New MINLP Formulations for the Unit Commitment Problems with Ramping Constraints

Tiziano Bacci
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.
Via dei Taurini 19, 00185 Rome – Italy
tiziano.bacci@iasi.cnr.it

Antonio Frangioni
Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 Pisa – Italy
frangio@di.unipi.it

Claudio Gentile
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.
Via dei Taurini 19, 00185 Rome – Italy
gentile@iasi.cnr.it

Kostas Tavlaridis-Gyparakis
Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo 3, 56127 Pisa – Italy
kostas.tavlaridis@gmail.com

Abstract

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set of power generation units over a short time horizon (one day to a week). Operational constraints of each unit depend on its type (e.g., thermal, hydro, nuclear, ...), and can be rather complex. For thermal units, typical ones concern minimum and maximum power output, minimum up- and down-time, start-up and shut-down limits, ramp-up and ramp-down limits. Also, the objective function is often nonlinear. Thus, even the Single-Unit Commitment (1UC) problem, in which only one unit is present, has a rich combinatorial structure. In this work we present the first MINLP formulation that describes the convex hull of the feasible solutions of (1UC) comprising all the above constraints, and convex power generation costs. The new formulation has a polynomial number of both variables and constraints, and it is based on the efficient Dynamic Programming algorithm proposed in [23] together with the perspective reformulation technique proposed in [22]. We then analyze the effect of using it to develop tight formulations for the more general (UC). Since the formulation,
despite being polynomial-size, is rather large, we also propose two new formulations, based on partial aggregations of variables, with different trade-offs between quality of the obtained bound and cost of the solving the corresponding continuous relaxation. Our results show that navigating these trade-offs may lead to improved performances for the partial enumeration approach used to solve the problem.

Keywords: Unit Commitment problem, Ramp Constraints, MIP Formulations, Dynamic Programming, Convex Costs

1 Introduction

The Unit Commitment (UC) problem is a basic problem arising in power industries to coordinate and manage power generation units. Although it was the typical problem to be solved in old monopolistic regimes, the need to solve UC problems has not disappeared. On the contrary, both generation companies and system operators need to routinely solve some UC variant even in the free market regime (e.g., see [11, 37, 8, 32, 14]), both before and after the price of energy (and other ancillary services) has been cleared in the relevant market. Due to the huge figures involved in real-world systems [51], even minor improvements on the quality of the obtained solutions can result in very significant economical (and, possibly, environmental) savings. Therefore, the efficient solution of UC problems is still very much relevant in practice. Besides, being UC a complex Mixed-Integer NonLinear Program (MINLP), its study is relevant from the methodological viewpoints. Indeed, some theoretical results (e.g., [22]) that have been originally motivated by UC have later found many more applications [35, 12, 19, 20, 14, 28].

The traditional UC problem requires finding the schedule of each power generation unit in order to minimize operational costs while satisfying both system-wide constraints and operational constraints associated with each unit. System-wide constraints usually comprise the satisfaction of the energy demand, the provision of different types of reserve, and the handling of the transmission network. Operational constraints depend on the type of generation units. Most power systems are mainly based on thermal units (comprised nuclear ones) and hydro units, but in recent years the contribution of renewable energy sources (wind, solar, ...) has steadily increased. As these are characterized by uncertainty in the production output, uncertain (robust and/or stochastic) UC models are more and more necessary [55, 53]. Since uncertain variants of optimization problems are typically considerably more difficult to solve than deterministic ones, efficient solution methods for these problems are in high demand as much as ever. Moreover, there is a clear trend whereby production and consumption tend to become more geographically separated than they previously were (think offshore wind farms and large solar plants in semi-desertic areas), which is putting novel strain on transmission networks that were not originally planned for these scenarios. All this has a substantial impact both on costs and security/reliability [5, 10], providing further strong motivation for the development of new approaches capable of solving complex variants of UC problems in shorter and shorter computational times.
Traditionally, Lagrangian relaxation was the method of choice to solve UC (e.g., see [4, 59, 7, or 56, § 3.3] for a complete survey), since it was capable of exploiting the spatial structure of the problem: the most complex constraints pertain to the behaviour of a single unit, and relatively fewer and simpler ones link the different units together. However, the advances in the solution of Mixed-Integer (linear and convex) Programming (MIP) problems that are now widely available in present commercial solver have made MIP approaches an attractive option. This is even more so as the two approaches can be fruitfully combined [54, 30].

The first MILP formulation for UC was described in [31] and used three sets of binary variables. Later on, formulations using only one set of binary variables (on/off state) became more popular [11, 29], although different ones continued to be used [2]. While a reduced number of variables may lessen the cost of computing relaxations, this is usually not the crucial factor; rather, the tightness (quality of the lower bound of the continuous relaxation) of a MIP formulation is key for the efficient solution of the problem.

As operational constraints of thermal units have a strong combinatorial structure, many efforts have been made to improve their MIP definition. While there are some different types of units, each with several different variants, thermal units (comprised nuclear ones) are still the bulk of most energy systems, and these most often have a common set of operational restrictions. In particular, constraints on minimum and maximum power output, minimum up- and down-time, and ramp-up/ramp-down in power are almost invariably imposed. Most units have a nonzero minimum power production (and, obviously, a maximum one), meaning that the produced power is a typical semi-continuous variable, which can either be 0 or live in a closed real interval. These are naturally modeled with the help of the (also natural) binary variables that dictate if the unit is on or off.

Minimum up- and down-time constraints establish a minimum number of consecutive time periods that a unit must be on, or off; they are typically imposed to limit technical stress of the thermal units due to frequent start-up and shut-down operations. Such constraints introduce a strong combinatorial structure. The first exact description by means of linear inequalities for minimum-up and -down time constraints has been given in [42] with an exponential number of inequalities and a polynomial time separation algorithm. Afterwards, Rajan and Takriti [49] and independently Malkin and Wolsey [43] developed an extended linear description with a linear number of constraints.

Ramp-up and ramp-down constraints limit the maximum increase or decrease of the power production between two consecutive time periods. Often, these are described together with maximum limits on start-up and shut-down periods are also often imposed. In their simpler form, these establish minimum and/or maximum limits for the produced power on the time period following the start-up and on the period preceding the shut-down, which can be different from the previously mentioned minimum and maximum power output limits corresponding to “steady-state” operations of the unit (i.e., far from the start-up and shut-down operations). More in general, typically for large units, they can impose complex trajectories, spanning over several time periods, that start-up and shut-down operations must follow before the unit reaches the stable state in which it can be freely (subject to the other constraints) modulated, which is the state in which traditional UC formulations consider the unit “on” (e.g., see [2, 32]).

Further complex features of thermal units are related to the power production costs. The
cost of producing energy is typically a nonlinear function of the produced energy already when the unit is in the stable state (“on”). Furthermore, usually start-up costs have to be paid in the period when the unit is started up, to account for the nontrivial start-up operations. In their simplest description start-up costs can be considered fixed, but in a more exact description they are dependent on how long the unit remained off before start-up. This is because, roughly speaking, the unit must reach a minimum temperature in order to be able to produce power, and the heating process requires energy that has to be paid for. The cost for reaching the required temperature depends on the temperature that the unit has when the start-up process begins, which in turn depends both on environmental factors (assumed known) and on the previous history of the unit, i.e., how many periods it has been off. Typically, cooling of a unit follows an exponential law, and therefore the start-up cost is a nonlinear and concave function of the time the unit has been off. However, if a unit is to remain off for a limited time (this being known in advance, it being precisely the result of the UC problem that is typically solved much before actual operations), an alternative is to keep burning some fuel to avoid the cooling. This can be more economical for short off periods, with the breakpoint easy to find with simple algebraic formulae. However, as the time is discretized the same happens with start-up costs, which therefore entail yet another combinatorial (as opposed to nonlinear) feature of UC models. Nowak and Römisch [46] gave a popular description of these constraints using only state variables. Recently, in [50] it was shown that a specific type of function for start-up costs can be exactly described by linear inequalities which are also computationally efficient in practice. Moreover in [9] a polyhedral description of the general start-up costs was proposed that uses an exponential number of inequalities that can be separated in polynomial time.

In this work we present the first MIP description of the convex hull of the solutions satisfying all the standard operational constraints for the thermal units: minimum up- and down-time constraints, minimum and maximum power output, ramp constraints (including start-up and shut-down limits), general start-up costs, and nonlinear convex power production costs. Our new formulation is derived by a Dynamic Programming algorithm [23] and contains a polynomial number of variables and constraints. A simpler version of this result, limited to linear power generation costs, was first presented in [25]. Analogous results, using different proof techniques and still limited to (piecewise-)linear production costs, where independently proposed in [39, 33]. Interestingly, the latter paper claims that the proposed formulation represents the convex hull for any possible convex power generation cost, but this is proven to be false (even for simple quadratic separable cost) in [3, 34]. Indeed, non-linearity of the cost function introduces a further complexity in the convex hull description, that none of the previous attempts addressed. Interestingly, this complexity can be tamed with the help of the perspective reformulation technique that, despite having very many other applications [35, 12, 19, 20, 14, 28], was originally developed precisely in the context of the solution of UC problems [23].

The structure of the paper is as follows. In Section 2 we recall the two main formulations of the UC problem. In Section 3 we give a survey of the main results concerning polyhedral results for UC formulations. In Section 4 we recall the Dynamic Programming algorithm described in [23]. In Section 5 we present the new formulation, we prove that it describes the convex hull of the solutions of the single-unit commitment problem. In Section 6 we propose two additional simplified formulations also based on the Dynamic Programming
algorithm with a trade-off between tightness and compactness. In Section 7 we present some preliminary computational experiments aimed at gauging the practical effectiveness of the new formulations on a data set already used in the literature. Finally, in Section 8 we sum up the results, and draw some possible lines for future research on the topic.

2 The Thermal Unit Commitment Problem

In this section we recall the two most popular MIP formulations of the thermal Unit Commitment problem; other kinds of units have entirely different constraints and therefore require specific study (e.g. [55]). Those formulations are usually named 1-bin and 3-bin formulations from the number of vectors of binary variables that are considered.

