DEMAND MODELLING AND OPTIMAL VERTIPORT PLACEMENT FOR
AIRPORT-PURPOSED EVTOL SERVICES

Karim Serhal
Masters of Engineering Student
Centre for Transport Studies
Department of Civil and Environmental Engineering
Imperial College London
SW7 2BU, UK

Jose Escribano Macias, Ph.D., Corresponding Author
Research Associate
Centre for Transport Studies
Department of Civil and Environmental Engineering
Imperial College London
SW7 2BU, UK
jose.escribano-macias11@imperial.ac.uk

Panagiotis Angeloudis, Ph.D.
Reader in Transport Systems and Logistics
Centre for Transport Studies
Department of Civil and Environmental Engineering
Imperial College London
SW7 2BU, UK

Word Count: 6458 words + 4 table(s) × 250 = 7458 words

Submission Date: August 30, 2021
ABSTRACT

Recent technological advances have only recently made Urban Air Mobility feasible as a realistic alternative to existing transport modes. Despite the growing interest, this disruptive service requires accurate strategic investments to ensure its viability in the short- and long-term. While airports have been identified as potential sites for vertiports, extending operations to the urban rest of the urban landscape is still an active area of research. To date, this problem has been addressed through eVTOL demand modelling and operations separately, with a complete breakdown of costs seldom considered. This research proposes a holistic approach to maximise returns of investment to ensure commercial viability of the UAM network. In doing so, this paper integrates a demand binary logit model and an operations model to solve the hub location problem. A case study based on South East England, which connects the central London and its surrounding cities with the UK’s largest airports: Heathrow and Gatwick. Our findings suggest that networks with five vertiports, eVTOL prices 1.7 times that of taxis, 2 minutes waiting time, operated using two-seater short range vehicles would result in maximum returns. Further analysis indicates that the corresponding vertiport placement mainly included low land cost zones close to very high demand zones, and city periphery zones acting as ‘park and ride’ stations, with their combination resulting in a return of investment three times larger than typical investing indexes.

Keywords: Urban Air Mobility, Discrete Mode Choice Modelling, Vertiport Placement, eVTOL operations, Genetic Algorithm
INTRODUCTION

The average Londoner loses over 150 hours due to congestion every year (2). This value is only expected to rise in the future given that 68% of the world’s population will be living in urban areas by 2050 (3). A particularly promising approach for reducing the travel times and increasing the reliability of urban trips lies in utilising the urban airspace through Urban Air Mobility (UAM), which enables electric Vertical Take-off and Landing vehicles (eVTOLs) to operate as air-taxis bypassing ground congestion.

Being a disruptive technology, determining actual demand levels for this mode is particularly challenging. The latter has become more and more important recently as manufacturers and operators rush to prove to authorities its viability and benefits in urban areas. Indeed, during the last decade over 70 eVTOL manufacturers were established (4) and $1 billion were invested into UAM by 2018 (5). Nevertheless, these investments have yet to be backed up by a concrete demand and cost modelling study showcasing the viability of this technology as well as the potential return on investment.

Previous research has already identified airports as optimal locations for vertiports due to available space (6) and potentially high eVTOL demand (7). The latter coupled with the fact that airport-purposed trips have specific requirements related to travel time reliability, makes eVTOL shuttle services between airports and urban areas its most promising application.

Despite this findings, it is still crucial to forecast the potential return on investments of UAM strategies to assess the commercial viability of this technology. In doing so, a holistic perspective of UAM network design is required that considers demand modelling, vertiport placement, vehicle sizing and infrastructure requirements, operational constraints and investment costs. While our literature review reveals that previous research has been carried our on this topic, to date, no paper has simultaneously considered demand choice modelling and UAM network design to evaluate different pricing schemes and their effect on the expected demand and network configuration.

To address this gap, this paper develops a demand estimation model, which calculates demand requirements based on geographic and demographic data, and a operational cost model, able to assess the economic viability of eVTOL technology. A genetic algorithm serves to iterate and optimise return of investment of the UAM network. Thus, the contribution of the paper is twofold:

1. To the author’s knowledge, this paper is the first to aggregate a thorough demand model with an operational model including both operational and investment cost.

2. It is the first paper to consider vertiport placement based return on investment maximisation and explore its susceptibility to vehicle, network and financial specifications (eVTOL pricing) simultaneously.

In the next section, the relevant literature is reviewed and analysed, followed by an overview of the model including the mathematical formulation of the p-median problem. Thereafter, a section for each sub-model is then presented starting with the demand estimation which then is accompanied by the revenue and cost of operations model. The methodology is then applied to the South East England case study, where results presented for various specifications and then discussed with suggestions for further research.

LITERATURE REVIEW

This review focuses on previous research on demand estimation, UAM operations and cost estimations. A summary of the findings and research gaps is presented at the end of this section.
UAM Demand Estimation

In transportation literature, demand modelling studies generally use a utility function that models users' choice of transportation based on surveyed parameters. While simpler approaches have been used in UAM literature (6, 8, 9), they disregard any sensitivities from different person groups that influence the mode switch to eVTOL.

(10) and (11) both used a multinomial (MNL) and panel mixed logit models to estimate the utility function parameters based on an internet-based stated survey in the U.S. However, the models assumed that mode choice was carried out under 'initial' market conditions, thus neglecting time of adoption. (12) proposed a similar study applied in the city of Munich, which was later expanded in (13) by including an Ordered Logit Model and considering time of adoption.

The utility function parameters were tested using agent-based simulation. (14) used MATsim in a complex system with demand modelled through a simple MNL model. However, utility functions included sensitivities based on conventional transport modes, and multimodality was neglected. (15) on the other hand considered multimodality and vertiport placement with the parameters identified in (15) used in utility functions. However, results have shown that the estimated utility parameters are very different to expected results.

The reliability of UAM utility function parameter estimation is still needs to be been proven. This suggests that using conventional parameters may be more adequate for mode choice model.

Vertiport Placement

Vertiport placement models aim to determine the optimal location of vertiports and are generally formulated as p-median hub location problems. Within this line of work, (6) used a p-median hub location to maximise coverage of taxi trips. (8) instead maximises the total travel time savings relative to driving. While in this case time savings are considered, this model does not guarantee optimal demand attraction as the solution can be skewed by very big savings of certain trips. (16) resolves this issue by using a neighbouring search method that aimed to minimise the weighted demand distance.

The aforementioned papers ignore UAM operational parameters. (9) solves this by including an operation scheduling stage after the vertiport placement model. This, however, results in suboptimal vertiport configurations as the scheduling stage is applied as a post-process, and does not affect the vertiport placement decisions.

The reviewed literature disregards the multimodality of eVTOL trips allowing the simulation of first/last mile segments of trip, or even avoiding the agglomeration of eVTOL ports in the highest demand areas. In terms of objective functions however, not all have considered realistic demand and investment scenarios.

