-

 

 

 




Optimization Online





 

Low Order-Value Optimization and Applications

R. Andreani (andreani***at***ime.unicamp.br)
J. M. Martínez (martinez***at***ime.unicamp.br)
L. Martínez (lmartinez***at***iqm.unicamp.br)
F. Yano (yano***at***ime.unicamp.br)

Abstract: Given r real functions F1 (x), . . . , Fr (x) and an integer p between 1 and r, the Low Order- Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y1 , . . . , yr ) is a vector of data and T (x, ti ) is the predicted value of the observation i with the parameters x it is natural to define Fi (x) = 2 (T (x, ti ) - yi ) (the quadratic error at observation i under the parameters x). When p = r this LOVO problem coincides with the classical nonlinear least-squares problem. However, the interesting situation is when p is smaller than r. In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models. When p << r the LOVO problem may be used to find hidden structures in data sets. In this paper optimality conditions are discussed, algorithms for solving the LOVO prob- lem are introduced and convergence theorems are proved. Finally, numerical experiments will be presented.

Keywords: Order-value optimization, algorithms,convergence, robust estimation of parameters, hidden patterns

Category 1: Applications -- OR and Management Sciences

Category 2: Applications -- Science and Engineering

Category 3: Nonlinear Optimization

Citation: Technical Report MCDO 051013, Department of Applied Mathematics, State University of Campinas, Brazil.
web: http://www.ime.unicamp.br/~martinez/lovoalign

Download: [PDF]

Entry Submitted: 10/24/2005
Entry Accepted: 10/25/2005
Entry Last Modified: 01/05/2007

Modify/Update this entry


  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository

 

Submit
Update
Policies
Coordinator's Board
Classification Scheme
Credits
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Programming Society