Let I be the set of (indices of) thermal generators, with $m = |I|$, and $T = \{1, \ldots, n\}$ be the set of (indices of) time periods in the planning horizon. Given two time instants t' and t'', we will denote by $T(t', t'')$ the set of all the time instants between t' and t'', extremes included (obviously, $T(t', t'') = \emptyset$ if $t' > t''$). For each $i \in I$ and $t \in T$, let p_{it} (the power variables) be the power level of unit i at time period t, and x_{it} (the commitment variables) be the binary variable denoting the on/off state of unit i at time period t. As previously recalled, “on” state means that the unit can be modulated, i.e., the power output of the unit can be increased or decreased at will, subject to the technical constraints. The “off” state does not necessarily mean that the unit is inactive, in that it could be performing a start-up or shut-down trajectory, or being “banking”, i.e., burning fuel to keep the temperature of the unit in view of an imminent restart. All these details are largely transparent to our model: although complex start-up or shut-down trajectories may require some modifications to be completely accounted for [45], this does not impact the mathematical formulation of the individual units.

We start by describing the 1-bin formulation that uses only the above-mentioned variables. With l_i and u_i being the minimum and the maximum power output for unit $i \in I$, respectively, the minimum and maximum power output constraints are simply

$$l_i x_{it} \leq p_{it} \leq u_i x_{it}, \quad t \in T. \tag{1}$$

With τ^+_i and τ^-_i being the minimum number of consecutive time periods that unit i has to be in on and off state, respectively, the minimum up- and down-time constraints can be expressed as follows:

$$x_{it} \geq x_{ir} - x_{i,r-1}, \quad t \in T(\tau^+_i + 1, n), \quad r \in T(t - \tau^+_i, t - 1), \tag{2}$$

$$x_{it} \leq 1 - x_{i,r-1} + x_{ir}, \quad t \in T(\tau^-_i + 1, n), \quad r \in T(t - \tau^-_i, t - 1). \tag{3}$$

Further constraints are required to specify the initial conditions of the unit. Let τ^0_i denote the initial state of unit i as follows: at the beginning of the planning horizon, if $\tau^0_i > 0$ then unit i has been in on state for τ^0_i time periods, thus one has to impose the condition

$$x_{it} = 1, \quad t \in T(1, \tau^+_i - \tau^0_i). \tag{4}$$

Of course, this is only required if, besides $\tau^0_i > 0$, one also has $\tau^0_i < \tau^+_i$ (otherwise, $T(1, \tau^+_i - \tau^0_i) = \emptyset$). Similarly, $\tau^0_i < 0$ means that unit i has been in off state for $-\tau^0_i$ time periods, and
one has to impose the condition

\[x_{it} = 0 \quad t \in T(1, \tau_i^- + \tau_i^0) \]

(again, this is only significant if \(\tau_i^0 < -\tau_i^- \)).

Let now \(\Delta_i^+ \) and \(\Delta_i^- \) be the ramp-up and ramp-down limits for unit \(i \), respectively, i.e., the maximum increase/decrease of power output w.r.t. the previous period. The corresponding ramp constraints would be quite simple to write, were it not for the special treatment required by the start-up and shut-down periods. These are clearly peculiar, since the power produced at the previous/subsequent period is not really significant. In particular, note that it could well be, for instance, that \(\Delta_i^+ < l_i \); if the ramp constraint were written without considering start-ups (i.e., just taking \(p_{i, t-1} = 0 \) as the reference power value), then the whole system would be unfeasible. Since start-up and shut-down periods need be dealt with in a specific way, it is expedient to introduce the two specific values \(\bar{l}_i \) and \(\bar{u}_i \), known the start-up and shut-down limits for unit \(i \). These are the maximum power value that the unit can have in a, respectively, start-up and shut-down period, and they can be different from \(l_i \) and \(u_i \); for consistency, it must however be \(l_i \leq \bar{l}_i \leq u_i \) and \(l_i \leq \bar{u}_i \leq u_i \). Then, the ramp constraints can be formulated as follows:

\[p_{it} - p_{i, t-1} \leq \Delta_i^+ x_{i, t-1} + \bar{l}_i (1 - x_{i, t-1}) \quad t \in T, \]

(6)

\[p_{i, t-1} - p_{it} \leq \Delta_i^- x_{i, t} + \bar{u}_i (1 - x_{i, t}) \quad t \in T. \]

(7)

We can also assume that \(0 \leq \Delta_i^+ \leq u_i - l_i \) and \(0 \leq \Delta_i^- \leq u_i - l_i \), otherwise constraints (6)–(7) are either redundant or not feasible. Note that for \(t = 1 \) the constraints (6)–(7) refer to values \(p_{i0} \) and \(x_{i0} \), which clearly are not variables but parameters to be set according to the initial conditions (cf. \(\tau_i^0 \) above).

The objective function usually contains the minimization of the production costs, that depend on two main contributions: the generation costs and the start-up costs. The generation costs, for each unit \(i \) and time period \(t \), are often expressed by a convex quadratic cost function of the type

\[f_i(p_{it}) = a_i p_{it}^2 + b_i p_{it}, \]

possibly plus a fixed cost \(c_i x_{it} \). This is an approximation of the true cost function, that does not take into account some technical characteristics of the units, such as the so-called “valve points”. However, the approximation is generally deemed to be accurate enough for practical purposes. Indeed, in many cases the cost function is further approximated by a piecewise linear (or even downright linear) function in order to get good feasible solutions in short time [29].

The start-up costs should in general be expressed as a function \(s_i(x_i) \) of the complete state vector \(x_i \), as it depends on the time \(\tau \) that unit \(i \) has been off. In its most accurate formulation, the start-up cost can be computed by means of two functions. One is a concave cost function of the type \(\sigma_i(\tau) = \bar{\sigma}_i (1 - e^{-\beta \tau}) + \alpha_i \), corresponding to the fact that the cost of starting up the unit depends on the temperature, which, if the unit is left to cool, drops with an exponential law towards ambient temperature (e.g., see [50, 58, 52]). However, for shorter stops it might be preferable to spend some fuel just in order to keep the unit at
the right temperature, which can be assumed to have a linear cost $\gamma_i \tau$ on the number of time periods. For each value of τ, then, the optimal choice between the two options (usually referred to as “cooling” and “banking”) is just the one giving minimum start-up cost. For our purposes, this complex function only need to be known at the discrete set of values

$$\sigma_{it} = \min(\sigma_i (1 - e^{-\beta_i \tau}) + \alpha_i , \gamma_i \tau) \quad \tau \in T(\tau_i^- , \tau_i),$$

where τ_i is the time such that $\sigma_i(\tau_i) \approx \sigma_i(\tau_i + 1) \approx \sigma_i + \alpha_i$, i.e., the unit has reached ambient temperature and the start-up cost is maximum (in general, banking is only convenient for short stops, and cooling is preferable in the long run). Whatever the exact form of the function, the only relevant property needed for MIP formulations is that the values σ_{it} are non-decreasing with respect to τ. Using this property, [16] suggested to express the start-up costs by means of a single extra new variable s_{it} and $\tau_i - \tau_i^- + 1$ extra constraints (for each unit and time instant), as follows:

$$s_i(x_i) = \sum_{t=1}^{n} s_{it}$$

$$s_{it} \geq \sigma_{it}(x_{it} - \sum_{j=1}^{\tau} x_{i,t-j}) \quad t \in T, \quad \tau \in T(\tau_i^- , \tau_i)$$

$$s_{it} \geq 0 \quad t \in T.$$

Even though the number of extra variables and constraints in (10)–(12) is reasonably limited, using such a detailed representation of the start-up cost in a MIP model can have a substantial impact on the performances; this is why, most often the start-up costs are simply approximated with the fixed maximal cost ($\sigma_i + \alpha_i$). In general, since solution time is a crucial issue, the trade-off between an accurate representation of the physical behavior of generating units and the solution cost of the corresponding models is nontrivial. In practice, often simplified models are employed in order to quickly find and approximated solutions of good quality. We will refer to the parameters σ_{it} as history-dependent start-up costs if $\bar{\tau}_i > \tau_i^-$, while we will refer to fixed start-up costs when $\bar{\tau}_i = \tau_i^-$. While most of the constraints of the standard UC problem concern the behavior of a specific unit $i \in I$, system-wide constraints that link the decisions of the different units are also present. The simplest and most common form of system-wide constraints is that of the demand constraints

$$\sum_{i \in I} p_{it} = d_t \quad t \in T,$$

where d_t is the (forecasted) total energy demand at time period t. These constraints are valid for the so called bus network, i.e., the case in which the transmission network has ample capacity to accommodate energy transfer and therefore the physical location of generators and constraints is irrelevant. In some (but not all) applications the capacity of the transmission network may become a limiting factor impacting the production decisions, and more accurate representations of the network are needed. The simplest ones (DC model) boil down to just a set of linear constraints, while the most accurate ones (AC model) involve highly nonlinear terms that are much harder to deal with. This has recently motivated a quite active research stream where formulations (or tight relaxations) of AC constraints are proposed using Second-Order Cone or SemiDefinite constraints (e.g., [6, 18] and the references therein). Another source of complexity comes from the fact that the only (somewhat
crude) way to influence how energy flows on an electrical network, for given production and consumption at the nodes, is to change the network itself; this in practice can typically only mean to disconnect lines, giving rise to the so-called Optimal Transmission Switching variants of UC where binary variables are used to model the corresponding disconnection decisions. Yet other system-wide constraints pertain to “reserve” (primary, secondary, or inertia) that are established to guarantee that the system will remain operational even if the actual conditions deviate (not too much) from the expected ones. Yet, all these variants typically do not impact of the formulation of the individual units, and therefore need not be discussed here in detail.

