instances when optimizing over $Q_1^{OC}(G)$. The barrier method performs better than the dual simplex method on both formulations $Q_1^{OC}(G)$ and $Q_2^{OC}(G)$. However, optimizing over $Q_2^{OC}(G)$ is much faster than optimizing over $Q_1^{OC}(G)$.

6. Conclusion

Our new extended formulation allows for polynomial time optimization over the odd cycle polytope of the maximum stable set problem, although the number of odd cycles in a given graph is of exponential size in general. It improves Yannakakis’ formulation from 1991, since it has less inequalities. As our numerical results demonstrate, it can be solved faster in practice.

Acknowledgements

The authors were supported by the Research Training Group 2126 Algorithmic Optimization (ALOP), funded by the German Research Foundation DFG.

References

