Optimization Online


Interior-Point Method for Nonlinear Nonconvex Optimization

Ladislav Luksan (luksan***at***cs.cas.cz)
Jan Vlcek (vlcek***at***cs.cas.cz)

Abstract: In this paper, we propose an algorithm for solving nonlinear nonconvex programming problems, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We split inequality constraints into active and inactive to overcome problems with stability. Inactive constraints are eliminated directly while active constraints are used to define symmetric indefinite linear system. Inexact solution of this system is obtained iteratively using indefinitely preconditioned conjugate gradient method. Theorems confirming efficiency of several indefinite preconditioners are proved. Furthermore, new merit function is defined, which includes effect of possible regularization. This regularization can be used to overcome problems with near linear dependence of active constraints. The algorithm was implemented in the interactive system for universal functional optimization UFO. Results of extensive numerical experiments are reported.

Keywords: Nonlinear programming, interior-point methods,

Category 1: Nonlinear Optimization

Category 2: Nonlinear Optimization (Constrained Nonlinear Optimization )

Citation: Report V836, Institute of Computer Science, AV CR, Pod Vodarenskou Vezi 2, 18207 Praha 8, Czech Republic. Last revision: November 2002.

Download: [Postscript]

Entry Submitted: 11/20/2002
Entry Accepted: 11/20/2002
Entry Last Modified: 11/20/2002

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society