The 3-bin formulation has been introduced in [49], and independently in [43]. It starts from an exact formulation of the minimum up- and down-time constraints only, that is obtained by lifting the problem in an extended space defined by 3 vectors of binary variables: besides the commitment variables \(x_{it} \), one introduces start-up variables \(v_{it} \) denoting if unit \(i \) has been started up at time period \(t \) (i.e., \(x_{it} = 1 \) and \(x_{i,t-1} = 0 \)) and shut-down variables \(w_{it} \) denoting if \(i \) has been shut-down \(t \) (i.e., \(x_{it} = 0 \) and \(x_{i,t-1} = 1 \)). Using these, the minimum up- and down-time constraints (2)–(3) can be replaced by

\[
\sum_{s \in T(t-r_i^+,t)} v_{is} \leq x_{it} \quad t \in T(\tau_i^+,n), \tag{14}
\]
\[
\sum_{s \in T(t-r_i^-,t)} w_{is} \leq 1 - x_{it} \quad t \in T(\tau_i^-,n), \tag{15}
\]
\[
x_{it} - x_{i,t-1} = v_{it} - w_{it} \quad t \in T(1,n); \tag{16}
\]

(note how (16) are flow-conservation-type constraints). Consequently, the ramp constraints (6)–(7) can be reinforced as

\[
p_{it} - p_{i,t-1} \leq \Delta_i^+ x_{i,t-1} + \bar{t}_i v_{it} \quad t \in T, \tag{17}
\]
\[
p_{i,t-1} - p_{it} \leq \Delta_i^- x_{it} + \bar{u}_i w_{it} \quad t \in T. \tag{18}
\]

In [47] it was also proposed to reinforce constraints (11) by using start-up and shut-down variables, as follows:

\[
s_{it} \geq \sigma_{\tau \tau}(v_{it} - \sum_{j=2}^\tau w_{i,t-j+1}) \quad t \in T, \quad \tau \in T(\tau_i^-,\tau_i). \tag{19}
\]

Note that with fixed start-up costs \(s_i \), the 3-bin formulation can be significantly simplified, as the start-up cost is then completely captured by adding the simple term

\[
\sum_{t \in T} s_i v_{it} \tag{20}
\]

to the objective function, with no need of the extra variables \(s_{it} \) and the constraints (11) or (19).

As the 3-bin formulation is generally accepted as a better starting formulation, we adopt it as a benchmark for the new formulation that we will propose in the following. In particular, in the rest of the paper we will refer to the following model as the 3-bin formulation:

\[
\min \sum_{i \in I} \sum_{t \in T} \left[\left(\sum_{t \in T} (8) + \sum_{t \in T} c_i x_{it} + \sum_{t \in T} (20) \right) + \sum_{i \in I} \right] \quad i \in I \tag{21}
\]
\[
x_{it}, v_{it}, w_{it} \in \{0,1\} \quad i \in I, t \in T,
\]

with the addition of proper initial conditions \((4)-(5) \) for each unit.
3 Literature review of polyhedral descriptions

Here we revise the main polyhedral results proposed in the literature for UC. Due to the fact that the 3-bin formulation is usually stronger than the 1-bin formulation when ramp constraints are used, most attempts start from the former. One exception is [42], that gave a polyhedral description of the minimum up/down time constraints starting from the 1-bin formulation. This description has an exponential number of constraints that can be separated in polynomial time. Although this improves the lower bound provided by the 1-bin formulation, the same (or better) result(s) can be obtained with the 3-bin formulation, and therefore we will concentrate on that.

One of the first papers proposing new valid inequalities for the 3-bin formulation of UC was [11]. This paper was very influential, and several subsequent papers improved most of the results presented there. In particular, [17] presented several types of new constraints based on ramp limits. Then [15] proposed new inequalities based on the study of two distinct polytopes which include the UC polytope: the ramp-up and ramp-down polytopes; subsequently, [48] improved some of these result by considering the full UC polytope. In [32] the special case where only start-up and shut-down limits are imposed were characterized. On a different line of research, [50, 9] analyzed the start-up costs: the former paper presented the case where only “cooling” (i.e., no “banking”) is allowed, while the latter gave a complete polyhedral characterization for the definition of general history-dependent start-up costs. Finally, [40] presents a comprehensive review of the previous results and some new type of inequalities, studies the ways to combine the different types of inequalities in new models, and presents a large computational experience.

In the following we present some of the above cited results according to the classification in [40].

Strengthened generation limits. This type of inequalities limits the generation for each unit and time instant reinforcing upper bound inequalities in (1). In [47] (cf. Eq. (19)) the following constraints were proposed (here presented in the equivalent form of Eq. (37) described in [40]):

\[p_{it} \leq u_i x_{it} - \sum_{j=0}^{K_{iSD}(t)} (u_i - (\bar{u}_i + j \Delta_i^-)) w_{i,t+1+j}, \]

where \(K_{iSD}(t) = \min\{T_{iRD}, \tau_i^+ - 1, T - t - 1\} \) and \(T_{iRD} = \left\lfloor \frac{u_i - l_i}{\Delta_i^+} \right\rfloor \). These constraints reduce the upper bound on \(p_{it} \) if a shut-down occurs in the period from \(t + 1 \) to \(t + 1 + K_{iSD}(t) \).

The approach was furthered in [48], where new variable upper bounds on the generation were introduced that include information of both the ramp-up and ramp-down trajectories:

\[p_{it}\leq u_i x_{it} - (u_i - \bar{u}_i)w_{i,t+1} - \sum_{j=0}^{\min\{\tau_i^+ - 2, T_i^{RU}\}} (u_i - \bar{l}_i - j \Delta_i^+ + (\bar{l}_i - \Delta_i^+) v_{i,t-i}, \]

where \(T_i^{RU} = \left\lfloor \frac{u_i - l_i}{\Delta_i^+} \right\rfloor \). Combining the results of [47] and [48], new inequalities of this class were found in [40] which can strengthen the formulation.

Strengthened ramp-up and ramp-down constraints. Under appropriate conditions, one can replace (17)–(18) with stronger inequalities [47]. In particular, if \(\Delta_i^+ > \bar{u}_i - l_i \) and \(\tau_i^+ \geq 2 \) then the following inequalities are valid:

\[p_{it} - p_{i,t-1} \leq \Delta_i^+ x_{it} - l_i w_{it} - (\Delta_i^+ - \bar{u}_i + l_i) w_{i,t+1} + (\bar{l}_i - \Delta_i^+) v_{it} \quad t \in T(1, n - 1). \]

Indeed, at most one among \(w_{it}, w_{i,t+1}, \) and \(v_{it} \) can be equal to one. If \(w_{it} = 1 \), then \(x_{it} = p_{it} = 0 \) and (24) implies to \(p_{i,t-1} \geq l \). If \(w_{i,t+1} = 1 \) then \(x_{it} = 1 \) and the constraint reduces to \(p_{it} - p_{i,t-1} \leq \bar{u}_i - l_i \), that is valid because in this case \(p_{it} \leq \bar{u}_i \) and \(p_{i,t-1} \geq l_i \). If \(v_{it} = 1 \), then (24) reduces to \(p_{it} \leq \bar{h} \). Finally, if \(w_{it} = w_{i,t+1} = v_{it} = 0 \), then constraint (24) reduces to \(p_{it} - p_{i,t-1} \leq \Delta_i^+ \) if \(x_{it} = 1 \) or to \(p_{it} = p_{i,t-1} = 0 \) if \(x_{it} = 0 \). A symmetric version of (24) is also presented, and other inequalities can be derived under some special conditions. Moreover, in [47, 15, 48] different cases of two-periods ramping constraints, three-periods ramping constraints, and further generalizations that results in an exponential number of constraints are presented.

Strengthened description of start-up costs. In [50] a model for the start-up costs based on temperatures is proposed that works when banking is not allowed. It requires to add new continuous variables: \(\text{temp}_{it} \), the temperature of unit \(i \) at time \(t \), and \(h_{it} \), the heating needed to restart at time \(t \). The start-up cost is then expressed by the cost of the heating \(\sigma_i \) plus the fixed cost \(\alpha_i \):

\[
s_{it} = \sigma_i h_{i,t-1} + \alpha_i v_{it}. \tag{25}
\]

The temperature is normalized to be equal to 1 when the unit is on and decreases exponentially when the unit is off. The heating and the temperatures are linked by the following constraints:

\[
x_{it} \leq \text{temp}_{it} \leq 1 \tag{26}
\]

\[
\text{temp}_{i1} = e^{-\beta_i \max(-\nu,0)} + h_{i0} \tag{27}
\]

\[
\text{temp}_{it} = e^{-\beta_i} \text{temp}_{i,t-1} + (1 - e^{-\beta_i}) x_{i,t-1} + h_{i,t-1} \tag{28}
\]

The constraints (26) force the temperature to be equal to 1 when the unit is on. Due to the cost paid in the objective function for (25), \(h_{i,t-1} > 0 \) only when \(x_{it} = 1 \) and the temperature \(\text{temp}_{it} = 1 \). Therefore, from (28) we get that \(h_{i,t-1} = \text{temp}_{it} - e^{-\beta_i} \text{temp}_{i,t-1} = 1 - e^{-\beta_i} e^{-\beta_i} \text{temp}_{i,t-2} = \ldots = 1 - e^{-\beta_i \tau} \) where \(\tau \) is equal to the number of time instants that the unit has been off. The term \(1 - e^{-\beta_i \tau} \) in (28) is needed to neutralize the heating when the unit is kept on; i.e., if \(x_{i,t-1} = x_{it} = 1 \), then \(\text{temp}_{it} = \text{temp}_{i,t-1} = 1 \) and (28) is satisfied with \(h_{i,t-1} = 0 \). If, rather, \(x_{i,t-1} = 1 \) and \(x_{it} = 0 \), then \(\text{temp}_{it} \in [0,1] \) and (28) is satisfied with \(\text{temp}_{it} = e^{-\beta_i} + (1 - e^{-\beta_i}) h_{i,t-1} \Rightarrow \text{temp}_{it} = 1 \) and \(h_{i,t-1} = 0 \). The result is extended in [9], where an exponential class of valid inequalities (which can be separated in polynomial time) is presented that can be used to express the general history-dependent start-up costs.

Strengthened convex generation costs. While (8) is already convex, \(p_{it} \) is a semi-continuous, hence nonconvex, function. In other words, the “true” objective function should rather be expressed as

\[
f_i(p_{it}, x_{it}) = \begin{cases}
 a_i p_{it}^2 + b_i p_{it} & \text{if } l_i \leq p_{it} \leq u_i \text{ and } x_{it} = 1 \\
 0 & \text{if } p_{it} = x_{it} = 0 \\
 \infty & \text{otherwise}
\end{cases} \tag{29}
\]

While (29) is nonconvex, its convex envelope (best possible convex approximation) turns out to be easily computed [22]:

\[
h_i(p_{it}, x_{it}) = \begin{cases}
 a_i x_{it}^2 + b_i p_{it} & \text{if } x_{it} > 0 \\
 0 & \text{if } x_{it} = 0.
\end{cases} \tag{30}
\]
This is called the **perspective function** of \(f_i; \) note that \(h_i(p_{it}, x_{it}) = f_i(p_{it}) \) if \(x_{it} \in \{0, 1\}, \) but \(h_i(p_{it}, x_{it}) > f_i(p_{it}) \) if \(0 < x_{it} < 1. \) Thus, substituting (30) to (8)—a technique known as **perspective reformulation**—has the potential to significantly increase the lower bound, as confirmed in several studies \[22, 35, 29, 30, 27, 12, 19, 20, 38, 28, 14\]. Different special methods \[22, 35, 27, 19, 20\] have been studied to efficiently deal with this “very nonlinear” term in the continuous relaxation without increasing too much its computational cost w.r.t. the case of the “simple” (8). One of these (that it is not even always the best choice \[20\]) is through the generation of the so-called **perspective cuts**, that can be efficiently used in a branch-and-cut framework,

\[
z_{it} \geq (a_i \bar{p} + b_i)p_{it} - a_i \bar{p}^2 x_{it} \quad \bar{p} \in [0, u_i]
\]

where the variables \(z_{it} \) substitutes \(f_i(p_{it}) \) in the objective function. Even choosing a fixed limited number of perspective cuts can be an effective computational strategy, much more so than standard piecewise-approximation of (8) alone \[29\].

