GLOBAL COMPLEXITY BOUND OF A PROXIMAL ADMM FOR LINEARLY-CONSTRAINED NONSEPARABLE NONCONVEX COMPOSITE PROGRAMMING

WEIWEI KONG† AND RENATO D.C. MONTEIRO‡

Abstract. This paper proposes and analyzes a dampened proximal alternating direction method of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists of: (i) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed Lagrange multiplier update, and (iii) a novel test to check whether the penalty parameter of the AL function should be updated. Under a basic Slater point condition and some requirements on the dampening factor and under-relaxation parameter, it is shown that DP.ADMM obtains a first-order stationary point of the constrained problem in $O(\varepsilon^{-3})$ iterations for a given numerical tolerance $\varepsilon > 0$. One of the main novelties of the paper is that convergence of the method is obtained without requiring any rank assumptions on the constraint matrices.

Key words. proximal ADMM, nonseparable, nonconvex composite optimization, iteration complexity, under-relaxed update, augmented Lagrangian function

AMS subject classifications. 65K10, 90C25, 90C26, 90C30, 90C60

1. Introduction. Consider the following composite optimization problem:

\begin{equation}
\min_{x \in \mathbb{R}^n} \{ \phi(x) := f(x) + h(x) : Ax = d \},
\end{equation}

where h is a closed convex function, f is a (possibly) nonconvex differentiable function on the domain of h, the gradient of f is Lipschitz continuous, A is a linear operator, d is a vector in the image of A (denoted as $\text{Im}(A)$), and the following B-block structure is assumed:

\begin{equation}
\begin{aligned}
&n = n_1 + \ldots + n_B, \quad x = (x_1, \ldots, x_B) \in \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_B} \\
&h(x) = \sum_{i=1}^{B} h_i(x_i), \quad Ax = \sum_{i=1}^{B} A_i x_i,
\end{aligned}
\end{equation}

where $\{A_i\}_{i=1}^{B}$ is another set of linear operators and $\{h_i\}_{i=1}^{B}$ is another set of proper closed convex functions with compact domains.

Due to the block structure in (1.2), a popular algorithm for obtaining stationary solutions of (1.1) is the proximal alternating direction method of multipliers (ADMM) wherein a sequence of smaller augmented Lagrangian type subproblems is solved over x_1, \ldots, x_B sequentially or in parallel. However, the main drawbacks of existing ADMM-type methods include: (i) strong assumptions about the structure of h; (ii) iteration...
complexity bounds that scale poorly with the numerical tolerance; (iii) small stepsize parameters; or (iv) strong rank assumptions about the last block A_B, such as $\text{Im}(A_B) \supset \{d\} \cup \text{Im}(A_1) \cup \ldots \cup \text{Im}(A_{B-1})$. Of the above drawbacks, the last block condition in (iv) is especially limiting. For example, consider the popular multiblock distributed finite-sum problem

$$\min_{(x_1, \ldots, x_B) \in \mathbb{R}^n \times \cdots \times \mathbb{R}^n} \left\{ \sum_{t=1}^{B} (f_t + h_t)(x_t) : x_t - x_B = 0, \quad t = 1, \ldots, B - 1 \right\}$$

where f_t is continuously differentiable, h_t is closed convex, and ∇f_t is Lipschitz continuous for $t = 1, \ldots, B$. It is easy to see\(^1\) that (1.3) is a special case of (1.1) where $n_t = n$ for $t = 1, \ldots, B$, we have $A_s = e_s \otimes I \in \mathbb{R}^{n(B-1) \times n}$ for $s = 1, \ldots, B - 1$, and $A_B = -I \otimes I \in \mathbb{R}^{n(B-1) \times n}$, and $d = 0$. Moreover, it is straightforward to show that for $s = 1, \ldots, B - 1$ we have $\text{Im}(A_s) \cap \text{Im}(A_B) = 0$ but $\text{Im}(A_s)\backslash \{0\} \neq \emptyset$, which implies that $\text{Im}(A_s) \not\subseteq \text{Im}(A_B)$.

Our goal in this paper is to develop and analyze the complexity of a proximal ADMM that removes all the drawbacks mentioned above. For a given $\theta \in (0, 1)$, its kth iteration is based on the dampened augmented Lagrangian (AL) function given by

$$\mathcal{L}_t^\theta(x; p) := \phi(x) + (1 - \theta) \langle p, Ax - d \rangle + \frac{c_k}{2} \|Ax - d\|^2,$$

where $c_k > 0$ is the penalty parameter. Specifically, it consists of the following updates:

given $x^{k-1} = (x^{k-1}_1, \ldots, x^{k-1}_B)$, p^{k-1} c_k, χ, and λ, sequentially ($t = 1, \ldots, B$) compute the tth block of x^k as

$$x^k_t = \arg\min_{u_t \in \mathbb{R}^{n_t}} \left\{ \chi \mathcal{L}_t^\theta(\ldots, x^k_t, u_t, x^{k-1}_{t+1}, \ldots) : p^{k-1} + \frac{1}{2} \|u_t - x^{k-1}_t\|^2 \right\},$$

and then update

$$p^k = (1 - \theta)p^{k-1} + \chi c_k (Ax^k - d),$$

where $\chi \in (0, 1)$ is a suitably chosen under-relaxation parameter.

Contributions. For proper choices of the stepsize λ and a non-decreasing sequence of penalty parameters $\{c_k\}_{k \geq 1}$, it is shown that if the Slater-like condition\(^2\)

$$\exists \tilde{z} \in \text{int} (\text{dom } h) \text{ such that } A\tilde{z} = d,$$

holds, then DP-ADMM has the following features:

- for any tolerance pair $(\rho, \eta) \in \mathbb{R}^2_+$, it obtains a pair (\tilde{z}, \tilde{q}) satisfying

 $$(1.8) \quad \text{dist}(0, \nabla \phi(\tilde{z}) + A^*\tilde{q} + \partial h(\tilde{z})) \leq \rho, \quad \|A\tilde{z} - d\| \leq \eta$$

 in $O(\max\{\rho^{-3}, \eta^{-3}\})$ iterations;

- it introduces a novel approach for updating the penalty parameter c_k, instead of assuming that $c_k = c_1$ for every $k \geq 1$ and that c_1 is sufficiently large (such as in [3, 13, 14, 26, 28, 29] in Table 1.2);

\(^1\)Here, e_1, \ldots, e_n is the standard basis for \mathbb{R}^{B-1}, I_n is the n-by-n identity matrix, $1 \in \mathbb{R}^{B-1}$ is a vector of ones, and \otimes is the Kronecker product of two matrices.

\(^2\)Here, int S denotes the interior of a set S, dom ψ denotes the domain of a function ψ, and A^* is the adjoint of linear operator A.

This manuscript is for review purposes only.
it does not have any of the drawbacks mentioned in the sentences preceding equation (1.3).

Related Works. Since ADMM-type methods where \(f \) is convex have been well-studied in the literature (see, for example, \([1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 23, 24, 25]\)), we make no further mention of them here. Instead, we discuss ADMM-type methods where \(f \) is nonconvex.

Letting \(\delta_S \) denote the indicator function of a convex set \(S \) (see Subsection 1.1), Table 1.1 presents a list of common assumptions found in the literature. Table 1.2 presents a comparison between our proposed DP.ADMM and other ADMM-type methods for nonconvex and nonseparable problems, under a common tolerance \(\varepsilon \) given by \(\varepsilon := \min\{\rho, \eta\} \).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(\theta)</th>
<th>(\chi)</th>
<th>Complexity</th>
<th>Assumptions</th>
<th>Adaptive (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMM [28]</td>
<td>0</td>
<td>1</td>
<td>None</td>
<td>(\mathcal{R}_0, \mathcal{K}\mathcal{L})</td>
<td>No</td>
</tr>
<tr>
<td>LPADMM [29]</td>
<td>0</td>
<td>(0, (\infty))</td>
<td>None</td>
<td>(\mathcal{P}, \mathcal{S})</td>
<td>No</td>
</tr>
<tr>
<td>PADMM-m [14]</td>
<td>0</td>
<td>1</td>
<td>(\mathcal{O}(\varepsilon^{-6}))</td>
<td>(\mathcal{F})</td>
<td>No</td>
</tr>
<tr>
<td>SDD-ADMM [26]</td>
<td>(0, 1]</td>
<td>(-\frac{\theta}{2}, 0)</td>
<td>(\mathcal{O}(\varepsilon^{-4}))</td>
<td>(\mathcal{F})</td>
<td>No</td>
</tr>
<tr>
<td>DP.ADMM</td>
<td>(0, 1]</td>
<td>(0, \pi_\theta)</td>
<td>(\mathcal{O}(\varepsilon^{-3}))</td>
<td>(\mathcal{S})</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Comparison of existing ADMM-type methods with DP.ADMM for finding \(\varepsilon \)-stationary points with \(\varepsilon := \min\{\rho, \eta\} \) and \(\pi_\theta = \frac{\theta^2}{2B(2 - \theta)(1 - \theta)} \) if \(\theta \in (0, 1) \) and \(\pi_\theta = 1 \) if \(\theta = 1 \). The algorithms in [26, 28] are non-proximal ADMMs, and the last column indicates whether the method has a way to adaptively choose the penalty parameter \(c \) to ensure convergence.

We now make five remarks about the results in papers [14, 26] compared to the ones in this paper (which were developed independently of [26]). First, both of the complexity bounds in [14, 26] require that a feasible point be readily available, while the initial point for DP.ADMM can be any point in \(\text{dom} h \). Second, the \(\mathcal{O}(\varepsilon^{-6}) \) complexity bound established in [14] is for an ADMM-type method applied to a penalized reformulation of (1.1), while DP.ADMM is applied to (1.1) directly. Third, the method in [26] considers a small stepsize (proportional to \(\eta^2 \) linearized proximal gradient update while DP.ADMM considers a large stepsize (proportional to the inverse of the weak-convexity constant of \(f \)) proximal point update as in (1.5). Fourth, paper [26] establishes an improved \(\mathcal{O}(\varepsilon^{-3}) \) complexity bound for SDD-ADMM only under the additional strong assumption that \(\mathcal{R}_1 \) in Table 1.1 holds and \(\partial h(x) \) is compact for every \(x \) in the sublevel set of \(\phi \). Finally, it is worth emphasizing that among

\(^3 \)See [3, 13] for a definition.
the papers that establish an iteration complexity for ADMM, paper [26] and this one are the only ones that do not assume condition \mathcal{R}_0 or \mathcal{R}_1. Moreover, between these two papers, only this examines the case of $\chi > 0$.

To close, we discuss some related ADMM papers which assume the objective function ϕ in (1.1) is separable and has the same block structure as in (1.2), i.e., $\phi(x) = \sum_{i=1}^{d} (f_i + h_i)(x_i)$ for closed (possibly) convex functions $h_i : \mathbb{R}^n \mapsto (-\infty, \infty]$ and continuously differentiable functions $f_i : \text{dom } h_i \mapsto \mathbb{R}$. All of their results restrictively assume that condition \mathcal{R}_0 or \mathcal{R}_1 in Table 1.1 holds and, as a consequence, some of them obtain an $O(\varepsilon^{-2})$ iteration complexity4. Papers [3,12,27] present proximal ADMMs under the assumption that $B = 2$, $f_1 \equiv 0$, and $h_2 \equiv 0$. Papers [19,20] present linearized ADMMs that tackle a multi-block ($B \geq 2$) case of the above problem, in which $h_B \equiv 0$, and $f_1 \equiv \cdots \equiv f_{B-1} \equiv 0$. Finally, paper [13] presents a proximal ADMM for tackling the multiblock ($B \geq 2$) case of this problem in which assumption $\mathcal{K}\mathcal{L}$ in Table 1.1 holds, $f_1 \equiv 0$, and $h_2 \equiv \cdots \equiv h_B \equiv 0$.