Vehicle Sizing

To this date, NASA’s Design and Analysis Rotorcraft (NDARC) has been the basis of the majority of eVTOLs design optimisation mainly through weight and geometry considerations (17). Further work in this domain was proposed by (18), who considered performance of three different eVTOL types over different ranges, and assessed energy and battery requirements. (19) specifically focused on regional air mobility with long range, high payload, and low noise requirements. While both studies estimate battery capacity requirements, the frequency of replacement was not considered, being one of the main drivers of operational cost.
Serhal, Escribano-Macias, and Angeloudis

(20) presented a UAM vehicle sizing model considering noise emissions, energy performance and cost. In addition, (21) performed a cost analysis on three different eVTOL vehicles, but disregarded battery life cycles and their effect on battery replacement costs.

**Integrated approach for operation cost optimisation and demand modelling**

Following the review of literature, it was quickly identified that demand modelling, vertiport placement and vehicle sizing are intrinsically related. This was indeed researched by (22), where they propose a $N^2$-chart that defines the interfaces and connection data between 14 UAM components (Figure 22), with a unique feedback loop between the cost modelling and demand modelling phases, which to the author’s knowledge has not been incorporated before.

![N2-chart](image)

**FIGURE 1:** $N^2$- chart defining the interfaces and connections between 14 UAM components (Niklaß et al., 2020)

The literature review is summarised in Table 1, from which two relevant research gaps were identified. The first identifies that demand modelling, vertiport placement, vehicle sizing and infrastructure requirements were not covered simultaneously, even if a clear relation between them was determined during the review. The second highlights that even if vehicle operational cost where in some cases incorporated in eVTOL vertiport placement, revenue calculation and investment costs were never.

To address the gaps identified, this paper proposes a modelling framework to optimise UAM network design considering demand modelling. The algorithm contains two main components, a binary logit choice model that estimates demand levels based on geographic and demographic characteristics as well as pricing schemes, and a UAM operations model that estimates the commercial viability of the selected vertiports. The workflow is iteratively executed using a metaheuristic that progressively optimises the network configuration based on the final return of investment calculated.
TABLE 1: Literature Review Summary

<table>
<thead>
<tr>
<th>Focus</th>
<th>Author</th>
<th>Approach</th>
<th>Objective</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Estimation</td>
<td>(8)</td>
<td>S</td>
<td>[-]</td>
<td>High Income car users</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>S</td>
<td>[-]</td>
<td>Faster travel times</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>S</td>
<td>[-]</td>
<td>Value of saved travel time</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>MNL,PML</td>
<td>U</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>MNL,PML</td>
<td>U</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>MNL</td>
<td>U</td>
<td>Munich</td>
</tr>
<tr>
<td></td>
<td>(?)</td>
<td>MNL,OLM</td>
<td>U</td>
<td>Munich; Time adoption</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>AB,MNL</td>
<td>DS</td>
<td>Conventional parameters</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>AB,MNL</td>
<td>DS</td>
<td>Parameters from (12)</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>U-Cast</td>
<td>DS</td>
<td>Air conflict consideration</td>
</tr>
<tr>
<td>This paper</td>
<td>TB,MNL</td>
<td>DS</td>
<td></td>
<td>Airport-purposed</td>
</tr>
<tr>
<td>Vertiport Placement</td>
<td>(6)</td>
<td>P</td>
<td>TC</td>
<td>Demand aggregation</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>P</td>
<td>TTS</td>
<td>Traffic; Demand</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
<td>P</td>
<td>WDD</td>
<td>Range comparasion</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>P</td>
<td>TTT</td>
<td>Charging; Scheduling</td>
</tr>
<tr>
<td></td>
<td>(41)</td>
<td>K</td>
<td>ATD</td>
<td>Traffic</td>
</tr>
<tr>
<td></td>
<td>(44)</td>
<td>K</td>
<td>H</td>
<td>Thresholds</td>
</tr>
<tr>
<td>This paper</td>
<td>P</td>
<td>ROI</td>
<td>Traffic; Demand aggregation</td>
<td></td>
</tr>
<tr>
<td>Vehicle Sizing</td>
<td>(17)</td>
<td>AN</td>
<td>G,W</td>
<td>Aircraft Layout</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>CO</td>
<td>B,E</td>
<td>Range comparison</td>
</tr>
<tr>
<td></td>
<td>(19)</td>
<td>AN</td>
<td>B,E,N</td>
<td>7-seater RAM vehicle</td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td>AN</td>
<td>C,E,N</td>
<td>Aircraft Layout</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td>CO</td>
<td>C</td>
<td>Operational, Investment</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>CO</td>
<td>C</td>
<td>Cost Linked to Demand</td>
</tr>
<tr>
<td>This paper</td>
<td>CO</td>
<td>B,E,N,C</td>
<td>Cost Linked to Demand</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

Objective: ATD - Access Travel Distance, B - Battery, C - Cost, DS - Demand Simulation, E - Energy, G - Geometry, H - Hubs, N - Noise, ROI - Return on Investment, TC - Trip Coverage, TTS - Total Travel Time Savings, TTT - Total System Travel Time, U - Utility Functions Parameter Estimation, W - Weight, WDD - Weighted Demand Distance.

MODEL FRAMEWORK

The framework proposed by this paper aims to maximise the return on investment of vertiport placement through the consideration of airport-purposed eVTOL demand as well as vertiport and vehicle operations and cost. In doing so, eVTOL demand and the UAM system operational strategy are determined using a demand estimation model and a UAM operations model respectively. Figure 2 summarises the model framework.

The model first takes the vertiport configuration as input along with network, financial and vehicle specifications, before moving to both sub-models. The demand estimation model determines eVTOL demand between every city and airport vertiport, using a binary logit model.
which estimates the probability of selection of each mode for each person group. The sub-model then outputs the eVTOL demand levels and travel time and cost skims matrices. These serve as inputs to the UAM operations model, which calculates the operational and investment requirements. The latter are also used to estimate the revenue based on the financial specifications set. As such, the sub-model combines these variables to estimate and output the return on investment.

The presented framework resides within a meta-heuristic that seeks to determine the optimal vertiport location based on the financial results of the UAM operations module. The following sections will describe each sub-model in detail.

The UAM operations modelled in this paper is specified in Figure 3. Airport travellers first use the taxi to arrive to the city vertiport nearest to their residence, then transfer to the eVTOL mode and travel to the their desired airport vertiport. Thus, user travel time consists of effective flight time, vertiport access time, transfer time, and waiting time. If the vertiport is within the same traffic zone, the vertiport access travel time is calculated based on average travel times within the zone. On the other hand, if the vertiport is outside the origin traffic zone, the travel time between both zones is used as calculation. Thereafter, a transfer penalty from taxi to eVTOL as well as the average expected waiting time are added. The eVTOL mode is then is used to travel between the city vertiport to the airport vertiport, where this time no mode changes occur as the destination is directly in the airport.

DEMAND ESTIMATION MODEL

Demand estimation involves analysing the behaviour of travellers due to changes in travel cost, time and other variables that can impact demand. The following assumptions were made:

**Assumption 4.1: Taxis are the main competitor of eVTOLs.** This assumption is justified as relevant person groups involved in airport-purpose trips are most likely to use the taxi service.
Assumption 4.2: Induced demand is not accounted for. While eVTOL would expand the 
airport catchment area, therefore increasing demand (induced), analysing this will require detailed 
forecasting and is outside the scope of the research. Also to note, the effects of mode switch to 
eVTOL on congestion is not considered.