All the above results show that describing the convex hull of (1UC) solutions, when all the technical constraints are considered, is highly nontrivial. Hence, formulations used in practice usually have to resort to carefully picking only some of the above ideas. In [40] a large computational experience is presented to compare several different models that mix in many different types the formulation tricks described in this section.

4 The dynamic programming algorithm

While (1UC) is nontrivial to describe in the variable spaces proposed in the previous sections, it is actually relatively easy to solve. Indeed, in \[23\] a Dynamic Programming (DP) algorithm was proposed that can solve (1UC) with all the constraints—minimum up- and down-time, ramp and generation limits—in \(O(n^3) \) with the standard quadratic separable cost function (8) (and that can be generalized to more complex objectives). We now present an improvement of that DP algorithm and recall the basic ingredients of the approach that are necessary to present the MIP formulation.

In this paragraph, since the unit index \(i \in I \) is fixed we will drop it for notational simplicity. The DP algorithm is based on defining a state-space graph \(G = (N, A) \). The nodes in \(N \) are of two types: \(ON_t \) and \(OFF_t \) for each \(t \in T \), plus two special nodes, the source \(s \) and the sink \(d \). The arcs in \(A \) are of two types: \(arcs \ (OFF_h, ON_k) \), denoting that the unit is turned ON at the beginning of time period \(h \) and that the unit remains ON until the end of time period \(k \) (indicated as \(ON \) arcs); \(arcs \ (ON_k, OFF_r) \), denoting that the unit is OFF from time periods \(k + 1 \) to time period \(r - 1 \) (indicated as \(OFF \) arcs).

The OFF arcs satisfy minimum-down time constraints, that is \((ON_k, OFF_r) \in A \) if and only if \(r \geq k + \tau^- + 1 \), and are labeled with the start-up cost that depends on the length \(r - k - 1 \) of the off period. Note that the most general time-dependent start-up costs \[9\] are easily handled within this framework, since the computation is done entirely offline.

The ON arcs satisfy minimum-up time constraints, that is \((OFF_h, ON_k) \in A \) if and only if \(k \geq h + \tau^+ - 1 \), and are labeled with the cost of the optimal dispatch in the associated period. This is composed of two parts: fixed cost, and variable cost. The first is just the
sum of c_i for all periods from h to k (extremes included), since the unit will be committed in that interval. The variable cost, that depends on the p_{it} variables, is the optimal value of the following Economic Dispatch problem with Ramping Constraints

$$\min \sum_{t \in T(h,k)} f(p_t)$$

$$l \leq p_t \leq u \quad t \in T(h,k)$$

$$p_h \leq l$$

$$p_{t+1} \leq p_t + \Delta^+ \quad t \in T(h, k-1)$$

$$p_t \leq p_{t+1} + \Delta^- \quad t \in T(h, k-1)$$

$$p_k \leq u$$

Since all the relevant binary variables are fixed, (ED^{hk}) is an optimization problem with convex objective function and linear constraints. Hence, its optimal objective function value $z^{hk} = z(ED^{hk})$ can be computed in polynomial time.

Moreover, there are the connections between the source node s and the ON and OFF nodes defined according to the initial state of the unit. That is, if the unit is committed since τ^0 time periods, then there is an arc from s to each node ON_k such that $k + \tau^0 \geq \tau^+$. If, instead, the unit is uncommitted since $-\tau^0$ time periods, then there is an arc from s to each node OFF_h such that $h - \tau^0 - 1 \geq \tau^-$; the latter arcs are labeled with the corresponding start-up cost. The ending node defines the type of the arcs starting from s. All nodes are then connected to the sink node d: arcs (ON_t, d) are of type OFF, arcs (OFF_t, d) are of type ON and their costs is computed for the period $[t, T]$ only. The arc (s, d) means that the unit remains with the same status as at the beginning of the period and it is an ON arc if the unit was ON at time 0, and an OFF arc with zero cost if the unit was OFF at time 0.

Summing up, the state-space graph G has $2n + 2$ nodes and $O(n^2)$ arcs; every s-d path on G represents a feasible schedule for the unit. Hence, (1UC) is reduced to a shortest path problem on an acyclic graph with $O(n)$ nodes and $O(n^2)$ arcs. Thus, the problem can be solved in $O(n^2)$ once that all the data has been computed. We remark that a larger, more complex graph with $O(n^2)$ nodes was proposed in [23], but the one described in this paragraph (that appeared in [26]) is clearly preferable. Yet, in [23] it is proved that all $O(n^2)$ Economic Dispatch problems with Ramping Constraints can be solved in $O(n^3)$ by means of another Dynamic Programming algorithm, which is therefore the cost of the overall procedure, as it was with the original graph. The new graph state-space graph G will be the starting point for developing our MIP formulation in next paragraph.

5 The convex hull for the thermal single-unit polytope

In this section we introduce a new formulation for (1UC) that is inspired by the DP algorithm presented in Section [4]. This new formulation is composed of two parts:

- the shortest path formulation based on the state-space graph G of the DP algorithm;
- new power variables, their related cost, and the linking constraints with the previous part.
As in the previous section, the unit index \(i \in I \) is fixed and therefore we drop it.

The shortest path formulation is straightforward: one just introduces the node-arcs incidence matrix of the graph and writes the obvious system of inequalities. Then we can then simply write this part of the formulation as

\[
Ey = \delta, \quad y \geq 0, \quad (32)
\]

where \(E \) is the node-arcs incidence matrix of \(G \), \(y \) is the vector of arc flow variables, and \(\delta \) is the vector with all zero entries except \(\delta_s = -1 \) and \(\delta_d = 1 \) for the source node \(s \) and the sink node \(d \), respectively.

We now add variables \(p_{hk}^t \) associated with each ON arc \((OFF_h, ON_k) \in A\) and with \(t \in T(h, k)\) to compute the power level for each time instant and the related costs. With these we define the **Extended Economic Dispatch** (with Ramping Constraints) sub-problem

\[
\begin{align*}
\min & \quad c_{hk}y_{hk} + \sum_{t \in T(h,k)} f(p_{hk}^t) \\
\text{s.t.} & \quad l_y^{hk} \leq p_{hk}^t \leq u_y^{hk} \\
& \quad l_y^{hk} \leq p_{hk}^t \leq u_y^{hk} \quad t \in T(h+1,k-1) \\
& \quad p_{h+1}^t \leq p_{hk}^t + y^{hk}\Delta^+ \quad t \in T(h,k-1) \\
& \quad p_{hk}^t \leq p_{h+1}^t + y^{hk}\Delta^- \quad t \in T(h,k-1) \\
& \quad y^{hk} \in \{0,1\} \quad (33)
\end{align*}
\]

Basically, this is the Economic Dispatch \((ED_{hk})\) corresponding to traversing the arc \((OFF_h, ON_k) \in A\). Hereafter, we denote with \(A_{ON} = \{(h,k) | h,k \in T, (OFF_h, ON_k) \in A\} \) the set of pairs \((h,k)\) such that \((OFF_h, ON_k)\) is an ON arc. It is easy to describe the convex hull of \((EED_{hk})\) due to the fact that, together with the single variable \(y^{hk} \) representing the traversal of the arc, it has a “private copy” of all involved continuous variables that are semi-continuous and all “governed” by the same \(y^{hk} \). Therefore, the already recalled results about the Perspective Reformulation show that all that is needed for this is to replace the objective in \((EED_{hk})\) with

\[
\begin{align*}
\min & \quad c_{hk}y_{hk} + \left(h(p_{hk}^t,y_{hk}) = \sum_{t \in T(h,k)} y^{hk} f(p_{hk}^t/y_{hk}) \right) \\
\text{s.t.} & \quad \left\{ (33), y \in [0,1] \right\} \quad (35)
\end{align*}
\]

Hence, the following convex NLP

\[
\begin{align*}
\min & \quad c_{hk}y_{hk} + \sum_{t \in T(h,k)} z_{t}^{hk} \\
\text{s.t.} & \quad z_{t}^{hk} \geq y^{hk} f(p_{hk}^t/y_{hk}) \quad t \in T(h,k) \\
\text{subject to} & \quad (33), y \in [0,1] \quad (35)
\end{align*}
\]

is equivalent to \((EED_{hk})\), i.e., its constraint set describes the convex hull of the feasible solutions of \((EED_{hk})\). Note that in \((35)\) we have made the objective linear with the well-known reformulation trick of introducing the auxiliary variables \(z_{t}^{hk} \) and moving the nonlinear part of the objective function into the constraints that define them. This puts the problem in the form required by our results below.

Separately, \((32)\) has the integrality property, and therefore it would represent the convex hull of (1UC) were the objective function linear. We will show that the combination of \((32)\)

and (35) preserves the property, i.e., defines the convex hull of (1UC), using the nonlinear analogous of the well-known “Approach no. 4” of [57] (used by Edmonds in [17] and by others). To do that, we need the following characterization of the convex hull of a Mixed-Integer convex nonlinear set:

Proposition 1 Consider the closed convex NLP set

\[C = \{ z \in \mathbb{R}^n : f(z) \leq 0 \} , \]

where \(f : \mathbb{R}^n \to \mathbb{R}^m \), and its mixed-integer restriction

\[S = \{ z \in C : z_k \in \mathbb{Z} \quad k \in K \subseteq \{ 1, \ldots, n \} \} . \]

For any arbitrary objective function \(c \in \mathbb{R}^n \), let

\[\sigma_C(c) = \inf \{ cz : z \in C \} \geq D(c) = \sup_{\lambda \geq 0} \{ L(\lambda; c) = \inf \{ cz + \lambda f(z) \} \} , \]

(the minimization of \(cz \) over \(C \) and its Lagrangian Dual, \(L(\lambda; c) \) being the Lagrangian function). If the condition

\[\forall c \in \mathbb{R}^n \quad \sigma_S(c) = \inf \{ cz : z \in S \} = D(c) \tag{36} \]

holds, then \(C = \text{conv}(S) \).

