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Abstract. The paper overviews stochastic optimization models of insurance mathematics and 
methods for their solution from the point of view of stochastic programming and stochastic optimal 
control methodology, with vector optimality criteria. The evolution of an insurance company’s 
capital is considered in discrete time. The main random variables, which influence this evolution, 
are levels of payments, i.e. the ratios of paid claims to the corresponding premiums, per unit of 
time. The main decision variables are the structure of the insurance portfolio (the structure of the 
total premium) and the dividend payments. As for efficiency criteria, indicators of profitability are 
taken, and, as risk criteria, the probability of ruin or the recourse capital is used. The goal of 
optimization is to build efficiency frontiers and to find out Pareto-optimal solutions. Methods for 
solving these tasks are proposed. 
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Introduction. The traditional theory of optimal insurance is based on the expected utility theory 

[1, 2]. An alternative approach is based on optimizing profitability and/or risk [3, 7 - 13]. As an 

indicator of risk, the probability of ruin (the probability of insolvency) is mostly used, which has 

been studied and estimated by the vast literature [5, 6, 14]. The difficulty of the arising 

optimization problems is due to the fact that they belong to the class of non-convex stochastic 

programming or stochastic optimal control problems under probabilistic constraints. The theory 

of stochastic programming is designed to formalize decision-making problems in conditions of 

stochastic uncertainty [15 - 18]. The present article shows, with model examples, how the problems 

of optimizing the insurance business are formulated and numerically solved according to several 

criteria within the framework of computational stochastic programming [19]. 

 In contrast to the classical Kramer-Lundberg model [1 - 6], in this article, the process of 

stochastic evolution of an insurance company capital is considered in discrete time, that is justified 

by discrete-time (quarterly, annual) reporting of companies on their performance. In insurance, the 

main sources of randomness are insurance claims that appear at random times and have random 

size. In the considered discrete-time models, the main random variable is the level of insurance 

payments (unprofitableness), which is the ratio of payments to premiums per unit of time (quarter, 
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year). The dynamics of making optimal decisions in these models is reflected in the two- and multi-

stage structure of stochastic programming models, as well as in the multi-stage models of 

stochastic dynamic programming. The paper proposes several new methods for solving arising 

stochastic optimization problems. These issues are considered in more detail in [20]. 

 The E-model of stochastic programming. Consider the following conceptual model of 

an insurance company. Let 0u ≥  denotes an insurance reserve from a certain feasibility set U ,  

x X∈  be the planned volume of insurance contracts (in monetary terms) from an allowable set X

, 0ν ≥  be the insurance load, ( )c x  be the net premium under insurance contracts (gross premium 

minus production costs to maintain the volume x  of contracts, 0ξ ≥  be (random) unprofitableness 

of insurance business (with distribution function ( )F ⋅ ), that is, a random amount of insurance 

claims per unit of premiums. In insurance statistics, the value ξ  is called the level of payments 

[22]. In stochastic programming, the so-called two-stage decision-making model is considered. As 

applied to insurance modeling, it looks as follows: at the first stage, a deterministic decision  ( , )u x  

is made, and at the second stage, a value ξ  is observed, i.e. the value of insurance claims becomes 

known. The purpose of the business is to maximize dividends d , which may be, depending on the 

setting, either deterministic or random. Let the decision on dividends be made before the insurance 

claims xξ  are finally known. Thus, if at the first stage the company's capital was u , then at the 

second stage it becomes a random variable 

 ( , , , ) ( ) ,f u x d u c x d xξ ξ= + − −  (1) 

which can be both positive and negative. In the latter case, they say that the company is insolvent. 