Assumption 4.3: Outgoing and incoming demand for airport travel is assumed to be equal.

This is valid as airports usually have the same amount of departures and arrivals (24).

Assumption 4.4: Demand modelling is done using discrete traffic zones. This means all 
demand to and from zones will be aggregated at the centroid of the zone.

Figure 4 below presents a summary of the algorithm followed in the demand estimation 
model, split into two sub-algorithms: distribution and assignment.
Model Initialisation
This step involves the first stages of the model shown in Figure 4 that generate the skim matrices used in multimodal assignment. The process commences by determining the catchment area using data from passenger surveys. This area is then split into multiple traffic modelling zones based on population density. The travel demand between these zones and airports is assigned to several person groups based on income, purpose of travel and residence. The demand is assumed to aggregate at the centroid of each zone.

The second step is the calculation of skim matrices, which is carried out for both the taxi and eVTOL transport modes. Taxi travel times matrices are determined using PTV Visum modelling software by determining the shortest-path free-flow travel times. To account for congestion, a congestion factor based on the proximity to the city centre and time of day are added as shown in equations (47-48).

For travel cost, the standard taxi metering formula is used which can vary if the catchment area is very large. The eVTOL travel time matrices are determined in the same way, but cost is calculated by setting a fixed price and a price per kilometre multiplier.

Multimodal Assignment
The skim matrices produced in the initialisation stage serve as inputs for the multimodal assignment, which allocates demand to links while allowing travellers to use multiple transport modes. These paths are determined using a branch and bound algorithm that searches for the minimum travel time path. It is worth noting that in the case of our model, there are two different possible path sequences: a user travels to the vertiport via taxi and then is transported to the airport using eVTOL; and the opposite case where a user leaves the airport to the vertiport closest to their destination using the eVTOL and travels to their destination via taxi.

Mode Choice Model
With the known skim matrices and zone-to-zone demands, this stage estimates the probability of each user to choose a specific mode for travel. Each person group, \( p \), travels from each zone \( i \) to zone \( j \) using either taxi or eVTOL, and the selection of each mode depends on the travel
time and monetary costs as defined by the utility functions (1) and (2). The notation conventions summarised below:

Indices
- $i, j$ = Node
- $k, l$ = Zone (city, airport zone)
- $p$ = Person
- $\text{taxi}, eVTOL$ = taxi mode

Sets
- $\mathcal{N}$ = Node set
- $\mathcal{K}$ = Zone set
- $\mathcal{P}$ = Person group set
- $\mathcal{M}$ = Mode set

Utility Variables
- $U_{i,j,m,p}$ = Utility of a trip between zone $i$ and $j$ using mode $m$ for person group $p$.
- $TT_{i,j,m}$ = Travel time between a zone $i$ and a zone $j$, using mode $m$.
- $TTV_{i,j,m}$ = Travel time variability between zone $i$ and zone $j$ using mode $m$.
- $RF$ = Reliability factor which represents the importance given to travel time variability.
- $WT_{eVTOL}$ = Passenger waiting time at the vertiport before boarding.
- $TP_{eVTOL}$ = Time penalty to consider vertiport access and mode transfer.
- $TC_{i,j,m}$ = Travel cost between zone $i$ and zone $j$ using mode $m$.

Utility Parameters
- $ASC_{m,p}$ = Alternative specific constant for a mode $m$, different for each person group $p$.
- $\beta_{TT_{i,j,m},p}$ = Travel time sensitivity parameter for a mode $m$, different for each person group $p$.
- $\beta_{TC_{i,j,m},p}$ = Travel cost sensitivity parameter for a mode $m$, different for each person group $p$.

For each person group $p$:

$$U_{i,j,m,p} = ASC_{\text{taxi},p} + \beta_{\text{taxi},p}^{TT} (TT_{i,j,\text{taxi}} + RF \times TTV_{i,j,\text{taxi}}) + \beta_{\text{taxi},p}^{TC} TC_{i,j,\text{taxi}}$$ (1)

$$U_{i,l,eVTOL,p|k} = ASC_{eVTOL,p} + \beta_{eVTOL,p}^{TT} (TT_{kl,eVTOL} + 2 \times WT_{eVTOL} + TP_{eVTOL})$$

$$+ \beta_{eVTOL,p}^{TC} TC_{kl,eVTOL} + U_{ik,\text{taxi},p}$$ (2)

This model assumes that for each person group the error components are identically and independently distributed according to a type 1 Extreme Value (Gumbel) distribution. As such, it implies that the error terms can be translated into a variable $\mu$ giving the following expression for mode choice probabilities:

$$P_{(i,j,m,p)} = \frac{e^{\mu U_{i,j,m,p}}}{\sum_{m \in M} e^{\mu U_{i,j,m,p}}}$$ (3)

Now, by normalising $\mu$ to 1 the probability of choosing eVTOL from zone $i$ to an airport, $l$, given that a vertiport is in zone $k$, is given as:

$$P_{(i,l,eVTOL,p|k)} = \frac{e^{U_{i,l,eVTOL,p|k}}}{\sum_{m \in M} e^{U_{i,l,m,p|k}}}$$ (4)

And therefore, the demand for eVTOL from zone $i$ through zone $k$ (where the vertiport is
placed) to the airport, \( l \), can be calculated as follows:

\[
D_{eVTOL}^{ikl} = \sum_p D_{i,l,p} P_{il,eVTOL,p|k}
\]  

(5)

The demand for eVTOL between a city vertiport, \( k \) and an airport, \( l \) is hence calculated as:

\[
D_{eVTOL}^{kl} = \sum_i D_{eVTOL}^{ikl}
\]  

(6)

With the mode choice model formulated, the demand for eVTOL between zones can be determined, which are used as inputs on the UAM operations model.

5 UAM OPERATIONS MODEL

The UAM operations model calculates the costs and revenues of given the demand requirements and UAM network design infrastructure provided in the previous stages. A detailed flowchart of the process is provided in Figure 6. The following assumptions as considered:

Assumption 5.1: Demand for eVTOL travel is uniformly distributed within the hour. While modelling eVTOL operations using an agent-based simulation would be more representative of the on demand aspect of eVTOL, this assumption applies for the implementation of eVTOL as a service to airports (pre-booking flight tickets).

Assumption 5.2: Demand for airport access and egress is uniformly distributed throughout the working hours of the day. This assumption is reasonable for very busy airports where runway slots are full at all times (26).

Assumption 5.3: eVTOL battery is swapped after completing a trip. As such, charging time does not need to be calculated and will not vary depending on vehicle specifications.