Proof. Since \(S \subseteq C \), \(\sigma_C(c) \leq \sigma_S(c) \). By weak duality, \(\sigma_C(c) \geq D(c) \); hence, (36) gives \(D(c) = \sigma_S(c) \geq \sigma_C(c) \geq D(c) \), i.e., \(\sigma_C(c) = \sigma_S(c) \) for all \(c \in \mathbb{R}^n \). Note that \(\sigma_X(v) = \min \{ vx : x \in X \} \) is the support function of the set \(X \); thus, (36) implies that \(\sigma_C = \sigma_S \).

Standard convex analysis results [36, §V.2] show that \(\sigma_X = \sigma_{\text{conv}(X)} \) for any set \(X \) (“the support function does not distinguish a set from its closed convex hull”), and that a closed convex set is completely determined by its support function [36, Theorem V.2.2.2]; since \(\sigma_C = \sigma_S = \sigma_{\text{conv}(S)} \), then \(C = \text{conv}(S) \). \(\blacksquare \)

We remark that, in Proposition 1, \(\sigma_S(c) \) and \(D(c) \) need not be finite-valued; in particular, \(\sigma_S(c) = -\infty \) may happen if \(S \) is not compact, which is the case in our application (as (35) is an epigraphical set, and therefore “unbonded above”). However, \(\sigma_S(c) = -\infty \) immediately implies \(D(c) = -\infty \) (via \(\sigma_C \leq \sigma_S \) and weak duality), i.e., \(L(\cdot; c) = -\infty \) uniformly. What is needed is therefore that \(D(c) = \sigma_S(c) \) when \(\sigma_S(c) \) is finite. In turn, a necessary (but not sufficient) condition for this to happen is strong duality in the relaxation, i.e., \(D(c) = \sigma_C(c) \), which typically requires some standard constraint qualification to hold.

The required result is now that, for an appropriate definition of composition of MINLP sets, the description of the convex hull of the composed set can be obtained from the descriptions of the convex hulls of the composing ones.

Definition 2 For \(h = 1, 2 \), let \(S^h \subset \mathbb{R}^{n_h} \times \mathbb{R} \) be two sets; their 1-sum composition is

\[S^1 \oplus S^2 = \{ (x^1, x^2, y) \in \mathbb{R}^{n_1+n_2+1} : (x^h, y) \in S^h \quad h = 1, 2 \} . \]
For future reference, let us remark that 1-sum composition preserves both convexity and closedness. Indeed, $S^1 \oplus S^2$ is isomorphic to this set $(S^1 \times \mathbb{R}^{n_2}) \cap (\mathbb{R}^{n_1} \times \tilde{S}^2)$, where $\tilde{S}^2 = \{(y, x^2) | (x^2, y) \in S^2\}$, and both Cartesian product and intersection separately preserve both convexity and closedness. Since the result hinges on duality, some mild requirements are necessary on the algebraic representation of the convex hulls (cf. f in Proposition 1). To keep the result as general as possible, we will ask them in the most abstract way possible:

Assumption 3 For each (closed convex) set C represented by constraint functions $f = [f_i]_{i=1, \ldots, m} : \mathbb{R}^n \to \mathbb{R}^m$, each f_i is differentiable and conditions hold such that the KKT conditions are both necessary and sufficient for global optimality.

These are mild conditions in practice. For instance, for convex f_i (by far the most common occurrence) several classical constraint qualifications, like Slater, linearly independence and affinity, suffice. In general, a convex set can be represented also by nonconvex functions; in [11], for instance, the Slater condition plus a nondegeneracy one ($\nabla f_i(x) \neq 0$ whenever $f_i(x) = 0$ and $x \in C$) is shown to suffice as well. Thus, the conditions are typically satisfied by standard MINLP models, such as our (35) and (32). Let us remark that KKT conditions are also known to work in the nondifferentiable case; this is very well-known when the f_i are convex, but it can be extended to the nonconvex case (where the subdifferential is, say, Clarke’s one) under appropriate conditions [16]. However, it would appear that differentiability is required for our proof technique; this leaves the interesting open question as to whether the result could be proved without it.

Lemma 4 For $h = 1, 2$, let $S^h \subset \mathbb{R}^{n_h} \times \mathbb{R}$ be two sets. If: i) the closed (convex) sets

\[C^h = \{ (x^h, y) \in \mathbb{R}^{n_h+1} : y \geq 0 , \quad f^h(x^h, y) \leq 0 \} \tag{37} \]

describe the convex hull of S^h, ii) Assumption 3 holds, iii) $(x^h, y) \in S^h$ implies that $y \in \{0, 1\}$ and, iv) there exist points $(\tilde{x}^h, 0) \in S^h$ and $(\tilde{x}^h, 1) \in S^h$, for $h = 1, 2$, then $C^1 \oplus C^2 = \text{conv}(S^1 \oplus S^2)$.

Proof. Arbitrarily choose $(c^1, c^2, d) \in \mathbb{R}^{n_1+n_2+1}$ and consider the problem

\[L = \min \{ c^1 x^1 + c^2 x^2 + dy : (x^h, y) \in S^h \quad h = 1, 2 \} \tag{38} \]

its relaxation

\[\Pi = \inf \{ c^1 x^1 + c^2 x^2 + dy : (x^h, y) \in C^h \quad h = 1, 2 \} \tag{39} \]

(since $S^h \subseteq C^h$), and the Lagrangian Dual of (39)

\[\Delta = \sup_{\lambda^0 \geq 0, \lambda^1 \geq 0, \lambda^2 \geq 0} \{ L(\lambda^0, \lambda^1, \lambda^2) \} \tag{40} \]

where

\[L(\lambda^0, \lambda^1, \lambda^2) = \inf_{x^1, x^2, y \geq 0} \{ c^1 x^1 + c^2 x^2 + (d - \lambda^0)y + \lambda^1 f^1(x^1, y) + \lambda^2 f^2(x^2, y) \} \tag{40} \]

is the Lagrangian function. Clearly, $(\Delta \leq) \Pi \leq L$: we want to prove that $L = \Delta (= \Pi)$ which, via Proposition 1, yields the desired result. This proof follows similar steps as the proof by Chvátal [13] for composition of stable set polyhedra by clique-cutsets.
As already remarked, the case \(L = -\infty \) is possible, but not challenging: by weak duality \(\Delta = -\infty \) as well and the result is established. Hence, we can focus on the case where \(\Pi \geq \Delta > -\infty \). Since the feasible region in (39), i.e., \(C^1 \oplus C^2 \), is closed (and the objective is linear), the problem admits an optimal solution \((x^1, x^2, y)\). The main assumption is that the KKT conditions

\[
\begin{align*}
\text{c}^1 + \lambda^1 J_x f^1(x^1, y) &= 0 \quad \text{(41a)} \\
\text{c}^2 + \lambda^2 J_x f^2(x^2, y) &= 0 \quad \text{(41b)} \\
d - \lambda^0 + \lambda^1 J_y f^1(x^1, y) + \lambda^2 J_y f^2(x^2, y) &= 0 \quad \text{(41c)} \\
\lambda^0 y &= 0 \quad \text{(41d)} \\
\lambda^1 f^1(x^1, y) &= 0 \quad \text{(41e)} \\
\lambda^2 f^2(x^2, y) &= 0 \quad \text{(41f)}
\end{align*}
\]

together with primal feasibility—\((x^1, x^2, y) \in C^1 \oplus C^2\)—and dual feasibility—\(\lambda^0 \geq 0, \lambda^1 \geq 0, \lambda^2 \geq 0 \)—are both necessary and sufficient for optimality of \((x^1, x^2, y)\) and \((\lambda^0, \lambda^1, \lambda^2)\). Here, \(J_x f^h(x^h, y) = [\nabla x f_i^h(x^h, y)]_{i=1,...,m_h} \) and \(J_y f^h(x^h, y) = [\nabla y f_i^h(x^h, y)]_{i=1,...,m_h} \) are, respectively, the components of the Jacobian matrix of \(f^h \) corresponding to the \(x^h \) variables and to the \(y \) one. We remark that an immediate consequence of (41) holding, and in particular of the complementary slackness conditions (41d)–(41f), is that the objective value of the primal and of the dual solution coincide, and therefore

\[
\Pi = c^1 x^1 + c^2 x^2 + dy = \Delta .
\]

For \(h = 1, 2 \), but also for fixed values \(y \in \{0, 1\} \), we now introduce

\[
L_y^h = \min \{ c^h x^h + dy : (x^h, y) \in C^h \}.
\]

Note that necessarily \(L_y^h > -\infty \). Indeed, assume this was not the case for, say, \(h = 1 \) and \(y = 0 \), and denote with \(C^1_0 \) the projection on the \(x^1 \) sub-space of the slice of \(C^1 \) where \(y \) is fixed to 0 (note that \(C^1_0 \) is convex, since both slicing and projection preserve convexity). Hence, \(L_0 = -\infty \) would mean that there exist a direction \(v \in \text{rec}(C^1_0) \) such that \(c^1 v < 0 \). But this would mean that \([v, 0, 0] \in \text{rec}(C^1 \oplus C^2)\), and the scalar product with the objective is \(c^1 v < 0 \), which contradicts \(\Pi > -\infty \). We can then define \(L_0 = L_0^1 + L_0^2 \), which is the optimal value of the restriction of (38) corresponding to choosing \(y = 0 \), and, similarly, \(L_1 = L_1^1 + L_1^2 - d \), which is the optimal value if rather choosing \(y = 1 \) (note the “\(+d\)” term, due to a “\(+d\)” term being present twice in both \(L_1^1 \) and \(L_1^2 \) separately). It is then plain to see that \(L = \min \{ L_0, L_1 \} \) is the optimal value of (38). We aim at constructing primal and dual optimal solutions for (39) (which, therefore, satisfy (41)) whose objective value is precisely \(L \).