Within the framework of the standard stochastic programming theory, it is believed that the 

problem of insolvency can be resolved by borrowing capital of the size 

( )min{0, ( ) }u c x d xξ− + − − , multiplied by the penalty coefficient 0q >  for the insolvency (it is 

natural to assume that 1q ≥ ). Then the decision-making task on values , , ,u x dν  consists in 

maximizing the total expected income (E-task): 

 ( , ) , 0( , , ) E min{0, ( ) } max u x W U X dF u x q d q u c x d xξ ξ ∈ ⊆ × ≥= + + − − →  , (2) 

where Eξ  is the mathematical expectation operator with respect to ξ . If  the constraint set 

W U X⊆ ×  is a singleton, i.e. the values ,u x  are fixed, then problem (2), in essence, concerns 

only the choice of dividends d , paid in advance. For a fixed parameter q  and upward convex 

function ( )c x , problem (2) is a convex stochastic programming problem, for the solution of which 



there is a wide variety of methods [15, 16, 18]. Let * * *( , , )u x d  be the optimal solution for problem 

(2). At the same time, it is possible that for some values ξ  the company is insolvent, 

* * *( , , , ) 0f u x d ξ < , or, in other words, the probability * * *Pr{ ( , , , ) 0}f u x d ξ <  of insolvency is 

greater than zero. However, by increasing the penalty ratio q , the desired reduction in this 

probability can be achieved [21]. 

The P-model of stochastic programming. There are other settings of stochastic 

programming problems, for example, the so-called P-problems [17]. In the notation of the previous 

section, we consider the following problem: 

 ( , ) , 0max u x W U X dd ∈ ⊆ × ≥→  (3) 

subject to the probabilistic constraint 

 { }Pr ( ) 0 ,u c x x dξ+ − − < ≤   (4) 

where Pr{}⋅  indicates the probability of the event in brackets;   is the reliability parameter of the 

insurance business, 0 1< < . In contrast to (2), model (3), (4)  allows us to explicitly control the 

probability of insolvency, but it turns out to be non-convex. Indeed, let us denote ( ) Pr{ }F z zξ= ≤  

the distribution function of the random variable ξ . Then 

 { } { } ( )Pr ( ) 0 Pr ( ( ) ) / 1 ( ( ) ) /u c x d x u c x d x F u c x d xξ ξ+ − − < = > + − = − + −  

and thus, constraint (4) can be rewritten as follows:  

( )( ( ) ) / 1 .F u c x d x+ − ≥ −        (5) 

This shows that restriction (5) and, therefore (4), is non-convex, that greatly complicates the 

solution of problem (3), (4).  

Modeling an insurance portfolio. In insurance mathematics, a portfolio means the 

structure of the insurance premium, i.e. shares coming from different kinds of policies. We will 

describe the insurance portfolio with a vector x X∈  with components 1( ,..., )nx x , where X  

denotes the set of acceptable portfolios, for example, 
1

{ 0 : }ii

nX x x w
=

= ≥ ≤∑ , with a fixed total 

nominal value w . Let ( )ic x  and iξ  be the net income and random loss-making (level of payments) 

of the i -th type of insurance (for example, in annual terms), 1( ,..., )nξ ξ ξ= . Then, similarly to (1)

, with the initial capital u  and dividend payments d , the random capital at the end of the time unit 

will be 



 
1 1

( , , , ) ( )
n n

i i i i
i i

f u x d u c x d xξ ξ
= =

= + − −∑ ∑  . 

The tasks of optimizing the insurance portfolio are set similarly (2): 

 ( , ) , 0( , , ) E min{0, ( , , , )} max u x W U X dF u x q d q f u x dξ ξ ∈ ⊆ × ≥= + →  , (6) 

or similarly (3), (4): 

 ( , ) , 0max u x W U X dd ∈ ⊆ × ≥→  , (7) 

 { }Pr ( , , , ) 0 .f u x d ξ < ≤   (8) 

In the multidimensional case, the probability constraint (8) cannot be expressed in terms of a 

distribution function as in (5), therefore, problem (7), (8) requires the development of the special 

solution technique.   

