  


A novel integer programming formulation for the KSONET ring assignment problem
Elder M. Macambira (elderde.ufpb.br) Abstract: We consider the problem of interconnecting a set of customer sites using SONET rings of equal capacity, which can be defined as follows: Given an undirected graph G=(V,E) with nonnegative edge weight d(u,v), (u,v) in E, and two integers K and B, find a partition of the nodes of G into K subsets so that the total weight of the edges connecting the nodes in different subsets of the partition is minimized and the total weight of the edges incident to any subset of the partition is at most B. This problem, called the KSONET Ring Assignment Problem (KSRAP), arises in the design of optical telecommunication networks when a ringbased topology is adopted. We show that this network topology problem corresponds to a graph partitioning problem with capacity constraints and it is NPhard. In this paper we propose a novel and compact 01 integer linear programming formulation for this problem. We report computational results comparing our formulation with another formulation found in the literature. The results show that our formulation outperforms the previous one. Keywords: Telecommunication networks, SONET rings, integer programming, graph partitioning. Category 1: Applications  OR and Management Sciences (Telecommunications ) Category 2: Integer Programming (01 Programming ) Category 3: Combinatorial Optimization (Graphs and Matroids ) Citation: AT&T Labs Research Technical Report TD6HLLNR, October 28, 2005. Download: [PDF] Entry Submitted: 10/28/2005 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  