To do that, again for \(h = 1, 2 \) we define the auxiliary problems

\[
\begin{align*}
\sigma^h &= \min \{ c^h x^h + (d + L_0^h - L_1^h) y : (x^h, y) \in S^h \} \quad \text{(42)} \\
\bar{\sigma}^h &= \min \{ c^h x^h + (d + L_0^h - L_1^h) y : (x^h, y) \in C^h \} \quad \text{(43)}
\end{align*}
\]
(where note that, unlike previously, \(y \) is a variable). By the assumption that \(C^h \) is the convex hull of \(S^h \), \(\sigma^h = \sigma^h \): we can deal with \((42)\) and \((43)\) interchangeably. Similarly to before, it is also plain to see that \(\sigma^h (= \sigma^h) > -\infty \). Indeed, assume this was not the case for, say, \(h = 1 \); it would mean that there exist a direction \([v, w] \in \text{rec}(C^1)\) such that \(c^1v + dw < 0 \).

But \(y \) is bounded in \(S^1 \) (hence in \(C^1 \)) by assumption, which means that any direction in the recession cone must have null \(w \) (the component corresponding to \(y \)). This would mean again that \([v, 0, 0] \in \text{rec}(C^1 \oplus C^2)\), and the scalar product with the objective is \(c^1v < 0 \), which contradicts \(\Pi > -\infty \).

Since the assumptions of the Theorem have to hold for each set separately (besides for \(C^1 \oplus C^2 \)), each optimal solution \((x^h, y) \in C^h\) of \((43)\) is a KKT point; that is, there exist Lagrangian multipliers \(\lambda^0 \geq 0 \) and \(\lambda^h \geq 0 \) such that

\[
\begin{align*}
 c^h + \lambda^h J_x f^h(x^h, y) &= 0 \tag{44a} \\
 d + L_0^h - L_1^h - \lambda^0 + \lambda^h J_y f^h(x^h, y) &= 0 \tag{44b} \\
 \lambda^0 y &= 0 \tag{44c} \\
 \lambda^h f^h(x^h, y) &= 0 \tag{44d}
\end{align*}
\]

The crucial observation, albeit simple to verify, is that \(\sigma^h = \sigma^h = L_0^h \) for both \(h = 1, 2 \): indeed, the objective value of \((42)\) is \(L_0^h \) for both \(y = 0 \) and \(y = 1 \). Therefore, \((43)\) admit optimal solutions (them not being unbounded below) having \(\text{either} \ y = 0 \text{ or } y = 1 \). We therefore have at our disposal optimal primal solutions \((\hat{x}^h, y)\) and dual solutions \((\hat{\lambda}^0, \hat{\lambda}^h)\) — which therefore satisfy \((44)\) — for each \(h = 1, 2 \) and \(y \in \{0, 1\} \). Let us immediately remark that, due to \((44c)\), \(\hat{\lambda}^0, h = 0 \) (irrespective of \(h \)); thus, we will denote \(\hat{\lambda}^0 \) as \(\lambda^0 \).

With the help of these solutions we can construct the sought-for primal and dual solutions, \((\hat{x}^1, \hat{x}^2, \hat{y})\) and \((\hat{\lambda}^1, \hat{\lambda}^2)\) that satisfy \((41)\). To do that, we have to distinguish two cases.

The first is \(L = L_0 \leq L_1 \), i.e., \(y = 0 \) is optimal in \((38)\); here we take \((\hat{x}^1, \hat{x}^2, \hat{y}) = (\hat{x}_0^1, \hat{x}_0^2, 0)\) and \((\hat{\lambda}^1, \hat{\lambda}^2) = (\hat{\lambda}_0^1, \hat{\lambda}_0^2)\) (the value of \(\hat{\lambda}^0 \) will be disclosed shortly). Now, \((41a)-(41b)\) and \((41c)-(41d)\) immediately follow from \((44a)\) and \((44d)\) (for \(h = 1, 2 \)), respectively, while \((41d)\) trivially holds since \(y = 0 \); thus, it remains to examine \((41c)\). For that, we have

\[
\begin{align*}
 d + \hat{\lambda}^1 J_y f^1(\hat{x}^1, \hat{y}) + \hat{\lambda}^2 J_y f^2(\hat{x}^2, \hat{y}) &= d + \hat{\lambda}_0^1 J_y f^1(\hat{x}_0^1, 0) + \hat{\lambda}_0^2 J_y f^2(\hat{x}_0^2, 0) \quad &\text{[definition of } \hat{\lambda}^1, \hat{\lambda}^2, \hat{x}^1, \hat{x}^2, \hat{y}] \\
 &= (d + L_1^0 - L_1^1 + \hat{\lambda}_0^1 J_y f^1(\hat{x}_0^1, 0)) + (L_1^1 - L_1^0) \\
 &\quad + (d + L_2^0 - L_2^1 + \hat{\lambda}_0^2 J_y f^2(\hat{x}_0^2, 0)) + (L_2^1 - L_2^0 - d) \\
 &= \hat{\lambda}_1^0 + \hat{\lambda}_2^0 + L_1 - L_0 . \quad &\text{[adding and subtracting } L_1^1 - L_0^1 \text{ and } L_1^2 - L_0^2 - d] \tag{44h} \text{ for } h = 1, 2 \text{ and } y = 0, \text{ algebra, definition of } L_0 \text{ and } L_1]
\end{align*}
\]

Therefore, \(\hat{\lambda}^0 = \hat{\lambda}_1^0 + \hat{\lambda}_2^0 + L_1 - L_0 \geq 0 \) (since \(\hat{\lambda}^0 \geq 0 \) for \(h = 1, 2 \) and \(L_0 \leq L_1 \)) completes the definition of a dual solution satisfying \((41)\). Hence,

\[
\Delta = \Pi = c^1 \hat{x}^1 + c^2 \hat{x}^2 = L_1^0 + L_2^0 = L_0 = L
\]

as desired.
For the case where, instead, $L = L_1 < L_0$, we must introduce the other problem(s)

$$\sigma = \min\{ (L - L_0) y : (x^1, y) \in S^1 \} = \min\{ (L - L_0) y : (x^1, y) \in C^1 \}$$ \hspace{1cm} (45)$$

(the equivalence between the two being obvious). Since by definition $L - L_0 < 0$, each optimal solution of (45) must have $y = 1$, which in turn implies $\sigma = L - L_0 > -\infty$. Again, the hypotheses ensure that the (leftmost) problem in (45) has some optimal solution $(\tilde{x}^1, \tilde{y}) = (\tilde{x}^1, 1)$, which is a KKT point; therefore, it admits Lagrangian multipliers $\tilde{\lambda}^1 (\lambda^0 = 0$ for obvious reasons) such that

$$\tilde{\lambda}^1 J_x f^1 (\tilde{x}^1, 1) = 0$$ \hspace{1cm} (46a)$$

$$L - L_0 + \tilde{\lambda}^1 J_y f^1 (\tilde{x}^1, 1) = 0$$ \hspace{1cm} (46b)$$

$$\tilde{\lambda}^h f^h (\tilde{x}^h, 1) = 0$$ \hspace{1cm} (46c)$$

Now, (46) is satisfied however chosen an optimal solution $(\tilde{x}^1, 1)$ of (45). But the coefficients of the objective function corresponding to x^1 in (45) are null; this means that any feasible solution $(x^1, 1) \in C^1$ is optimal for (45). We are therefore free to choose $\tilde{x}^1 = \tilde{x}^1_1$ (the optimal solution of (43) for $h = 1$ and $y = 1$); note that this (due to differentiability) immediately implies that $J_x f^1 (\tilde{x}^1, 1) = J_x f^1 (\tilde{x}^1_1, 1)$ and $J_y f^1 (\tilde{x}^1, 1) = J_y f^1 (\tilde{x}^1_1, 1)$.

We want to show that $(\lambda^0, \tilde{\lambda}^1, \lambda^2)$ satisfies (41) with $(\hat{x}^1, \hat{x}^2, \hat{y}) = (\tilde{x}^1_1, \tilde{x}^2_1, 1)$. Indeed, as in the previous case, (41b) and (41f) immediately follow from (44a) and (44d) for $h = 2$. We further have

$$c^1 + \tilde{\lambda}^1 J_x f^1 (\tilde{x}^1, 1) = c^1 + (\tilde{\lambda}^1 + \tilde{\lambda}^1) J_x f^1 (\tilde{x}^1_1, 1) = c^1 + \tilde{\lambda}^1 J_x f^1 (\tilde{x}^1_1, 1) + \tilde{\lambda}^1 J_x f^1 (\tilde{x}^1_1, 1) = 0$$

$$\tilde{\lambda}^1 f^1 (\tilde{x}^1_1, 1) = (\tilde{\lambda}^1 + \tilde{\lambda}^1) f^1 (\tilde{x}^1_1, 1) = \tilde{\lambda}^1 f^1 (\tilde{x}^1_1, 1) + \tilde{\lambda}^1 f^1 (\tilde{x}^1_1, 1) = 0$$

by combining (44a) and (44d) for $h = 1$ with (46a) and (46c). Finally, for (41c) one has

$$d - \hat{\lambda}^0 + \tilde{\lambda}^1 J_y f^1 (\hat{x}^1, \hat{y}) + \tilde{\lambda}^2 J_y f^2 (\hat{x}^2, \hat{y}) = d + \tilde{\lambda}^1 J_y f^1 (\tilde{x}^1_1, 1) + \tilde{\lambda}^1 J_y f^1 (\tilde{x}^1_1, 1) + \tilde{\lambda}^2 J_y f^2 (\tilde{x}^2_1, 1)$$

$$= (d + L^1_0 - L^1_1 + \tilde{\lambda}^1 J_y f^1 (\tilde{x}^1_1, 1)) + (L^1_0 - L^1_1) + (L - L_0 + \tilde{\lambda}^1 J_y f^1 (\tilde{x}^1_1, 1)) + (L - L_0 - \tilde{\lambda}^1 J_y f^1 (\tilde{x}^1_1, 1)) + (L - L_0 - \tilde{\lambda}^2 J_y f^2 (\tilde{x}^2_1, 1))$$

$$+ (L - L_0 - \tilde{\lambda}^2 J_y f^2 (\tilde{x}^2_1, 1)) + (L - L_0 - L^2_0 - d)$$

$$= (L - L_1 + L^2_0 + (L^1_0 + L^2_1 - d) - L = L_1 - L = 0$$

$$\hspace{1cm} (44b) \text{ for } h = 1, 2 \text{ and } y = 1, (46b), \text{ algebra, definition of } L_0 \text{ and } L_1, L = L_1$$

For the objective function value, let us remark that $\tilde{\sigma}^h = L^h_0$ for $h = 1, 2$ and (44) give

$$c \tilde{x}^h_1 + (d + L^h_0 - L^h_1) = L^h_0 \implies c \tilde{x}^h_1 = c \tilde{x}^h_1 = L^h_1 - d ,$$

whence

$$\Delta = \Pi = c^1 \hat{x}^1 + c^2 \hat{x}^2 + d = L^1_1 + L^2_1 - d = L_1 = L$$

in this case as well, finishing the proof.