Organisation. Subsection 1.1 presents some basic definitions and notation. Section 2 presents the proposed DP.ADMM in two subsections. The first one precisely describes the problem of interest, while the second one states the DP.ADMM and its iteration complexity. Section 3 presents the main properties of the DP.ADMM. Section 4 gives the proof of two important results, namely, Propositions 2.1 and 2.2. Section 5 gives some concluding remarks. Finally, the end of the paper contains several appendices.

1.1. Notation and Basic Definitions

Let \mathbb{R}_+ denote the set of nonnegative real numbers, and let \mathbb{R}_{++} denote the set of positive real numbers. Let \mathbb{R}_n denote the n-dimensional Hilbert space with inner product and associated norm denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively. The direct sum (or Cartesian product) of a set of sets $\{S_i\}_{i=1}^n$ is denoted by $\prod_{i=1}^n S_i$.

The smallest positive singular value of a nonzero linear operator $Q : \mathbb{R}^n \rightarrow \mathbb{R}^d$ is denoted by σ_Q^+. For a given closed convex set $X \subset \mathbb{R}^n$, its boundary is denoted by ∂X and the distance of a point $x \in \mathbb{R}^n$ to X is denoted by $\text{dist}_X(x)$. The indicator function of X at a point $x \in \mathbb{R}^n$ is denoted by $\delta_X(x)$ which has value 0 if $x \in X$ and ∞ otherwise. For every $z > 0$ and positive integer b, we denote $\log_b(z) := \max\{1, \lceil \log_b(z) \rceil \}$.

The domain of a function $h : \mathbb{R}^n \rightarrow (-\infty, \infty]$ is the set $\text{dom } h := \{x \in \mathbb{R}^n : h(x) < +\infty\}$. Moreover, h is said to be proper if $\text{dom } h \neq \emptyset$. The set of all lower semi-continuous proper convex functions defined in \mathbb{R}^n is denoted by $\text{Conv} \mathbb{R}^n$. The set of functions in $\text{Conv} \mathbb{R}^n$ which have domain $Z \subset \mathbb{R}^n$ is denoted by $\text{Conv} Z$. The ε-subdifferential of a proper function $h : \mathbb{R}^n \rightarrow (-\infty, \infty]$ is defined by

$$\partial_\varepsilon h(z) := \{u \in \mathbb{R}^n : h(z') \geq h(z) + \langle u, z' - z \rangle - \varepsilon, \forall z' \in \mathbb{R}^n\}$$

for every $z \in \mathbb{R}^n$. The classic subdifferential, denoted by $\partial h(\cdot)$, corresponds to $\partial_0 h(\cdot)$.

The normal cone of a closed convex set C at $z \in C$, denoted by $N_C(z)$, is defined as

$$N_C(z) := \{\xi \in \mathbb{R}^n : \langle \xi, u - z \rangle \leq \varepsilon, \forall u \in C\}.$$ If ψ is a real-valued function which is differentiable at $\bar{z} \in \mathbb{R}^n$, then its affine approximation $\ell_\psi(\cdot; \bar{z})$ at \bar{z} is given by

$$\ell_\psi(z; \bar{z}) := \psi(\bar{z}) + \langle \nabla \psi(\bar{z}), z - \bar{z} \rangle \quad \forall z \in \mathbb{R}^n.$$

\footnote{This complexity is also established in [14] for the non-separable setting of (1.1) under the assumption that \mathcal{R}_1 holds and $h_B \equiv 0.$}
If \(z = (x, y) \) then \(f(x, y) \) is equivalent to \(f(z) = f((x, y)) \).

Iterates of a scalar quantity have their iteration number appear as a subscript, e.g., \(z^k \), while non-scalar quantities have this number appear as a superscript, e.g., \(x^k \), and \(\tilde{p}^k \). For variables with multiple blocks, the block number appears as a subscript, e.g., \(x_t^k \) and \(v_t^k \).

2. Alternating Direction Method of Multipliers. This section contains two subsections. The first one precisely describes the problem of interest and its underlying assumptions, while the second one presents the DP.ADMM and its corresponding iteration complexity.

Throughout this section, and subsequent ones, we let \(\{H_t\}_{t=1}^{B} \subseteq \mathbb{R}^m \) be compact convex sets and denote the aggregated quantities

\[
H := \prod_{t=1}^{B} H_t, \quad x_{<t} := (x_1, \ldots, x_{t-1}),
\]

\[
x_{>t} := (x_{t+1}, \ldots, x_B), \quad x_{\leq t} := (x_{<t}, x_t), \quad x_{\geq t} := (x_t, x_{>t}),
\]

for every \(x = (x_1, \ldots, x_B) \in H \).

2.1. Problem of Interest. This subsection presents the problem of interest and the assumptions underlying it.

Our problem of interest is finding approximate stationary points of (1.1) under the following assumptions on \((\phi, h_1, \ldots, h_B) \) and \((A, d) \):

(A1) \(h_t \in \text{Conv} \ H_t \) for every \(1 \leq t \leq B \);

(A2) \(A \neq 0 \) and \(F := \{x \in H : Ax = d\} \neq \emptyset \).

as well as the following assumptions on \((f, h) \):

(A3) \(h \) is \(K_h \)-Lipschitz continuous on \(H \) for some \(K_h \geq 0 \);

(A4) \(f \) is continuously differentiable on \(H \) and, for every \(1 \leq t \leq B \), there exists \((m_t, M_t) \in \mathbb{R}^2_+ \) such that

\[
\|\nabla_{x_t} f(x_{<t}, \tilde{x}_{>t}) - \nabla_{x_t} f(x)\| \leq M_t \|\tilde{x}_{>t} - x_{>t}\|,
\]

\[
-\frac{m_t}{2} \|\tilde{x}_t - x_t\|^2 \leq f(x_{<t}, \tilde{x}_t, x_{>t}) - f(x) - \langle \nabla_{x_t} f(x), \tilde{x}_t - x_t \rangle,
\]

for every \(x, \tilde{x} \in H \);

(A5) there exists \(\tilde{z} \in F \) such that \(d_0 := \text{dist}_{\partial H}(\tilde{z}) > 0 \).

We now give a few remarks about the above assumptions. First, it is well known that (2.2) implies (2.3) with \(m_t = M_{t-1} \). However, we show that better iteration complexities can be derived when scalars \(\{m_t\}_{t=1}^B \) satisfying \(m_t < M_{t-1} \) are available.

Second, condition (2.3) implies that \(f(x_{<t}, x_{>t}) + m_t \cdot \|\|^2/2 \) is convex on \(x_t \) for any \(x \in H \). Third, since \(H \) is compact by (A1), the image of any continuous \(\mathbb{R}^n \)-valued function is bounded. In particular, this implies that the following scalars are bounded:

\[
D_x := \sup_{x, x' \in H} \|x - x'\|, \quad G_f := \sup_{x \in H} \|\nabla f(x)\|, \quad \phi_* := \inf_{x \in H} \phi(x), \quad \bar{\phi} := \sup_{x \in H} \phi(x).
\]

We now briefly discuss the notion of an approximate stationary point of (1.1) in (1.8).

It is well-known that the first-order necessary condition for a point \(\tilde{z} \in \text{dom} h \) to be a local minimum of (1.1) is that there exists \(\tilde{q} \in \text{such that}

\[
0 \in \nabla f(\tilde{z}) + A^* \tilde{q} + \partial h(\tilde{z}), \quad A \tilde{z} = d.
\]
Hence, the requirements in (1.8) can be viewed as a direct relaxation of the above conditions. For ease of future reference, we explicitly label the problem of obtaining (1.8) below.

Problem LCCO: Given \((\rho, \eta) \in \mathbb{R}^2_+\), find a pair \((\bar{z}, \bar{q})\) satisfying (1.8).

It is worth mentioning that \((\bar{z}, \bar{q})\) is a solution of Problem LCCO if and only if there exists a residual \(\bar{v} \in \mathbb{R}^n\) such that

\[
\bar{v} \in \nabla f(\bar{z}) + A^* \bar{q} + \partial h(\bar{z}), \quad \|\bar{v}\| \leq \rho, \quad \|A\bar{z} - d\| \leq \eta,
\]

and that this type of condition has been previously considered in the authors' previous works [15, 16, 17, 18, 22]. In the next subsection, we present a method (Algorithm 2.1) that computes such a residual in order to verify whether an incumbent solution \((\bar{z}, \bar{q})\) solves Problem LCCO.

2.2. DP.ADMM

We present DP.ADMM in two parts. The first part presents a static version of DP.ADMM which either (i) stops with a solution of Problem LCCO or (ii) signals that its penalty parameter is too small. The second part presents the (dynamic) DP.ADMM that repeatedly invokes the static version on an increasing sequence of penalty parameters.

Both versions of DP.ADMM make use of the following condition on \((\chi, \theta)\):

\[
2\chi B(2 - \theta)(1 - \theta) \leq \theta^2, \quad (\chi, \theta) \in (0, 1]^2.
\]

For ease of reference and discussion, the pseudocode for the static DP.ADMM is given in Algorithm 2.1 below. In the special case of \((\theta, \chi) = (0, 1)\), its Steps 1 and 3 reduce to the classic proximal ADMM iteration

\[
x^k_t := \arg\min_{x \in \mathbb{R}^n} \left\{ \lambda L_t^0(x^k_{<t}, u_t, x^k_{>t}; p^{k-1}) + \frac{1}{2}\|u_t - x^k_{<t}\|^2 \right\},
\]

\[
p^{k} = p^{k-1} + c (Ax^k - d),
\]

for \(1 \leq t \leq B\) and a fixed penalty parameter \(c \geq 1\). Consequently, the novelty of the method lies in the careful choice of \((\theta, \chi)\) and the special termination condition in its Step 2b.