Reducing the P-model of stochastic programming to a mixed-integer optimization 

problem. If the random variable ξ  takes on only a finite number of values (e.g., historical 

scenarios) 1{ ,..., }kξ ξ  with probabilities 1{ ,..., }kp p , then problem (3), (4) can be equivalently 

reduced to a partially integer programming problem. Let 1{ ,..., }kz z z=  be a set of Boolean 

variables, and M  be a sufficiently large constant. Then problem (3), (4) is equivalent to the 

following mixed-integer programming problem: 

( , ) , 0, {0,1}
max ku x W d z

d
∈ ≥ ∈

→ ,      (9) 

1

1
k

i i
i

p z
=

≥ −∑  ,       (10) 

( ) (1 ), 1,..., .i iu c x d x M z i kξ+ − − ≥ − − =     (11) 

Here, constraint (10) means that the total probability of those scenarios i , for which 1iz = , is 

greater than or equal to (1 )−  . When 1iz = , the corresponding restriction in (11) turns into the 

inequality ( ) 0iu c x d xξ+ − − ≥ ; when 0iz = , it turns into the inequality ( ) iu c x d x Mξ+ − − ≥ −

, and due to a large value of M , it is satisfied automatically, i.e. it is not restricting. Thus jointly,  

constraints (10), (11) entail the fulfillment of the probabilistic constraint (4). A similar approach 

to reducing a chance constrained problem to a partially integer programming problem (first 

proposed in [23], see also [24]) is used in [11] to optimize the insurance portfolio subject to a 

constraint on the probability of ruin. 



  Vector stochastic programming problems. A task of insurance business optimization can 

be considered as multi-criteria one. For example, instead of problems (2) and (3), (4), we can 

consider the following two-criteria 1 2( , )f f  problems: 

 1 ( , ) , 0( , , ) max u x W df u x d d ∈ ≥= →  , (12) 

 2 ( , ) , 0( , , ) E min{0, ( ) } min u x W df u x d u c x d xξ ξ ∈ ≥= − + − − →  , (13) 

where the second criterion 2( , , )f u x d  means the average capital deficit at the time of ruin, and   

 1 ( , ) , 0( , , ) max u x W df u x d d ∈ ≥= →  , (14) 

 { }3 ( , ) , 0( , , ) Pr ( ) 0 min u x W df u x d u c x d xξ ∈ ≥= + − − < →  (15) 

The efficiency frontier of the first task (12), (13) in the plane “profitability-risk” 1 2( , )f f  is 

defined by the function: 

  2 ( , ) 2 ( , )( ) min ( , , ) min E max{0, ( )}.u x W u x WF d f u x d d x u c xξ ξ∈ ∈= = + − −  (16) 

If ( )c x  is a linear or concave function and the constraint set W is convex, then (16) is a convex 

stochastic programming problem [15, 16, 18].  

 The efficiency frontier of the second problem (14), (15) in the plane “dividends - the 

probability of ruin” 1 3( , )f f  is given by the function:  

 3 ( , ) 3 ( , )( ) min ( , , ) min Pr{ ( ) 0}.u x W u x WF d f u x d u c x d xξ∈ ∈= = + − − <  (17) 

This task is a non-convex stochastic programming problem. In the case of scalar ξ  and x , we get  

 [ ]3 ( , )( ) min 1 (( ( ) ) / ) ,u x WF d F u c x d x∈= − + −  

where ( )F ⋅  is the distribution function of the random variable ξ .  

 If the random variable ξ  takes on a finite set of values (scenarios) 1{ ,... }nξ ξ  with 

probabilities 1{ ,..., }np p , then problem (17) is reduced to a partially integer programming problem 

similarly to [24]. Indeed, let us introduce Boolean variables 1{ ,..., }nz z  and consider the problem: 

     
( , ) , {0,1}

1

max n
i

n

i i u x W z
i

p z
∈ ∈

=

→∑  

 ( ) (1 ), 1,..., ,i iu c x d x M z i nξ+ − − ≥ − − =  



where M  is a sufficiently large constant. In this problem, the probability of non-ruin is maximized, 

and therefore, it is equivalent to problem (17).   

