Optimization Online


Network Reinforcement

Francisco Barahona (barahon***at***us.ibm.com)

Abstract: We give an algorithm for the following problem: given a graph $G=(V,E)$ with edge-weights and a nonnegative integer $k$, find a minimum cost set of edges that contains $k$ disjoint spanning trees. This also solves the following {\it reinforcement problem}: given a network, a number $k$ and a set of candidate edges, each of them with an associated cost, find a minimum cost set of candidate edges to be added to the network so it contains $k$ disjoint spanning trees. The number $k$ is seen as a measure of the invulnerability of a network. We show that this can be solved with $|V|$ applications of the minimum cut algorithm of Goldberg \& Tarjan.

Keywords: spanning trees

Category 1: Combinatorial Optimization (Graphs and Matroids )


Download: [PDF]

Entry Submitted: 09/25/2003
Entry Accepted: 09/26/2003
Entry Last Modified: 03/09/2006

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society