The next result presents some technical properties of Algorithm 2.1. Its proof is given in Section 4, and it makes use of the following scalars:

\[
M := \max_{1 \leq t \leq B} M_t, \quad m := \min_{1 \leq t \leq B} m_t, \quad N_A := 8B^2 \sum_{t=1}^{B} \|A_t\|^2, \quad \Delta_\phi := \bar{\phi} - \phi_*,
\]

\[
\kappa_0 := \frac{2B^2(M + 2m)}{\sqrt{3m}}; \quad \kappa_1 := (K_h + G_f + B^2 [M + 2m] D_x) D_x;
\]

\[
\kappa_2 := (\chi + \theta - \chi\theta)d_\delta \sigma_A^+, \quad \kappa_3 := \sup_{x \in \mathbb{R}^n} \|Ax - d\|, \quad \kappa_4 := (1 - \theta) + (1 - \theta)(1 - \chi)d_\delta \sigma_A^+,
\]

\[
\kappa_5 := \frac{12}{\chi} \left(1 + \frac{2\chi \kappa_1}{\kappa_2} \right),
\]

where \((G_f, D_x, \bar{\phi}, \phi_*)\), \(K_h\), and \((m_t, M_t)\) are as in (2.4), (A3), and (A4), respectively.
Algorithm 2.1 Static DP.ADMM

Input: \(x^0 \in \mathcal{H}, p^0 \in A(\mathbb{R}^n), c > 0 \)

Require: \(\{m_i\} \subseteq \mathbb{R}_{++}, (\rho, \eta) \in (0, 1)^2, (\chi, \theta) \) as in (2.6)

1: \(\lambda \leftarrow 1/(2m_0) \)
2: for \(k \leftarrow 1, 2, \ldots \) do

 STEP 1 (prox update):
 3: for \(t \leftarrow 1, 2, \ldots, B \) do
 4: \(x_t^k \leftarrow \text{argmin}_{x_t \in \mathbb{R}^n} \{ \lambda L^t_c(x_t^k, u_t, x_t^{k-1}; p^{k-1}) + \frac{1}{2} \| u_t - x_t^{k-1} \|^2 \} \)
 5: \(q^k \leftarrow (1 - \theta)p^{k-1} + c(Ax^k - d) \)

 STEP 2a (successful termination check):
 6: for \(t \leftarrow 1, 2, \ldots, B \) do
 7: \(\delta_t^k \leftarrow \nabla f(x_t^k) - \nabla f(x_t^{k-1}) \)
 8: \(v_t^k \leftarrow \delta_t^k + cA_s \sum_{s=t+1}^B A_s(x_s^k - x_s^{k-1}) - \frac{1}{2}(x_t^k - x_t^{k-1}) \)
 9: if \(\| v_t^k \| \leq \rho \) and \(\| Ax^k - d \| \leq \eta \) then
 10: return \((x^k, q^k, v^k) \)

 STEP 2b (unsuccessful termination check):
 11: if \(k \equiv 0 \) mod 3 and \(k \geq 9 \) then
 12: \(S_k^{(v)} \leftarrow \frac{2}{k+1} \sum_{i=k/2}^k \| v_i^k \| \)
 13: \(S_k^{(f)} \leftarrow \frac{2}{k+1} \sum_{i=k/2}^k \| Ax^k - d \| \)
 14: if \(\frac{1}{\rho} S_k^{(v)} + \frac{1}{\rho} \sqrt{\frac{\chi}{k}} \cdot S_k^{(f)} \leq 1 \) then
 15: return \((x^k, q^k, v^k) \)

 STEP 3 (multiplier update):
 16: \(p^k \leftarrow (1 - \theta)p^{k-1} + \chi c(Ax^k - d) \)

Proposition 2.1. Let \((\kappa_1, \Delta_0, N_A) \) and \(D_x \) be as in (2.7) and (2.4), respectively, and let \((\xi, \chi) \in \mathbb{R}_{++}^2 \) and \(p^0 \in A(\mathbb{R}^n) \) be given. Moreover, define

\[
\bar{\kappa}_0 := 2 \left[\Delta_0^{1/2} + \frac{10}{\chi \sqrt{\xi}} \left(1 + \frac{2\chi \kappa_1}{\kappa_2} \right) \right], \quad \bar{\kappa}_1 := \frac{6}{\chi} \sqrt{N_A + \frac{\kappa_0}{\sqrt{\xi}}},
\]

\[
\tau_1(c, p^0) := \left(\frac{2\kappa_4}{\kappa_2} \right) \frac{\| p^0 \|}{c} + \frac{\kappa_4}{\kappa_2} \| p^0 \| + (2\kappa_3 + \kappa_3) c,
\]

\[
\tau_2(c, p^0) := \frac{4\chi D_x}{\kappa_2} \left(\left[\kappa_0 + \sqrt{N_A} \right] \left[\Delta_0^{1/2} + \frac{6\kappa_3 \sqrt{\xi}}{\chi} \right] + \bar{\kappa}_1 \| p^0 \| \right),
\]

\[
T(p, \eta | c, p^0) := 48 \left[1 + \frac{2\kappa_0^2 (\kappa_0^2 + N_A c)}{\rho^2} + \frac{\kappa_2^2 \chi}{\eta^2} + \tau_1(c, p^0) + \tau_2(c, p^0) \right].
\]

Then, for any \(c \geq \xi \), the following statements hold about Algorithm 2.1 when it is given input \((x^0, p^0, c) \):

(a) it terminates in at most \(T(p, \eta | c, p^0) \) iterations;

(b) if it terminates successfully in Step 2a, then the first two components of its output triple \((\bar{z}, \bar{q}, \bar{v})\) solve Problem LCCO;

(c) if \((c, p^0)\) satisfies \(T(p, \eta | c, p^0) \leq c^3 \) then it must terminate successfully.

We now make a few important observations about the above result. First, part (a) states that Algorithm 2.1 stops in a finite number of iterations. Second, denoting...
\[T(\rho, \eta | c, p^0) = \Theta \left(c^2 + \frac{c}{\varepsilon^2} + \|p^0\| + \|p^0\|^2 \right). \]

Consequently, if \(\|p^0\| + \|p^0\|^2 \) is on the same order of magnitude as the other terms in the above bound, then there always exists a threshold value \(\hat{c} > 0 \) such that \(T(\rho, \eta | c, p^0) \leq c^3 \) for every \(c \geq \hat{c} \). In view of part (c) and this previous observation, it follows that Algorithm 2.1 terminates successfully if its input \(c \) is sufficiently large and \(\|p^0\| \) is not too large.

The above observations motivate us to develop the dynamic version of Algorithm 2.1, whose pseudocode is given in Algorithm 2.2. Specifically, Algorithm 2.2 repeatedly calls Algorithm 2.1 on an increasing sequence of penalty parameters until the final call terminates successfully.

Algorithm 2.2 DP.ADMM

Input: \(\bar{x}^0 \in \mathcal{H}, \varepsilon > 0 \)

Require: \(\{m_\ell\} \subset \mathbb{R}^+ \), \((\rho, \eta) \in (0, 1)^2 \), \((\chi, \theta) \) as in (2.6)

1: \((\bar{q}_0, c_1) \leftarrow (0, \varepsilon)\)
2: for \(\ell \leftarrow 1, 2, \ldots \) do
3: call Algorithm 2.1 with inputs \((c, p^0, x^0) = (c_\ell, \bar{q}^{\ell-1}, \bar{z}^{\ell-1}) \) and parameters \(\{m_\ell\}, (\rho, \eta), \) and \((\chi, \theta) \) to obtain an output triple \((\bar{z}^\ell, \bar{q}^\ell) \)
4: if \(\|\bar{v}^\ell\| \leq \rho \) and \(\|A\bar{z}^\ell - d\| \leq \eta \) then
5: return \((\bar{z}^\ell, \bar{q}^\ell) \)
6: \(c_{\ell+1} \leftarrow 2c_\ell \)

In the results below, we give a uniform bound on \(\bar{q}^\ell/c_\ell \), use this bound to determine the threshold value \(\hat{c} \) mentioned above, and present a few other useful facts. For the ease of presentation, the proof of this result is given in Section 4, and it makes use of the following tolerance-independent constants:

\[
\begin{align*}
\xi_0 := & \frac{128\chi^2D^2\Delta_\phi}{\kappa_2^2}, \quad \xi_2 := \frac{64\chi^2D^2}{\kappa_2^2} \left[\frac{72N_A\kappa_2^2}{\chi^2} + \kappa_3^2 \right], \\
\xi_1 := & \frac{128\chi^2D^2}{\kappa_2^2} \left[N_A\Delta_\phi + \frac{72\kappa_0^2\kappa_2^2}{\chi^2} \right] + \frac{8\kappa_4\kappa_2^2 + 2\kappa_4\kappa_3}{\kappa_2} + 2\kappa_3^2 + \kappa_3,
\end{align*}
\]

where all other named constants are as in (2.7) and (2.8).

Proposition 2.2. Let \((\kappa, N_A), \bar{\kappa}, \) and \(\xi_0 \) be given by (2.7), (2.8), and (2.10), respectively, and define

\[T_\ell(\rho, \eta) := 48 \left[1 + \xi_0 + \xi_1c_\ell + \xi_2c_\ell^2 + \frac{2\kappa_0^2(\kappa^2_0 + N_Ac_\ell)}{\rho^2} + \frac{\kappa_3^2c_\ell}{\eta^2} \right], \]

for every \(\ell \geq 1 \). Then, the following statements hold about the \(\ell \)-th iteration of Algorithm 2.2:

(a) \(\|\bar{q}^\ell\| \leq 2\kappa_3c_\ell \);
(b) the \(\ell \)-th call to Algorithm 2.1 terminates in at most \((2.12) \quad T(\rho, \eta | c_\ell, \bar{q}^{\ell-1}) \leq T_\ell(\rho, \eta) \leq \left[\max\{1, c_\ell\} + \frac{\max\{1, c_\ell\}}{\min\{\rho^2, \eta^2\}} \right] T_1(1, 1) \]

iterations of Algorithm 2.1, where \(T(\cdot, \cdot | \cdot, \cdot) \) is as in (2.9);
(c) if the ℓth penalty parameter $c_{\ell} > 0$ satisfies
\begin{equation}
(2.13) \quad c_{\ell} \geq \hat{c}(\rho, \eta) := \frac{\sqrt{2T_1(1,1)}}{\varepsilon},
\end{equation}
then the ℓth call to Algorithm 2.1 terminates successfully.

The next result gives the complexity of Algorithm 2.2 in terms of the total number of iterations of Algorithm 2.1 across all of its calls.

Theorem 2.3. Let $T_\ell(\cdot, \cdot)$ be as in (2.11), and define
\[\varepsilon := \min\{\rho, \eta\}, \quad E_0 := 32 \max\{4, \varepsilon^2\}, \quad E_1 := 2 \log_2(1/\varepsilon). \]
Then, Algorithm 2.2 stops and outputs a pair that solves Problem LCCO in at most
\begin{equation}
(2.14) \quad T_1(1,1) \cdot \left[\frac{E_0 + E_1}{\varepsilon^2} + E_0 \right]
\end{equation}
iterations of Algorithm 2.1.

Proof. Let $\hat{c}(\cdot, \cdot)$ be as in (2.13), and define the scalars
\[\ell := \log_2(1/\varepsilon), \quad \hat{\ell} := \log_2 \frac{\hat{c}(\rho, \eta)/\varepsilon}{\varepsilon}, \quad \varepsilon = \min\{\rho, \eta\}, \quad \hat{c} := \hat{c}(\rho, \eta). \]

It follows from Proposition 2.2(c) and the penalty parameter update in Algorithm 2.2 that the number of calls of Algorithm 2.2 is at most $\hat{\ell}$. Hence, it follows from Proposition 2.1(a), Proposition 2.2, and the previous observation that Algorithm 2.2 stops and outputs a pair that solves Problem LCCO in at most $\sum_{\ell=1}^{\hat{\ell}} T_\ell(\rho, \eta)$ iterations of Algorithm 2.1. To bound this sum, we bound the following subsums: $\sum_{\ell=1}^{\hat{\ell}} T_\ell(\rho, \eta)$ and $\sum_{\ell=1}^{\hat{\ell}} T_\ell(\rho, \eta)$. For the first sum, let $1 \leq \ell < \ell$. Since $c_{\ell} < 1$ (from the definition of ℓ) and $\varepsilon \leq 1$, it follows from Proposition 2.2(b) that
\begin{equation}
(2.15) \quad \sum_{\ell=1}^{\ell-1} T_\ell(\rho, \eta) \leq \sum_{\ell=1}^{\ell-1} 2 \frac{T_1(1,1)}{\varepsilon^2} = \frac{2\ell T_1(1,1)}{\varepsilon^2} = \frac{T_1(1,1) \cdot E_1}{\varepsilon^2}.
\end{equation}

For the second sum, let $\ell \geq \ell$. Similarly, since $c_{\ell} \geq 1$ and $\varepsilon \leq 1$ (from the definition of ℓ), it follows from Proposition 2.2(b) that
\begin{equation}
(2.16) \quad T_\ell(\rho, \eta) \leq \left(\frac{c_{\ell}^2}{\varepsilon^2} + \frac{c_{\ell}}{\varepsilon} \right) T_1(1,1).
\end{equation}