Following assumptions 5.1 and 5.2, we assume a constant rate of take-offs and landings. Therefore the number of charging of pads per take-off/landing pad, \( n_{CP} \) can be calculated using the take-off and landing time, \( t_{take-off,landing} \) as well as the charging/boarding time, \( t_{charging} \):

\[
n_{CP} = \frac{t_{charging} - t_{take-off,landing}}{t_{take-off,landing}}
\]  

(7)

Cost and Revenue Calculation

It is important to note that eVTOL demand will not necessarily be equal in both directions: eVTOL trips can be assumed to have the same utility as routes in both direction follow the same path, however, the same is not true for taxi trips. For the remainder of this section, the following nomenclature is used:

Parameters

\[
\begin{align*}
WT & = \text{Passenger waiting time} \\
TO_{pad} & = \text{Pad turnover time} \\
r_{mt} & = \text{Maintenance rate} \\
r_{ins} & = \text{Insurance Rate} \\
SPL & = \text{eVTOL mode} \\
r_{me} & = \text{Maintenance cost} \\
GS & = \text{Passengers group size} \\
T_{max} & = \text{Maximum pilot working hours} \\
r_{CO2} & = \text{Rate of CO}_2 \text{ emissions} \\
C_{Bat} & = \text{Mode set} \\
N_{vertiport} & = \text{eVTOL mode} \\
r_{EC} & = \text{Energy usage cost}
\end{align*}
\]
We first define the operational parameters that influence the cost and revenue calculations: average passenger pool, number of trips, and number of vehicles required to undertake said trips (8-10).

\[
P_{eVTOl,h}^{kl} = \frac{D_{eVTOl,h}^{kl}}{60} \times WT \times GS \quad (8)
\]

\[
n_{trips,yearly}^{kl} = \sum_h n_{trips,yearly}^{h} = \sum_h n_{trips,yearly}^{h} \times 365 \quad (9)
\]

\[
n_{veh}^{kl} = \sum \frac{n_{trips,yearly}^{h}}{N_{trips,eVTOL,yearly}} \quad (10)
\]

We can also define the daily and yearly revenue per city vertiport, \( k \) or airport vertiport, \( l \):

\[
R_{daily}^{k} = \sum \sum \frac{D_{eVTOl,h}^{kl}}{(TC_{eVTOl})} \quad (11)
\]

\[
R_{yearly} = (\sum \sum \frac{R_{daily}^{k}}{l} + \sum \sum \frac{R_{daily}^{l}}{l}) \times 365 \quad (12)
\]
FIGURE 6: Revenue and cost of operations model flowchart including the main steps in green. The inputs/outputs are highlighted in yellow and intermediate variables in blue.

\[ OC_{\text{vehicle}}^{kl} = (1 + r_{\text{ind}})(MC^{kl} + ISC^{kl} + PC^{kl} + EC^{kl} + BRC^{kl} + CT^{kl}) \]  

(13)

\[ OC_{\text{vehicle, yearly}} = \sum_{l} \sum_{k} OC_{\text{vehicle}}^{lk} + \sum_{k} \sum_{l} OC_{\text{vehicle}}^{kl} \]  

(14)

Where maintenance cost is proportional to the flying hours of eVTOL as per the following equation:

\[ MC^{kl} = [r_{\text{me}} r_{\text{m}} (t_{\text{op}}^{kl} n_{\text{veh}}^{kl})] \]  

(15)

The insurance cost is taken as a proportion of the vehicle acquisition cost.

\[ ISC^{kl} = r_{\text{ins}} n_{\text{veh}}^{kl} VC \]  

(16)

Pilot salaries and energy costs are calculated based on their total flight hours

\[ PC^{kl} = \frac{T_{\text{daily}}}{T_{\text{max}}} n_{\text{veh}}^{kl} S_{\text{pilot}} \]  

(17)

\[ EU^{kl} = [(t_{\text{op}}^{kl}) (n_{\text{veh}}^{kl}) Q_{\text{Cruise}} + n_{\text{trips, yearly}}^{kl} (Q_{\text{Take-off}} + Q_{\text{Landing}})] \]  

(18)

\[ EC^{kl} = r_{EC} \times EU^{kl} \]  

(19)

Battery replacement represents a significant cost to UAM operations due to their limited health. The replacement frequency depends on the life cycle of the battery, which itself is affected by the depth of discharge of each trip.

\[ DOD_{\text{trip}}^{kl} = \frac{EU_{\text{trip}}^{kl}}{C_{\text{bat}}} \]  

(20)

\[ LC_{\text{bat}}^{kl} = -1666.7DOD_{\text{trip}}^{kl} + 3833.3 \]  

(21)
An additional CO$_2$ contribution tax is included based on the battery recharging requirements.

$$CT^{kl} = r_{ct} r_{CO2 EU}^{kl}$$ (24)

Finally, the last consideration are indirect cost, including credit card fees, air traffic management, delay compensation, which will vary depending on the case. As a general approximation, these can be taken as a percentage of the total vehicle operating cost.

The costs of operating vertiports includes utilities, employment and maintenance. We aggregated these cost by assuming these are proportional to the number of take-off and landing pads, which is calculated by estimating the headway between eVTOL vehicles.

$$TH^k = \sum_l \frac{TT^{lk}}{n_{veh}^{lk}}$$ (25)

$$N_{pads,k} = \frac{TO_{pad}}{TH^k}$$ (26)

The vertiport operational cost for a vertiport in zone $k$ is given as:

$$OC_{vertiport}^k = N_{pads,k} \times C_{vertiport, pad}$$ (27)

Hence, the yearly vertiport operational cost for all vertiport is given as:

$$OC_{vertiport, yearly} = \sum_k OC_{vertiport}^k + \sum_l OC_{vertiport}^l$$ (28)

$$OC_{total, yearly} = OC_{vehicle, yearly} + OC_{vertiport, yearly}$$ (29)

**Investment Costs**

Investment costs include all infrastructure or equipment payments required to undertake the operation. In this case, it includes land acquisition costs, vertiport construction costs, and vehicle acquisition costs.

$$IC_{total} = IC_{infra} + IC_{vehicles} + IC_{land}$$ (30)

The first component of investment cost is the vertiport infrastructure cost which includes the terminal and airside construction, as well as the equipment needed. Similarly to (27) we assume this is proportional to number of pads in the vertiport.

$$IC_{infrastructure}^k = N_{pads,k} \times C_{infrastructure, pad}$$ (31)

$$IC_{infra} = \sum_k IC_{infrastructure}^k + \sum_l IC_{infrastructure}^l$$ (32)

Land acquisition cost differs by the land value at each zone designated for vertiport con-
Serhal, Escribano-Macias, and Angeloudis

\[ IC_{land}^k = N_{pads,k} \times A_{land,\text{pad}} \times C_{land,\text{sqm}} \]  
(33)

\[ IC_{land} = \sum_k IC_{land}^k + \sum_l IC_{land}^l \]  
(34)

Finally, vehicle acquisition cost is assumed a, this time dependant on the number of vehicles:

\[ IC_{\text{vehicle}}^{kl} = n_{\text{veh}}^{kl} \times VC \]  
(35)

\[ IC_{\text{vehicle}} = \sum_k \sum_l IC_{\text{vehicle}}^{kl} + \sum_k \sum_l IC_{\text{vehicle}}^{lk} \]  
(36)