We are now ready for the announced result:
Theorem 5. The formulation
\[
\min \ c y + \sum_{(h,k) \in A_{ON}} z^{hk}
\]
\[
z^{hk} \geq \sum_{t \in T(h,k)} y^{hk} f\left(p^{hk}_{it} / y^{hk}
ight) \quad (h, k) \in A_{ON}, \quad (h,k) \in A_{ON}
\]
(32), \quad y^{hk} \in [0, 1]
(33)
describes the convex hull of the feasible solutions for (1UC).

Proof. Define \(S_0 \) the set of feasible solutions of the network flow problem (32) associated with the DP graph \(G \), and \(S^{hk} \) the set of feasible solutions of (35). We can build the set of solutions for the complete problem by iteratively composing the solutions of \(S_0 \) with the sets \(S^{hk} \), e.g., in lexicographic order of the pairs \((h,k) \in A_{ON} \). At each step \(j \geq 1 \) of the process, we are combining a set \(S_j-1 \) and a set \(S^{hk} \) (for some fixed pair \((h,k) \)) that only share the single binary variable \(y^{hk} \) to obtain the set \(S_j = S_j-1 \oplus S^{hk} \). It is immediate to prove by induction that the convex NLP formulation obtained by adding to the inequalities of the system (32) all the inequalities of (35) for all the pairs \((h,k) \) used describes the convex hull of \(S_j \), and satisfies strong duality for each objective function. Indeed, at the first iteration we are combining \(S_0 \) with one \(S^{hk} \); both sets satisfy the hypotheses of Lemma 4 (having only linear constraints, \(S_0 \) does not need any strict feasibility assumption for strong duality to hold), and therefore also the corresponding formulation satisfies them for \(S_1 = S_0 \oplus S^{hk} \). Repeating the process, at each step the corresponding convex NLP describes \(\text{conv}(S_j) \) and satisfies strong duality. At the end of the composition process we have obtained all the constraints in (47), which therefore define a convex NLP formulation for the convex hull of the overall set of solutions for (1UC).

Formulation (47) is the first formulation for (1UC) that describe the convex hull of feasible solutions considering all the constraints described above and a convex objective function. As previously mentioned, the formulation presented in [33] was claimed to have this property, but the claim is proven false in [3] with a counterexample.

Finally, we present a formulation for the UC problem based on the exact single-unit formulation can then be summarized as follows:
\[
\min \ \sum_{i \in I} c_i y_i + \sum_{i \in I} \sum_{h,k \in A_{ON}} y^{hk} f\left(p^{hk}_{it} / y^{hk}
ight) \quad (h,k) \in A_{ON}, \quad (h,k) \in A_{ON}, i \in I
\]
(48)
In the rest of the paper, we will refer to (48) as the DP formulation. Note that the number of variables is \(O(n^2) \) (\(n \) being the number of time instants) for the network flow system and \(O(n) \) for each of the \(O(n^2) \) subproblems (35) associated with each pair \((h,k) \); hence, the total number of variables in the proposed formulation is \(O(n^3) \).

6 Additional DP based formulations

In this Section, we introduce other two formulations which are based on the DP algorithm introduced in Section 4. They represent two different levels of complexity and tightness.
When restricted to (1UC), both are less tight than the exact formulation (48) but keep the network constraints (32). The first one uses the original power variables p_{it}, while the second one presents a new type of variables whose cardinality is intermediate between 3-bin and DP formulations.

Given a unit i, consider the commitment variable x_{it}, the start-up/shut-down variables v_{it}/w_{it} and the set of variables y^{hk}_{it} associated with ON arcs (OFT_{h}, ON_{k}) such that $t \in T(h,k)$. It is easy to see that, by definition, these variables are related by the following equations:

$$x_{it} = \sum_{(h,k):t \in T(h,k)} y^{hk}_{it}, \quad v_{it} = \sum_{k \geq t} y^{tk}_{it}, \quad w_{it+1} = \sum_{h \leq t} y^{ht}_{it}.$$ \hspace{1cm} (49)

Consequently, the ramp-up/ramp-down constraints assume, respectively, the following form:

$$p_{it} - p_{it-1} \leq -l_i \sum_{h:t \leq t-1} y^{ht-1}_{it} + \Delta_i^+ \sum_{(h,k):t-1 \in T(h,k-1)} y^{hk}_{it} + l_i \sum_{k:k \geq t} y^{tk}_{it} \quad i \in I, t \in T(2,n)$$ \hspace{1cm} (50)

$$p_{it-1} - p_{it} \leq -l_i \sum_{k:k \geq t} y^{tk}_{it} + \Delta_i^- \sum_{(h,k):t-1 \in T(h,k-1)} y^{hk}_{it} + \bar{u}_i \sum_{h:t \leq t-1} y^{ht-1}_{it} \quad i \in I, t \in T(2,n)$$ \hspace{1cm} (51)

Note that, in case the unit is on at the beginning of time horizon ($\tau_i^0 > 0$), the initial ramp-up/ramp-down conditions have to be set by

$$p_{it} \leq (\Delta_i^+ + p_{i0}) \sum_{k:1 \leq k} y^{0k}_{it} \quad i \in I : \tau_i^0 > 0$$ \hspace{1cm} (52)

$$-p_{it} \leq (\Delta_i^- - p_{i0}) \sum_{k:1 \leq k} y^{0k}_{it} \quad i \in I : \tau_i^0 > 0$$ \hspace{1cm} (53)

Then, the minimum and maximum power output constraints can be re-written as follows:

$$l_i \sum_{(h,k):t \in T(h,k)} y^{hk}_{it} \leq p_{it} \leq u_i \sum_{(h,k):t \in T(h,k)} y^{hk}_{it} \quad i \in I, t \in T$$ \hspace{1cm} (54)

The right-hand side of constraints (54) can be reinforced as follows. Assuming that $\tau_i^+ \geq 2$, if a unit i is switched on at time t then $\sum_{k:k \geq t} y^{tk}_{it} = 1$ and the power p_{it} is bounded by \bar{l}_i. If the unit is switched off at time t then $\sum_{h:t \leq h} y^{ht}_{it} = 1$ and the power p_{it} does not exceed \bar{u}_i. In case the unit does not turn on or off but it is committed at time t then $\sum_{(h,k):h \leq t < k} y^{hk}_{it} = 1$ holds. Consequently, there exists (h,k) such that $h < t < k$ and $y^{hk}_{it} = 1$. Therefore, because of the maximum power output and the ramp-up/ramp-down constraints, the power p_{it} is bounded by $\psi^{tk}_{it} = \min \{u_i, l_i + \Delta_i^+ (t-h), \bar{u}_i + \Delta_i^- (k-t)\}$. Furthermore, if the unit is initially committed ($\tau_i^0 > 0$) then $\sum_{k:1 \leq k} y^{0k}_{it} = 1$ and we have to set $\psi^{tk}_{it} = \min \{u_i, p_{i0} + \Delta_i^+ \cdot t, \bar{u}_i + \Delta_i^- (k-t)\}$. Note that, if $\tau_i^+ \geq 2$, the variable y^{ht}_{it} is not defined. Then, if $\tau_i^+ = 1$ and $y^{ht}_{it} = 1$, the power p_{it} is bounded by the minimum between \bar{l}_i and \bar{u}_i.

From the above considerations, if $\tau_i^+ \geq 2$, the right-hand side of constraints (54) can be reinforced in this way:

$$p_{it} \leq \bar{l}_i \sum_{k:k \geq t} y^{tk}_{it} + \bar{u}_i \sum_{h:t \leq h} y^{ht}_{it} + \sum_{(h,k):h \leq t < k} \psi^{hk}_{it} y^{hk}_{it} \quad i \in I : \tau_i^+ \geq 2, t \in T$$ \hspace{1cm} (55)

Otherwise, if $\tau_i^+ = 1$, this can be done as follows:

$$p_{it} \leq \bar{l}_i \sum_{k:k \geq t} y^{tk}_{it} + \bar{u}_i \sum_{h:h \leq t} y^{ht}_{it} + \sum_{(h,k):h < t < k} \psi^{hk}_{it} y^{hk}_{it} + \min \{\bar{l}_i, \bar{u}_i\} y^{ht}_{it} \quad i \in I : \tau_i^+ = 1, t \in T$$ \hspace{1cm} (56)
Finally, the objective function is the following:

$$\min \sum_{i \in I} c_i y_i + \sum_{i \in I} \sum_{t \in T} (\sum_{(h,k):t \in T(h,k)} y_{ik}^{hk}) f^i(p_{it}/(\sum_{(h,k):t \in T(h,k)} y_{ik}^{hk})) .$$ (57)

We will denote as $p_{it}-model$ the following formulation:

$$\min \left \{ \text{(57), (32)}, \right \} \text{,}$$ (58)

To introduce the last formulation, we define a variable p_i^{bh} denoting the unit i is committed at time t and it has been turned on at time instant h. Differently from the variable p_i^{hk}, with p_i^{bh} the time when the unit will be turned off is not explained. The relation between variables p_{it} and p_i^{bh} is explicated by the following equation:

$$p_{it} = \sum_{h: h \leq t} p_i^{bh}$$ (59)

In what follows, we present a new formulation based on the DP algorithm and by considering equation $[50]$. In particular, the ramp-up/ramp-down constraints are the following ones:

$$p_{it} - p_{it-1}^h - l_i y_i^{ht-1} + \Delta_i^+ \sum_{k:k \geq t} y_{ik}^{hk} \quad i \in I, h \in T(1, n-1), t \in T(h+1, n)$$ (60)

$$p_{it}^h - p_{it}^h - u_i y_i^{ht-1} + \Delta_i^- \sum_{k:k \geq t} y_{ik}^{hk} \quad i \in I, h \in T(1, n-1), t \in T(h+1, n)$$ (61)