A stochastic programming model with decision strategies. Let us now consider the case 

when the decision on the dividends payment is made after the insurance claims xξ  become known. 

In this case, dividends ( )d d= ⋅  can be an arbitrary measurable function of the company capital 

( )u c x xξ+ − . Then problem (3), (4) takes the following form:  

 ( , ) , ( ) 0E ( ( ) ) max u x W dd u c x xξ ξ ∈ ⋅ ≥+ − →  (18) 

subject to the chance constraint 

 { }Pr ( ) ( ( ) ) 0 ,u c x x d u c x xξ ξ+ − − + − < ≤   (19) 

where the optimization is carried out not only over variables u  and x  but also over all measurable 

(by Borel) functions ( ) 0d ⋅ ≥ . This problem is infinite-dimensional; to solve it, it is necessary to 

examine all possible measurable functions ( )d ⋅  together with all admissible values of u  and x . 

One of  possible approaches to the approximate solution of this problem is to specify a parametric 

form of the function ( )d ⋅ . For example, one can restrict oneself to the so-called barrier strategies 

( , ) max{0, }d y y⋅ = ⋅ − , where y  is the value of the barrier. The choice of the barrier strategy for 

paying dividends means that with a company’s capital less than the barrier, the dividends are not 

taken, and with the capital more than the barrier, all capital exceeding the barrier is subtracted as 

dividends. Of course, other types of dividend strategies are possible, depending, generally 

speaking, on a finite-dimensional vector parameter. When the function ( , )d y⋅  is substituted into 

problem (18), (19), the latter turns into finite-dimensional one: 

 { } ( , ) , 0E ( ( ) , ) E max 0,( ( ) ) max u x W yd u c x x y u c x x yξ ξ ξ ξ ∈ ≥+ − = + − − →  (20) 

subject to the chance constraint 

 { }Pr ( ) max{0,( ( ) )} 0u c x x u c x x yξ ξ+ − − + − − < ≤   (21) 

and is solvable by the search (evolutionary) algorithms. In the same way, vector problems (12) − 

(15) can be reformulated. A similar approach to solving complex dynamic problems of the 

dividend optimal control is used in [28]. 

Dynamic stochastic programming models. Let an insurance company's reserves tX  

change over (discrete) time 0,1,...t =  according to the following law:  



 1 0( ) ( , ) , , 0,1,...,t t t tX X c x d X y x X u tξ+ = + − − = =  (22) 

where x  is the nominal value of the insurance portfolio; ( )c x  denotes deterministic premiums per 

unit of time from the insurance portfolio; ( , ) [0, ]t td X y X∈  defines dividend strategy as a function 

of the current capital tX  and a parameter y ; { , 0,1,...}t tξ =  are independent equally distributed 

(as some random variable ξ  with a distribution function F ) observations of the level of insurance 

claims payments. Process (22) is called the risk process. By the event of ruin (or insolvency) of 

the risk process (22), we understand such realizations of the process (22) that 0tX <  at some 

0.t > . We denote ( )t uϕ  the probability of non-ruin of process (22) in steps t  for the initial capital 

0X u= : 

 { }0( ) Pr 0, 0 , ,t ku X k t X uϕ = ≥ ≤ ≤ =  

where Pr{}⋅  designates the probability of the event in brackets. The functions ( )t uϕ  depend not 

only on u  and also on other parameters ( , )x y  of process (22) but in this context this dependence 

is not explicitly indicated. The sequence of functions { ( ), 0,1,...}t tϕ ⋅ =  satisfies the following 

integral relations: 

  

( )