**Noise and Economy of Scale Factors**

A noise disturbance factor is included to estimate the additional infrastructure needed to attenuate its impact on the surroundings. This factor is calculated as the ratio of normal city noise loudness and that of the eVTOL during take-off or Landing at a distance of 30 meters:

\[ NDF = \frac{2^{SPL_{\text{eVTOL}}/10}}{2^{SPL_{\text{CityAverage}}/10}} \]  
(37)

\[ OC_{\text{vertiport, yearly}} = OC_{\text{vertiport, yearly}} \times NDF \]  
(38)

\[ IC_{\text{land}} = IC_{\text{land}} \times NDF \]  
(39)

\[ IC_{\text{infra}} = IC_{\text{infra}} \times NDF \]  
(40)

Furthermore, to consider the advantage of scaling eVTOL network, an economy of scale factor is applied to all operational and investments costs. To do so we assume that every additional vertiport constructed will reduce costs by 2%:

\[ ESF = 0.98^{N_{\text{vertiports}}-1} \]  
(41)

Therefore the reduced operational and investment cost are calculated as such:

\[ OC_{\text{total, yearly}} = OC_{\text{total, yearly}} \times ESF \]  
(42)

\[ IC_{\text{total}} = IC_{\text{total}} \times ESF \]  
(43)

Finally, the return on investment can be simply calculated using the following equation:

\[ ROI = \frac{(R_{\text{yearly}} - OC_{\text{total, yearly}}) (1 - t)}{IC_{\text{total}}} \]  
(44)

**Solution Method**

The framework presented in the previous sections is fitted into a Genetic Algorithm (GA) meta-heuristic. GAs have been extensively used in simulation-optimisation problems (27) given its
ability to solve large and complex mathematical problems. It is an iterative algorithm that seeks
to progressively improve the solution through trial and error inspired by the theory of natural evo-
lution. A common Genetic Algorithm structure involves four main processes: problem generation,
population selection, crossover and mutation.

Our GA implementation is structured as follows: a random population of vertiport config-
urations is generated based on the network constraints set (range, number of vertiports), with
the solution encoded as index-based, meaning the selected solution configuration will include the
index of each selected zone. Each configuration is then evaluated using the model described in
Figure 2, where the return on investment calculated in equation (44) serves as the fitness value. A
tournament selection method compares randomly selected solutions and eliminates the one yield-
ing the lowest return of investment.

The remaining high performing solutions are modified using crossover and mutation, where
crossover combines two solutions by switching a random section of each configuration with the
other (2-point crossover), and mutation randomly modifies one of the chosen zones in the configu-
raption. The process is repeated until a maximum number of generations set by the user is met (see
Figure 7).

FIGURE 7: Solution method flowchart including the main model and the three main steps of the Genetic
Algorithm in green. The output is highlighted in yellow, intermediate steps in blue and decisions taken
during the algorithm in red.

CASE STUDY: SOUTH EAST ENGLAND
South East England’s main airports (Heathrow and Gatwick) have seen together more than 90
million terminating passengers in 2019 (28). While both airports are well-connected to London’s
transportation network, travel times can vary significantly due to congestion. For this reason, UAM
is a highly attractive alternative to provide reliable transportation to and from these airports. This section presents a case study that applies the model developed in this paper to the South East England region and aims to determine the optimal UAM network configuration that maximises return on investment.

**Model Setup**

We use the latest Civil Aviation Authority passenger survey to determine the number of trips from and to Gatwick and Heathrow. As the resource was last updated in 1998 (28), the values were linearly extrapolated based on the increment of the population to obtain an approximation of recent quantities (pre-Covid19). Based on the respondents’ information presented in the survey, the following person groups were identified:

1. BMUK: Business Medium income UK residents.
2. BHUK: Business High income UK residents.
3. BMF: Business Medium income Foreign travellers.
4. BHF: Business High income Foreign travellers.
5. LMUK: Leisure Medium income UK residents.
6. LHUK: Leisure High income UK residents.
7. LMF: Leisure Medium income Foreign travellers.
8. LHF: Leisure High income Foreign travellers.

The survey revealed that less than 20% of passengers visiting London’s airports originate from outside South East England (see Figure 8), as such this case study will focus solely on the demand that originates South East of England, including Greater London. The region is split into South England counties and two Greater London regions as per Figure (9). The demand at each county was allocated to cities with over 80,000 residents.

![FIGURE 8: Yearly demand between London’s main airports and UK’s relevant regions](image)

We then incorporated the ONS survey data (ONS, 2020) which segregates population by income, to discretise the residents into medium and high income groups. One should note that the CAA reports present a significantly higher average income per user compared to the average
resident in the South East region. To accommodate such disparity, high income percentages were
increased, so that the average matches the CAA survey. Hence, Figure 10 shows the corrected ori-
gin of travellers per hour (medium and high income only), heading towards Heathrow or Gatwick,
used as input for the demand model.

With the origin-destination demands calculated, the last step of model setup involves the
network implementation and skim matrices calculation, done for both taxi and eVTOL transport
modes. Taxis are assumed to utilise the transport network shown in Figure 12 which includes
highways, primary roads and main secondary roads that connects zone centroids with highways.
To account for congestion, the following equation is implemented to modify taxi travel time:

\[
TTC_{ij,h} = TT_{0ij} \times \alpha_{\text{proximity},ij} \times \beta_h
\]  

Where \( TT_{0ij} \) is the free-flow travel time and \( \alpha_{\text{proximity}} \) is the congestion factor based on the
distance from the city centre of London, calibrated using Google Maps estimates:

\[
\alpha_{\text{proximity},ij} = \begin{cases} 
2.5 & \text{if } \frac{d_{ic} + d_{cj}}{2} < 20\text{km} \\
2 & \text{if } \frac{d_{ic} + d_{cj}}{2} > 20\text{km} \& < 40 \\
1.5 & \text{if } \frac{d_{ic} + d_{cj}}{2} > 40\text{km}
\end{cases}
\]  

With \( d_{ic} \) and \( d_{cj} \) being the distance of the origin and destination zones from the city cen-
tre. \( \beta_h \) is based on the time of day, \( h \), shown in Figure 11. Finally, based on the average travel
time variability calculated using Google Maps, we determined that the variability represented ap-
proximately 20% of the congested travel time. In terms of taxi pricing, we determined that prices
decrease for regions outside Greater London, and therefore the following taxi pricing scheme (47-
48) were defined based on current datasets (TFL, 2021).

\[
Fixed_{\text{price, taxi}}[\£] = 3 \text{ for any distance}
\]
Variable_{price, taxi}[\text{£/km}] = \begin{cases} 2 & \text{if } \frac{d_{ic}+d_{cj}}{2} < 20\text{km} \\ 1.5 & \text{if } \frac{d_{ic}+d_{cj}}{2} > 20\text{km} \& < 40 \\ 1 & \text{if } \frac{d_{ic}+d_{cj}}{2} > 40\text{km} \end{cases} (48)

Conversely, the eVTOL network assumes straight connection between each zone and each airport (Figure 13), so no routing constraints are formulated. Furthermore, the network operation considers no congestion at the vertiport, but a waiting time of 2 minutes and transfer penalty of 7.5 minutes were included. For eVTOL pricing, fixed and variable (price per kilometer) price parameters were calculated based on those set for taxis using a user defined price multiplier, \( PM \), as denoted in (49-50).

\[ FP_{eVTOL} = FP_{taxi} \times PM \] (49)

\[ VP_{eVTOL} = VP_{taxi} \times PM \] (50)

Demand Estimation Model Specifications

The utility function parameters were retrieved from (14), however to consider the different person groups and trip purpose, different value of times were considered. Based on the latter, the utility function parameters were extrapolated to match the values of times of each person groups. As such, the final derived parameters are presented in Table 2.