On the other hand, using the fact that $\log_2 \hat{c} \geq 1$, we have
\begin{equation}
(2.17) \quad \hat{\ell} - \ell = \log_2 \frac{\hat{\ell}}{\ell} + \log_2 \frac{1}{\varepsilon} \leq \max\{1, \log_2 [\hat{\ell}/\varepsilon] - \log_2 1/\varepsilon + 1\}
\end{equation}
\begin{equation}
(2.17) \quad = 1 + \max\{0, \log_2 \hat{c} \} = 1 + \log_2 \hat{c}
\end{equation}

Using (2.16), (2.17), the fact that $c_{\ell} = c_{\ell} 2^{\ell - \hat{\ell}}$, the bounds $\log_2 \hat{c} \geq 1$ and $c_{\ell} \leq \max\{2, \varepsilon\}$ (see the update rule for c_{ℓ} and the fact that $\hat{\ell}$ is the first index where c_{ℓ} is greater than or equal to 1), and the relation $\sum_{i=0}^{k} b^i \leq b^{k+1}$ for $b \geq 2$, it follows that
\begin{equation}
(2.18) \quad \frac{\sum_{\ell=1}^{\ell} T_\ell(\rho, \eta)}{T_1(1,1)} \leq \sum_{\ell=1}^{\ell} \left(\frac{c_{\ell}^2}{\varepsilon^2} + \frac{c_{\ell}}{\varepsilon} \right) = \sum_{i=0}^{\ell} \left(2^{i} c_{2i}^2 + 2^{i} c_{2i} \right)
\end{equation}
Moreover, using Proposition 2.2(c) and the relation $T_1(1,1) \geq \sqrt{T_1(1,1)}$, we have

$$16 \max\{4, c_1^2\} \cdot \left(\frac{\hat{c}^2}{\varepsilon^2} + \frac{\hat{c}}{\varepsilon}\right) \leq 32 T_1(1, 1) \cdot \max\{4, c_2^2\} \cdot (\varepsilon^{-2} + \varepsilon^{-3})$$

The conclusion now follows from (2.15), (2.18), and (2.19).

3. Analysis of Algorithm 2.1. This section contains two subsections. The first one establishes some key bounds on its main residuals, while the second one gives a bound on its generated Lagrange multipliers.

Throughout this section, we let $\hat{c} \in (0, c]$ and let $\{(v^i, x^i, p^i, q^i)\}_{i=1}^k$ denote the iterates generated by Algorithm 2.1 up to and including the kth iteration for some $k \geq 3$. Moreover, for every $i \geq 1$ and $(\chi, \theta) \in \mathbb{R}^2_+$ satisfying (2.6), we make use of the following useful constants and shorthand notation

$$a_{\theta} = \theta(1 - \theta), \quad b_{\theta} := (2 - \theta)(1 - \theta), \quad \gamma_{\theta} := \frac{(1 - 2B\chi b_{\theta}) - (1 - \theta)^2}{2\chi},$$

$$f^i := Ax^i - d, \quad Q_i := \sum_{t=1}^B \sum_{s=t+1}^B \|A_s^* A_s \Delta x_s^i\|,$$

the aggregated quantities in (2.1), and the averaged quantities

$$S_{j,k}^{(p)} := \sum_{i=j}^k \|p^i\| / (k - j + 1), \quad S_{j,k}^{(v)} := \sum_{i=j}^k \|v^i\| / (k - j + 1), \quad S_{j,k}^{(f)} := \sum_{i=j}^k \|f^i\| / (k - j + 1),$$

for every $1 \leq j \leq k$. We also denote Δy^i to be the difference of iterates for the variable y at iteration i, i.e.,

$$\Delta y^i \equiv y^i - y^{i-1}.$$

3.1. Properties of the Key Residuals. This subsection presents bounds on the residuals $\{\|v^i\|\}_{i=1}^k$ and $\{\|f^i\|\}_{i=2}^k$ generated by Algorithm 2.1. These bounds will be particularly helpful for proving Proposition 2.1 in Section 4.

The first result presents some key properties about the generated iterates.

Lemma 3.1. The following statements hold for every $i \leq k$:

(a) $f^i \in [p^i - (1 - \theta)p^{i-1}] / (\chi c)$;
(b) $v^i \in \nabla f(x^i) + A^* q^i + \partial h(x^i)$ and

$$\|v^i\| \leq B^2 (M + 2m) \|\Delta x^i\| + cQ_i.$$

This manuscript is for review purposes only.
Proof. (a) This is immediate from step 3 of Algorithm 2.1 and the definition of
f^i in (3.1).
(b) We first prove the required inclusion. The optimality of x^k_i in Step 1 of
Algorithm 2.1, assumption (A4), and the fact that $\lambda = 1/(2m)$, imply that

$$0 \in \partial \left[\mathcal{L}_\theta(x^i_{\leq t}, x^i_{> t}; p^{i-1}) + \frac{1}{2\lambda} \|x^i_k - x^i_k\|^2 \right](x^i)$$

$$= \nabla_{x^i} f(x^i_{\leq t}, x^i_{> t}) + A^i_\tau \left[(1-\theta)p^{i-1} + c[A(x^i_{\leq t}, x^i_{> t}) - d] \right] + \partial h_i(x^i) + \frac{1}{\lambda} \Delta x^i_t$$

$$= \nabla_{x^i} f(x^i_{\leq t}, x^i_{> t}) + A^i_\tau \left(q^i + c \sum_{s=t+1}^B A_i \Delta x^i_s \right) + \partial h_i(x^i) + \frac{1}{\lambda} \Delta x^i_t$$

$$= \nabla_{x^i} f(x^i) + A^i_\tau q^i + \partial h_i(x^i) - v^i_t.$$

for every $1 \leq t \leq B$. Hence, the inclusion holds. To show the inequality, let $1 \leq t \leq B$
be fixed and use the triangle inequality, the definition of v^i_t, and assumption (A4) to
obtain

$$\|v^i_t\| \leq \|\nabla_{x^i} f(x^i_t) - \nabla_{x^i} f(x^i_{\leq t}, x^i_{> t})\| + c \sum_{s=t+1}^B \|A^i_\tau A_i \Delta x^i_s\| + \frac{1}{\lambda} \|\Delta x^i_t\|$$

$$\leq M_t \|x^i_{> t} - x^i_{\leq t}\| + c \sum_{s=t+1}^B \|A^i_\tau A_i \Delta x^i_s\| + 2m\|\Delta x^i_t\|$$

$$\leq \sum_{s=t}^B (M_t + 2m) \|\Delta x^i_s\| + c \sum_{s=t+1}^B \|A^i_\tau A_i \Delta x^i_s\|.$$

Using the above bound, the definition of M in (3.1), the fact that $\lambda = 1/(2m)$, and the
triangle inequality, we conclude that

$$\|v^i_t\| \leq \sum_{t=1}^B \|v^i_t\| \leq \sum_{t=1}^B \sum_{s=t}^B (M_t + 2m) \|\Delta x^i_s\| + c \sum_{t=1}^B \sum_{s=t+1}^B \|A^i_\tau A_i \Delta x^i_s\|$$

$$\leq (M + 2m) \sum_{t=1}^B \sum_{s=t}^B \|\Delta x^i_s\| + c Q_i \leq B^2 (M + 2m) \|\Delta x^i\| + c Q_i.$$

Notice that part (c) of the above result implies that $(\bar{x}, \bar{v}, \bar{\rho}) = (x^i, v^i, q^i)$ satisfies
the inclusion in (2.5). Hence, if $\|v^i\|$ and $\|f^i\|$ are sufficiently small at some iteration
i, then Algorithm 2.1 clearly returns a solution to Problem LCCO at iteration i, i.e.,
Proposition 2.1(b) holds. However, to understand when Algorithm 2.1 terminates, we
will need to develop more refined bounds on $\|v^i\|$ and $\|f^i\|$.

To begin, we present some relations between the perturbed augmented Lagrangian
$\mathcal{L}_\theta(\cdot, \cdot)$ and the iterates $\{(x^i, p^i)\}_{i=1}^k$. For brevity, its proof is given in Appendix A.

Lemma 3.2. For every $i \leq k$, it holds that:

(a) $\mathcal{L}_\theta(x^i; p^i) - \mathcal{L}_\theta(x^i; p^{i-1}) = b_\theta \|\Delta p^i\|^2/(2\chi c) + a_\theta \left(\|p^i\|^2 - \|p^{i-1}\|^2 \right)/(2\chi c)$;

(b) $\mathcal{L}_\theta(x^i; p^{i-1}) - \mathcal{L}_\theta(x^{i-1}; p^{i-1}) \leq -3m\|\Delta x^i\|^2/2 - c \sum_{t=1}^B \|A_i \Delta x^i_t\|^2/2$;

(c) if $i \geq 2$, it holds that

$$\frac{b_\theta}{2\chi c} \|\Delta p^i\|^2 - c \sum_{t=1}^B \|A_i \Delta x^i_t\|^2 \leq \frac{\gamma_\theta}{4B\chi c} \left(\|\Delta p^{i-1}\|^2 - \|\Delta p^i\|^2 \right).$$

This manuscript is for review purposes only.
The next result uses the above relations to establish a bound on the quantities in the right-hand-side of (3.4).

Lemma 3.3. Let \((\kappa_0, \Delta_\phi, \mathcal{N}_A)\) be as in (2.7), and define the scalars

\[
\Psi_i(a) := L_i^0(x^i; p^i) - \frac{a}{\sqrt{c}} \|p^0\|^2 + \frac{\gamma}{4B\sqrt{c}} \|\Delta p_i^0\|^2 \quad \forall i \geq 1.
\]

Then, for \(1 \leq j \leq k\), it holds that

\[
\sum_{i=0}^{k} \left[\frac{B^4(M + 2m)\|\Delta x^i\| + cQ_i}{\kappa_0 + \sqrt{N_A}c} \right]^2 \leq \Psi_j(c) - \Psi_k(c)
\]

\[
\leq \Delta_\phi + 4 \left(\frac{\|p^j\|^2 + \|p^{j-1}\|^2 + \|p^k\|^2}{\chi^2} \right).
\]

Proof. Using the fact that \(\|z\|^2 \leq n\|z\|\) for every \(z \in \mathbb{R}^n\), the definition of \(Q_i\) in (3.1), and the fact that \(\|Mx\| \leq \|M\|\|x\|\) for any matrix \(M\), we first have

\[
cQ_i^2 \leq B^2c \sum_{i=1}^{B} \sum_{s=i+1}^{B} \|A_sA_s\Delta x^i_s\|^2 \leq B^2c \sum_{i=1}^{B} \|A_s\|^2 \sum_{s=i+1}^{B} \|A_s\Delta x^i_s\|^2
\]

\[
\leq \left(B^2 \sum_{i=1}^{B} \|A_s\|^2 \right) \left(c \sum_{s=1}^{B} \|A_s\Delta x^i_s\|^2 \right)
\]

\[
\leq \left(4B^2 \sum_{i=1}^{B} \|A_s\|^2 \right) \left(\frac{c}{4} \sum_{s=1}^{B} \|A_s\Delta x^i_s\|^2 \right).
\]