1( ) Pr{ ( ) ( ) 0}
Pr{ ( ( ) ( )) / }

( ( ) ( )) / ,

u u c x d u x
u c x d u x

F u c x d u x

ϕ ξ
ξ

= + − − ≥ =
= ≤ + − =

= + −

    (23) 

 1( ) E ( ( ) ( ) ), 1,2,...,t tu u c x d u x tξϕ ϕ ξ+ = + − − =  (24) 

where Eξ  denotes the mathematical expectation operator (Lebesgue integral with respect to the 

measure induced by the random variable ξ ), ( ) Pr{ }F z zξ= ≤ ; by definition, ( ) 0t uϕ =  when 

0u < , for all t . 

  Integral equations of insurance mathematics. The probability of non-ruin of process 

(22) on an infinite time interval  

    0( ) Pr{ 0 0, }tu X t X uϕ = ≥ ∀ ≥ =  

satisfies, under a fixed x , the (integral) equation  

 
( )

( )
{ : ( ) ( ) 0}

( ) E ( ) ( )

( ) ( ) ( ) ,
u c x d u x

u u c x d u x

u c x d u x dF
ξ

η η

ϕ ϕ ξ

ϕ η η
+ − − ≥

= + − − =

= + − −∫   (25) 



where, by definition, ( ) 0uϕ =  for 0u < . This is a linear integral equation, which always has the 

zero solution. However, we are interested in conditions under which there is a non-decreasing 

solution ( )ϕ ⋅  such that 

  
{ }

0 ( ) 1, lim ( ) 1.
u

u uϕ ϕ
→+∞

≤ ≤ =      (26) 

In [25], the properties of such equations and conditions for the existence and uniqueness of their 

solution are studied. Moreover, relations (23), (24), essentially, give the method of successive 

approximations for solving the integral equation (25).  

 Note that the operator ( ) E ( ( ) ( ) )A u u c x d u xξϕ ϕ ξ= + − −  on the right-hand side of (25) is 

non-expanding with respect to the sup-norm: 

  

1 2 1 2
0

1 2
0

1 2
0

1 2 1 2 1 2
0

sup | ( , ) ( , ) |

sup | E ( ( ) ( ) , ) E ( ( ) ( ) , ) |

E sup | ( ( ) ( ) , ) ( ( ) ( ) , ) |

E sup | ( , ) ( , ) | E .

u

u

u

y

A A A u x A u x

u c x d u x x u c x d u x x

u c x d u x x u c x d u x x

y x y x

ξ ξ

ξ

ξ ξ

ϕ ϕ ϕ ϕ

ϕ ξ ϕ ξ

ϕ ξ ϕ ξ

ϕ ϕ ϕ ϕ ϕ ϕ

≥

≥

≥

≥

− = − =

= + − − − + − − ≤

≤ + − − − + − − ≤

≤ − = − = −

‖ ‖
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But this operator is not contracting either; therefore, the existence and uniqueness of the solution 

of equation (25), as well as the convergence of the method of successive approximations (23), (24) 

cannot be deduced from the principle of contracting mappings.  

 Necessary and sufficient conditions for the existence and uniqueness of solutions to 

the integral equations of insurance mathematics. Let ( ) E ( ( ) )A u u c x d xξϕ ϕ ξ= + − −  be the 

operator in the right hand side of (25), where ,x d  are fixed parameters. Suppose that the random 

variable ξ  is bounded, mξ ≤ , with probability one. Let us find a function *( )uϕ  such that 

* *( ) ( )A u uϕ ϕ≥  of the form *( )
*( ) max{0,1 }L u uu eϕ − −= − , where *,L u  are searched parameters. The 

following estimates hold true:  

 

( )*

*

*

( ( ) )/ ( ( ) )
* 0

( ( ) )/( ) ( ( ))

0

( ) ( ( ))

0

( ) 1 ( )

(( ( ) ) / ) ( )

(( ( ) ) / ) ( ) .

