A very simple analysis of higher order liftings for binary problems

Preprint, Oct. 7, 2021 (with changes of Nov. 6, 2021)
Florian Jarre
Heinrich-Heine-Universität Düsseldorf, Germany.

Abstract

Based on the observation that the max-cut-polytope is the projection of a higher-dimensional regular simplex, and the fact that this simplex coincides with the n-th semidefinite lifting, a simple proof is given that the n-th lifting for the max-cut polytope is exact. An approach to reduce the dimension of higher order liftings concludes this short note.

Key words: Binary problems, higher order liftings.

1 Introduction

Lovasz and Schrijver, [4] and Lasserre, [3], proposed convex exact higher order liftings of hard combinatorial problems. This paper presents a closely related and very simple analysis of higher order liftings for binary problems.

1.1 Notation

Given $n \in \mathbb{N}$, let $N := \{1, \ldots, n\}$. For $I, J \subseteq N$ let $I \triangle J := (I \cup J) \setminus (I \cap J)$ be the symmetric difference of I and J. For $x \in \{\pm 1\}^n$ let $\bar{x} \in \mathbb{R}^{2^n}$ denote the augmented vector with components $\bar{x}_I := \prod_{i \in I} x_i$ for $I \subseteq N$: (By convention, when I is the empty set, $\bar{x}_\emptyset := 1$.) The space of real symmetric $k \times k$ matrices is denoted by S^k and the cone of real symmetric positive semidefinite $k \times k$ matrices is denoted by S^k_+. The trace inner product of $X, Y \in S^k$ inducing the Frobenius norm $\| \cdot \|_F$ is denoted by $\langle X, Y \rangle$. The all-one-vector is denoted by e, its dimension being evident from the context. The max-cut-polytope is denoted by $MC := \text{conv}(\{xx^T \mid x \in \{\pm 1\}^n\})$, see e.g. [1, 2, 5].
2 A High-Dimensional Simplex

Consider the convex hull of all augmented \(\{ \pm 1 \} \)-vectors, i.e. the polytope

\[
S := \text{conv}(\{ \bar{x}\bar{x}^T \mid x \in \{ \pm 1 \}^n \}) \subset S^{2n}.
\]

As there are \(2^n \) such vectors, \(S \) is contained in a \((2^n-1) \)-dimensional affine subspace. (Note that for \(I, J \subseteq N \), the product \(\bar{x}_I \bar{x}_J \) is given by \(\bar{x}_I \bar{x}_J = \bar{x}_{I \setminus J} \).)

Proposition 2.1 For \(x, y \in \{ \pm 1 \}^n \) with \(x \neq y \) it always follows

\[
\| \bar{x} - \bar{y} \|_2 = 2^{(n+1)/2}. \quad \text{And for any two vertices } \bar{x}\bar{x}^T \text{ and } \bar{y}\bar{y}^T \text{ of } S \text{ it follows that } \| \bar{x}\bar{x}^T - \bar{y}\bar{y}^T \|_F = 2^{(2n+1)/2}.
\]

Proof. Consider the case that \(y \) differs from \(x \) exactly in the components \(1, \ldots, k \), i.e.

\[
x_1y_1 = \ldots = xky_k = -1.
\]

The number of subsets of \(\{1, \ldots, k\} \) with an even number of elements is \(2^{k-1} \) and the number of subsets of \(\{1, \ldots, k\} \) with an odd number of elements also is \(2^{k-1} \). (See the remark below.) If an even number of elements from \(\{1, \ldots, k\} \) is contained in \(I \subseteq N \), then \(\bar{x}_I = \bar{y}_I \) else \(\bar{x}_I = -\bar{y}_I \). Similarly when some subset \(\{i_1, \ldots, i_k\} \) of \(N \) is considered in place of \(\{1, \ldots, k\} \). Hence exactly half the entries of \(\bar{x} \) and \(\bar{y} \) differ, and the absolute value of their difference is always 2 leading to

\[
\| \bar{x} - \bar{y} \|_2 = \| \bar{x} + \bar{y} \|_2 = 2\sqrt{2^{n-1}} = 2^{(n+1)/2}.
\]

Hence, for each of the \(2^n \) columns of \(\bar{x}\bar{x}^T \) and \(\bar{y}\bar{y}^T \) there are \(2^{n-1} \) entries that differ, so that

\[
\| \bar{x}\bar{x}^T - \bar{y}\bar{y}^T \|_F = 2\sqrt{2^n \cdot 2^{n-1}} = 2^{(2n+1)/2}.
\]

Remark: It is a common exercise to show by induction that the number of subsets of \(N = \{1, \ldots, n\} \) with an even number of elements is \(2^{n-1} \). Indeed for \(n = 1 \) the two subsets of \(N \) are \(\emptyset \) and \(N \).