Combining (3.8), Lemma 3.2(a)–(b), the definition of \(\Psi_i^0\), and the bound \((a + b)^2 \leq 2a^2 + 2b^2\) for \(a, b \in \mathbb{R}_+\), it follows that

\[
\frac{B^4(M + 2m)\|\Delta x^i\| + cQ_i}{\kappa_0 + \sqrt{N_A}c} \leq \frac{2B^4(M + 2m)\|\Delta x^i\|^2 + 2c^2Q_i}{\kappa_0 + \sqrt{N_A}c}
\]

\[
\leq \frac{3m}{2} \frac{\|\Delta x^i\|^2 + cQ_i^2}{4B^2 \sum_{i=1}^{B} \|A_s\|^2} \leq \frac{3m}{2} \frac{\|\Delta x^i\|^2 + \sum_{s=1}^{B} \|A_s\Delta x^i_s\|^2}{4} \leq \frac{3m}{2} \|\Delta x^i\|^2 + \|A_s\Delta x^i_s\|^2
\]

\[
\leq L_i^0(x^{i-1}; p^{i-1}) - L_i^0(x^i; p^i) + \frac{a}{\sqrt{c}} \|p^0\|^2 - \|p^{i-1}\|^2 + \frac{\gamma}{4B\sqrt{c}} \|\Delta p_i^0\|^2,
\]

\[
\|L_i^0(x^{i+1}; p^{i-1}) - L_i^0(x^i; p^i) + \frac{a}{\sqrt{c}} \|p^0\|^2 - \|p^{i-1}\|^2 + \frac{\gamma}{4B\sqrt{c}} \|\Delta p_i^0\|^2 \|
\]

\[
\leq \Psi_{i-1}(c) - \Psi_i(c).
\]

Consequently, summing the above inequality from \(i = j + 1\) to \(k\) yields the leftmost bound. To prove the rightmost bound, we use Lemma 3.2(d)–(e), the inclusions \(a_0 \in (0, 1)\) and \((\chi, \theta) \in (0, 1)^2\), the relation \((a + b)^2 \leq 2a^2 + 2b^2\) for \(a, b \in \mathbb{R}_+\), and the bound \(\gamma \leq \frac{1}{(2\chi)}\) to obtain

\[
\Psi_j(c) - \Psi_k(c)
\]
\[
\begin{align*}
&= \left[\mathcal{L}_p^\theta(x^j; p^j) - \mathcal{L}_p^\theta(x^k; p^k) \right] + \frac{a_0(\|p^j\|^2 - \|p^i\|^2)}{2\chi c} + \frac{\gamma_0(\|\Delta p^j\|^2 - \|\Delta p^k\|^2)}{4B\chi c} \\
&\leq \left[\mathcal{L}_p^\theta(x^j; p^j) - \mathcal{L}_p^\theta(x^k; p^k) \right] + \frac{a_0\|p^j\|^2}{2\chi c} + \frac{\gamma_0\|\Delta p^j\|^2}{4B\chi c} \\
&\leq \left[\mathcal{L}_p^\theta(x^j; p^j) - \mathcal{L}_p^\theta(x^k; p^k) \right] + \frac{\|p^j\|^2}{2\chi c} + \frac{\|\Delta p^j\|^2}{4B\chi^2 c} \\
&\leq \left[\phi(x^{-1}) - \phi(x^k) + \frac{3(\|p^j\|^2 + \|p^{j-1}\|^2)}{\chi^2 c} + \frac{\|p^k\|^2}{2c} \right] + \frac{\|p^k\|^2}{2\chi c} + \frac{\|p^{j-1}\|^2 + \|p^j\|^2}{4B\chi^2 c} \\
&\leq \Delta_\phi + 4 \left(\frac{\|p^j\|^2 + \|p^{j-1}\|^2 + \|p^k\|^2}{\chi^2 c} \right).
\end{align*}
\]

The next result presents bounds on \(S_{j+1,k}^{(f)} \) and \(S_{j+1,k}^{(v)} \).

Proposition 3.4. Let \((\kappa_0, \Delta_\phi, \mathcal{N}_A)\) be as in (2.7). Then, for every \(1 \leq j < k \), it holds that

\[
\begin{align*}
S_{j+1,k}^{(f)} &\leq \frac{\|p^j\| + 2S_{j+1,k}^{(p)}}{\chi c}, \\
S_{j+1,k}^{(v)} &\leq \frac{2(\kappa_0 + \sqrt{\mathcal{N}_A c})}{\sqrt{k-j}} \left(\frac{\Delta_\phi^{1/2} + \|p^j\| + \|p^{j-1}\| + \|p^k\|}{\chi c} \right).
\end{align*}
\]

Proof. Using Lemma 3.1(a), the fact that \(\theta \in (0,1) \), and the triangle inequality, it holds that

\[
S_{j+1,k}^{(f)} = \sum_{i=j+1}^k \|p^i - (1 - \theta)p^{i-1}\| \leq \sum_{i=j+1}^k (\|p^{i-1}\| + \|p^i\|) \leq \frac{\|p^j\| + 2S_{j+1,k}^{(p)}}{\chi c},
\]

which is (3.9). On the other hand, to show (3.10), we use the fact that \(\|a\|_1 \leq \sqrt{n}\|a\|_2 \) for \(a \in \mathbb{R}^n \), Lemma 3.1(b), Lemma 3.3, and the fact that \(\sqrt{a+b} \leq \sqrt{a} + \sqrt{b} \) for \(a, b \in \mathbb{R}_+ \), to obtain

\[
S_{j+1,k}^{(v)} = \frac{\sum_{i=j+1}^k \|v^i\|}{k-j} \leq \left(\frac{\sum_{i=j+1}^k \|v^i\|^2}{k-j} \right)^{1/2} \leq \left(\frac{\sum_{i=j+1}^k \left[B^2(M + 2m)\|\Delta x^i\| + c\|q_i\|^2 \right]^2}{k-j} \right)^{1/2} \leq \frac{\kappa_0 + \sqrt{\mathcal{N}_A c}}{\sqrt{k-j}} \left[\Delta_\phi^{1/2} + \|p^j\| + \|p^{j-1}\| + \|p^k\| \right])^{1/2} \leq \frac{2(\kappa_0 + \sqrt{\mathcal{N}_A c})}{\sqrt{k-j}} \left(\Delta_\phi^{1/2} + \|p^j\| + \|p^{j-1}\| + \|p^k\| \right).
\]

Now, observe that both residuals \(S_{j+1,k}^{(v)} \) and \(S_{j+1,k}^{(f)} \) depend on the size of the Lagrange multipliers. Since both termination conditions in Algorithm 2.1 require \(\|v^j\|, \|f^j\| \), or some combination of the two to be sufficiently small, our goal for the next subsection is to bound the size of generated multipliers.

3.2. Bounding the Lagrange Multipliers

This subsection generalizes the analysis in [18]. More specifically, Proposition 3.9 shows that if \(k \) is sufficiently large relative to an index \(j \), the penalty parameter \(c \), and \(\|p^0\| \), then \(S_{j+1,k}^{(p)} = \mathcal{O}(1) \).
The first result, whose proof can be found in [12, Lemma 1.2], presents a relation on elements in the image of a linear operator.

Lemma 3.5. For any $S \in \mathbb{R}^{m \times n}$ and $u \in S(\mathbb{R}^{m \times n})$, we have $\sigma^{\frac{1}{2}}\|u\| \leq \|Su\|$.

The proof of the next result can be found in [21, Lemma 4.7].

Lemma 3.6. Suppose $\psi \in \text{Conv} \mathbb{R}^n$ is K_{ψ}-Lipschitz continuous. Then, for every $z, \bar{z} \in \text{dom} \psi$ and $r \in \partial \psi(z)$, it holds that

$$\|r\| \text{dist}_{\partial(\text{dom} \psi)}(\bar{z}) \leq \left[\text{dist}_{\partial(\text{dom} \psi)}(\bar{z}) + \|z - \bar{z}\|\right] K_{\psi} + \langle r, z - \bar{z} \rangle,$$

where $\partial(\text{dom} \psi)$ denotes the boundary of $\text{dom} \psi$.

The following result presents some fundamental properties about p^{i-1}, p^i, and q^i.

Lemma 3.7. Let d_o, D, κ_i be as in (A5), (2.4), (2.7), respectively. Then, for every $i \geq 1$,

(a) $p^i = \chi q^i + (1 - \chi)(1 - \theta)p^{i-1};$

(b) $\|p^i\| \leq \|p^0\| + \kappa_3 c;$

(c) it holds that

$$\frac{1}{c} \|q^i\|^2 + d_o \sigma^\frac{1}{2} \|q^i\| \leq \left(\frac{1 - \theta}{c}\right) \langle q^i, p^{i-1} \rangle + 2cD_xQ_i + 2\kappa_1.$$

Proof. (a) This is an immediate consequence of the updates for p^i and q^i in Algorithm 2.1.

(b) In view of Step 3 of Algorithm 2.1, the fact that $\theta \in (0,1)$, and the triangle inequality, it holds that

$$\|p^i\| \leq (1 - \theta)\|p^{i-1}\| + \chi c\|Ax^i - d\|$$

$$\leq (1 - \theta)^i\|p^0\| + \chi c \sum_{j=0}^{i-1} (1 - \theta)^j \|Ax^j - d\|$$

$$\leq \|p^0\| + \chi c \cdot \sup_{x \in F} \|Ax - d\| \sum_{j=0}^{\infty} (1 - \theta)^j$$

$$= \|p^0\| + \chi c \left(\sup_{x \in \mathbb{R}} \|Ax - d\|\right) = \|p^0\| + \kappa_3 c.$$

(c) Using Lemma 3.5 with $(S,u) = (A,q^i)$, Lemma 3.1(b), the fact that $q^i \in A(\mathbb{R}^n)$, and the triangle inequality, we first have that

$$\frac{1}{c} \|q^i\|^2 + d_o \sigma^\frac{1}{2} \|q^i\| \leq \frac{1}{c} \|q^i\|^2 + d_o \|A^*q^i\|$$

$$\leq \frac{1}{c} \|q^i\|^2 + d_o \left[\|v^i - \nabla f(x^i) - A^*q^i\| + \|\nabla f(x^i)\| + \|v^i\|\right]$$

$$\leq \frac{1}{c} \|q^i\|^2 + d_o \left[\|v^i - \nabla f(x^i) - A^*q^i\| + G_f + B^2 (M + 2m) D_x + cQ_i\right]$$

$$(3.11) \quad \leq \frac{1}{c} \|q^i\|^2 + d_o \|v^i - \nabla f(x^i) - A^*q^i\| + cQ_iD_x + \kappa_1 - K_h D_x.$$

We now derive a suitable bound on $d_o \|v^i - \nabla f(x^i) - A^*q^i\|$. First, observe that Lemma 3.1(b) implies that $v^i - \nabla f(x^i) - A^*q^i \in \partial h(x^i)$. Using the definition of D_x in
(2.4) and Lemma 3.6 with \((\hat{\psi}, z, \hat{z}) = (h, x^i, \hat{x})\) and \(r = v^i - \nabla f(x^i) - A^*q^i\), it follows that
\[
d_\delta \|v^i - \nabla f(x^i) - A^*q^i\| = \|v^i - \nabla f(x^i) - A^*q^i\|_{\text{dist}_H(\hat{x})}
\leq \left[\text{dist}_H(\hat{x}) + \|x^i - \hat{x}\| \right] K_h + \left\langle v^i - \nabla f(x^i) - A^*q^i, x^i - \hat{x} \right\rangle
\leq 2K_hD_x + \left\langle v^i - \nabla f(x^i) - A^*q^i, x^i - \hat{x} \right\rangle.
\]
(3.12)

On the other hand, Lemma 3.1(b), the Cauchy-Schwarz inequality, the definition of \(\kappa_1\), and the fact that \(Ax^i - d = [q^i - (1 - \theta)p^{i-1}] / c\) imply that
\[
\left\langle v^i - \nabla f(x^i) - A^*q^i, x^i - \hat{x} \right\rangle
\leq (\|v^i\|^2 + \|\nabla f(x^i)\|^2) \|x^i - \hat{x}\| - \left\langle q^i, Ax^i - d \right\rangle
\leq \left[\|v^i\|^2 + \|\nabla f(x^i)\|^2 \right] \|x^i - \hat{x}\| - \left\langle q^i, Ax^i - d \right\rangle
= \kappa_1 - K_hD_x + cQ_iD_x + \left(\frac{1 - \theta}{c} \right) \left\langle q^i, p^{i-1} \right\rangle - \frac{1}{c} \|q^i\|^2.
\]
(3.13)
The conclusion now follow from combining (3.11), (3.12), and (3.13).