Again, if $\tau_i^0 > 0$, the initial ramp-up/ramp-down conditions has to be imposed:

$$p_{i1}^h - (\Delta^+ + p_0) \sum_{k:1 \leq k} y_{ik}^{0k} \quad i \in I: \tau_i^0 > 0$$ (62)

$$- p_{i1}^h - (\Delta^- - p_0) \sum_{k:1 \leq k} y_{ik}^{0k} \quad i \in I: \tau_i^0 > 0$$ (63)

Then, the minimum/maximum power output constraints have the following form:

$$l_i \sum_{k:k \geq t} y_{ik}^{hk} \leq p_{it}^h \leq u_i \sum_{k:k \geq t} y_{ik}^{hk} \quad i \in I, h \in T(0, n), t \in T(h, n)$$ (64)

Note that when $t = h$, we can improve the right hand side of constraints $[64]$ with

$$p_{ih}^h \leq \bar{l}_i \sum_{k:k \geq h} y_{ik}^{hk} + \min \{ l_i, \bar{u}_i \} y_{ih}^{hh} \quad i \in I, h \in T$$ (65)

On the other hand, when $t > h$, constraints $[64]$ can be improved by considering that the unit could be switched off at time t ($y_i^{ht} = 1$) or not ($\sum_{k:k \geq t} y_{ik}^{hk} = 1$). In the former case the power p_{it}^h does not exceed \bar{u}_i. In the latter case, due to the maximum power output and ramp up/ramp-down constraints, the power p_{it}^h is bounded by $\sum_{k:k \geq t} \psi_{ik}^{hk} y_{ik}^{hk}$. Then, when $t > h$, the right hand side of constraints $[64]$ can be enforced with

$$p_{it}^h \leq \bar{l}_i y_i^{ht} + \sum_{k:k \geq t} \psi_{it}^{hk} y_{ik}^{hk} \quad i \in I, h \in T(0, n-1), t \in T(h+1, n)$$ (66)

In conclusion, we derive the objective function and demand constrains

$$\min \sum_{i \in I} c_i y_i + \sum_{i \in I} \sum_{t \in T} \sum_{h:t \geq h} (\sum_{k:k \geq t} y_{ik}^{hk}) f^i(p_{it}/(\sum_{k:k \geq t} y_{ik}^{hk}))$$ (67)

$$\sum_{i \in I} \sum_{h:h \leq t} p_{it}^h = d_t \quad t \in T$$ (68)
Table 1: Root node gaps of the DP, p_t, p_{ht} and 3bin formulations

<table>
<thead>
<tr>
<th>units</th>
<th>timelp</th>
<th>gap$^{lp}%$</th>
<th>DP</th>
<th>timelp</th>
<th>gap$^{lp}%$</th>
<th>p_t</th>
<th>timelp</th>
<th>gap$^{lp}%$</th>
<th>p_{ht}</th>
<th>timelp</th>
<th>gap$^{lp}%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.12</td>
<td>1.52</td>
<td>16.40</td>
<td>0.67</td>
<td>0.93</td>
<td>2.83</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.28</td>
<td>1.43</td>
<td>59.07</td>
<td>0.51</td>
<td>1.46</td>
<td>0.78</td>
<td>8.53</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.96</td>
<td>0.87</td>
<td>300.53</td>
<td>0.08</td>
<td>4.32</td>
<td>0.30</td>
<td>22.42</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the rest of the paper, with p_{ht}-model we will refer to the following model:

$$\min \left\{ \frac{y}{67}, \frac{y}{68}, \frac{y}{32}, \frac{y}{60} - \frac{y}{66} \right\} ,$$ \quad (69)

7 Computational tests

In this section we test the computational performances of the new formulation DP presented in Section 4 and formulations p_t and p_{ht} introduced in Section 6. The main issue, of course, is that of the trade-off between the bound improvement w.r.t. less tight formulations and the cost increase due to the larger size. Indeed, the 3-bin formulation has $O(n)$ variables only and $O(n)$ constraints for each unit, while the new ones proposed have $O(n^2)$ binary variables, at least $O(n)$ continuous variables, and at least $O(n)$ constraints, for each unit. As already described, the new formulations based on the DP algorithm differ on the type of continuous variables and associated constraints. The first formulation contains $O(n^3)$ variables p_{ht} for each unit, the second formulation contains $O(n)$ variables p_{ht} for each unit, and the third formulation represents an intermediate case and contains $O(n^2)$ variables p_{ht} for each unit. We denote the new formulations DP-model, p_t-model, p_{ht}-model, respectively.

The experiments have been carried out with CPLEX 12.9 on a PC with 2.2 GHz Intel Xeon Gold 5120 CPUs and 64 GB of RAM, under a GNU/Linux Ubuntu 18.04.3 LTS operating system. We used the set of instances published at

http://www.di.unipi.it/optimize/Data/UC.html

considering pure thermal instances ranging from 10 to 50 units and $n = 24$ time periods. For each instance size we performed 5 tests, and we present the average of the results thus obtained. In Table 1 we compare the running times in seconds to solve the continuous relaxation (timelp) of the new formulations presented in this paper and the standard 3-bin one, with the corresponding gap in percentage (gap$^{lp}\%$) w.r.t. the minimum solution among all formulations. Note that the gap is the one of the “pure” formulation, i.e., before any cut added by CPLEX.

The results in Table 1 show that the root node gaps of each model actually decreases when the size of the instances increases. Furthermore, the DP formulation always provides the best gaps, while the 3-bin the worst ones. However, the required average running time
3-bin DP

<table>
<thead>
<tr>
<th>units</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28(5)</td>
<td>275</td>
<td>0.01</td>
<td>832(5)</td>
<td>599</td>
<td>0.01</td>
<td>5(5)</td>
<td>41</td>
<td>0.01</td>
<td>152(5)</td>
<td>591</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>7036(2)</td>
<td>3561</td>
<td>0.08</td>
<td>7902(2)</td>
<td>1961</td>
<td>0.05</td>
<td>1066(5)</td>
<td>1234</td>
<td>0.01</td>
<td>6694(3)</td>
<td>3996</td>
<td>0.02</td>
</tr>
<tr>
<td>50</td>
<td>10000(0)</td>
<td>1619</td>
<td>0.12</td>
<td>10000(0)</td>
<td>695</td>
<td>0.14</td>
<td>8095(1)</td>
<td>2303</td>
<td>0.03</td>
<td>8471(1)</td>
<td>2669</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Table 2: Computational results with gap 10^{-4}

<table>
<thead>
<tr>
<th>units</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
<th>time(opt)</th>
<th>nodes</th>
<th>gap%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21(5)</td>
<td>163</td>
<td>0.09</td>
<td>500(5)</td>
<td>444</td>
<td>0.10</td>
<td>2(5)</td>
<td>1</td>
<td>0.08</td>
<td>142(5)</td>
<td>455</td>
<td>0.10</td>
</tr>
<tr>
<td>20</td>
<td>6002(2)</td>
<td>1980</td>
<td>0.11</td>
<td>5490(4)</td>
<td>1237</td>
<td>0.11</td>
<td>37(5)</td>
<td>74</td>
<td>0.10</td>
<td>3165(5)</td>
<td>2057</td>
<td>0.09</td>
</tr>
<tr>
<td>50</td>
<td>6052(2)</td>
<td>1042</td>
<td>0.14</td>
<td>6927(3)</td>
<td>504</td>
<td>0.11</td>
<td>160(5)</td>
<td>148</td>
<td>0.08</td>
<td>7038(2)</td>
<td>1479</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 3: Computational results with gap 10^{-3}

by the former model is considerably larger than the latter. On the other hand, formulations \(p_t \) and \(p_t^h \) seem to provide good gaps w.r.t. reasonable computing times.

We have performed some computational results for solving the UC problem at optimality, with 0.01\% (Table 2) and with 0.1\% (Table 3) gap. In Table 2 and Table 3, for each model, column time\((opt)\) reports the average computing time in seconds and the number of instances, over five, solved to optimality (in parentheses) within a time limit of 10000 seconds, columns nodes and gap\% denote the average number of nodes explored and the average final gap, respectively.

Overall, the results in Table 2 show that the \(p_t \)-model is definitely the most performing one, solving more instances in smaller computing times. The 3-bin formulation and the DP-model provide results quite similar, except for instances with 10 units where the former computes the optimal solutions with less computational effort. Regarding the \(p_t^h \)-model, it is decidedly more effective than the 3-bin and DP formulations but, anyway, less than the \(p_t \)-model.

Obviously, by setting a lower gap (Table 3) more instances are solved. Also in this case formulation \(p_t \) has the best performances and can solve all the instances. In this case, it is worth observing that the formulation DP outperforms the 3-bin one in the number of solved instances.

8 Conclusions

We have presented the first exact formulation for the (1UC) problem with convex cost function and all the main operational constraints proposed in the literature. The formulation is based on the combination of the flow formulation of the DP approach, which “has the integrality property for the constraints”, and of the perspective reformulation for the objective, which “has the integrality property for the objective”. We believe that this combined approach is interesting in its own right, and it could have other applications.
While the proposed (1UC) formulation indeed produces the strongest lower bounds when used as the basis of a (UC) formulation, its large size makes it not completely practical. We have therefore proposed and analyzed two alternative formulations, based on partial variable aggregation, that offer different trade-offs between size and potential bound quality. The experimental results show that the p^h_t and (especially) p_t formulations have very good performances in comparison to any other model, while the DP-model does not seem to be very effective but, on large instances, still comparable with the 3-bin one.

We believe that the new formulations presented in this paper show promise, and warrant further investigation in at least two directions. The first is to help in the definition of heuristic algorithms that exploit the much smaller gap and use the better continuous solution to quickly produce feasible solutions with the quality required by practical applications (say, a gap smaller than 0.5%). The second is the fact that, like with all “large” formulations, the number of variables and constraints that are actually required to characterize at the optimal solution is a small fraction of the total number. Thus, generation of variables and constraints, such as the Structured Dantzig-Wolfe Decomposition [21], could very considerably speed-up the overall performances of the algorithm, thereby overcoming the disadvantage related to the larger size of the proposed formulations and making them even more competitive with the 3-bin one.

References