Now let \(\hat{n} := n-1 \geq 1 \) and \(\hat{N} := \{1, \ldots, \hat{n}\} \). The subsets of \(N \) are given by \(I \) and \(I \cup \{n\} \) where \(I \subseteq \hat{N} \). By induction hypothesis, \(2^{n-1} \) of the sets \(I \) and also \(2^{n-1} \) of the sets \(I \cup \{n\} \) have even cardinality. Thus, the claim follows from \(2^{\hat{n}-1} + 2^{n-1} = 2^{n-1} \).

Thus, the polytope \(S \) has \(2^n \) vertices lying in a \((2^n-1) \)-dimensional affine space. Within this affine space the set \(S \) is a regular simplex. In particular, the vertices are affinely independent. (Again a straightforward exercise.) The first central observation of this note is:

- The projection of \(S \) onto the rows and columns associated with \(\bar{x}_{\{1\}}, \ldots, \bar{x}_{\{n\}} \) is the max-cut-polytope \(\text{MC} = \text{conv}(\{xx^T \mid x \in \{\pm 1\}^n\}) \) in \(S^n \).

The max-cut-polytope has \(2^{n-1} \) vertices as \(x \) and \(-x \) generate the same vertex, i.e. \(xx^T = (-x)(-x)^T \) while \(\bar{x} \) and \(\bar{z} \) for \(z := -x \) do not, \(\bar{x}\bar{x}^T \neq \bar{z}\bar{z}^T \).

The second key observation of this short note (detailed below) is that the semidefinite relaxation \(\hat{S} \) of \(S \) coinciding with the \(n \)-th lifting also coincides with \(S \). This observation implies the known fact that the semidefinite liftings of sufficiently high order do represent the exact convex hull, and thus also the max-cut-polytope. Observe that the \(n \)-th lifting in [4] is a high dimensional linear extension of \(\text{MC} \) as introduced in Theorem 3 of [6]; the above representation of \(S \) via its \(2^n + 1 \) facets is a simpler form of such linear extension.
3 Semidefinite Representation

Note that $S \subseteq \tilde{S}$ where the semidefinite relaxation \tilde{S} is given by

$$\tilde{S} := \{ X \in S_{+}^{2n} \mid X_{\emptyset, \emptyset} = 1, \ X_{I,J} = X_{K,L} \ for \ any \ I, J, K, L \subseteq N \ with \ I \triangle J = K \triangle L \}.$$

The equations relating $X_{I,J}$ and $X_{K,L}$ represent simple equalities such as $\vec{x}_{\{i,j\}} = \vec{x}_{\{i,k\}} = \vec{y}_{\{j,k\}}$. Thus, since $X_{\emptyset, \emptyset} = 1$, it follows in particular that $X_{I,I} = 1$ for all $I \subseteq N$ so that there are $2^n - 1$ “free” matrix entries $X_{I,J}$ of X in \tilde{S}. Same as S, also \tilde{S} is contained in an $(2^n - 1)$-dimensional affine space. In fact, as shown next, both sets coincide.

Lemma 3.1 The sets S and \tilde{S} coincide.

Proof. Both, S and \tilde{S} are convex subsets of the $(2^n - 1)$ dimensional affine subspace

$$\{ X \in S_{+}^{2n} \mid X_{\emptyset, \emptyset} = 1, \ X_{I,J} = X_{K,L} \ for \ any \ I, J, K, L \subseteq N \ with \ I \triangle J = K \triangle L \}$$

and the identity matrix in S_{+}^{2n} is a point in the relative interior of \tilde{S}. It suffices to show that all relative boundary points $X \in \partial S$ have rank at most $2^n - 1$, and thus are also at the relative boundary of \tilde{S}.