Based on the final obtained utility function parameters, it is worth mentioning that high income business foreign passengers are most sensitive to increases in travel time. This coincides with Garrow et al. (2020) and Al Haddad et al (2020)’s findings as foreign travellers have less time to spend in the country, and being of high income and on a business trip makes their time very valuable.
The final model parameters consist of vehicle flight parameters, vertiport operational parameters, and vertiport investment costs. These are shown in Table 3.
FIGURE 13: South East England potential eVTOL routes

TABLE 2: Resulting airport-purposed utility function parameters for each person group

<table>
<thead>
<tr>
<th>Mode</th>
<th>Person Group</th>
<th>ASC</th>
<th>$\beta^{TC}$</th>
<th>$\beta^{TT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi</td>
<td>BHUK</td>
<td>0</td>
<td>-0.1323</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>BHUK</td>
<td></td>
<td>-0.067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMUK</td>
<td></td>
<td>-0.029</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LHUK</td>
<td></td>
<td>-0.039</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMF</td>
<td></td>
<td>-0.048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHF</td>
<td></td>
<td>-0.087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMF</td>
<td></td>
<td>-0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LHF</td>
<td></td>
<td>-0.050</td>
<td></td>
</tr>
<tr>
<td>eVTOL</td>
<td>BHUK</td>
<td>-0.4671</td>
<td>-0.1323</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>BHUK</td>
<td></td>
<td>-0.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMUK</td>
<td></td>
<td>-0.026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LHUK</td>
<td></td>
<td>-0.034</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMF</td>
<td></td>
<td>-0.043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHF</td>
<td></td>
<td>-0.078</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LMF</td>
<td></td>
<td>-0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LHF</td>
<td></td>
<td>-0.045</td>
<td></td>
</tr>
</tbody>
</table>
### TABLE 3: Model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vehicle Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$GS^*$ [pers]</td>
<td>1.6295</td>
<td>(23)</td>
</tr>
<tr>
<td>$T_{\text{max}}$ [h]</td>
<td>8</td>
<td>(23)</td>
</tr>
<tr>
<td>$r_{\text{ins}}$ [-]</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>$r_{\text{CO}_2}$ [kg/MJ]</td>
<td>0.0786</td>
<td>(6)</td>
</tr>
<tr>
<td>$r_{\text{me}}$ [£/h]</td>
<td>79</td>
<td>(6)</td>
</tr>
<tr>
<td>$r_{\text{EC}}$ [£/MJ]</td>
<td>0.0349</td>
<td>UK Standard</td>
</tr>
<tr>
<td>$r_{\text{ct}}$ [£/kg]</td>
<td>0.014</td>
<td>UK Standard</td>
</tr>
<tr>
<td>$r_{\text{pat}}$ [£/kWh]</td>
<td>130.5</td>
<td>(21)</td>
</tr>
<tr>
<td>$S_{\text{pilot}}$ [$]</td>
<td>100000</td>
<td>(21)</td>
</tr>
<tr>
<td>$r_{\text{ind}}$ [-]</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>$t$ [-]</td>
<td>0.19</td>
<td>UK Standard</td>
</tr>
<tr>
<td>Capacity</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td><strong>Short Range</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range [km]</td>
<td>40</td>
<td>(18, 19)</td>
</tr>
<tr>
<td>Speed [km/h]</td>
<td>100</td>
<td>(18, 19)</td>
</tr>
<tr>
<td>$VC$ [£]</td>
<td>176327</td>
<td>(21)</td>
</tr>
<tr>
<td>$C_{\text{Bat}}$ [MJ]</td>
<td>108</td>
<td>(18, 19)</td>
</tr>
<tr>
<td>$SPL_{\text{eVTOOL}}$ [dB]</td>
<td>75</td>
<td>(19, 32)</td>
</tr>
<tr>
<td>$NDF$ [-]</td>
<td>1.23</td>
<td>1.50</td>
</tr>
<tr>
<td>$r_{\text{mt}}$ [min/h]</td>
<td>30</td>
<td>(6)</td>
</tr>
<tr>
<td>$Q_{\text{cruise}}$ [MJ/s]</td>
<td>0.057</td>
<td>(18)</td>
</tr>
<tr>
<td>$Q_{\text{take-off}}$ [MJ]</td>
<td>5.26</td>
<td>(18)</td>
</tr>
<tr>
<td>$Q_{\text{landing}}$ [MJ]</td>
<td>5.26</td>
<td>(18)</td>
</tr>
<tr>
<td><strong>Vertiport Parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Ports</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>VTOL frequency [/h]</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>VTOL clearance time [min]</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Pad turnover time [min]</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Boarding/Charging time [min]</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>eVTOL price factor [-]</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>Number of Pads**</td>
<td>1</td>
<td>$\leq 6$</td>
</tr>
<tr>
<td>$A_{\text{land.pad}}$ (m$^2$/pad)**</td>
<td>550</td>
<td>712</td>
</tr>
<tr>
<td>$C_{\text{infra.pad}}$ [£ million/pad]**</td>
<td>0.4</td>
<td>0.267</td>
</tr>
<tr>
<td>$C_{\text{vertiport.pad}}$ [£ million/pad]**</td>
<td>0.9</td>
<td>1.667</td>
</tr>
</tbody>
</table>

* Group size is taken as the average group size of both airports.

** The parameters show the values for vertipads, vertibase, and vertihubs respectively.

*** Land area separated based on two floors.
Results Analysis
The model presented in this paper is used to plan the optimal vertiport placement in South East England considering airport-purpose trips. In the first instance, we determine the number of vertiports required, pricing scheme to use and eVTOL range. Once these parameters are specified, we perform the optimisation of the network design that achieves the largest return of investment.

Maximum Demand Coverage: Number of Vertiport Analysis
In the first instance, we evaluate the improvement of the network catchment area for each additional vertiport added. As observed in Figure 14, the average daily demand capture per vertiport decreases significantly for each new vertiport added, reaching a quasi-steady state after opening 20 vertiports. The reason for this trend is twofold: the best vertiports locations are allocated first, and the increasing catchment overlap as more vertiports are added to the network.

Comparing long and short range services, demand capture increases at a faster rate for short range vehicles due to demand zones being more agglomerated, especially in Greater London. Nevertheless, for both ranges it can be determined that a reasonable range would be to open up to ten vertiports. Note that for short range eVTOL, Gatwick and Heathrow airports are no longer reachable via direct flight from every zone, reducing potential eVTOL demand substantially.