The next result presents two important technical bounds. One of them shows that \(\|p^i\|\) is bounded by a nearly telescopic quantity, while the other gives a bound on \(\sum_{i=j+1}^k Q_i\).

Lemma 3.8. Let \(d_\delta\), \(D_x\), \(\kappa_i\), and \(\tau_\chi(\cdot, \cdot)\) be as in (A5), (2.4), (2.7), and (2.8), respectively, and define
\[
d_\theta := \frac{2(1 - \theta)^2}{1 + \sqrt{1 + 4(1 - \theta)^2}}, \quad e_\theta := (1 - \theta)(1 - \chi).
\]
(3.14) Then, it holds that:
(a) for every \(1 \leq i \leq k\), we have
\[
\kappa_2 \|p^i\| \leq 4\chi(\kappa_1 + cQ_iD_x) + e_\theta d_\delta \sigma_A^+ (\|p^{i-1}\| - \|p^i\|) + \frac{d_\delta (\|p^{i-1}\|^2 - \|p^i\|^2)}{c};
\]
(b) for every \(1 \leq j < k\), we have
\[
\frac{\varepsilon \sum_{i=j+1}^k Q_i}{k-j} \leq \left[\frac{\kappa_2}{4\chi D_x} \right] \left[\frac{\tau_\chi(c, p^0)}{\sqrt{k-j}} \right].
\]
(3.15)

Proof. (a) Let \(i \leq k\) be arbitrary, suppose \(\theta \in (0, 1)\), and define
\[
\nu_i(c) := \kappa_1 + cQ_iD_x, \quad g_\theta := \frac{1 + \sqrt{1 + 4(1 - \theta)^2}}{2(1 - \theta)},
\]
\[
\Delta_{p^i}^{(1)} := \|p^i\| - \|p^{i-1}\|, \quad \Delta_{p^i}^{(2)} := \|p^i\|^2 - \|p^{i-1}\|^2.
\]
Using Lemma 3.7(a) thrice, Lemma 3.7(c), the relations \(e_0 \in (0, 1)\), \(\theta \in (0, 1)\), and \(\chi \leq \chi^2 \in (1, 0)\), and the bounds \(2ab \leq g_\theta a^2 + b^2 / g_\theta\) and \((a + b)^2 \leq 2a^2 + 2b^2\) for every \(a, b \in \mathbb{R}_+\), we first have that
\[
\frac{1}{c} \|p^i\|^2 + d_\delta \sigma_A^+ \|p^i\| = \frac{1}{c} \|\chi q^i + e_\theta p^{i-1}\|^2 + d_\delta \sigma_A^+ \|\chi q^i + e_\theta p^{i-1}\|.\]
Subtracting $e_0d_\sigma \sigma_+^+ \|p_i\| + d_\sigma \|p_i\|^2 + (1 - \theta)g_\theta/c\|p_i\|^2$ from both sides and using the relations $\kappa_2 = (1 - e_0)d_\sigma \sigma_+^+, g_\theta = (1 - \theta)/g_\theta$, and $(1 - \theta)g_\theta^2 - g_\theta + (1 - \theta) = 0$, we conclude that

$4\chi(\kappa_1 + cQ_1D_x) - e_0d_\sigma \sigma_+^+ \Delta_{p,i}^{(1)} - \frac{d_\sigma \Delta_{p,i}^{(2)}}{c}$

$\geq (1 - e_0)d_\sigma \sigma_+^+ \|p_i\|^2 + \frac{\|p_i\|^2}{c} [1 - d_\sigma - (1 - \theta)g_\theta]$

$= \kappa_2\|p_i\|^2 - \frac{\|p_i\|^2}{g_\theta \cdot c} [(1 - \theta)g_\theta^2 - g_\theta + (1 - \theta)] = \kappa_2 \|p_i\|^2$

and, hence, the desired bound holds for $\theta \in (0, 1)$. Taking the limit of the bound as $\theta \uparrow 1$ implies that the bound also holds for $\theta = 1$.

(b) Using the relation $\|z\|_1 \leq \sqrt{d}\|z\|_2$ for any $z \in \mathbb{R}^d$, the bound $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ for $a, b \in \mathbb{R}_+$, Lemma 3.7(b), and Lemma 3.3, it holds that

$$
\sum_{i=j+1}^k cQ_i \leq \left(\sum_{i=j+1}^k c^2Q_i^2 \right)^{1/2} \quad \leq \frac{\kappa_0 + \sqrt{\mathcal{N}Ac}}{\sqrt{k-j}} \left[\Delta_{\phi} \right] + 2 \left(\frac{\|p_i\| + \|p_i^{-1}\| + \|p_k\|}{\lambda \sqrt{c}} \right) \quad \leq \frac{\kappa_0 + \sqrt{\mathcal{N}Ac}}{\sqrt{k-j}} \left[\Delta_{\phi} \right] + \frac{6\|p_0\| + \kappa_3c}{\lambda \sqrt{c}} \quad \leq \frac{\kappa_0 + \sqrt{\mathcal{N}Ac}}{\sqrt{k-j}} \left[\Delta_{\phi} \right] + \frac{6\|p_0\|}{\lambda \sqrt{c}} \left(\sqrt{\mathcal{N}A} + \frac{\kappa_0}{\sqrt{c}} \right) \quad = \frac{\kappa_2}{4\chi D_x} \left[\frac{\tau_2(c,p_0)}{\sqrt{k-j}} \right].
$$

We are now ready to present the claimed bound on $S_{j+1,k}^{(p)}$.

Proposition 3.9. Let κ_i and τ_i be as in (2.7) and (2.8), respectively. Then, for every $1 \leq j < k$, it holds that

$$
S_{j+1,k}^{(p)} \leq \frac{4\chi \kappa_1}{\kappa_2} + \frac{\tau_1(c,p_0)}{k-j} + \frac{\tau_2(c,p_0)}{\sqrt{k-j}}.
$$

Moreover, if $k \geq j + \tau_1(c,p_0) + \tau_2^2(c,p_0)$, then $S_{j+1,k}^{(p)} \leq 2 + 4\chi \kappa_1/\kappa_2$.

This manuscript is for review purposes only.
Proof. Let $\Delta_1^{(1)}, \Delta_2^{(2)}$, d_0, and e_0 be as in Lemma 3.8, and let $\nu_l(c)$ be as in (3.15). Summing the bound in Lemma 3.8(a) from $i = j + 1$ to k and using the resulting bound with Lemma 3.7(b) and the fact that d_0 is smaller than the first term in κ_4, it follows that

$$
\kappa_2 \sum_{i=j+1}^{k} \|p_i\| \leq \frac{d_0}{c} (\|p^i\|^2 - \|p^k\|^2) + e_0 d_0 \sigma_X^2 (\|p^j\| - \|p^k\|) + 4\chi \sum_{i=j+1}^{k} \nu_i(c)
$$

$$
\leq \kappa_4 \left(\|p^j\|^2 / c + \|p^j\| \right) + 4\chi \sum_{i=j+1}^{k} \nu_i(c)
$$

$$(3.18)$$

$$
\leq \kappa_4 \left[\frac{2\|p^0\|^2}{c} + \|p^0\| + (2\kappa_2^2 + \kappa_3) c \right] + 4\chi \sum_{i=j+1}^{k} \nu_i(c).
$$

Dividing the above bound by $\kappa_2(k - j)$ and using the definitions of $S_{j+1,k}^{(p)}$ and $\nu_i(c)$ with Lemma 3.8(b), it holds that

$$
S_{j+1,k}^{(p)} \leq \frac{\kappa_4}{\kappa_2(k - j)} \left[\frac{2\|p^0\|^2}{c} + \|p^0\| + (2\kappa_2^2 + \kappa_3) c \right] + \frac{4\chi \sum_{i=j+1}^{k} \nu_i(c)}{\kappa_2(k - j)}
$$

$$
= \frac{4\chi \kappa_1}{\kappa_2} + \frac{\tau_1(c, p^0)}{k - j} + \frac{4\chi D_x \sum_{i=j+1}^{k} cQ_i}{\kappa_2(k - j)}
$$

$$
\leq \frac{4\chi \kappa_1}{\kappa_2} + \frac{\tau_1(c, p^0)}{k - j} + \frac{\tau_2(c, p^0)}{\sqrt{k - j}}
$$

which is exactly (3.17). The last statement of the proposition follows immediately from the fact that $k \geq j + \tau_1(c, p^0) + \tau_2^2(c, p^0)$ implies $k - j \geq \tau_1(c, p^0)$ and $\sqrt{k - j} \geq \tau_2(c, p^0)$.

We end this subsection by discussing some implications of the above results. Suppose ζ is an integer satisfying $\zeta \geq 1 + \tau_1(c, p^0) + \tau_2^2(c, p^0) = \Omega(c^2 + \|p^0\|^2)$. It then follows from Proposition 3.9 that $S^{(p)}_{2,\zeta} = O(1)$ and $S^{(p)}_{2\zeta,3\zeta} = O(1)$. Since the minimum of a set of scalars minorizes the average of these scalars, there exists indices $j_0 \in \{2, \ldots, \zeta\}$ and $k_0 \in \{2\zeta, \ldots, 3\zeta\}$ such that $\|p^{j_0}\| = O(1)$ and $\|p^{k_0}\| = O(1)$. Using the fact that $k_0 - j_0 \geq \zeta$, the above bounds, and (3.9)–(3.10), it is reasonable to expect $S^{(f)}_{j_0+1,k_0} = O(1/c)$ and $S^{(v)}_{j_0,k_0} = O(\tau_0(c)/\sqrt{\zeta})$. In the next section, we give the exact steps of this argument and use the resulting bounds to prove Proposition 2.1.