Let X be a boundary point of the simplex S, i.e. X is a convex combination of all vertices of S except one vertex \vec{y}_{\emptyset} of S. Let $\vec{x} \vec{z}^T$ be some other vertex. By Proposition 2.1,

$$2^{2n+1} = \| \vec{x} \vec{z}^T - \vec{y}_{\emptyset} \vec{y}_{\emptyset}^T \|_{F}^2 = \| \vec{x} \vec{z}^T \|_{F}^2 + \| \vec{y}_{\emptyset} \vec{y}_{\emptyset}^T \|_{F}^2 - 2(\vec{x}^T \vec{y}_{\emptyset})^2 = 2^{2n+1} - 2(\vec{x}^T \vec{y})^2$$

so that $(\vec{x}^T \vec{y})^2 = \vec{y}^T(\vec{x} \vec{z}^T) \vec{y} = 0$. As this is true for all other vertices $\vec{x} \vec{z}^T$ it follows that $\vec{y}^T X \vec{y} = 0$, i.e. X has rank at most $2^n - 1$.

Corollary 3.1 The usual definitions of higher order liftings contain some redundancies such as identical rows and columns. The set \tilde{S} is the n-th lifting after eliminating identical rows and columns. For $1 \leq k < n$, liftings of order k can be defined in a similar way by considering augmented vectors \vec{x} with components \vec{x}_I where $I \subseteq N$ has cardinality at most k. The corresponding semidefinite approximation of the max-cut-polytope is defined in an analogous way as the projection of the semidefinite relaxation for $\vec{x} \vec{x}^T$ onto rows and columns associated with $\vec{x}_{\{1\}}, \ldots, \vec{x}_{\{n\}}$. The previous lemma implies for any subset $M \subseteq N$ of cardinality at most k that the restriction of the k-th lifting to the matrix with entries $X_{I,J}$ for $I, J \subseteq M$ is exact, indicating that the accuracy of the lifting is improving when increasing k.

4 Reduced Representations

In this section the size of the representation is reduced by eliminating half of the subsets of \vec{x}: A reduced representation of the max-cut-polytope is obtained, for example, when
considering vectors \(\vec{y} \in \{\pm 1\}^{2n-1} \) with components \(\vec{y}_i := \prod_{i \in J} x_i \) where \(x \in \{\pm 1\}^n \) is as before and \(I \subseteq N \) has odd cardinality only. For sets \(I, J \subseteq N \) with odd cardinality it follows that

\[
|I \triangle J| = |I| + |J| - 2|I \cap J|
\]

is even so that the rank-1-matrix \(Y = \vec{y}\vec{y}^T \in S^{2n-1} \) only has entries \(Y_{I,J} = \vec{x}_{I \triangle J} \) with subsets \(I \triangle J \) of even cardinality \(|I \triangle J| \). The approximation of the max-cut-polytope is evident.

Similarly, by considering only even-cardinality subsets \(I \) (including the empty set) for the definition of a second vector \(\vec{z} \) with entries \(\vec{z}_i := \prod_{i \in I} x_i \). The resulting matrix \(Z = \vec{z}\vec{z}^T \) has entries \(Z_{I,J} = \vec{x}_{I \triangle J} \) with subsets \(I \triangle J \) that are also of even cardinality \(|I \triangle J| \). It turns out that for \(k = n \) also the liftings above are exact:

To see this let \(S_1 := \text{conv}(\{ \vec{y}\vec{y}^T \mid x \in \{\pm 1\}^n \} \) and \(S_2 := \text{conv}(\{ \vec{z}\vec{z}^T \mid x \in \{\pm 1\}^n \} \) where \(\vec{y} \) and \(\vec{z} \) are defined as above.

Lemma 4.1 When \(n \) is odd \(S_1 \) coincides with its semidefinite relaxation \(\tilde{S}_1 \), and when \(n \) is even \(S_2 \) coincides with its semidefinite relaxation \(\tilde{S}_2 \).