Pricing Factor Analysis
We analyse the spatial variation of ROI by evaluating a single vertiport in isolation. This allows the visualisation of the performance of each location in the network. Figure 15 shows the effect of the price multiplier (PM) to a) ROI and b) load factor

Despite the higher demands in Westminster, Woking and Guilford at $PM < 1.5$, their ROI is the lowest in that range. Conversely, $PM > 2$ also yield low ROI due to decreasing demand levels. The optimal $PM$ range resides 1.4 to 2.0, where three distinct groups were identified (shown different colour) and spatially distributed in Figure 16.
Lower PM yield the largest ROI for zones furthest from the airports (i.e. Dartford, Tower Hamlets and Southampton). Note, however, that as per equations (49-50), trip price is proportional to flight time, resulting in the highest trip prices of the network (see Figure 16. For this reason, the ROI of this group decreases quickly for $PM > 1.5$.

Higher $PM$ provides greater returns in London’s central and high-income areas (Kensington and Chelsea, Westminster and Woking). The remaining zones perform optimally with $PM$ of 1.7-1.8 (Lambeth, Islington, Camden).

The same experiment is carried using short range vehicle parameters as specified in Table 3. Figure 17 shows the variation of the ROI and total eVTOL demand with the $PM$ of the best
performing zones. Note that, despite of the lower demands in short range vehicles, operational and investment costs decrease due to the lower noise penalties and vehicle cost. As with the long range case, three distinct groups are observed.

The first group contains the zones furthest from the airports and yield an optimal ROI at $PM < 1.4$. The large depth of discharge as a result of the long flight distances increase the operational costs substantially as per equations (21-23), resulting in low land value requirements to ensure a positive ROI.

The second group contains optimal ROI within $PM$ ranges of 1.5 and 2.0 (Hammersmith and Fulham, Wandsworth, and Lambeth, among others). These zones are generally closely connected to an airport and have a high population, with high demand being required to ensure profitability.

The final group is composed of regions with a large proportion of high-income customers and very close proximity to the airports (Westminster, Woking and Guilford). The demand in these areas are less affected by the $PM$, but seldom provide the highest ROI given the expensive cost of land.

**UAM Network Analysis**

We analyse the the results of the algorithm under different passenger waiting times, seating capacity and vehicle range (short and long). We also vary the pricing factor (1.4, 1.7, 2) and number of vertiports (5, 10) based on the results of the previous sections.

The waiting time was chosen to be either 2 or 5 minutes. Finally, passenger seating capacity was either 2 or 7, the first acting as private transport while the second as public transport as proposed (19).
The resulting ROI are shown in Figure 18. For simplicity, we introduce the following notation:

\[ R_{SC,WT} \]

where R is the vehicle range type either Long Range (LR) or Short Range (SR), SC is the seating capacity either 2 or 7, and WT is the waiting time either 2 or 5. For example, \( SR_{2,5} \) denotes the instance with short range vehicles, seating capacity of 2 passengers and 5 minute waiting time.

\[ \text{(a) Five city vertiports} \quad \text{(b) Ten city vertiports} \]

**FIGURE 18**: Variation in ROI results based on the variable model specifications.

Results suggest that smaller capacity vehicles provide greater ROI overall, only \( SR_{7,2} \) yields higher ROI than \( SR_{2,2} \) and \( SR_{2,5} \) at \( PM = 1.4 \). The smaller vehicle size results in lower vertiport infrastructure costs, land requirements and noise disturbance requirements. The best ROI is obtained at \( PM = 1.7 \) for \( SR_{2,2} \), which coincides with the optimal range obtained in Figure 17. Any increment in waiting times also results in a reduction in ROI, with the only exception occurring when using ten vertiports at \( PM = 2.0 \), for \( SR_{2,2} \) and \( SR_{2,5} \). Longer waiting times require larger terminals to sustain demand and, most importantly, eVTOL travel times increase overall, so a larger proportion of the demand is lost to taxis. This generally means that providing higher waiting time allowance will result in reduced ROI. However, longer waiting times ensure vehicles are used more commonly at capacity, so the profit obtained per flight is greater.

Long range vehicles return lower ROIs on average, and the best performing instance is \( LR_{2,2} \) in the five vertiport case, and \( LR_{2,5} \) in the ten vertiport case. The main difference of long range network compared to the short range is that higher capacity vehicles provide greater ROI in most instances.

Maximising Return on Investment using Vertiport Placement

Following the network analysis described in the previous section, we carry out additional experiments based on the five vertiport \( SR_{2,2} \) case which yielded the largest ROI. The optimal network configuration shown in Figure 19 achieved a final ROI of 49.4%. An overall market penetration of 9.1% was recorded, which rose to 20% for business-class high income groups (see Figure 20).

The five vertiport locations chosen were Hemel Hempstead, Barnet, Haringey, Woking and Wandsworth. Wandsworth provides low land acquisition costs compared to its surrounding areas.
yet close proximity to high demand zones (Westminster, Kensington and Chelsea). In addition, it’s
the only selected region that connects to both airports along with Woking.
Haringey and Barnet are neighbouring regions and provide greater catchment area in northern
Central London, which contains the largest proportion of high-income business trips. Finally, due
to their peripheral locations, Hemel Hempstead and Woking act as 'Park and Ride' stations for
trips from Greater London (see Figure 21). This means that travellers use the taxi mode outside
Greater London (where congestion is low) and then switch to the eVTOL in these stations to avoid
the city centre congestion.
This combination of central and peripheral vertiports allow travellers to bypass city centre
congestion, while also being located in regions with lower land value despite their proximity to
high-demand regions.

FIGURE 19: Optimal short range network (base specifications)

FIGURE 20: eVTOL Market Penetration for each person group
FIGURE 21: Attraction area (catchment) due to multimodality of each vertiport in the short range optimal network. From top to bottom: Wandsworth, Woking, Hemel Hempstead, Haringey and Barnet. Green links are taxi access trips, while red ones are eVTOL trips.
Table 4 summarises the revenue, operational and investment cost of each vertiport as well as their specifications. One can see that eVTOL ticket prices vary between £51.72 and £99.29 depending on the vertiport, this depends on the proximity of the vertiport to the airport.