4. Proof of Propositions 2.1 and 2.2. Before presenting the proofs, we first refine the bounds in Proposition 3.4.

Lemma 4.1. Let (κ_i, N_{A_i}) and $(\bar{\kappa}_i, \tau_i)$ be as in (2.7) and (2.8), respectively, and suppose $\zeta \in \mathbb{N}$ satisfies $\zeta \geq 1 + \tau_1(c, p^0) + \tau_2^2(c, p^0)$. Then, there exists $j_0 \in \{3, \ldots, \zeta\}$ and $k_0 \in \{2\zeta, 1, \ldots, 3\zeta\}$ such that

$$
S^{(v)}_{j_0,k_0} \leq \frac{\bar{\kappa}_0(\kappa_0 + \sqrt{N_{A_0}c})}{\sqrt{\zeta}}, \quad S^{(f)}_{j_0,k_0} \leq \frac{\kappa_5}{c}.
$$

Proof. Suppose $\zeta \in \mathbb{N}$ satisfies $\zeta \geq 1 + \tau_1(c, p^0)\tau_2^2(c, p^0)$. Using Proposition 3.9 with $(j, k) = (1, \zeta)$ it holds that there exists $3 \leq j_0 \leq \zeta$ such that

$$
\|p^{j_0-1}\| + \|p^{j_0}\| \leq \frac{\sum_{i=3}^{\zeta} (\|p^{i-1}\| + \|p^i\|)}{\zeta - 2} \leq \frac{2}{\zeta - 2} \left(\frac{\sum_{i=2}^{\zeta} \|p^i\|}{\zeta - 2} \right).
$$
On the other hand, using Proposition 3.9 with \((j, k) = (2\zeta, 3\zeta)\) it holds that there exists \(k_0 \in \{2\zeta + 1, \ldots, 3\zeta\}\) such that

\[
\|p^{k_0}\| \leq \frac{2(\zeta - 1)S^{(p)}_{2\zeta}}{\zeta - 2} \leq 4S^{(p)}_{2\zeta} \leq 8 + \frac{16\chi\kappa_1}{\kappa_2}.
\]

(4.2)

Combining (4.2), (4.3), the fact that \(k_0 - j_0 \geq \zeta\), and Proposition 3.4 with \((j, k) = (j_0, k_0)\), it follows that

\[
S^{(v)}_{3j_0+1, k_0} \leq \frac{2(k_0 + \sqrt{N_A}c)}{\sqrt{k_0 - j_0}} \left(\Delta_{j_0}^{1/2} + \frac{\|p^{j_0}\| + \|p^{j_0-1}\| + \|p^{k_0}\|}{\chi\sqrt{c}} \right)
\]

(4.2)-(4.3)

\[
\leq \frac{2(k_0 + \sqrt{N_A}c)}{\sqrt{k_0 - j_0}} \left[\Delta_{j_0}^{1/2} + \frac{10}{\chi\sqrt{c}} \left(1 + \frac{2\chi\kappa_1}{\kappa_2} \right) \right]
\]

\[
\leq \frac{2(k_0 + \sqrt{N_A}c)}{\sqrt{\zeta}} \left[\Delta_{j_0}^{1/2} + \frac{10}{\chi\sqrt{c}} \left(1 + \frac{2\chi\kappa_1}{\kappa_2} \right) \right] = \kappa_0(k_0 + \sqrt{N_A}c),
\]

which is the first bound in (4.1). To show the other bound in (4.1), we use (4.2) and Proposition 3.9 with \((j, k) = (j_0, k_0)\) to conclude that

\[
S^{(f)}_{j_0+1, k_0} \leq \frac{\|p^{j_0}\| + 2S^{(p)}_{j_0+1, k_0}}{\chi c} \leq \frac{12}{\chi c} \left(1 + \frac{2\chi\kappa_1}{\kappa_2} \right) = \kappa_5 \frac{c}{\kappa_5}. \quad \square
\]

We are now ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1. (a) Let \((\rho, \eta) \in (0, 1), p^0 \in A(\mathbb{R}^n)\), and \(c > 0\) be given, and define

\[
T := T(\rho, \eta | c, p^0), \quad r_j := \frac{S^{(v)}_j}{\rho} + \frac{S^{(f)}_j}{\eta \sqrt{j}} \quad \forall j \geq 1,
\]

where \(S^{(v)}_j\) and \(S^{(f)}_j\) are as in Step 2b of Algorithm 2.1. For the sake of contradiction, suppose that Algorithm 2.1 has not terminated by the end of iteration \(k = T\). It then follows from the definition of \(T\), Lemma 4.1 with \(\zeta = T/3\), and the relation \((a + b)^2 \leq 2a^2 + 2b^2\) for \(a, b \in \mathbb{R}_+\) that there exists \(j_0 \in \{3, \ldots, T/3\}\) and \(k_0 \in \{2T/3 + 1, \ldots, T\}\) such that

\[
\frac{S^{(v)}_{j_0+k_0}}{\rho} + \frac{c^3/2S^{(f)}_{j_0+k_0}}{\eta \sqrt{T/3}} \leq \kappa_0(k_0 + \sqrt{N_A}c) + \kappa_5 \sqrt{c}.
\]

(4.4)

\[
\leq \frac{3\kappa_0^2(k_0 + \sqrt{N_A}c)^2}{\rho^2 T} + \frac{3\kappa_0^2 c}{\eta^2 T} \leq \frac{6\kappa_0^2(k_0^2 + N_A)}{\rho^2 T} + \frac{1}{4} \leq \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.
\]

Now, without loss of generality, suppose \(k_0\) is even. Combining (4.4), the relations

\[
S^{(v)}_{k_0/2, k_0} = S^{(v)}_{k_0}, \quad S^{(f)}_{k_0/2, k_0} = S^{(f)}_{k_0}, \quad \text{and} \quad j_0 \leq T/3 < k_0/2 < k_0,
\]

we conclude that

\[
r_{k_0} = \frac{S^{(v)}_{k_0/2, k_0}}{\rho} + \frac{c^3/2S^{(f)}_{k_0/2, k_0}}{\eta \sqrt{k_0}} \leq \frac{k_0 - j_0 + 1}{k_0 - k_0/2 + 1} \left[\frac{S^{(v)}_{j_0, k_0}}{\rho} + \frac{c^3/2S^{(f)}_{j_0, k_0}}{\eta \sqrt{T/3}} \right].
\]
which, in view of Step 2b of Algorithm 2.1, implies that termination must occur at or before iteration \(k_0 \leq T \). Since this contradicts our initial assumption, it must be the case that each call of Algorithm 2.1 is run for at most \(T \) iterations.

(b) This follows from the stopping condition in Step 2a and Lemma 3.1(b).

(c) Let \((T, r_j)\) be as in part (a) and suppose that \(T \leq c^3 \). In view of the conclusion of part (a), let \(j \leq T \) be the first even index where \(r_j \leq 1 \). Using the fact that \(r_j \) itself is an average of scalars, there exists \(j/2 \leq i \leq j \) such that

\[
\|v^i\| + c^{3/2}\|f^i\| \leq \frac{\ell}{j/2, j} \leq \frac{c^{3/2}\ell}{j/2, j} \leq 1.
\]

Hence, it holds that \(\|v^i\| \leq \rho \) and, from our initial bound on \(T \), we have \(\|f^i\| \leq \eta \sqrt{Tc^{-3/2}} \leq \eta \sqrt{Tc^{-3/2}} \leq \eta \). Since \(i \leq j \leq T \), it follows from part (a) that Algorithm 2.1 terminates successfully in Step 2a at iteration \(i \), which is before the first index \(j \) where it can terminate unsuccessfully.

Finally, we give the proof of Proposition 2.2.

Proof of Proposition 2.2. (a) We proceed by induction. Since \(\bar{q}^0 = 0 \), the case of \(\ell = 0 \) is immediate. Suppose the statement holds for some iteration \(\ell - 1 \). Then, it follows from Lemma 3.7(b) with \((\bar{q}^0, c) = (\bar{q}^{\ell-1}, c)\) and the relation \(c_\ell = 2c_{\ell-1} \) that

\[
\|\bar{q}^\ell\| \leq \|\bar{q}^{\ell-1}\| + \kappa_3c_\ell \leq \kappa_3(2c_{\ell-1} + c_\ell) = 2\kappa_3c_\ell.
\]

(b) The fact that the iteration count is bounded by \(T(\rho, \eta | c_\ell, \bar{q}^{\ell-1}) \) follows immediately from Proposition 2.1(a) and how Algorithm 2.1 is called in Algorithm 2.2.

We now show that the leftmost bound in (2.12) holds. Notice that the scalar \(T_{\ell}(\rho, \eta) \) is non-decreasing in terms of the variables \(\max\{1, c_\ell\} \) and \(1/\min\{\rho, \eta\} \) and that these variables are clearly lower bounded by 1 for \((\rho, \eta) \in (0, 1)^2\). Hence, the desired bound follows from these facts and the requirement that \((\rho, \eta) \in (0, 1)^2\) in Algorithm 2.2.

We next show that the rightmost bound in (2.12) holds. Notice first that (2.9) implies that it suffices to show that \(\tau_1(c_\ell, \bar{q}^{\ell-1}) + \tau_2(c_\ell, \bar{q}^{\ell-1}) \leq \xi_0 + \xi_1c_\ell + \xi_2c_\ell^2 \). Using part (a) and the definition of \(\tau_1(\cdot, \cdot) \), we first have that

\[
\tau_1(c_\ell, \bar{q}^{\ell-1}) \leq \left(\frac{2\kappa_4}{\kappa_2} \right) \frac{4\kappa_4^2c_\ell^2}{c_\ell} + \frac{2\kappa_4\kappa_3c_\ell}{\kappa_2} + (2\kappa_3^2 + \kappa_3)c_\ell \\
= \left(\frac{8\kappa_4^2\kappa_3^2 + 2\kappa_4\kappa_3}{\kappa_2} + 2\kappa_3^2 + \kappa_3 \right) c_\ell.
\]

On the other hand, using part (a), the relation \((a + b)^2 \leq 2a^2 + 2b^2 \) for \(a, b \in \mathbb{R}_+ \), and the definition of \(\tau_2(\cdot, \cdot) \) yields

\[
\tau_2^2(c_\ell, \bar{q}^{\ell-1}) \leq \frac{16\chi^2D_\tau^2}{\kappa_2} \left(\left[\kappa_0 + \sqrt{N_\Lambda c_\ell} \right] \left[\Delta_\phi^{1/2} + \frac{6\kappa_3\sqrt{c_\ell}}{\chi} \right] + 2\kappa_2\kappa_3c_\ell \right)^2 \\
\leq \frac{16\chi^2D_\tau^2}{\kappa_2} \left(\left[\kappa_0 + \sqrt{N_\Lambda c_\ell} \right]^2 \left[\Delta_\phi^{1/2} + \frac{6\kappa_3\sqrt{c_\ell}}{\chi} \right]^2 + 4\kappa_2^2\kappa_3^2c_\ell^2 \right) \\
\leq \frac{16\chi^2D_\tau^2}{\kappa_2} \left(8 \left[\kappa_0^2 + \bar{N}_{\Lambda c_\ell} \right] \left[\Delta_\phi + \frac{36\kappa_3^2c_\ell}{\chi^2} \right] + 4\kappa_2^2\kappa_3^2c_\ell^2 \right)
\]
Combining (4.5), (4.6), and the definitions of ξ_0, ξ_1, and ξ_2 yields the desired bound on $r_1(c_0, q^{(-1)}) + r_2(c_0, q^{(-1)})$.

(c) Suppose $c_0 \geq \hat{c} := c(\rho, \eta)$ and let $\varepsilon = \min\{\rho, \eta\}$. Moreover, notice from the definition of $T_r(\cdot, \cdot)$ and the requirement that $\varepsilon \in (0, 1)$ in Algorithm 2.2 that $c_0 \geq \hat{c} \geq 1$. Now, for the sake of contradiction, suppose that the ℓth call of Algorithm 2.1 terminates in Step 2b unsuccessfully. It then follows from parts (b)-(c) of this proposition, the relations $c_0 \geq 1$ and $\varepsilon \in (0, 1)$ that:

$$T(\rho, \eta | c_0, q^{(-1)}) \leq \left(c_0^2 + \frac{c_0^2}{\varepsilon^2} \right) T(1, 1) = \left(c_0^2 + \frac{c_0^2}{\varepsilon^2} \right) \left(\frac{\varepsilon^2 c_0^2}{2} \right) \leq \left(c_0^2 + \frac{c_0^2}{\varepsilon^2} \right) \left(\frac{\varepsilon^2 c_0^2}{2} \right)$$

$$= \frac{1}{2} \left(c_0^2 + \frac{c_0^2}{\varepsilon^2} \right) \leq \frac{1}{2} \left(c_0^3 + c_0^3 \right) \leq c_0^3.$$

In view of Proposition 2.1(c) with $(c, p^0) = (c_0, q^{(-1)})$, it follows that the ℓth call of Algorithm 2.1 must have terminated successfully, which is impossible due to our initial assumption. Hence, it must be the case that if $c_0 \geq \hat{c}$ then the ℓth call of Algorithm 2.1 terminates successfully.