Proof. For \(i \in \{1,2\} \) let \(x^{(i)} \in \{\pm 1\}^n \) and \(y^{(i)} \) with components \(y_j^{(i)} := \prod_{j \in J} x_j^{(i)} \) for odd-cardinality \(J \) be given and assume that \((x^{(1)}_1, \ldots, x^{(1)}_{|I|}) \) and \((x^{(2)}_1, \ldots, x^{(2)}_{|J|}) \) differ in the components \(1 \leq k \leq n - 1 \). (The case \(k = n \) generates the same matrix \(\vec{y}^{(1)}(\vec{y}^{(1)})^T = \vec{y}^{(2)}(\vec{y}^{(2)})^T \).) As in the proof of Proposition 2.1, if an even number of elements from \(\{1, \ldots, k\} \) is contained in \(I \subseteq N \), then \(y_i^{(1)} = y_i^{(2)} \) else \(y_i^{(1)} = -y_i^{(2)} \), and thus, again as in the proof of Proposition 2.1,

\[
\|\vec{y}^{(1)} - \vec{y}^{(2)}\|_2 = \|\vec{y}^{(1)} + \vec{y}^{(2)}\|_2 = 2\sqrt{2^{n-2}} = 2^{n/2}.
\]

Since \(\vec{y} \) and \(\vec{z} \) are based on a disjoint union of all indices \(I \subseteq N \) it follows from the above and from Proposition 2.1 that also \(\|\vec{z}^{(1)} - \vec{z}^{(2)}\|_2 = 2^{n/2} \) for different \(\vec{z}^{(1)}, \vec{z}^{(2)} \in \{\pm 1\}^{2n-1} \).

Thus, in both cases Proposition 2.1 is valid just with a different constant distance. Since there are only \(2^{n-1} \) vertices in \(S_1 \) or \(S_2 \), the proof of Lemma 3.1 is applicable as well. \(\square \)

Observe that both relaxations can be combined by relating equivalent entries of both reduced representations \(Y = \vec{y}\vec{y}^T \) and \(Z = \vec{z}\vec{z}^T \) with equality constraints. A larger matrix inequality is thus replaced with two smaller matrix inequalities (namely \(Y \) and \(Z \) being positive semidefinite). This will be referred to as mixed reduced lifting below. It turns out that for even numbers \(n \) that the above mixed reduced lifting of order \(n/2 \) is exact:

First, for even numbers \(n \) let \(\vec{z} \) have components \(\vec{z}_i := \prod_{i \in I} x_i \) where \(x \in \{\pm 1\}^n \) and \(I \subseteq N \) with \(|I| \leq n/2 \) only. Then observe that the proof of Lemma 3.1 also applies in the lower-dimensional setting \(\hat{X} = \vec{x}\vec{x}^T \in S^{2n-1} \) with \(2^{n-1} \) equidistant extreme points. This implies the known strengthening of Lemma 3.1, namely for even \(n \) the lifting of order \(n/2 \) is exact.

Now let \(\vec{y} \) have components \(y_i := \prod_{i \in I} x_i \) where \(x \in \{\pm 1\}^n \) as before and \(I \subseteq N \) has odd cardinality only and \(|I| \leq n/2 \). Likewise assume that \(\vec{z} \) has components \(\vec{z}_i := \prod_{i \in I} x_i \) where \(x \in \{\pm 1\}^n \) and \(I \subseteq N \) has even cardinality only and \(|I| \leq n/2 \). Thus,

\[
\vec{z} = \Pi \begin{pmatrix} \vec{y} \\ \vec{z} \end{pmatrix}
\]
for some permutation matrix Π.

Consider the block-structured simplex

$$\mathcal{BS} := \text{conv}\left(\left\{ \begin{pmatrix} \hat{y} \hat{y}^T & 0 \\ 0 & \hat{z} \hat{z}^T \end{pmatrix} \mid x \in \{\pm 1\}^n \right\} \right)$$

where the dimensions of the matrix blocks follow from the context. As x and $-x$ generate the same matrix, \mathcal{BS} is the convex hull of $2^n - 1$ points contained in an $(2^n - 1)$-dimensional affine subspace of \mathcal{S}^{2^n}. Up to a permutation, the mixed reduced lifting of \mathcal{BS} coincides with the semidefinite approximation of $\hat{x} \hat{x}^T$ projected to a block diagonal format. This projection is consistent with respect to the semidefinite ordering and with respect to the equality constraints $"\hat{X}_{I,J} = \hat{X}_{K,L}"$ for $I \triangle J = K \triangle L$, so that the arguments in the proof of Lemma 3.1 are applicable again.

Acknowledgment: The author wishes to thank Melinda Hagedorn and Manuel Bomze for many helpful comments on this short note.

References