**TABLE 4: Optimal network revenue, cost and operational requirements breakdown.**

<table>
<thead>
<tr>
<th></th>
<th>Barnet</th>
<th>Haringey</th>
<th>Hemel</th>
<th>Hempstead</th>
<th>Wandsworth</th>
<th>Woking</th>
<th>Gatwick</th>
<th>Heathrow</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Revenue</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Trip (Gatwick)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.06</td>
<td>88.94</td>
<td>13.60</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Per Trip (Heathrow)</td>
<td>85.64</td>
<td>99.29</td>
<td>84.19</td>
<td>69.61</td>
<td>51.72</td>
<td>-</td>
<td>17.85</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Total [£ million/year]</td>
<td>10.79</td>
<td>9.68</td>
<td>12.45</td>
<td>49.23</td>
<td>44.66</td>
<td>54.72</td>
<td>74.81</td>
<td></td>
<td>256.34</td>
</tr>
<tr>
<td><strong>Operational Cost</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle [£ million]</td>
<td>4.06</td>
<td>3.83</td>
<td>5.71</td>
<td>21.13</td>
<td>21.46</td>
<td>24.55</td>
<td>33.03</td>
<td></td>
<td>113.75</td>
</tr>
<tr>
<td>Vertiport [£ million]</td>
<td>1.96</td>
<td>1.67</td>
<td>2.3</td>
<td>9.82</td>
<td>10.16</td>
<td>9.7</td>
<td>17.07</td>
<td></td>
<td>52.68</td>
</tr>
<tr>
<td>Total [£ million]</td>
<td>6.02</td>
<td>5.50</td>
<td>8.01</td>
<td>30.95</td>
<td>31.62</td>
<td>34.25</td>
<td>50.10</td>
<td></td>
<td>166.43</td>
</tr>
<tr>
<td><strong>Investment Cost</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle [£ million]</td>
<td>1.24</td>
<td>1.18</td>
<td>1.76</td>
<td>6.46</td>
<td>6.55</td>
<td>7.59</td>
<td>10.02</td>
<td></td>
<td>34.79</td>
</tr>
<tr>
<td>Vertiport [£ million]</td>
<td>0.31</td>
<td>0.27</td>
<td>0.37</td>
<td>4.05</td>
<td>4.18</td>
<td>3.99</td>
<td>7.03</td>
<td></td>
<td>20.2</td>
</tr>
<tr>
<td>Land [£ million]</td>
<td>7.75</td>
<td>7.04</td>
<td>5.91</td>
<td>25.2</td>
<td>12.95</td>
<td>9.02</td>
<td>24.61</td>
<td></td>
<td>92.44</td>
</tr>
<tr>
<td>Total [£ million]</td>
<td>9.30</td>
<td>8.48</td>
<td>7.99</td>
<td>35.71</td>
<td>23.69</td>
<td>20.60</td>
<td>41.66</td>
<td></td>
<td>147.43</td>
</tr>
<tr>
<td><strong>Operational Parameters</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand (Gatwick) [pers/h]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>95.87</td>
<td>113.60</td>
<td>-</td>
<td>-</td>
<td></td>
<td>209.47</td>
</tr>
<tr>
<td>Demand (Heathrow) [pers/h]</td>
<td>43.16</td>
<td>33.00</td>
<td>52.93</td>
<td>111.54</td>
<td>124.25</td>
<td>-</td>
<td>-</td>
<td></td>
<td>364.88</td>
</tr>
<tr>
<td>Passenger Pool (Gatwick)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Passenger Pool (Heathrow)</td>
<td>2</td>
<td>1.79</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Travel Time (Gatwick) [min]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.92</td>
<td>19.55</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Travel Time (Heathrow) [min]</td>
<td>14.14</td>
<td>16.58</td>
<td>18.67</td>
<td>11.33</td>
<td>10.80</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Number of Vehicles (Gatwick)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Number of Vehicles (Heathrow)</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>40</td>
<td>41</td>
<td>47</td>
<td>60</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Number of Pads</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally, in terms of investment cost, Gatwick, Heathrow, Woking and Wandsworth are considered vertihubs meaning the vertiports have two storeys, reducing the land area (and hence the land cost share) but increasing its infrastructure cost. The resulting vertiport and vehicle investment costs were significant mainly due to the high land cost in Greater London where most of the optimal locations were found.

**DISCUSSION AND CONCLUDING REMARKS**

This paper has presented a holistic UAM network optimisation algorithm that incorporates mode choice model in the demand for airport-purpose trips. To the best of the author’s knowledge, it is the first to simultaneously consider eVTOL demand modelling and network design to estimate the
FIGURE 22: Vehicle operational cost breakdown,

![Pie chart showing operational costs]

financial viability of UAM. The model is applied to South-East England to facilitate airport access
the two main airports in the region: Heathrow and Gatwick.

The optimal UAM network defined by our algorithm structured proposed a set peripheral
vertiports acting as 'park and ride' stations and central vertiports in low land cost zones which are
in close proximity to high demand areas. This resulted in an ROI of 50%, similarly to that of HS2,
for a price multiplier of 1.7 compared to taxis (34).

Our analysis of the results revealed that higher return of investments were achieved for low
seating capacity, as larger capacities required greater operational costs and sufficiently high load
factors to provide a profit were not achieved. UAM operators should also seek to minimise waiting
times, as it reduces the vertiport size requirements.

The presented framework was the first to simultaneously consider eVTOL demand mod-
eling and both operating and investment cost. Additionally, being able to easily vary financial,
vehicle and network specifications has made the framework applicable to almost any urban area
with any number of airports, for different vehicle types

The framework developed in this paper provides a useful tool for governments to estimate
future traffic trends in the urban airspace, and calculate road congestion fluctuations caused by the
addition of vertiports in the city and its periphery. Studying these patterns can inform the develop-
ment of alternative and complementary public transport links to improve vertiport accessibility.

Industry organisations can utilise the models to design and evaluate UAM networks under
different constraints, and analyse whether an investment is beneficial in the long-term. The case
study presented shows it applicability to realistic case scenarios, and thus can be applied to other
regions provided sufficient data is available.

Note that only taxis were considered as the main competitor in this experiment. Improve-
ments in the public transport network and in particular the Elizabeth line and HS2 may result lower
market penetration and a reduced ROI. In addition, the eVTOL flight path were assumed to have no
obstacles. In practice, noise pollution requirements, no-fly zones, and other stochastic components
affect the final route plan, resulting in longer flight times and higher battery capacity requirements.

Furthermore, approximately 2,400 eVTOLs would take-off or land per day alone, which
coupled with the airport’s current aircraft movement (1,300 take-offs or landings per day in the
case of Heathrow), will lead to significant pressure on ATC (28). A potential solution is the imple-
mentation of travel priority corridors to minimise interactions with aircrafts.
UAM operations were simplified assuming a constant headway, meaning congestion and capacity restrictions were not fully considered. An agent-based simulation similar to (6, 14) would provide a more realistic representation of vertiport operations, as well as the ability to consider different passenger group sizes based on the passenger survey data.

Furthermore, the genetic algorithm used in the solution method means the final configuration is not guaranteed to be optimal. However, given the problem complexity and size, an exact solution method is infeasible. Nevertheless, further work should carried to develop heuristic that accelerate solution convergence.

In summary, the findings of this study highlight the importance of multimodal modelling in evaluating demand capture of vertiports. Indeed, the best performing zones in the case study have generally prioritised cost reduction. By considering mutlimodality, passengers accessed vertiports via taxi before using eVTOLs to the airport.

Nevertheless, the proposed approach can be further developed by performing an agent-based simulation to include stochasticity in eVTOL trip requests. Additionally further research can achieve more accurate utility functions and parameters estimation by using a detailed mode preference survey able to provide a more realistic representation of airport travellers’ behaviour.

**AUTHOR CONTRIBUTION STATEMENT**

The authors confirm contribution to the paper as follows: Serhal, Escribano-Macias and Angeloudis carried out the study conception and design, Serhal developed the models and analysed the results. Escribano-Macias and Serhal prepared the manuscript. All authors have reviewed the results and approved the final version of the manuscript.
REFERENCES


31. DfT (2021a) Motor vehicle traffic distribution by time of day and day of the week on all roads, Great Britain: 2020. Department for Transport statistics. Dataset. Table TRA0307


36. DfT (2021b) Forecast values of time per person. Department for Transport statistics: Transport Appraisal and Strategic Modelling (TASM) Division. Dataset. TAG Table A 1.3.2