5. Concluding Remarks. The convergence of Algorithm 2.2 is established under the assumption that exact solutions to the subproblems in Step 1 of Algorithm 2.1 are easy to obtain. We believe that convergence can be also be established for when only inexact solutions, i.e.,

$$x^k_t \approx \arg\min_{u_t \in \mathbb{R}^n} \left\{ \lambda \mathcal{L}_c^g(x^k_t, u_t, x^{k-1}; p^{k-1}) + \frac{1}{2} \|u_t - x^{k-1}\|^2 \right\}$$

are available. For example, one could consider applying an accelerated composite gradient (ACG) method to the problem associated with (5.1) so that x^k_t satisfies

$$\exists (r^k_t, \varepsilon^k_t) \quad \text{s.t.} \quad \left\{ r^k_t \in \partial \varepsilon^k_t \left(\lambda \mathcal{L}_c^g(x^k_t, x^{k-1}; p^{k-1}) + \frac{1}{2} \|u_t - x^{k-1}\|^2 \right) (x^k_t), \right.$$

$$\left. \|r^k_t\| + 2\varepsilon^k_t \leq \sigma^2 \|r^k_t + x^{k-1} - x^k_t\|^2, \right.$$

for some $\sigma \in (0, 1)$, where $\partial \varepsilon_t(x) := \{ v \in \mathbb{R}^n : \psi(y') \geq \psi(y) + \langle v, y' - y \rangle - \varepsilon, \forall y' \in \text{dom } \psi \}$.

Appendix A. Proof of Lemma 3.2.

Before giving the proof, we present some auxiliary results. To avoid repetition, we assume the reader is already familiar with the quantities and notation in (3.1)-(3.3).

The proof of the first result can be found in [18, Lemma B.2].

Lemma A.1. For any $(\chi, \theta) \in [0, 1]^2$ satisfying $\zeta \leq \theta^2$ and $(a, b) \in \mathbb{R}^n \times \mathbb{R}^n$, we have that

$$\|a - (1 - \theta)b\|^2 - \zeta \|a\|^2 \geq \left[\frac{(1 - \zeta) - (1 - \theta)^2}{2} \right] \left(\|a\|^2 - \|b\|^2 \right).$$

The next result establishes some general bounds given by the updates in (1.5).

Lemma A.2. For every $i \leq k$, $1 \leq t \leq B$, and $u_t \in x^t_i$, it holds that

$$\lambda \left[\mathcal{L}_c^g(x^t_{c,i}, u_t, x^{t-1}_{c,i}; p^{t-1}) - \mathcal{L}_c^g(x^t_{c,i}, x^{t-1}_{c,i}; p^{t-1}) \right] + \frac{1}{2} \|u_t - x^{t-1}\|^2$$

$$\geq \frac{1}{2} \|\Delta x^t_i\|^2 + \left(\frac{1 - \lambda_m}{2} \right) \|u_t - x^t_i\|^2 + \frac{\lambda c}{2} \|A_t(u_t - x^t_i)\|^2.$$
Proof. Let \(i \leq k, 1 \leq t \leq B \), and \(u_t \in x_t \) be fixed, and define \(\mu := 1 - \lambda m_t \) and \(\| \cdot \|_a^2 := \langle \cdot , (\mu I + \lambda A_t^* A_t) \cdot \rangle \). Using the optimality of \(x_t^i \) and the fact that \(\lambda \mathcal{L}_c^0(x_{<t}^i, x_{>t}^{i-1}; p_{t}^{i-1}) + \frac{\| \cdot \|^2}{2} \) is \(\mu \)-strongly convex with respect to \(\| \cdot \|_a^2 \), it holds that
\[
0 \in \partial \left[\lambda \mathcal{L}_c^0(x^i_{<t}, x^i_{>t}; p_{t}^{i-1}) + \frac{1}{2} \| x_t^i - x_{t-1}^i \|^2 - \frac{\mu}{2} \| x_t^i - x_1^a \|^2 \right] (x_t^i),
\]
or, equivalently,
\[
\lambda \mathcal{L}_c^0(x^i_{<t}, x^i_{>t}; p_{t}^{i-1}) + \frac{1}{2} \| x_t^i \|^2 \leq \lambda \mathcal{L}_c^0(x^i_{<t}, x^i_{>t}; p_{t}^{i-1}) + \frac{1}{2} \| u_t - x_{t-1}^i \|^2 - \frac{1}{2} \| u_t - x_t^i \|^2
\]
\[
= \lambda \mathcal{L}_c^0(x^i_{<t}, x^i_{>t}; p_{t}^{i-1}) + \frac{1}{2} \| u_t - x_{t-1}^i \|^2 - \frac{\mu}{2} \| u_t - x_t^i \|^2 - \frac{\lambda c}{2} \| A_t (u_t - x_t^i) \|^2. \quad \square
\]
We are now ready to give the proof of Lemma 3.2.

Proof of Lemma 3.2. (a) Using the definition of \(\mathcal{L}_c^0(\cdot; \cdot) \) and Lemma 3.1(a), we conclude that
\[
\mathcal{L}_c^0(x^i; p^i) - \mathcal{L}_c^0(x^i; p_{t}^{i-1}) = (1 - \theta) \langle \Delta p^i, f^i \rangle = \left(\frac{1 - \theta}{\chi c} \right) \| \Delta p^i \|^2 + a_\theta \left(\frac{\lambda c}{\chi} \langle \Delta p^i, p_{t}^{i-1} \rangle \right)
\]
\[
= \left(\frac{1 - \theta}{\chi c} \right) \| \Delta p^i \|^2 + a_\theta \left(\frac{\lambda c}{\chi} \left(\frac{1}{2} \| p^i \|^2 - \| \Delta p^i \|^2 - \frac{1}{2} \| p_{t}^{i-1} \|^2 \right) \right)
\]
\[
= \frac{b_0}{2\chi c} \| \Delta p^i \|^2 + \frac{a_\theta}{2\chi} \left(\| p^i \|^2 - \| p_{t}^{i-1} \|^2 \right).
\]
(b) Using the fact that \(1 > \lambda m/2 \) and Lemma A.2 for \(1 \leq t \leq B \) and \(u = x_t^{i-1} \), we conclude that
\[
\left(1 - \frac{\lambda m}{2} \right) \| \Delta x_t^i \|^2 + \frac{\lambda c}{2} \sum_{t=1}^{B} \| A_t \Delta x_t^i \|^2 \leq \sum_{t=1}^{B} \left(1 - \frac{\lambda m_t}{2} \right) \| \Delta x_t^i \|^2 + \frac{\lambda c}{2} \sum_{t=1}^{B} \| A_t \Delta x_t^i \|^2
\]
\[
\leq \lambda \left[\mathcal{L}_c^0(x^{i-1}; p_{t}^{i-1}) - \mathcal{L}_c^0(x^i; p_t^{i-1}) \right],
\]
which, in view of the fact that \(\lambda = 1/(2m) \), implies the desired bound.

(c) We first use (2.6), the definition of \(\gamma_\theta \) in (3.1), and Lemma A.1 with \((a, b, \zeta) = (\Delta p^i, \Delta p_{t}^{i-1}, 2B \chi b_0) \) to obtain
\[
\| \Delta p^i - (1 - \theta) \Delta p_{t}^{i-1} \|^2 \geq 2B \chi b_0 \| \Delta p^i \|^2 + \chi \gamma_\theta \left(\| \Delta p^i \|^2 - \| \Delta p_{t}^{i-1} \|^2 \right).
\]
Using (A.3) at \(i \) and \(i - 1, \) Lemma 3.1(a), and the relation \(\| a \|^2 \leq \sum_{t=1}^{B} \| A_t \Delta x_t^i \|^2 \) for \(a \in \mathbb{R}^n \), we have that
\[
\frac{c}{4} \sum_{t=1}^{B} \| A_t \Delta x_t^i \|^2 \geq \frac{c}{4B} \| A \Delta x^i \|^2 = \frac{\| \Delta p^i - (1 - \theta) \Delta p_{t}^{i-1} \|^2}{4B \chi^2 c}
\]
\[
\geq \frac{1}{4B \chi c} \left[2B b_0 \| \Delta p^i \|^2 + \gamma_\theta \left(\| \Delta p^i \|^2 - \| \Delta p_{t}^{i-1} \|^2 \right) \right]
\]
\[
= \frac{b_0}{2\chi c} \| \Delta p^i \|^2 + \frac{\gamma_\theta}{4B \chi c} \left(\| \Delta p^i \|^2 - \| \Delta p_{t}^{i-1} \|^2 \right).
\]
Using Lemma 3.1, we first have that
\[
2(1 - \theta) \langle p^{i-1}, \chi f^{i-1} \rangle + \| \chi f^{i-1} \|^2 = \|(1 - \theta) p^{i-1} + \chi f^{i-1} \|^2 - (1 - \theta) \| p^{i-1} \|^2.
\]
Now, using (A.4), parts (a)–(b), the relation \(\| \Delta p^i \|^2 \leq 2\| p^i \|^2 + 2\| p^{i-1} \|^2 \), and the inclusions \(a_\theta \in (0,1), b_\theta \in (0,2), \chi \in (0,1), \) and \(\theta \in (0,1) \), we conclude that
\[
\mathcal{L}_c^\theta(x^i; p^i) = \mathcal{L}_c^\theta(x^i; p^i) + \frac{b_\theta \| \Delta p^i \|^2 + a_\theta \| p^i \|^2}{\chi^2} \\
\leq \mathcal{L}_c^\theta(x^i; p^i) + \frac{2\| \Delta p^i \|^2 + \| p^i \|^2}{\chi^2} \\
= \phi(x^{i-1}) + (1 - \theta) \langle p^{i-1}, f^{i-1} \rangle + \frac{c}{2} \| f^{i-1} \|^2 + \frac{2\| \Delta p^i \|^2 + \| p^i \|^2}{\chi^2} \\
\leq \phi(x^{i-1}) + \frac{2(1 - \theta) \langle p^{i-1}, \chi f^{i-1} \rangle + \| \chi f^{i-1} \|^2 + 4\| p^{i-1} \|^2 + 4\| p^i \|^2}{\chi^2} \\
\leq \phi(x^{i-1}) + \frac{3\| p^{i-1} \|^2 + 5\| p^i \|^2}{\chi^2}.
\]
\[\text{(A.4)}\]
\[
\leq \phi(x^{i-1}) + \frac{3\| p^{i-1} \|^2 + 5\| p^i \|^2}{\chi^2} \leq \phi(x^{i-1}) + \frac{3\| p^{i-1} \|^2 + 5\| p^i \|^2}{\chi^2}.
\]
(e) It holds that
\[
\mathcal{L}_c^\theta(x^k; p^k) = \phi(x^k) + (1 - \theta) \langle p^k, Ax^k - d \rangle + \frac{c}{2} \| Ax - d \|^2 \\
= \phi(x^k) + \frac{1}{\sqrt{c}} \left\| \frac{(1 - \theta)p^k}{\sqrt{c}} + \sqrt{c}(Ax^k - d) \right\|^2 - \frac{(1 - \theta)^2 \| p^k \|^2}{2c} \\
\geq \phi(x^k) - \frac{(1 - \theta)^2 \| p^k \|^2}{2c} \geq \phi(x^k) - \frac{\| p^k \|^2}{2c}, \quad \square
\]

REFERENCES

This manuscript is for review purposes only.

