-

 

 

 




Optimization Online





 

On implementing a primal-dual interior-point method for conic quadratic optimization

Erling Andersen (e.d.andersen***at***mosek.com)
Cees Roos (c.roos***at***its.tudelft.nl)
Tamas Terlaky (terlaky***at***cas.mcmaster.ca)

Abstract: Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can in theory be solved efficiently using interior-point methods. In particular it has been shown by Nesterov and Todd that primal-dual interior-point methods developed for linear optimization can be generalized to the conic quadratic case while maintaining their efficiency. Therefore, based on the work of Nesterov and Todd, we discuss an implementation of a primal-dual interior-point method for solution of large-scale sparse conic quadratic optimization problems. The main features of the implementation are it is based on a homogeneous and self-dual model, handles the rotated quadratic cone directly, employs a Mehrotra type predictor-corrector extension, and sparse linear algebra to improve the computational efficiency. Computational results are also presented which documents that the implementation is capable of solving very large problems robustly and efficiently.

Keywords: interior-point, conic optimization, quadratic cone, second-order cone, homogeneous model

Category 1: Linear, Cone and Semidefinite Programming (Second-Order Cone Programming )

Category 2: Convex and Nonsmooth Optimization (Convex Optimization )

Category 3: Other Topics (Other )

Citation: Helsinki School of Economics and Business Administration, Working papers, W-274.

Download: [Postscript][PDF]

Entry Submitted: 12/18/2000
Entry Accepted: 12/18/2000
Entry Last Modified: 12/18/2000

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society