u c x d x L u u c x d x

u c x d xL u u L x d c x

L u u L x d c x

A u e dF

F u c x d x e e dF

F u c x d x e e dF

η

η

η

ϕ η

η

η

+ − − − + − −

+ −− − + −

+∞− − + −

≥ − =

= + − − ≥

≥ + − −

∫
∫
∫

 (27) 

Let us find *,u L  such that the following conditions are satisfied 

 ( ( ))
* 0

( ( ) ) / , ( ) 1,L x d c xu c x d x m e dFη η
+∞ + −+ − ≥ ≤∫  



Then from (27) for *u u≥ , we obtain *( )
*( ) 1 L u uA u eϕ − −≥ − , and thus, for all 0u ≥ , we have 

*( )
* *( ) max{0,1 } ( )L u uA u e uϕ ϕ− −≥ − = . This condition is necessary and sufficient for the existence 

of a solution of problem (25), (26) [25]. 

 Let us apply the operator A  to the unity function ( ) 1u ≡1 : 

 
( ( ) )/

0
( ) ( ) ( ) (( ( ) ) / ).

u c x d x
A u u dF F u c x d xη

+ −
= = + −∫1 1  

If ( ) 1F y <  for all y , then ( ) 1A u <1  for everyone 0u ≥ . This condition is sufficient for the 

uniqueness of the solution to problem (25), (26). The necessary conditions for the uniqueness of a 

solution (of a similar type) are given in [25].  

 Discounted performance indicators. For process (22), we consider a series of additive 

functionals of utility and risk. Suppose that at each step, process (22) is characterized by an 

indicator ( , )r ξ⋅ , then we define the functional that is additive along the path of the process (22): 

 
1

0

( , , ) E ( , ),t t t

t
V u x y r X

τ

γ ξ
−

=

= ∑   

where the mathematical expectation E is taken along all possible paths of the process, and τ  is 

the random moment of the ruin of the process, i.e.  

 0sup{ : min 0}.k
k tt Xτ ≤ <= ≥  

Note that the function ( , , )V u x y  depends on the parameters ( , , )u x y  of the process (22) but does 

not contain any supremum or infimum operations, unlike the standard Bellman optimality 

function. If the function ( )r ⋅  grows not faster than linear, then the function ( , , )V x y⋅  satisfies the 

equation [26]: 

 ( , , ) E ( , ) E ( ( ) ( , ) , , ),V u x y r u V u c x d u y x x yξ ξξ γ ξ= + + − −  (28) 

where ( , , ) 0V u x y =  for 0u < . Note that, in contrast to the standard Bellman equation, the right-

hand side of (28) does not contain any supremum or infimum operations. 

 If ( )r ⋅  is upper semicontinuous, ( )c x  and ( , )d u y  are continuous in their arguments, then 

( , , )V u x y  is upper semicontinuous, and for each fixed pair ( , )x y , its values can be found by the 

method of successive approximations [26]:  

 1 0( , , ) ( ) E ( ( ) ( , ) , , ), ( , , ) 0, 0,1,....k kV u x y r u V u c x d u y x x y V u x y kξγ ξ+ = + + − − = =  (29) 

For example, if 

 0
( , ), 0,

( )
0, 0,

t t
t

t

d X y X
r X

X
 ≥

= 
<

 



then the average discounted dividends until the ruin are expressed as follows 

 
1

0
0

( , , ) E ( , ),t t

t
V u x y d X y

τ

γ
−

=

= ∑  

and the function 0( , , )V x y⋅  satisfies the equation 

 0 0( , , ) ( , ) E ( ( ) ( , ) , , )V u x y d u y V u c x d u y x x yξγ ξ= + + − − . 

 If 

 1
1, 0,

( )
0, 0,

t
t

t

X
r X

X
 ≥

= 
<

 

then the average discounted lifetime of the process 

 
1

1
0

( , , ) E ,t

t
V u x y

τ

γ
−

=

= ∑  

satisfies the equation 

 1 1( , , ) 1 E ( ( ) ( , ) , , );V u x y V u c x d u y x x yξγ ξ= + + − −  

 If 

 { ( ) ( , ) 0}
2

, 0,
( , )

0, 0,

t t t
t

t t X c x d X y x
t

X
r X

X
ξξ + − − <

 ≥= 
<

1
 

then the (discounted) probability of ruin, 

 
1

2 { ( ) ( , ) 0}
0

( , , ) E t
t

u c x d u y x
t

V u x y
τ

ξ
γ

−

+ − − <
=

= ∑ 1  

satisfies the equation 

 
2 { ( ) ( , ) 0} 2

2

( , , ) E E ( ( ) ( , ) , , )
(1 (( ( ) ( , )) / )

E ( ( ) ( , ) , , ) ,

u c x d u y xV u x y V u c x d u y x x y
F u c x d u y x

V u c x d u y x x y

ξ ξ ξ

ξ

γ ξ

γ ξ

+ − − <= + + − − =

= − + − +
+ + − −

1
  

where ( ) Pr{ }F z zξ= ≤ . 

 Vector optimal control of risk processes. The task of vector optimal control of the risk 

process (22) is to search for non-dominated values of the vector indicator  

( , , ) { ( , , ), 0,1,...}iV u x y V u x y i= =


: 

 ( , ) ,( , , ) extr u x W y YV u x y ∈ ∈→


, (30) 

as well as the corresponding Pareto-optimal values of parameters ( , , )u x y , where u  denotes the 

initial value of the risk process (22), x  describes the structure of the insurance portfolio, and the 

parameter y  is responsible for choosing a dividend strategy. For example, from heuristic 



considerations, for the numerical approximation of the Pareto optimal boundary, the so-called 

barrier-proportional strategies for managing dividend payments are considered, i.e.

1 2( , ) max{0, }d x y y x y= − , 1 2( , )y y y= , 1 [0,1]y ∈ , 2 0y ≥ . 

 The complexity of this problem lies in the fact that, firstly, the indicators ( , , )iV u x y  

themselves are not explicitly known but are solutions of the corresponding integral equations; 

secondly, these indicators can be non-convex functions; and thirdly, the corresponding Pareto-

optimal set can have very complex structure.  

 The values of the functions ( , , )iV u x y  can be found by the method of successive 

approximations (29) or by the method of statistical simulations, in particular, by their parallel 

versions. 

 For small dimensions of the parameter vector ( , , )u x y , problem (30) can be approximately 

solved by the discrete approximation of sets ,W Y  by finite sets ,N NW Y  and solving the discrete 

vector optimization problem: 

  
( , ) ,

( , , ) extr ,N Nu x W y Y
V u x y

∈ ∈
→


 

A similar method for solving vector optimization problems was considered in [27], its 

convergence was studied in [28 - 31].  

Conclusions. The paper gives an overview of conceptual optimization models of the 

insurance business, based on the stochastic programming paradigm. The functioning of insurance 

companies is described by a random process of capital evolution in discrete time. The main random 

factors in evolution are insurance claims. The main characteristics of the functioning of companies 

are indicators of average efficiency, for example, expected profitability, and risk indicators, for 

example, the probability of insolvency or the amount of the required borrowed capital. One-, two-

, and multi-stage models, as well as multi-criteria settings, are considered. The complexity of the 

resulting optimization problems is caused not only by the presence of random parameters but also 

by the non-convexity of the problems. Also, the performance indicators of insurance companies 

themselves are not explicitly known but are either multidimensional integrals such as mathematical 

expectations, or solutions to the integral equations of insurance mathematics. All these 

circumstances turn the task of optimizing insurance activity into a difficult computational problem. 

The paper proposes approaches to solving these problems based on the methods of stochastic 

programming, integer programming, multicriteria optimization, and dynamic programming. 
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